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Abstract

Background: Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon
budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar
measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy
heights. Tropical forest areas with complex topography present a challenge for lidar remote sensing.

Results: We compared digital terrain models (DTM) derived from airborne lidar data from a mountainous region of
the Atlantic Forest in Brazil to 35 ground control points measured with survey grade GNSS receivers. The terrain
model generated from full-density (~20 returns m−2) data was highly accurate (mean signed error of 0.19 ± 0.97 m),
while those derived from reduced-density datasets (8 m−2, 4 m−2, 2 m−2 and 1 m−2) were increasingly less accurate.
Canopy heights calculated from reduced-density lidar data declined as data density decreased due to the inability
to accurately model the terrain surface. For lidar return densities below 4 m−2, the bias in height estimates translated
into errors of 80–125 Mg ha−1 in predicted aboveground biomass.

Conclusions: Given the growing emphasis on the use of airborne lidar for forest management, carbon monitoring, and
conservation efforts, the results of this study highlight the importance of careful survey planning and consistent
sampling for accurate quantification of aboveground biomass stocks and dynamics. Approaches that rely primarily on
canopy height to estimate aboveground biomass are sensitive to DTM errors from variability in lidar sampling density.

Keywords: Tropical montane forest; Airborne lidar; Digital Terrain Model; Elevation accuracy; Data thinning; Canopy
height; Biomass estimation; REDD+
Background
Tropical forests are important reservoirs of carbon and
biodiversity. Characterizing the spatial distribution of
aboveground biomass (AGB) is a prerequisite for under-
standing carbon cycle dynamics in tropical forests over
time. Precise estimates of AGB and changes in carbon
stocks from human activities are also required for ongoing
climate mitigation efforts to Reduce Emissions from
Deforestation and Forest Degradation (REDD+) [1].
Airborne lidar has been successfully used to estimate

aboveground biomass in a range of forest ecosystems
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[2-9]. Typical approaches to predict AGB with lidar data
are based on regression models linking lidar metrics to
biomass estimates from forest inventory plots. The model
is then used to estimate AGB over larger areas. Lidar-
derived metrics most frequently used to predict biomass
include mean or maximum canopy height [10-13] and
vertical canopy profile measures, such as height percen-
tiles and variance of heights [14,15]. Airborne lidar remote
sensing supports high-resolution carbon mapping across
broad spatial scales and a range of ecosystems [16-18],
with great potential to aid carbon monitoring and climate
change mitigation efforts (e.g. REDD+).
Estimation of forest canopy height using lidar data de-

pends upon an accurate representation of the ground sur-
face in digital terrain models (DTMs). For forestry studies
in particular, lidar is capable of characterizing both terrain
and vegetation structure effectively. However, any error in
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the DTM will propagate to affect the accuracy of the de-
rived vegetation metrics [19] and canopy height models
(CHM). Therefore, it is necessary to characterize uncer-
tainties associated with lidar-derived DTMs in order to ac-
curately quantify uncertainties in the overlying vegetation
heights.
Ground data are the most common method for esti-

mating the accuracy of lidar-derived elevation estimates.
Control points are collected using an independent method
with higher accuracy, assuming that the calculated height
differences or elevation errors are normally distributed
[20]. In this context, and for the purposes of the present
study, the quality of the DTM is expressed in terms of ver-
tical accuracy, i.e., how close the lidar-measured terrain
elevation is to the reference value established from in-situ
GNSS observations.
The accuracy of lidar-derived DTMs can differ signifi-

cantly across topographic and land cover gradients. Un-
certainty in lidar-derived DTMs encompasses three sources
of error: (1) sensor-specific uncertainties associated with
the navigation, positioning and lidar systems during data
acquisition; (2) geometric uncertainties related to the flight
altitude and ranging distance, scan angle, or the local
topography; and (3) uncertainties arising during the post-
processing steps, such as point classification or surface
interpolation [21]. Over open areas with relatively flat
Figure 1 Graphical overlay of vertical transects along the length of th
underlying terrain elevation. The control points in the montane forest p
submontane plots (F–J) are located between 100–370 m elevation. North i
inverted scale shows the increase in lidar footprint size with growing distan
terrain, it is common to achieve elevation accuracies
below 0.15 m root mean square error (RMSE) [22-24].
In a study evaluating DTM accuracy for six different
land-cover types, Hodgson and Bresnahan [25] ob-
served RMSE values ranging from a low of 0.17 to 0.19 m
in pavement and low grass classes to a high of 0.26 m in a
deciduous forest. In areas covered by dense vegetation,
DTM elevation errors tend to increase because less energy
reaches the ground, resulting in fewer ground points
for DTM surface interpolation [26]. Several studies have
assessed lidar-derived DTM accuracy in temperate con-
iferous, deciduous and mixed forests, reporting RMSE
values that range between 0.32 m and 1.22 m [27-29].
However, there have been relatively few studies of ele-
vation accuracy under complex, multilayered tropical rain
forest canopies [26] where REDD+ efforts are concentrated.
In this study, we analyzed 1000 hectares of high-density

lidar data collected along a steep elevational gradient
(100 m to 1100 m a.s.l.) with coastal Atlantic Forest in
Southeast Brazil. Lidar data collection covered nine 1-ha
permanent field plots divided between submontane and
montane forest areas (Figure 1). We evaluated the accur-
acy of a DTM derived from the airborne lidar data for the
topographically complex study area of the Serra do Mar
and assessed the impact of variable survey conditions (i.e.
changes in flying height, ranging distance and footprint
e study area including the 26 individual flightlines and the
lots (K–N) lie at an average elevation of 1000 m, while those in the
s to the left of the figure, and the y-axis on the right-hand side with an
ce from the airborne sensor.
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size) on the characterization of the ground surface. We
then assessed how changes in lidar data density influenced
DTM accuracy, and examined how DTM uncertainty
propagated into lidar-derived canopy height metrics. Our
study targeted two main objectives: 1) to provide guidance
regarding the minimum lidar point density required to
generate DTM accuracies needed for lidar-based studies
of forest biomass, and 2) to quantify the impacts of DTM
errors on estimates of aboveground biomass. With its
complex terrain, steep elevational gradient, and dense
multilayered tropical forest canopy, the study site is un-
like most of the areas considered in previous lidar for-
estry studies, but similar to fragments of Brazil’s Atlantic
Forest and other tropical forests.

Results
Full-density lidar data
Field GNSS elevations and lidar-derived DTM values
(1m resolution, full-density data) showed excellent agree-
ment. The error analysis of elevations using all 35 valid
control points resulted in a mean signed error of 0.19 ±
0.97 m (μ ± σ), and the calculated RMSE value was 0.97 m.
DTM elevations were higher on average than the corre-
sponding GNSS elevations. Considering the uncertainty in
calculating the lidar DTM (vertical 1σ = 0.15 m on flat
terrain) and error in the GNSS measurements, this 0.19
m elevation difference indicates a very good agreement
between field data and the terrain model. Moreover,
using only the 30 most accurate control points (σ < 1 m)
for comparison, the mean signed error dropped by 63% to
0.07 ± 0.89 m difference of terrain elevations. Based on a
one-sided t-test performed with the 30 most accurate con-
trol points, the DTM errors were not significantly different
from zero (95% confidence level, p-value = 0.662).
DTM accuracy did not differ significantly by forest type

or elevation for ground control points collected in sub-
montane and montane forests. Differences between ele-
vation errors associated with submontane and montane
areas were evaluated assuming a normal distribution of
the errors (Kolmogorov-Smirnov test, p-value = 0.923).
Using the 30 most accurate control points for compari-
son, calculated mean signed errors for submontane vs.
montane areas revealed positive differences between DTM
and GNSS elevations at lower altitudes (0.23 ± 0.88 m),
indicating a slight overestimate from lidar-derived ter-
rain elevations in this area. For montane sites, the dif-
ference between DTM and GNSS values was smaller in
magnitude and negative (−0.14 ± 0.90 m). However, mean
signed errors were not significantly different from each
other, based on a two-sided t-test performed with the
two sets of errors (95% confidence level, p-value = 0.139).
Thus, variability in flying height (footprint size) did not re-
sult in a statistically significant difference in DTM accur-
acy across the study area.
Reduced-density lidar data
Lower point densities in the thinned lidar data resulted
in less accurate DTMs. Five data density levels were ana-
lyzed: the original density of 20 returns m−2 (D20) and
the thinned return densities of 8, 4, 2 and 1 m−2 (denoted
D8, D4, D2 and D1, respectively). When compared with
GNSS control points, mean signed errors of the thinned
DTM elevations increased as data density was reduced
from D20 (0.19 ± 0.97 m) to D1 data (3.21 ± 3.12 m)
(Figure 2). DTM elevations were higher than the GNSS
elevations in all cases, with increasing error magnitudes
as data were thinned. Calculated RMSE values showed
a similar increasing trend with decreasing data density,
ranging from a low of 0.97 m for the D20 DTM to a
high of 4.45 m for the D1 data (Table 1).
Elevation errors in the thinned DTMs were larger in

the submontane region than in the montane area for all
the data densities. This observed difference between ele-
vation classes became larger with increased levels of data
thinning; the mean signed error difference between sub-
montane and montane areas with 20 returns m−2 (0.31 m)
increased to 2.64 m when data density dropped to 1 re-
turn m−2. The trend in RMSE values also followed a
similar pattern, with growing differences between sub-
montane and montane DTM accuracy as data were
thinned (Figure 3). With the highest data density, sub-
montane and montane RMSE values were nearly identi-
cal (<0.1 m difference), while with lower data densities,
montane RMSE values remained low while submontane
RMSE values increased rapidly (0.76 to 3.08 m difference).
The elevation error statistics based on thinned data are
summarized in Table 1. These differences likely reflect the
combined influence of greater ranging distance and topo-
graphic complexity in submontane areas.
To illustrate the spatial variability of DTM elevation

errors across the landscape, a transect line was drawn
along the center of the study area and DTM elevations
were sampled from the 1-meter raster grids for all data
densities. The difference between the cell values of the
full-density DTM extracted along the transect line and
the corresponding cell values of each thinned DTM was
calculated and the elevation differences plotted (Figure 4).
In general, the elevation difference between full-density
and thinned DTMs was larger at lower altitudes, along the
hillslope and in the valley, and smaller on top of the
plateau. The magnitude of the difference increased with
increased data thinning throughout the whole area, and
the spatial distribution of the errors was associated with
the level of complexity of the terrain in all DTMs exam-
ined. Where the terrain surface was more accentuated (i.e.
greater rate of change of elevation), the corresponding dif-
ference in full-density vs. thinned DTM values was also
larger, while with a smoother terrain surface, the associ-
ated DTM differences were smaller in magnitude.



Figure 2 Distribution of the errors between GNSS and DTM elevations with data density levels of 20, 8, 4, 2 and 1 returns m−2 (D20, D8,
D4, D2 and D1, respectively).
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Effects of data thinning on estimated canopy height
Thinned lidar data consistently underestimated canopy
heights in the 1-ha plots (Figure 5). With the full D20
data, mean canopy heights for the nine inventory plots
ranged between 19.52 and 22.91 m (Plots F-N). With
increasing levels of data thinning, the mean canopy
Table 1 Summary statistics from the DTM error analysis
after data thinning

Error statistics (Δz) in meters

Data type Min Max Mean Stdev RMSE

D20 submontane −1.23 2.18 0.33 0.92 0.95

montane −1.65 1.86 0.02 1.02 0.99

ALL −1.65 2.18 0.19 0.97 0.97

D8 submontane −2.88 4.51 0.54 1.60 1.65

montane −1.07 1.85 0.19 0.90 0.89

ALL −2.88 4.51 0.38 1.32 1.35

D4 submontane −1.72 6.98 1.81 2.45 2.99

montane −0.94 2.25 0.30 0.97 0.99

ALL −1.72 6.98 1.12 2.04 2.30

D2 submontane −1.96 14.62 2.36 3.96 4.52

montane −1.39 3.33 0.66 1.32 1.44

ALL −1.96 14.62 1.59 3.13 3.47

D1 submontane 0.46 14.05 4.42 3.24 5.43

montane −0.72 7.49 1.78 2.32 2.87

ALL −0.72 14.05 3.21 3.12 4.45
heights decreased on average by 0.70 m (3%), 1.75 m
(8%), 3.40 m (16%) and 5.26 m (25%) for return dens-
ities of D8, D4, D2 and D1, respectively. The magnitude
of canopy height changes was generally larger for the
submontane plots (F, G, H, I and J), resulting in mean
decreases of 0.79 m, 1.99 m, 3.93 m and 6.08 m with in-
creasing thinning levels. In comparison, the mean canopy
height changes in the montane plots (K, L, M and N) was
0.60 m, 1.45 m, 2.73 m and 4.24 m for the return densities
of D8, D4, D2 and D1, respectively.
Lidar-derived canopy surfaces (digital surface models,

DSMs) at the field plot locations showed little variation
with the different levels of data thinning. A visual assess-
ment of the DSM for each plot indicated that the canopy
surface became slightly more rugged with increased data
thinning, but the overall canopy surface elevation and
shape did not change. In comparison, the terrain surface
showed larger changes with increased levels of thinning.
DTM errors in the thinned datasets resulted from an in-
correct classification of vegetation features as ground.
The overall effect of thinning was a positive bias in the
ground elevation, which translated into lower canopy
heights with decreasing data density.
Underestimation of mean canopy height (MCH) in the

thinned lidar data had a significant impact on modeled
aboveground biomass (AGB). We developed a simple re-
gression model for the nine plot locations based on MCH:
AGB = 24.13 ×MCH - 204.76; r2 = 0.43; RMSE = 30.0 Mg
ha−1. Aboveground biomass predictions (mean ± standard



Figure 3 Comparison of RMSE values in the DTMs based on the five data density levels of 20, 8, 4, 2 and 1 returns m−2 (D20, D8, D4,
D2 and D1, respectively).
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deviation across nine permanent plots) for the different
thinning levels ranged from 295.3 (±27.9) Mg ha−1 with
full-density lidar data to 168.2 (±31.5) Mg ha−1 with the
lowest data density of 1 return m−2 (Figure 6). In this
study, a 1–5 m bias in MCH from incorrect ground detec-
tion may lead to errors in AGB estimates on the order of
15–125 Mg ha−1. For lidar return densities below 4 m−2,
the bias in height estimates translated into aboveground
biomass errors substantially greater than the model error
of ~30 Mg ha−1. These findings illustrate how approaches
that rely on mean canopy height to estimate aboveground
biomass are sensitive to DTM errors that arise from vari-
ability in lidar sampling density.

Discussion
Lidar-derived ground topography
Lidar coverage at the Atlantic Forest study site resulted
in a very accurate DTM, despite large elevation differences,
steep slopes, and closed canopy tropical forest cover. The
ability to generate a highly accurate terrain model in such
a challenging environment can be attributed, in part, to
the high lidar point density (20 returns m−2 on average).
Typical lidar data densities used for forest research and
management purposes have been within the range of 0.5 -
4 returns m−2 [30-32], occasionally reaching a higher value
of 10 to 12 returns m−2 [33,34]. Our approach to test the
impact of data density on DTM accuracy highlights the
potential variability in terrain elevations (and therefore
canopy characterization) from low-density lidar coverage
in regions with complex topography. Thinning of the
point cloud below 4 returns m−2 led to elevation errors
that rendered the resulting DTM inadequate for con-
sistent retrievals of vegetation heights. We therefore
recommend a minimum lidar point density of 4 m−2 for
studies of dense forest vegetation in complex terrain.
Dense lidar data coverage is also critical for REDD+
and related applications that require repeat acquisitions
to monitor changes in forest structure and aboveground
carbon stocks; accurate DTMs are critical for change de-
tection in regions with complex topography.
The results of this study are consistent with previous

efforts to validate DTM products from small-footprint
lidar systems [27-29], including an exponential increase
in errors as data density decreases [35]. Clark and col-
laborators [26] reported a DTM accuracy of 0.58 m
RMSE in open-canopy flat areas of an old-growth Costa
Rican rain forest, and overall RMSE of 2.29 m when steep
slopes and multilayered dense vegetation areas were also
considered. In our study, the lidar-derived DTM consist-
ently overestimated the ground elevation compared to the
reference points, likely due to the incorrect classification
of vegetation features as ground by the point-filtering
algorithm. This overestimation of ground elevation was
small in the full density data, but increased with succes-
sive thinning of the data.
Importantly, submontane areas consistently showed lar-

ger changes in DTM accuracy than montane areas after
data thinning – consistent with longer ranging distances,
larger lidar footprints, and more complex topography at
lower elevations in the study site. Consistent flying altitude



Figure 4 Elevation differences between the original DTM generated from the full-density data (D20) and the thinned DTMs (D8, D4,
D2, D1) extracted from a 1-m grid along the central line of the study area. A vertical transect of the corresponding terrain elevations
extracted from the original DTM along the same central line is shown for reference (note the submontane and montane plot locations), as well
as the calculated rate of change of the terrain elevation along the transect.
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for data collection resulted in a change in footprint size as
ranging distances increased between montane and sub-
montane areas (Figure 1). Longer ranging distances lower
the proportion of pulses that penetrate the forest canopy
to generate a return from the ground surface [19,36].
Terrain complexity has been identified as a cause for
the variation in DTM accuracy across landscapes [37].
The steeper slopes and more variable topography in the
submontane region might be harder to capture by the
lidar system than the generally more homogeneous ter-
rain on top of the plateau in the montane forest.
Optimization of the flight line configuration at the time
of data collection (e.g. constant flying height above
ground, even point distribution) could potentially minimize



Figure 5 Mean canopy surface heights associated with the field plot locations (submontane Plots F - J and montane Plots K - L) based
on CHMs generated from original and thinned lidar data (D20, D8, D4, D2 and D1 indicate the different data density levels).

Figure 6 Aboveground biomass estimates in submontane and montane classes and across all nine permanent plots (mean ± standard
deviation) for different data densities predicted with a linear model based on mean canopy surface height.
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the observed difference between DTM accuracy for areas
with different elevations, with important implications for
data quality and forest applications.

Lidar-derived canopy height
The results of this study illustrate how errors in DTM
accuracy propagate into estimates of forest canopy struc-
ture. Accurate characterization of the ground surface is
a prerequisite for lidar vegetation studies because vege-
tation heights are calculated relative to the associated
bare earth surface. Variability in DTM accuracy intro-
duces error in the canopy height calculations, ultimately
leading to erroneous estimation of related forest metrics
or modeled aboveground biomass. Careful attention to
lidar collection and analysis is particularly important in
regions with complex topography, given previous issues
with large-footprint lidar data in sloped terrain [38] and
the relative inaccessibility for field measurements in these
sites. Biases that propagate from lidar-derived canopy
structure to estimates of aboveground forest biomass
on sloped terrain would therefore be less likely to be
detected by field validation efforts.
Lidar-based biomass estimates that rely on mean can-

opy height may be particularly sensitive to height biases
from sampling issues that influence the accuracy of the
DTM. The consistent overestimation of ground elevation
in the analysis of thinned lidar data for Serra do Mar
highlights the potential for a directional bias (underesti-
mation of canopy heights) in regions with more sparse
lidar sampling. No significant change was observed in
the DSM heights with data thinning, suggesting that
even with low point density, it is possible to capture the
highest points of tree crowns and generate a canopy sur-
face model representative of the true outer vegetation
surface. Mountainous areas and other regions with com-
plex topography present unique challenges for uniform
lidar sampling. REDD+ efforts at the subnational or na-
tional scale will confront these sampling and analytic
challenges for forests on steep slopes or other complex
terrain. This study provides important guidance on the
trade-offs associated with sampling density and biomass
estimation over large regions with complex topography.

Lidar-based biomass estimates
Detailed knowledge of the spatial distribution of above-
ground forest biomass is critical to improve estimates of
carbon sources and sinks over time. Tropical forest bio-
mass estimates are limited by knowledge of the allometry
of tropical trees. The extreme diversity of tree species in
tropical forests generally precludes species-specific allom-
etries and instead general relations are applied [39,40]. As
in other biomes, quantification of biomass depends on
relations between lidar metrics (mainly mean or total
canopy height) and estimates of plot biomass from field
measurements and allometric equations [41,42]. Lidar-
based estimates of forest biomass could greatly improve
mapping of aboveground carbon stocks and monitoring
carbon emissions over large areas for tropical forests.
However, this study suggests caution when applying gen-
eralized biomass models based on a single lidar metric
(MCH or TCH) across a heterogeneous landscape with
both flat and sloped terrain and dense vegetation, like the
Serra do Mar, especially at low lidar return densities. In-
creasing point density mitigates the problem of accurate
canopy height (and DTM) generation but increases costs.
Our study points to the need for careful attention to

lidar data acquisition parameters to assess aboveground
biomass in tropical forests with complex topography.
Mascaro and colleagues [43] have called for a global
airborne lidar campaign to cover tropical forests. We
endorse this proposal but add two important caveats.
First, some tropical forest environments will be more
costly and complex than others for airborne lidar data
acquisition. Additional costs reflect the need to adapt
data collection parameters to provide equivalent lidar
sampling in domains of simple and complex topography.
Wall-to-wall mapping with consistent data collection in
montane environments drastically reduces the efficiency
of the fly high and fast strategy advocated by Mascaro and
colleagues. Second, and perhaps more importantly, the
legislation controlling airborne lidar survey varies across
tropical nations. Brazil contains the largest area of tropical
forests of any nation. However, because Brazil has a highly
regulated market for aerial survey, achieving pricing as
low as estimated by Mascaro and colleagues would be
difficult or impossible at present. Regardless of these
difficulties, airborne lidar offers a promising avenue for
more detailed characterization of the world’s tropical
forests – with unique advantages for assessing the spatial
and structural complexity of tropical forests in addition to
benchmarking forest carbon stocks.

Conclusions
We found that small-footprint lidar data can be used to
characterize the sub-canopy terrain elevation with high
vertical accuracy (<1 m) in the topographically complex
Serra do Mar region. The accuracy of the lidar-derived
ground elevations was more strongly influenced by sam-
pling point density than either the ranging distance or
complexity of the terrain features. From the perspective
of forest carbon monitoring and REDD+, return dens-
ities above 4 m−2 are recommended for generating forest
structure data for biomass estimation. In addition, we
recommend a constant flying height above ground (i.e.
equal lidar footprint size), and careful flight planning
to generate uniform data density throughout the lidar
coverage. A consistent sampling frame is prerequisite for
improved lidar-based estimates of aboveground biomass



Table 2 Laser system parameters

Parameter Specification

Positioning system POS AV™ 510 (OEM) - GNSS/L-Band receiver

Horizontal accuracy ≤50 cm (1:1000 scale; PEC “A”); 1σ

Vertical accuracy ≤15 cm; 1σ

System frequency (PRF) 50 kHz

Scan frequency 25 Hz
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and consistent long-term monitoring under REDD+ and
related activities. For dense tropical forests on steep
terrain, variability in sampling density and footprint
characteristics can introduce large biases in lidar-based
estimates of aboveground biomass (up to 80–125 Mg ha−1

error in estimated biomass vs. 30 Mg ha−1 model error in
our case), based on the underestimation of canopy height
in areas with low sampling density.
Scan angle (FOV) ≤20°

Data recording first/last mode (up to 2 returns per pulse)

Average flight altitude 1600 m a.s.l.

Beam divergence 0.25 mrad (1/e)

Overlap between flight lines 30%
Methods
Study area
The study area is located within the São Paulo State Park
of Serra do Mar (PESM) (23°34′S and 45°02′W; 23°17′S
and 45°11′W) in Southeast Brazil. It is characterized by
complex terrain along an altitudinal gradient (0–1200 m
a.s.l.) and is covered by the dense vegetation of the At-
lantic Forest. The humid tropical forest in this area is
subdivided into vegetation types by altitude – lowland,
submontane and montane forests – from sea level up to
1200 m elevation [44]. Terrain slope at the study site is
steepest at intermediate elevations in the submontane
forest areas (200–900 m a.s.l; ~37° average slope), which
account for approximately 37% of the study area. The
remaining 63% of the study area consists of the relatively
flat lowland forests (4.9%) just above sea level (~21° mean
slope) and the montane forest region (58.1%) on flatter
sites atop the plateau (900–1100 m a.s.l; ~24° mean slope).
Our study included nine permanent forest inventory plots
that were established along an altitudinal transect in the
PESM [45,46]. One plot is located in the lowland forest at
an elevation of 100 m (Plot F), four plots in the submon-
tane forest between 180–370 m (Plots G, H, I and J), and
four plots in the montane forest at about 1000 m a.s.l.
(Plots K, L, M and N). The permanent plots each have a
projected area of 1 ha.
Lidar dataset
Lidar data were collected by the GEOID Ltda. (Belo
Horizonte, MG) in April 2012 as part of the Sustainable
Landscapes Brazil joint project of the Brazilian Corporation
of Agricultural Research (EMBRAPA) and the United
States Forest Service (USFS). The study area was overflown
with an Optech ALTM 3100 laser scanner instrument at
an average flying altitude of 1600 m a.s.l., covering a rect-
angular strip of the surface (about 1.5 km × 7 km) with a
total area of approximately 1000 ha (Table 2). Average
pulse density was 12 m−2, resulting in an average return
density of 20 m−2. Aircraft position information for in-
dividual flight lines was used to characterize changes in
footprint characteristics across the study site. The ori-
ginal lidar data and associated metadata are freely avail-
able on the Sustainable Landscapes Brazil Project’s website:
http://mapas.cnpm.embrapa.br/paisagenssustentaveis/.
Lidar processing
Flight line calibration to adjust variables such as heading,
roll, pitch and height was performed by the data provider,
and the lidar point cloud was processed using the method-
ology developed by the G-LiHT research group at NASA
Goddard Space Flight Center [47]. Height filtering was
carried out using a progressive morphological (PM) filter
to select ground points from the data set – a critical step
for DTM generation from lidar data [37]. The PM filter is
used to identify objects in grayscale images based on
spatial structure, and works with dilation and erosion
in combination with opening and closing operators to
separate ground points from non-ground ones [48]. Point
classification was followed by Delaunay triangulation to
create a triangular irregular network (TIN) of the filtered
ground returns, and the TIN was used to interpolate the
ground elevations onto a 1-meter raster grid, thus obtain-
ing the DTM [47].

Lidar thinning
The original lidar point cloud consisted of multiple re-
turn data. Data were thinned from the original point
density (~20 m−2) to four predefined return densities
(8, 4, 2 and 1 m−2). Thinning was done randomly at
10 × 10 m resolution to achieve the desired point dens-
ities. The resulting datasets simulate lower-density lidar
coverage. Random thinning reduced the density of returns
classified as ground from the full density dataset (D20,
0.289 m−2) to 0.113, 0.058, 0.033, and 0.023 for D8, D4,
D2, and D1, respectively. Reclassification of ground and
canopy returns in the thinned datasets resulted in a larger
fraction of points being classified as ground returns after
thinning. On average, montane plots had a higher ground
point density than submontane plots, but this difference
became less apparent with increased levels of thinning.
Full and reduced-density datasets were processed to

generate three different data products representing the
terrain surface, the canopy heights above ground, and
the outer surface of the forest vegetation: Digital Terrain

http://mapas.cnpm.embrapa.br/paisagenssustentaveis/


Table 3 GNSS system parameters, survey conditions and
control points

Parameter Specification

GNSS system Topcon HiPer L1/L2 receiver

Horizontal accuracy 3 mm+ 0.5 PPM

Vertical accuracy 5 mm+ 0.5 PPM

System frequency 20 Hz

Linear units meters

Angular units degrees

Datum WGS84

Projection UTM Zone 23 South

Geoid MAPGEO 2010

Base Reference Point INCRA “ABE M0693”

Number of points measured
with success

35 (out of 36 total)

Points with σ < 1 m (x,y,z) 30

Points with 1≤ σ < 2.2 m (x/y/z) 5

Accuracy (RMSE) Easting 0.006 - 2.130 m; mean = 0.473 m

Accuracy (RMSE) Northing 0.006 - 1.876 m; mean = 0.225 m

Accuracy (RMSE) Elevation 0.019 - 2.195 m; mean = 0.469 m
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Model (DTM), Canopy Height Model (CHM) and Digital
Surface Model (DSM) raster layers at 1-meter resolution.
DTM raster grids were created using the G-LiHT method-
ology, described above. CHM products were also gener-
ated using the G-LiHT algorithm by selecting the highest
lidar return in every 1-meter grid cell, building a TIN
based on these points, and interpolating the canopy
heights on a 1-meter raster grid [47]. The DSMs of the
outer canopy were produced from only the first-return
points in the lidar point cloud using the BCAL LIDAR
Tools open-source software package [49].

Ground data acquisition
Ground survey data collected in June 2013 within the
study area were treated as a reference dataset for lidar
DTM validation. A total of 36 points were measured
under closed forest canopy in the hilly terrain along the
altitudinal transect, marking the corner points of the
nine permanent forest inventory plots located within the
lidar coverage. We used two Topcon HiPer (L1/L2) GNSS
receivers, one used as a rover and a second as a base for
subsequent differential corrections. These receivers are
survey-grade dual-frequency units capable of receiving
both NAVSTAR and GLONASS signals. Raw data at
the unknown points were collected for 20–35 minutes
on average and up to 60 minutes when reception was
poor. Base measurements were made at a survey marker
(INCRA “ABE M0693”) located at the Santa Virginia
station in the PESM, in an open area less than 10 km of
the forest plots. Post-processing of the GNSS data was
performed to produce the estimated position of the un-
known points. Out of the 36 control points, 35 were
measured with success, and 30 points had sub-meter
accuracy (σ < 1m) in all three coordinates x, y, z (UTM
easting, northing and elevation). The remaining 5 points
were less accurate (σ < 2.2 m). The GNSS system parame-
ters and measurement conditions during the survey are
summarized in Table 3.

Statistical analysis of the datasets
We compared GNSS and lidar DTM elevations for
ground reference locations using mean signed error, ab-
solute error, and root mean square error (RMSE) [21].
Mean signed error can be useful to identify the tendency
for under- or over-estimation of elevations (i.e. bias), while
RMSE represents the overall mean elevation accuracy of a
DTM. We note that RMSE has been criticized as a metric
for evaluation of DTMs and other map position data
[50-52]. However, the criticisms relate to data distributions
that deviate strongly from normality. Inspection of Q-Q
plots showed no outliers and no obvious deviation from
normality, therefore we had no reason to employ alterna-
tive metrics. To determine if the difference between the
two sets of height points (DTM vs. GNSS elevations) is
statistically significant, a two-sided t-test was performed
with a confidence level of 95% and assuming a normal
distribution of the errors (Kolmogorov-Smirnov test for
normality, p-value = 0.923).
Given the significant variation in terrain elevation

across the study area (from about 100 m a.s.l. up to 1100
m a.s.l.) and the relatively constant flying altitude during
the lidar survey (~1600 m a.s.l.), the sensor height above
the ground varied substantially across the 1000 ha lidar
coverage (Figure 1). The mean ranging distance between
the sensor and the ground surface was ~660 m for the
montane region on top of the plateau, while it was about
twice as large (~1320 m) for the submontane region. Be-
cause of beam divergence, increasing lidar ranging dis-
tance results in a larger footprint on the ground. Variation
of sensor height above the ground can influence the meas-
urement results, such as laser point density, penetration,
ground detection, and calculated metrics [53]. In this
study, the lidar footprint diameter doubled between the
montane and submontane regions, from ~0.16 m to ~0.33
m, based on the 0.25 mrad beam divergence. To assess the
effect of different ranging distances (i.e. variable footprint
size) on DTM error across the study area, the control
points were grouped into submontane and montane eleva-
tional classes, and the error distributions between the
groups were compared. To test if the means of the errors
associated with the specified elevation classes are statisti-
cally different, a two-sided t-test was performed with a
confidence level of 95%.
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The accuracy of the DTMs generated after data thin-
ning was evaluated using the same approach as with the
full-density DTM. Additionally, we assessed the total
number of lidar returns and the number of ground
returns in the reduced-density point clouds for each per-
manent field plot location. The ground point density
(points m−2) and the fraction of ground returns out of
all returns (%) was calculated for each thinning level to
quantify the change in commission errors resulting from
the ground classification algorithm.
Plot-scale lidar metrics and forest inventory data were

used to establish lidar-biomass relationships following
standard methods. The goal of this effort was to assess
the impact of DTM errors from variability in sampling
density on predicted aboveground biomass. We used for-
est inventory data from the Serra do Mar permanent plot
network (Biota Project, see [46]) to calculate field-based
AGB estimates in the nine plots following the method-
ology applied by Alves and colleagues [45]. A linear model
was developed to predict AGB based on plot-level mean
canopy surface heights derived from the full-density lidar
data. We used this regression equation to generate bio-
mass estimates based on the thinned lidar datasets with
mean canopy surface height as the predictor, and compared
the resulting values across the different data densities.
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