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Abstract

Precipitation and temperature are important drivers of soil respiration. The role of moisture and temperature are generally
explored at seasonal or inter-annual timescales; however, significant variability also occurs on hourly to daily time-scales. We
used small (1.54 m2), throughfall exclusion shelters to evaluate the role soil moisture and temperature as temporal controls
on soil CO2 efflux from a humid tropical forest in Puerto Rico. We measured hourly soil CO2 efflux, temperature and moisture
in control and exclusion plots (n = 6) for 6-months. The variance of each time series was analyzed using orthonormal wavelet
transformation and Haar-wavelet coherence. We found strong negative coherence between soil moisture and soil
respiration in control plots corresponding to a two-day periodicity. Across all plots, there was a significant parabolic
relationship between soil moisture and soil CO2 efflux with peak soil respiration occurring at volumetric soil moisture of
approximately 0.375 m3/m3. We additionally found a weak positive coherence between CO2 and temperature at longer
time-scales and a significant positive relationship between soil temperature and CO2 efflux when the analysis was limited to
the control plots. The coherence between CO2 and both temperature and soil moisture were reduced in exclusion plots. The
reduced CO2 response to temperature in exclusion plots suggests that the positive effect of temperature on CO2 is
constrained by soil moisture availability.
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Introduction

In an era of significant and rapid environmental change,

understanding biophysical controls on soil respiration is of

immense importance. Tropical forests account for approximately

one third of the world’s soil carbon (C) pool [1], and have the

highest soil respiration rates globally [2]. Temperature and soil

moisture are known to affect the production and release of carbon

dioxide (CO2) from tropical forest soils through their effects on soil

redox dynamics, diffusion, root and microbial activity as well as C

and nutrient availability [3,4,5,6,7,8,9,10,11,12]. While consider-

able research has addressed seasonal and inter-annual patterns in

soil respiration in tropical forests [5,7,10,13], less is known about

the role of temperature and precipitation on shorter time-scales

(e.g., hours to days) [8,12].

In the tropics, mean month-to-month temperature variation is

generally much smaller than that observed on shorter, diel time-

scales (e.g., 2 to 4uC versus 6 to 12uC, respectively) [14]. Kinetic

theory suggests that reaction rates increase with increasing

temperature [15,16]. Laboratory incubations of tropical forest

soils support this theory, showing increased soil respiration rates

with increasing temperature when carbon (C) and nutrients are

not limiting [17,18,19]. It follows that soil respiration under field

conditions will also respond to short-term variation in soil

temperature (i.e., hours to days).

Light and temperature tend to co-vary in tropical forest

ecosystems. Soil respiration is a combination of root and

heterotrophic respiration and thus changes in light availability

could drive changes in soil respiration via affects on plant activity.

In high latitude ecosystems, light limitation of photosynthesis

reduced allocation of photosynthate to roots leading to reduced

root respiration [20]. A field study in the eastern Amazon found a

weak correlation between soil CO2 efflux and temperature on a

diel time-scale in an active pasture, but no correlation in

neighboring old growth forest or in a degraded pasture [21].

Given the sharp drop in soil CO2 efflux that was observed at the

end of the daylight period, the authors hypothesized that the diel

pattern may be related more to the response of grass metabolism

to light than to a response of soil processes to soil temperature.

Thus apparent relationships between diel or seasonal variation in

soil CO2 efflux with temperature may actually be due to effects of

light availability on root respiration.

Tropical forests experience a wide range of variation in

precipitation, at both short (hour to day) to long (seasonal and

interannual) temporal scales. This variability in the timing and

magnitude of precipitation events can drive changes in biophysical

and biogeochemical conditions that can affect soil CO2 effluxes in
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complex ways [8]. High soil water content creates a barrier at the

soil-atmosphere surface, which could inhibit the diffusion of CO2

out of the soil [8,9,22]. In humid tropical forests, the consistently

moist conditions combined with finely textured clay soils and high

biological demand for oxygen (O2) can facilitate the periodic

depletion of O2 in surface soils [23,24]. Declines in soil O2

concentrations have been found to occur within hours of even

small precipitation events (,1 mm) [24]. Low soil O2 availability

can limit aerobic respiration, decreasing soil CO2 effluxes [25].

However, highly weathered tropical forests are typically rich in

poorly crystalline, reactive iron (Fe) minerals; declines in soil redox

potential in humid tropical forest soils can drive high rates of iron

(Fe) reduction and anaerobic CO2 respiration [26]. In controlled

laboratory experiments, rates of CO2 production under anaerobic

conditions were similar to rates of aerobic respiration [27]. Iron

reduction can also increase soil phosphorus (P) availability by

decreasing the affinity of Fe for P. Biological activity is generally

assumed to be limited by P in these ecosystems [28,29], and thus

alleviation of P limitation during low or fluctuating redox

conditions has the potential to fuel increased soil respiration

[30,31,32,33].

Moisture limitation can also reduce microbial activity and

restrict microbial access to C substrates [34,35]. The associated

increase in O2 diffusion into dry soils would increase the

concentration of oxidized Fe, decrease P availability through Fe-

P bonding, and potentially limit CO2 production [30,33].

Although the relationships between moisture and soil respiration

are complex, theory generally predicts a parabolic relationship

between soil CO2 efflux and soil moisture with the highest soil

CO2 emissions occurring at an intermediate moisture level

[7,36,37,38,39]. During periods of soil water saturation and

extreme soil drying soil moisture is likely to exert a stronger control

over soil CO2 efflux than that of soil temperature [10].

In this study we investigated hourly to daily changes in soil CO2

efflux in a relatively a-seasonal humid tropical forest in Puerto

Rico to determine (1) the timescale over which CO2 efflux varies,

(2) the relationship of this variation to soil temperature and

moisture, and (3) how these relationships are affected by

experimental reduction in soil moisture.

Materials and Methods

Site Description
We conducted this research in the Bisley Experimental

Watersheds of the Luquillo Experimental Forest in northeastern

Puerto Rico (18u189N, 65u509W) [33]. Permission to work in this

site was granted by the USDA Forest Service International

Institute of Tropical Forestry. This research was conducted in

collaboration with the Luquillo Long-term Ecological Research

(Luq-LTER), and as such, data will be made available via the Luq-

LTER database (http://luq.lternet.edu/data/datacatalog). The

forest is classified as subtropical wet forest [40]. The elevation is

approximately 300 m above sea level, receives an average

3500 mm of precipitation annually, and the mean annual

temperature is 23uC. Mean month-to-month variation in temper-

ature is approximately 4uC throughout the year. While precipi-

tation is highly variable throughout the year, there is no significant

dry season [41]. The soils are deep, highly weathered, clay-rich

and acidic. The study site was dominated by the palm Prestoea

montana R. Graham Nichols [33].

Experimental Design
We created an experimental drought using small (1.54 m2)

throughfall exclusion shelters that were in place from June through

August of 2008 (3 months total). This study included a total of

three exclusion and three control plots. We used time-domain

reflectometery (TDR, Campbell Scientific Model CS616) to

estimate hourly soil moisture in all plots (0–30 cm), and measured

hourly soil temperature (10 cm; Campbell Scientific, Model

108 L) in one control and one exclusion plot. Automated soil

respiration chambers (Li-Cor LI-8100/8150 Multiplexer; Li-Cor

Biosciences, Lincoln, NE, USA) were installed in all six plots to

measure hourly changes in soil CO2 efflux. Due to limited power

access at the field site, soil CO2 efflux was measured in a series of

field campaigns conducted over a six-month period that included

three months with the throughfall exclusion shelters in place and

three months following shelter removal (average 8 days per

campaign, 110 days total). For a more detailed description of the

study site and methodology, see Wood and Silver [33].

Statistical Analyses
The variance of each time series (e.g, temperature, moisture,

respiration) was decomposed on a scale-by-scale basis using

orthonormal wavelet transformation (Matlab version 7.0

[R2010a], Mathworks; Appendix S1). This spectral technique,

analogous to Fourier analysis, breaks the process variance into

pieces, each of which represents the contribution on a particular

scale [42]. Given a time series Xt (t = 0,2, …,N21) that is regarded

as a stochastic process with stationary increment, and a unit level

Daubechies wavelet filter h1,l of width L, the wavelet variance at

the j-scale tj = 2j21 is defined as:

v̂v2
X (tj)~

1

Mj

XN{1

t~Lj{1

W 2
j,t ð1Þ

where Mj = N2Lj+1 and Lj = (2j21)(L21)21.

The coefficients W are computed as:

Wj,t~
XLj{1

l~0

hj,lXt{l ð2Þ

We used the Mondal and Percival [43] method to compute an

unbiased estimator of the wavelet variance for gappy series where

the missing values are replaced by zeros (48% of data;

Fig. 1):

ûuXX (tj)~
1

Mj

XN{1

t~Lj{1

XLj{1

l~0

XLj{1

l0~0

hj,lhj,l0 b̂bl,l0Xt{lXt{l0 ð3Þ

where b̂b{1

l,l0
~

1

Mj

XN{1

t~Lj{1

dt{ldt{l0 and dtassumes the value zero or

unity, with zero indicating that Xt is missing. In the bi-variate case

the wavelet co-variance between two time series X and Y is defined

as:

ûuXY (tj)~
1

Mj

XN{1

t~Lj{1

XLj{1

l~0

XLj{1

l0~0

hj,lhj,l0 b̂bl,l0Xt{lYt{l0 ð4Þ

A normalized wavelet covariance (the analogy of the coefficient

of correlation) can be obtained combining equation (3) and (4) to
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form [44]:

WCXY (tj)~
uXY (tj)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uXX (tj)
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uYY (tj)
p ð5Þ

The correlation among variables are explored in the following

using the Haar-wavelet coherence defined in equation (5). We

used regression analyses to determine relationships between CO2

efflux (mean of three replicates per treatment) and mean soil

characteristics (e.g., soil moisture and temperature). When

significant diel variation was observed, regressions were performed

using mean hourly values, all other regressions performed using

mean daily values. All regressions were performed using SigmaPlot

10 (SigmaPlot for Windows, v. 7.101, 2001, SPSS Inc.).

Results

We found no significant diel periodicity in soil respiration. Soil

CO2 efflux did, however, display significant periodicity over daily

to seasonal time-scales. Soil respiration in control plots showed

high coherence with soil moisture for a broad range of time scales,

with a peak correlation corresponding to a two-day periodicity

(Fig. 1). This two-day periodicity is the timescale over which strong

fluctuations in volumetric soil moisture occurred (Fig. 2A). Further

analyses of the time series revealed a negative relationship between

soil moisture and soil CO2 efflux (Fig. 3). Soil respiration and

temperature were correlated on a scale of weeks to months, with

peak respiration occurring during the period of highest temper-

atures (Fig. 2).

Throughfall exclusion reduced volumetric soil moisture by an

average of 29% relative to the controls. There was reduced

coherence between soil respiration and soil temperature, as well as

with soil moisture in these plots. There was a significant parabolic

relationship between mean daily volumetric soil moisture and

mean daily soil CO2 efflux when both treatments were included,

with peak soil respiration occurring when volumetric soil moisture

was approximately 0.375 m3/m3 (Fig. 4, R2 = 0.29, p,0.0001,

f = y0+a*x+b*x
2). Variation in the residuals was significantly and

positively related to soil temperature (R2 = 0.15, P,0.0001). The

same relationship between soil moisture and soil CO2 efflux was

found when the control and exclusion plots were evaluated

separately (R2 = 0.29, p,0.0001 [control]; R2 = 0.28, p,0.0001

[exclusion]). We found a significant, positive linear relationship

between mean daily soil temperature and mean daily CO2 efflux

in the control plots, but not in the exclusion plots (R2 = 0.55,

p,0.0001, Fig. 5).

Discussion

We found no significant diel variation in soil respiration in this

forest. This is in contrast to findings in temperate and boreal

forests, which have found that soil respiration varied with soil

temperature and photosynthesis on diel time-scales [8,45,46,

47,48,49]. Significant diel variation has also been found in some

tropical forest sites [8,50,51], but not all (this study, [9,21]). The

lack of a consistent diel response of soil CO2 efflux across tropical

forest sites could be due to differences in the magnitude of the diel

change in temperature across these forest sites, variability in the

relative contribution of root versus microbial respiration to total

soil respiration, or because other factors such as soil moisture

status, exert a stronger control over total soil respiration in some

systems than temperature. Furthermore, root and soil respiration

have been found to demonstrate differential responses to

environmental variables (e.g., soil moisture) [52,53,54]. Hence,

while we observed no significant diel pattern of net soil respiration,

partitioning soil respiration into its components (e.g., litter, root

and soil) could reveal different results [53].

We found significant coherence between soil CO2 efflux and soil

moisture on a two-day time-scale. The periodicity of this

relationship corresponds with large rainfall events that significantly

increased volumetric soil moisture and lowered soil CO2 efflux

(e.g., Fig. 3). Rapid declines in soil CO2 efflux in response to soil

water saturation has been observed in seasonal forest in the

Amazon [8] and in moist tropical forest in Panama [9]. The

decline in soil CO2 efflux in response to increased volumetric soil

moisture could be the result of reduced diffusion of CO2 from

saturated soils [8,9,10]. Reduced soil CO2 efflux could also be due

to reduced soil microbial activity in low O2 environments [25].

As expected, we found a significant parabolic relationship

between soil moisture and soil CO2 efflux with peak soil

respiration occurring when volumetric soil moisture was at an

intermediate value of approximately 0.375 m3/m3 (Fig. 5). This

parabolic relationship between soil moisture and soil CO2 efflux

agrees with findings from other tropical forest sites [6,8,36].

Interestingly, the ‘‘tipping point’’ of the positive effect of soil

moisture on CO2 efflux is similar across tropical forests on clay

soils, occurring at mean volumetric soil moisture values of

approximately 0.35 m3/m3 (this study) [7,36] to 0.45 m3/m3

[6,8]. In many soils, when the soil moisture content is at about

40%, a small increase in soil moisture content leads to a large

increase in soil resistance to the diffusion of gases, thereby

reducing soil CO2 emissions [9,12,55]. When tropical forests on

sandy soils are considered, this tipping point is reduced (0.22 m3/

m3) [7]. These findings would suggest that soil texture plays an

Figure 1. The wavelet coherence [44] between CO2 efflux and
soil moisture (black) and temperature (gray) in the (A) control
and (B) exclusion plots.
doi:10.1371/journal.pone.0080965.g001
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Figure 2. Time series for (A) soil moisture, (B) soil temperature, and (C) carbon dioxide (CO2) flux over the 6-month study (June
through December 2008) in the control (black) and exclusion (gray) plots. Throughfall exclusion shelters were in place from June through
August (3-months).
doi:10.1371/journal.pone.0080965.g002

Figure 3. Plot of soil moisture and soil respiration for one of the eight field campaigns (18-days, June 30-July 18, 2008). Soil
respiration declined following large rainfall events and the subsequent increase in soil moisture.
doi:10.1371/journal.pone.0080965.g003
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important role in determining the tipping point of the positive

effect of soil moisture on soil CO2 efflux in tropical soils.

The observed trend of a positive coherence between soil

respiration and temperature on seasonal timescales is intriguing

given the low variability in temperature during the study period

(Fig. 1; 2uC) [33]. Despite this low seasonal variability, there is

evidence that soil respiration in tropical forest sites exhibits a

positive response to relatively small increases in temperature over

monthly to annual time-scales [6,7,8,10]. However, temperature

and light tend to co-vary in tropical forests (Silver et al. unpublished

data) [7], hence it is also possible that the observed relationship

between temperature and soil respiration is driven by variation in

light via the positive effect of light on photosynthesis and the

resulting increase in carbohydrate allocation to roots rather than

temperature. However, experimental manipulation of temperature

in a field setting would be needed to distinguish the effects of

temperature versus those of light availability on soil CO2 efflux in

tropical systems. Currently, no field-warming experiment has been

conducted in a tropical forest [18,56,57].

Interestingly, the coherence between soil moisture and soil

respiration on a two-day time-scale was reduced significantly in the

exclusion plots (Fig. 1). This reduced coherence could be due to

the filtering out of the effects of large rainfall events on soil

moisture availability in the exclusion plots (Fig. 2; Days 160 to

240). This finding would suggest that considering the temporal

variability of precipitation events in addition to the role of total

precipitation inputs is important when evaluating moisture

controls on soil CO2 efflux. In addition to a reduced coherence

between soil moisture and CO2 efflux, there was also a reduction

in the CO2 response to temperature in the exclusion plots, which

suggests that the positive effect of temperature on CO2 efflux at

weekly to monthly time scales is constrained by soil moisture. This

result is supported by the significant positive relationship between

soil temperature and soil CO2 efflux in the control plots, but not

the exclusions (Fig. 5). Interestingly, when we evaluated soil

respiration on a weekly time-scale, we found no significant

influence of soil moisture or temperature on soil respiration and

no significant differences in soil respiration between the control

and exclusion plots [33], which highlights the value of collecting

soil CO2 efflux measurements with high temporal resolution.

Overall, the reduced coherence of soil moisture and soil

temperature with soil CO2 efflux in the exclusion plots suggest

that small reductions in soil moisture availability can result in

moisture availability as a predominant limiting factor of soil CO2

efflux in tropical soils, even in sites that receive relatively large

rainfall inputs throughout the year.

Conclusions

Overall, higher soil moisture led to lower soil CO2 emissions in

this study. The reduction in CO2 release could be the result of

abiotic and biotic factors. The reduced water-filled pore space of

the saturated soil may have decreased diffusion of CO2 out of the

soil, leading to lower CO2 emissions [9,24]. Saturated soils also

limit the diffusion of O2 into the soil, which could have created

anaerobic conditions that limit the production of CO2 [23,25].

Continued dry down of soils has been shown to reduce CO2

emissions from some tropical forests, but has had no effect in

others [3,33,52,54,58]. Our results highlight the strong sensitivity

of soil respiration to short-term dynamics in soil moisture and

longer-term patterns in temperature or light availability in a

humid tropical forest. Our results also show that the well-

established relationship of soil respiration to temperature is

changed when soil moisture is reduced. This finding would

suggest that temperature exerts a positive control on soil

respiration as long as soil moisture is not limiting. Determining

Figure 4. Regression between mean daily volumetric soil
moisture and mean daily soil CO2 efflux in both the control
(solid circles) and exclusion (open circles) plots. The equation for
the regression is f = y0+a*x+b*x2.
doi:10.1371/journal.pone.0080965.g004

Figure 5. Regression between mean daily soil temperature and
mean daily soil CO2 efflux in the (A) control and (B) exclusion
plots.
doi:10.1371/journal.pone.0080965.g005
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which processes will dominate in tropical forests depends heavily

on our ability to accurately predict how climate change will affect

precipitation patterns and hydrologic cycles in these ecosystems.

Supporting Information

Appendix S1 Matlab code for presented analyses.

(DOC)
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