Annual Progress Report for 2012

MONITORING THE EFFECTIVENESS AND VALIDATING RESPONSE TO THE ROAD RELATED MITIGATION PRACTICES IMPLEMENTED ON THE PIKES PEAK HIGHWAY

March 12, 2013

Pikes Peak, Colorado. Photo by Josh VonLoh, METI Inc.

Submitted by:

C.A. Troendle, S. Winkler, J. VonLoh, and J. Willis METI, Inc. 8600 Boeing Drive El Paso, Texas 79925

Submitted to:

USDA Forest Service 2150A Centre Ave Fort Collins, CO 80526

INTRODUCTION	
SITE LOCATION AND IDENTIFICATION	
OBJECTIVE	
EFFECTIVENESS MONITORING	
PRECIPITATION	7
HIGHWAY SURFACE STABILIZATION	
STABILIZING CUT AND FILL SLOPES	
ARMORING DRAINAGE CHANNELS	
DRAINAGE DITCHES	
CONVEYANCE CHANNELS	
SEDIMENT TRAPS (SEDIMENT PONDS AND ROCK WEIRS)	
VALIDATION MONITORING	25
STREAM CHANNEL CROSS SECTIONS	
BANK EROSION	
PARTICLE SIZE DISTRIBUTION	27
PEBBLE COUNTS	27
GRAB SAMPLES	27
VEGETATION	
SUMMARY	
REFERENCES	
APPENDIX A	
APPENDIX B	
APPENDIX C	
APPENDIX D	51
APPENDIX E	
APPENDIX F	61
APPENDIX C	90
APPENDIX H	107
A PPENDIX I	115
APPENDIA J	
AI I ENVIA R	
AFFENDIA L	
AFFENDIA M	
APPENDIX O	
APPENDIX P	

TABLE OF CONTENTS

Executive Summary

Monitoring the Effectiveness and Validating Response to the Road Related Mitigation Practices Implemented on the Pikes Peak Highway

C.A. Troendle, S. Winkler, J. VonLoh, and J. Willis

This is the tenth report documenting the annual monitoring efforts on the Pikes Peak Highway as part of the Settlement Agreement between the Sierra Club and the United States Department of Agriculture, Forest Service in Sierra Club v. Veneman, Civil Action No. 98-M-662 (D. Colo.), (U.S. Department of Justice 2002). The original monitoring plan and subsequent amendments call for effectiveness monitoring, designed to determine how well the mitigation practices implemented contribute to meeting their objectives; and validation monitoring, designed to determine how the mitigation practices affect the riparian, wetland, and aquatic systems within the area of influence of the Pikes Peak Highway (USDA Forest Service 2002 and 2003).

Effectiveness monitoring for the Pikes Peak Highway is focused on the 14-mile-long, 300-footwide highway corridor (150-feet each side of the highway centerline), starting at mile marker seven and continuing to the summit. The only resurfacing treatment used on the highway for mitigation purposes was asphalt paving. In 2012, the highway crew completed construction of two sediment ponds in Basin 7 (Glen Cove, Ski, and North Fork of Crystal Creek Watersheds) and removed five breached rock weirs in the switchbacks (Basin 3: Severy and Ski Creek Watersheds; and Basin 4: Upper Ski and French Creek Watersheds) and replaced them with cutoff walls with riprap aprons below. Re-vegetation work included hydro mulching approximately one acre in Basin 1 (Ski and Lower North Fork of Crystal Creek Watersheds). Planned activities for next season include construction of a RediRock wall in Basin 3 and revegetating approximately one acre once construction of the wall has been completed. Repair of the breached rock weir 234RW in the switchbacks (corner just above Elk Park in Basin 3) remains in the design stage. Although planned construction will begin in 2013, the exact scope has not yet been determined. In addition, a total of 62 tons of gravel were hauled to repair washouts in the switchbacks (Basins 3 and 4) and 36 tons of gravel were hauled to mile marker 19 to repair washouts. A total of 36 tons of gravel were removed from the rock weirs (personal communication with Jack Glavan, City of Colorado Springs, Capital Projects Manager).

Precipitation measurements from the three electronic rain gauges (Onset Computer Corp.) and the NRCS Snotel site, located at Glen Cove indicated that precipitation was below average for 2012. In addition to the electronic rain gauges, standard non-recording rain gauges (All-Weather) were installed at each monitoring site as called for in the 2010 Annual Report. Although the tipping buckets for all electronic rain gauges were recalibrated prior to the 2012 field season, the logger on the electronic rain gauge 077RG malfunctioned part way through the season and did not record data from August 27 through September 9, 2012. The battery in the logger was replaced, tested, and the logger launched successfully on September 10, 2012. In addition, electronic rain gauges 075RG and 076RG, and standard rain gauge 076RG were tampered with (vandalized) several times throughout the season.

Silt fences were not exposed to high runoff and erosion activities, allowing time for the field crew to complete site visits every two weeks on 56 sites. The upper fence at cut slope site 059CS in Basin 7 was removed in 2012 due to limited access, and small diameter trees and boulders preventing fence material from being reliably fastened. The upper fences at five fill slope sites (048FS, 052FS, 055FS, 083FS, and 086FS) in Basin 7 were damaged during highway construction in 2011. As a result, the upper fences were removed from the sampling in 2012 and not replaced, and the lower fences continued to be monitored. Silt fences from 13 cut slope, 28 fill slope, and 15 rock weir sites were monitored in 2012. In addition, two of the fill slope silt fences were breached during the 2012 field season. All silt fence sites were visited every two weeks, sediment volume measured, and silt fences evaluated for repair or replacement.

Six of the original 20 drainage ditches selected for monitoring were surveyed in 2012. Fourteen of the original sites have been paved or lined with shotcrete since monitoring began including nine drainage ditches in Basin 7 that were treated in 2011. This eliminates the need for further monitoring unless visual inspection provides evidence of failure, in which case cross sections will be re-established to document change. The six drainage ditches located in Basins 1 and 2 are lined with erosion control fabric and will continue to be surveyed annually.

Conditions allowed all 118 conveyance channels to be monitored in 2012, including two new conveyance channel monitoring sites (263CC and 265CC). Conveyance channel 212CC, which was lined with rip rap in 2011, was also surveyed as there was evidence that treatment was failing. Four conveyance channels (024CC, 114CC, 115CC, and 118CC) which were previously monitored through observation and photographs only were surveyed. Conveyance channels 099CC, 108CC, 111CC, 113CC, and 119CC were not surveyed due to the exposure of large boulders and the general instability of the slope following past rock weir failure. The field crew monitored these sites by recording observations in the field notes and using photo monitoring to document changes in conveyance channel geometry. Conveyance channels 099CC, 111CC, 113CC, and 119CC below rock weirs in the switchbacks (Basins 3 and 4) were disturbed by the highway crew during removal of existing rock weirs and construction of cutoff walls with riprap aprons below. If conditions allow, these four conveyance channels will be surveyed in 2013 to establish a baseline survey post construction.

Thirty-six sediment traps were monitored in 2012, including 29 rock weirs and seven sediment ponds. Twenty-three sites were surveyed at least twice to monitor their effectiveness in trapping sediment from winter and summer runoff. The rock weirs were surveyed and sediment volume was measured in the silt fences located down slope of the rock weirs (15 rock weirs have associated silt fences). Of the 36 sites, 23 demonstrated some degree of failure, where water and sediment were seen piping under or through the rock weir, the rock weir was overtopped, or the rock weir was breached. Some of the rock weirs are full of sediment rendering them ineffective, resulting in an inability of the field crew to effectively evaluate these structures. Rock weirs 234RW, 236RW, 238RW, and 243RW (Basins 3 and 4) were not surveyed due to breaching of the rock weirs in 2010. The field crew monitored these sites by recording observations in the field notes and using photo monitoring to document changes.

The primary focus of the validation monitoring is to address the condition of the riparian wetland and aquatic systems along the Pikes Peak Highway. Surveys were completed on all streams

(Boehmer, East Fork of Beaver, Glen Cove, North Catamount, North Fork of Crystal, Oil, South Catamount, Ski, Severy, and West Fork of Beaver Creek). In the past, stream channel surveys have included planview surveys, profile surveys, cross section surveys, thalweg surveys, bankfull surveys, bank erosion surveys, vegetation surveys, pebble counts, and grab samples. In 2012, stream channel surveys included only cross section surveys, thalweg surveys, vegetation surveys, pebble counts, and grab samples.

Numerous grab samples were collected from the cut slope and fill slope silt fences, the rock weirs and their associated silt fences, and from the stream bars throughout the 2012 field season. A subset of these was selected to be analyzed in the laboratory for particle size distribution. The balance of samples will be analyzed only if the variability in the particle size distribution of the subset of samples chosen for initial analysis warrants additional analysis. Laboratory analyses for the 2012 field season have been completed on the stream bar grab samples and a summary of particle size distributions and graphs are presented in this report. Because laboratory analyses for the cut and fill slope silt fences, and the rock weirs and their associated silt fences were not completed at the time of this report, they will be included in the 2013 Annual Report. Comparing the distribution of material captured in traps near the highway to sediment deposits (bars) in the streams will validate response to highway mitigation practices.

Included with the full report is a data DVD containing all survey data (field and post processing) plus digital photographs (recommended viewing) for all sites for the 2012 field season. The annual reports and data may also be accessed from:

http://www.fs.fed.us/emc/rig/pikespeak/index.shtml

INTRODUCTION

The proposed actions presented in the Pikes Peak Highway Drainage, Erosion and Sediment Control Plan Environmental Assessment (Hydrosphere Resource Consultants 1999) were designed to achieve the following goals:

- Stabilize road surface materials, cut slopes, and fill slopes
- Reduce runoff velocities and dissipate erosive energy
- Collect runoff in armored ditches and conveyance channels
- Reduce erosion and sediment deposition in drainage channels
- Retain sediment in traps and ponds to reduce downstream sedimentation

In May 2001, a monitoring plan was approved as part of the Settlement Agreement between the Sierra Club and the United States Department of Agriculture, Forest Service in Sierra Club v. Venneman, Civil Action No. 98-M-662 (D. Colo.), (U.S. Department of Justice 2002). The monitoring plan outlines appropriate procedures for monitoring and documenting the effectiveness of mitigation practices in achieving the above desired goals (USDA Forest Service 2002). The monitoring effort, which includes implementation monitoring, effectiveness monitoring, and validation monitoring, began in 2003 and ends in 2017.

Implementation monitoring verifies that mitigation practices are properly implemented. Staffs from both the city of Colorado Springs and the U.S. Forest Service are responsible for this aspect of the monitoring program. Because all parties assume that mitigation practices will be properly implemented, successes or failures in design or implementation will be addressed in the annual monitoring reports only to the extent that they impact subsequent monitoring.

Effectiveness monitoring is intended to document whether or not the properly implemented mitigation practice is effective in achieving the desired goal(s) or purpose(s) for that practice. Effectiveness monitoring for the Pikes Peak Highway is focused on the 14-mile-long, 300-foot-wide highway corridor (150-feet each side of the highway centerline), starting at mile marker seven and continuing to the summit, and is intended to document how effective the mitigation practices are in reducing erosion and sedimentation from features such as the road surface, cut and fill slopes, drainage ditches and conveyance channels. Precipitation is also monitored to provide an index to the amount and erosive energy of rainfall events. Effectiveness monitoring is the cornerstone of the monitoring effort described in this report.

An equally critical component in the monitoring program is validation monitoring, which is intended to document the degree to which the properly implemented and effective mitigation practices ultimately influence the resource of concern. In this report, validation monitoring addresses the condition of the riparian, wetland, and aquatic systems adjacent to the Pikes Peak Highway and attempts to provide data to validate that discharge management and reductions in sedimentation from the highway do in fact result in improvements in the channel and riparian environment below.

Subsequent changes in the proposed action plan for road mitigation (Burke 2002) required amendment of the approved monitoring plan (USDA Forest Service 2003). Initially, a variety of

highway surface stabilization practices were proposed for road mitigation. Those were reduced to a single surfacing procedure, asphalt paving, eliminating the need for a monitoring design that incorporated multiple surface treatments. Rock weirs to detain the water and sediment exiting the highway corridor from all events up to the magnitude of the design storm are completed or under construction in selected locations. By design, sediment should settle out in the rock weir, where it can be measured directly, while water percolates through a porous berm. The addition of rock weirs eliminated the need to sample sediment concentrations in pond inflow and outflow as well as measure material trapped in the pond as originally stated in the monitoring plan. Additional revisions in the mitigation design concentrate road drainage from very long segments or reaches (as long as two miles) of both pavement and ditch line into fewer diversion points and conveyance channels, reducing the number of diversions off the highway and the number of proposed sampling sites.

The entire highway has been paved with asphalt, rather than surfaced using a variety of treatments, which should significantly reduce or eliminate the potential for continued surface erosion to occur from the road surface. Erosion rates from the gravel portion of the highway were monitored as called for in the approved monitoring plan, but since paving of the entire highway was completed in 2011, it is assumed that erosion from the road surface has been reduced to zero. As noted above, sediment pond design has been altered but monitoring will still focus on quantifying total sediment exported in the discharge water and the effectiveness of the mitigation practices in reducing that export. This report includes a brief description of the current monitoring protocol for each metric of concern and documents any changes in the monitoring protocol that may have occurred since the previous annual report.

The U.S. Forest Service oversees monitoring of the streams draining the basins below the highway to validate that discharge management and reductions in sedimentation from the highway result in improvements in the channel and riparian environment. A suite of tributaries in the Pikes Peak Watershed has been identified as either impacted or non-impacted by the presence and maintenance of the Pikes Peak Highway. North Catamount, South Catamount, Glen Cove, Oil, and Boehmer Creeks represent non-impacted streams. Ski, Severy, East Fork of Beaver, North Fork of Crystal, and West Fork of Beaver Creeks are all considered stream systems impacted by the highway. Depending on the magnitude of the reduction in the amount of sediment delivered to the stream system and changes in discharge amount and energy, it may be possible to document changes in channel morphology and riparian condition that occur as a consequence of highway management.

In 2012, the highway crew completed construction of sediment ponds 262RW and 264RW in Basin 7 (Glen Cove, Ski, and North Fork of Crystal Creek Watersheds) and removed five breached rock weirs (236RW, 238RW, 240RW, 242RW, and 243RW) in the switchbacks (Basin 3: Severy and Ski Creek Watersheds; and Basin 4: Upper Ski and French Creek Watersheds) and replaced them with cutoff walls with riprap aprons below. Re-vegetation work included hydro mulching approximately one acre in Basin 1 (Ski and Lower North Fork of Crystal Creek Watersheds). Planned activities for next season include construction of a RediRock wall in Basin 3 and revegetating approximately one acre once construction of the wall has been completed. Repair of the breached rock weir 234RW in the switchbacks (corner just above Elk Park in Basin 3) remains in the design stage. Although planned construction will begin in 2013, the exact scope has not yet been determined. In addition, a total of 62 tons of gravel were hauled to repair washouts in the switchbacks (Basins 3 and 4) and 36 tons of gravel were hauled to mile marker 19 to repair washouts. A total of 36 tons of gravel were removed from the rock weirs (personal communication with Jack Glavan, City of Colorado Springs, Capital Projects Manager).

Site Location and Identification

A 15-year study requires that monitoring sites be uniquely identified and periodically relocated. Each precipitation gauge, cut slope and fill slope, road reach, drainage ditch and conveyance channel, rock weir and sediment pond, and stream channel reach monitored as part of this study has been uniquely identified and located. Each site is marked as a waypoint in a geographic information system (GIS) platform with attributes for latitude, longitude, and altitude, as well as a unique code, to distinguish it in the field. The coding convention used for the effectiveness monitoring sites is a five-character alpha-numeric code comprised of a three-digit feature number followed by a two-letter feature identifier (e.g., for site 001FS where 001 is the feature number and FS identifies the feature, a fill slope). The validation monitoring sites also use a five-character coding convention in which four letters identify the stream name and the last digit identifies the stream reach (e.g., OILC1 = Oil Creek, Reach 1).

Every feature being monitored has at least three benchmarks or control points used to locate the feature and obtain repeated, spatially similar, three-dimensional surveys, as appropriate. The benchmarks or control points are monumented by 2.5-foot lengths of 0.5-inch rebar pounded into the ground and topped with plastic yellow caps. Aluminum nursery tags wired to the rebar identify the individual benchmarks or control points (e.g., CP01). Every feature surveyed has at least three points with which to register the survey, although some features in close proximity may share control points.

In 2012, two new sediment pond (262RW and 264RW) and two new conveyance channel (263CC and 265CC) monitoring sites were established. Site names, locations, and feature descriptions can be found in Appendix A. Note that Appendix A provides a complete list of all waypoints established since the project began in 2003; not all of the sites listed were sampled during the 2012 monitoring season. A USGS topographic map that documents the location of each monitoring site is presented in Appendix B.

OBJECTIVE

The objective of this report is to document the data collected and progress made in the effectiveness and validation monitoring of the mitigation practices implemented on the Pikes Peak Highway during the 2012 field season. Each annual report beginning in 2007 follows a consistent format that provides a description of the protocol used to monitor each metric of concern as defined by the monitoring plan or its amendment, and a summary of the data collected for that particular year. It should be realized that, by design, not all metrics or sampling locations will be monitored every year. As a result, some reports will contain site data not presented in other reports. A full data set from all years is available in the data archive. It should also be noted that it was not the intent of the settlement agreement to include analysis of

the data beyond a quality assurance and quality control assessment of the monitoring effort. Therefore the annual report will state the intended purpose for collecting the data and present the data in a format useful for subsequent analysis.

EFFECTIVENESS MONITORING

The road mitigation practices implemented by the City of Colorado Springs are intended to control erosion and manage the erosive energy of surface water discharge from the Pikes Peak Highway. Effectiveness monitoring consists of documenting the impact that various mitigation practices have on the erosion and sedimentation processes that occur within the road corridor. Erosion rates and sediment volumes are primarily indexed using a combination of survey techniques and sediment traps (silt fences, rock weirs and sediment ponds). Grab samples of sediment and water are analyzed to document particle size distributions of deposited material and sediment concentration in discharge water leaving the site. Precipitation is also monitored to provide an index to the amount and erosive energy of rainfall events.

The following sections describe the metrics being monitored and the data collected in order to document the effectiveness of mitigation. The standard protocol for identifying and numbering the various sample sites is presented up front, followed by a description of the monitoring sites and metrics.

Precipitation

Three tipping bucket rain gauges (Onset Computer Corp.) equipped with event data loggers (HOBO) were installed at the beginning of the field season to index precipitation over the elevational range of the monitored portion of the highway. Although precipitation is not a response variable, it is a significant causal variable in evaluating the effectiveness of mitigation. Rain gauge 075RG is located just uphill from the Halfway Picnic Area near mile marker 10 at an elevation of 10,109 feet. This is at the upper end of Basin 2 (North Fork of Crystal and Ski Creek Watersheds), in the subalpine zone. Rain gauge 076RG is located near the Elk Park Trailhead (No. 652) at the boundary between the subalpine and the alpine zones at 11,810 feet elevation. Rain gauge 077RG is located near the Devil's Playground and well into the alpine area at 13,069 feet elevation. Rain gauges installed for this study operate from early May, or as soon as the field crew starts for the season, until late September or early October when the crew finishes for the year. Data loggers record a date-time stamp for each tip of the rain gauge bucket (1 tip = 0.01 inches) from which volume, duration, and intensity (or rate) of each rainfall event can be determined.

In 2012, the three tipping bucket rain gauges were installed by May 1. In addition, to avoid loss of data should a tipping bucket rain gauge fail, a standard, non-recording rain gauge (All-Weather) was also installed as called for in the 2010 Annual Report. The standard rain gauges provide a second index of precipitation amount for the sampling interval.

Total seasonal precipitation (May 1 – October 2, 2012) for the three monitoring sites for both the electronic and standard rain gauges is listed in Table 1. Although the tipping buckets for all electronic rain gauges were recalibrated prior to the 2012 field season, the logger on the

electronic rain gauge 077RG malfunctioned part way through the season and did not record data from August 27 through September 9, 2012. The battery in the logger was replaced, tested, and the logger launched successfully on September 10, 2012. Precipitation in the standard rain gauge 077RG for that period measured .47 inches. In addition, electronic rain gauges 075RG and 076RG were tampered with (vandalized) several times throughout the season. Precipitation in the standard rain gauges 075RG and 076RG measured 2.69 inches and .65 inches respectively for that period. On July 2, 2012, standard rain gauge 076RG was found broken off the post. Precipitation in the electronic rain gauge 076RG measured .17 inches on July 2, 2012. Where appropriate total precipitation for the rain gauges was adjusted (Table 1).

In 2012, seasonal totals varied between the three sites with the mid-elevation receiving the most precipitation (Figure 1). Daily and periodic precipitation is presented in Appendix C and the basic rain gauge data (date-time stamp) is presented on the data DVD accompanying the report.

Table 1. Location, measured and adjusted precipitation accumulation, and dates of operation for electronic and standard rain gauges on Pikes Peak, 2012.

Gauge Latitude ID (hddd°mm.mmm)		Longitude Altitude		Total Precipitation Electronic (in)		Total Precipitation Standard (in)		Dates of Operation		
		(nada min.minin)	(11)	Measured	Adjusted	Measured	Adjusted	2012		
075RG	N38 53.797	W105 03.890	10,109	7.41†	10.10	10.94	10.94	5/1 -10/2		
076RG	N38 52.582	W105 03.970	11,810	10.33†	10.98	11.95∞	12.12	5/1 -10/2		
077RG	N38 51.783	W105 03.999	13,069	8.30∞	8.77	8.68	8.68	5/1 -10/2		
<i>†</i> Indicates inaccurate measurement due to disturbance of the rain gauge.										
∞ Indic	\sim Indicates missing data due to equipment malfunction and/or damage to the rain gauge.									

In addition to the three sites established as part of this study, a Natural Resources Conservation Service (NRCS) Snotel site located at Glen Cove, between rain gauges 075RG and 076RG at an elevation of 11,469 feet, has precipitation data available for the entire year. Data for the NRCS Snotel site can be accessed from:

http://www.wcc.nrcs.usda.gov/snotel/snotel.pl?sitenum=1057&state=co

Highway Surface Stabilization

Historically, thousands of cubic yards of gravel material had been added to the Pikes Peak Highway road surface annually as part of the continuing maintenance program. Most of this material has since migrated elsewhere; either washed down the ditch line during snowmelt or following rainfall events or cast over the side onto the fill slope and the hillside below during road grading procedures. This material has been perceived to be the primary source for the sediment deposited in the streams (Chavez et al. 1993). The primary emphasis in the road mitigation practices was to reduce the volume of material available to be eroded (supply) and to manage the discharge water (energy) to reduce sediment transport. Initially a variety of alternate surfacing options were proposed.

As noted earlier, and as documented in amendments to the monitoring plan, the design of the monitoring protocol, appropriate for estimating road erosion, was significantly modified to reflect changes to the road bed stabilization practices implemented on the highway. The entire highway has been paved with asphalt, rather than surfaced using a variety of treatments, which

Figure 1. Precipitation by measurement date for the three standard rain gauges on Pikes Peak, 2012.

should significantly reduce or eliminate the potential for continued surface erosion to occur from the road surface. Prior to 2011, erosion rates from the gravel portion of the highway were monitored as called for in the approved monitoring plan, but since paving of the entire highway was completed in 2011, it is assumed that erosion from the paved road surface is zero.

As a surrogate for estimating actual erosion rates, road surface elevation for selected road reaches prior to paving was monitored over time to document erosion rates, or changes in the volume of material stored on untreated road segments. Uniform road reaches were selected with survey cross sections permanently established at five intervals along each selected road reach (i.e., approximately one cross section per 20 meters of road). The road cross sections were periodically surveyed to provide the basis for estimating the degree of erosion or deposition occurring in the road reach they represent. Individual road cross sections were monumented using a 2.5-foot piece of rebar driven into the road surface at the upper edge of the fill slope. In addition, permanently monumented baseline elevation points (benchmarks) were established for each road reach and were used as references for each cross section. Monitoring consisted of surveying the surface elevation of the road cross sections, relative to the benchmark for the road reach.

Either the average elevation of the cross section, or the survey transect, can be compared for different surveys to determine changes in the volume of material stored, or changes in surface configuration that may have occurred between measures. Averaging the response for the five cross sections and multiplying that by the area of the road reach (estimated as average length times average width) yields an estimate of the change in the volume of material stored on the road reach during the interval between measurements.

Road surface data were not gathered during the 2012 monitoring season. The highway crew completed the last three miles of paving on the Pikes Peak Highway in 2011 eliminating the need for further monitoring of the road reaches.

Stabilizing Cut and Fill Slopes

Erosion from cut and fill slopes along the highway may provide a continuous source of sediment to wetland, riparian, and aquatic systems. It is expected that highway mitigation practices will reduce sediment movement from these slopes in two ways. First, stabilizing the road bed through paving should also stabilize the angle of repose of adjacent cut and fill slopes, eliminating the constant adjustments that occur in the angle of repose of those slopes following changes to the plane of the road bed. Second, paving has eliminated the need for the continual addition of road base material, the primary source of material that had eroded onto fill slopes and hillsides. Effectiveness will be estimated by comparing changes in the amount and timing of sediment trapped in silt fences at the base of the cut and fill slopes following paving.

A 30-foot silt fence placed at the base of the slope of interest is used to trap sediment. Periodic measurements of the volume of material trapped behind the fence (i.e., after spring snowmelt and again after each large rainfall event) provide an index of the amount of material being eroded from the slope above the fence. Each silt fence is routinely visited to ensure timely measurement and maintenance. Should the silt fence fill to the point of reduced efficiency or fail during the

period between measurements, the fence is either repaired, replaced, cleaned out, or relocated to a new monitoring site. Initially (2003 and 2004), the volume trapped was determined from surveys of the surface behind the fence before and after the sediment was removed. Since then, the volume of trapped sediment behind the silt fence has been estimated by removing the accumulated material and measuring the amount removed by placing it in graduated containers for a measure of total volume. A sub-sample of the material removed is collected for laboratory analysis to determine total weight per unit volume and particle size distribution.

On cut slopes, erosion is monitored using two silt fences per site: one is placed across the base of the cut slope just above the ditch line to capture the sediment coming off the cut slope (lower fence); a second is placed on the upper edge of the cut slope to intercept and trap the sediment delivered to the cut slope from the undisturbed hill slope above (upper fence). This partitioning allows separation of the contribution of the cut slope to the road or ditch line from that of the undisturbed hill slope above. The latter measurement also provides an index of natural erosion rates. The contributing area of the lower fence is represented by a rectangle above the fence that spans the width of the fence and extends to just below the upper fence at the toe of the undisturbed slope. The contributing area of the upper fence is more difficult to define and depends on the topographic features of the hill slope above. Contributing area for both lower and upper fences has been determined and measured for all cut slope monitoring sites. Currently, 22 cut slope silt fences have been installed at 13 sites. Initially, they were proportionally divided between the treated (paved) and untreated portions of the highway. The sampling design included cut slopes located in road segments that were treated at differing times, ensuring a wide range in the variability of conditions sampled both before and after highway mitigation. Paving of the entire highway was completed in 2011 resulting in all portions of the highway being treated.

Cut slope silt fences were not exposed to high runoff and erosion activity in 2012. As a result, the field crew completed site visits every two weeks on 22 silt fences (13 sites). The upper fence at cut slope site 059CS in Basin 7 was removed in 2012 due to limited access, and small diameter trees and boulders preventing fence material from being reliably fastened. Notes were taken in the field to document the condition of the silt fence during each site visit. In the *SiteSummary.xls file* on the data DVD, site visit and survey dates are annotated with the condition of the silt fence, any repairs or replacements that were done to maintain the silt fence, and an indication if the fence was breached prior to the survey date. The sediment volume for each cut slope silt fence. It can be assumed that there was zero sediment removed on all other silt fences for the 2012 monitoring season are presented in Appendix D. All cut slope data and photographs for the 2012 season are available on the accompanying data DVD.

A similar design has been implemented for monitoring the effectiveness of mitigation practices intended to minimize erosion from fill slopes. The design includes the use of two silt fences per site: one is placed at the base of the fill slope to trap what originates from the fill slope (upper fence); a second is placed at the base of the hill slope on which the fill slope resides or at the boundary of the 150-foot corridor associated with the road right-of-way, whichever is the shorter distance (lower fence). The second lower fence is offset from the first fence and presumably not

influenced by the upper fence. This design allows for trapping the eroded material in the upper fence as it leaves the fill slope as well as estimating the sediment being delivered off-site or down slope as indexed by the lower fence. Material trapped in the lower fence includes natural erosion from the slope below the fill slope as well as material contributed from the fill slope and transported downslope to the boundary of the corridor. In this way, not only will the on-site effectiveness of the mitigation practice as it effects fill slope erosion be evaluated, but an estimate of the amount of eroded material from the fill slope that is attenuated downslope will also be obtained. The contributing area of the upper fill slope fence spans the width of the fence and extends upslope to the edge of the road bed. The contributing area of the lower fence is defined by the width of the lower fence and the distance to the upper fence. However, like the fences above cut slopes, the actual contributing area of the lower fence is influenced by the topographic features of the hill slope. Contributing area for both the lower and upper fences has been determined and measured for all fill slope monitoring sites. Currently, 49 fill slope silt fences have been installed at 28 sites. Again, the sites were initially distributed between treated and untreated sections of the highway. Paving of the entire highway was completed in 2011 resulting in all sections of the highway being treated. Estimating the volume of material trapped behind the fill slope silt fences is accomplished in the same manner as that for the cut slope fences.

As with the cut slope silt fences, accumulation in the fill slope silt fences did not exhibit high runoff and erosion activity in 2012, allowing time for the field crew to complete site visits every two weeks on 49 silt fences (28 sites). The upper fences at five fill slope sites (048FS, 052FS, 055FS, 083FS, and 086FS) in Basin 7 were damaged during highway construction in 2011. As a result, the upper fences were removed from the sampling in 2012 and not replaced, and the lower fences continued to be monitored. In addition, two of the 49 fill slope silt fences were breached during the 2012 field season. Notes were taken in the field to document the condition of the silt fence during each site visit. In the *SiteSummary.xls file* on the data DVD, site visit and survey dates are annotated with the condition of the silt fence, any repairs or replacements that were done to maintain the silt fence, and an indication if the fence was breached prior to the survey date. The sediment volume for the fill slope silt fences was recorded in the *SiteSummary.xls file* only if there was sediment removed from the fill slope silt fence. It can be assumed that there was zero sediment removed on all other silt fence site visits. A summary of fill slope site visits and sediment removed from fill slope silt fences for the 2012 monitoring season can be found in Appendix E. All fill slope data and photographs for 2012 are available on the accompanying data DVD.

Numerous grab samples were collected from material trapped in the cut slope and fill slope silt fences throughout the 2012 field season. A subset of these was selected to be analyzed in the laboratory for particle size distribution. The balance of samples will be analyzed only if the variability in the particle size distribution of the subset of samples chosen for initial analysis warrants additional analysis. Because laboratory analyses for the cut and fill slope silt fence grab samples were not completed at the time of this report, they will be included in the 2013 Annual Report. Laboratory analyses for the 2011 grab samples have been completed and a summary of particle size distributions and graphs are presented in Appendix F and on the accompanying data DVD.

Initially, the monitoring plan anticipated taking measurements of the accumulation behind all silt fences two to three times per year. The actual number of measurements taken is dependent on many factors including; winter snowpack, soil moisture, number and size of rainfall events, and availability of crew members to clean out silt fences while completing other tasks. Estimates of human induced erosion and sediment delivery (from cut slope, fill slope, and silt fences located down slope near the streamside or boundary of the 150-foot corridor), can be compared with estimates of "natural movement" estimated from what is trapped in the silt fencing placed above cut slopes for periods before and after mitigation to determine the effectiveness of the practice and other best management practices (BMPs) intended to reduce human induced erosion.

Using silt fences to monitor sediment transport has proven to be difficult where silt fences cross rock surfaces—frequent breaching and fence failure have occurred over the course of the study. Silt fences fail most frequently where fence material cannot be reliably fastened to rock surfaces, particularly at the base of cut slopes at higher elevations. As a corrective measure, the sampling protocol was revised for three cut slope monitoring sites (102CS, 123CS, and 141CS) that cross rock surfaces. The lower cut slope silt fences on each of these sites were replaced with two permanent survey cross sections (labeled A and B), one established at the vegetation line just below the upper fence and a second established 1/3 of the distance between the top of the cut slope and the road. The cross sections are the same length as the original fence and are monumented with rebar at each end. Monitoring consists of surveying the surface elevation, relative to the benchmark, of the cut slope cross section. The silt fence at the top of the cut slope has been maintained at all three sites. This procedural change is intended to provide a qualitative estimate of cut slope erosion in situations where a quantitative estimate is not feasible.

Cross section graphs for the three surveyed cut slope monitoring sites that correspond to the survey dates presented in Table 2 can be found in Appendix G. Photographs and survey data for all sites are available on the accompanying data DVD.

monitoring site survey dates on Pikes Peak, 2012.							
Site ID	Basin #	Watershed	Management Practice	Survey	Dates		
102CS	6	WBVR	Asphalt Road, Shotcrete Ditch	6/06/2012	9/10/2012		
123CS	6	WBVR	Asphalt Road, Shotcrete Ditch	6/06/2012	9/10/2012		

Asphalt Road, Shotcrete Ditch

9/10/2012

6/06/2012

Table 2. Management practices	implemented below cut slope	monitoring sites,	and cut slope
monitoring site survey dates on	Pikes Peak, 2012.		

Armoring Drainage Channels

WBVR

6

141CS

Drainage channels, which include both the drainage ditches along roads and the conveyance channels below culverts, were to be lined (armored) with riprap or concrete to control further erosion and deposition of sediment as mitigation progressed. However, instead of armoring roadside drainage ditches, all reaches except those meeting the criteria stated in the latest U.S. Forest Service Design Review (Burke 2002) are or will be lined with shotcrete, lined with erosion control fabric, or left untreated.

Effectiveness monitoring consists of sampling the fabric-lined and unlined drainage ditches, establishing cross sections in the channels to be periodically surveyed, so that measured changes in cross sectional area could be used to determine if erosion or deposition was reduced or

increased in armored channels relative to unarmored channels. Once drainage ditches were paved or lined with shotcrete, they were no longer surveyed. If visual inspection provides evidence of failure in the pavement or shotcrete, cross sections will be re-established and surveys completed to document change.

Conveyance channels are those features that drain water away from the road system to the streams below. For the most part, they are not physically treated or stabilized as part of the road mitigation effort, but road management practices may greatly alter the amount of discharge and sediment delivered to the conveyance channels. The monitoring technique is similar for both ditches and conveyance channels, but the sample size differs.

Drainage Ditches

Most of the drainage ditches selected for monitoring were aligned with the road reaches previously selected for monitoring. Additional drainage ditches were selected independently of the road reaches, as needed, to complete the desired road slope/contributing area/armoring material matrix. As with the road surface erosion transects, five cross sectional transects per segment of drainage channel (lined, not lined) were established (labeled A–E except for site 188DD, which has eight cross sections labeled A–H). For each cross section, a reference pin was located at the base of the cut slope on the inside of the ditch; a second pin was located on the edge of the road surface, if possible. Asphalt nails were used in the paved road surfaces to mark the end point if road conditions prohibited installation of rebar. The effectiveness of the lining methods in reducing erosion and deposition can be determined by obtaining cross section information at control sites for several years prior to treatment. This information will be useful in the future as new drainage ditch segments are lined.

Six of the original 20 drainage ditches selected for monitoring were surveyed in 2012. Fourteen of the original sites have been paved or lined with shotcrete since monitoring began including nine drainage ditches in Basin 7 that were treated in 2011. This eliminates the need for further monitoring unless visual inspection provides evidence of failure, in which case cross sections will be re-established and surveys completed to document change. The six drainage ditches located in Basins 1 and 2 are lined with erosion control fabric and will continue to be surveyed annually. Drainage ditch survey cross sections that correspond to the survey dates presented in Table 3 can be found in Appendix H. Drainage ditch survey data and photographs for 2012 are available on the accompanying data DVD.

dicites, treatments for dramage dicites, and dramage dicit survey dates on Tikes Teak, 2012.								
Site ID	Basin #	Watershed	Road Treatment	Ditch Treatment	Survey Date			
005DD	1	Lower SKIC	Asphalt	Erosion Control Fabric	8/1/2012			
010DD	1	Lower SKIC	Asphalt	Erosion Control Fabric	8/22/2012			
182DD	2	SKIC	Asphalt	Erosion Control Fabric	5/24/2012			
				Erosion Control Fabric				
188DD	2	NCRY	Asphalt	with Straw Logs	7/11/2012			
195DD	2	SKIC	Asphalt	Erosion Control Fabric	8/22/2012			
205DD	2	SKIC	Asphalt	Erosion Control Fabric	7/11/2012			

Table 3. Drainage ditches surveyed including description of road treatments above drainage ditches, treatments for drainage ditches, and drainage ditch survey dates on Pikes Peak, 2012.

Conveyance Channels

Monitoring the effectiveness of mitigation practices on conveyance channels also represents a critical component in the monitoring program. Many of these channels have eroded into gullies and have contributed to the sediment load in the adjacent wetland, riparian, and aquatic systems. From mile marker seven to the summit, 115 conveyance channels were identified and surveyed during the first three years of monitoring. Two additional channels were identified and surveyed in 2009 and four additional channels were identified and surveyed in 2009 and four additional channels were identified and surveyed in 2009 and four additional channels were identified and surveyed in 2009 and four additional channels were identified and surveyed in 2011. Two conveyance channels were eliminated during construction of sediment ponds in Basin 5 (Boehmer and East Fork of Beaver Creek Watersheds) and Basin 6 (East and West Fork of Beaver Creek Watersheds). Conveyance channel 014CC was originally identified as a monitoring site, but was never surveyed. Conveyance channel 015CC located above sediment pond 199RW was lined with shotcrete in 2003 and conveyance channel 212CC was lined with rip rap in 2011, eliminating the need for further monitoring unless visual inspection provides evidence of failure, in which case cross sections will be re-established and surveys completed to document change. In 2012, two additional sites (263CC and 265CC) were established in the channels below the new sediments ponds (262RW and 264RW).

It is not always possible to survey all 118 conveyance channels every year. Instead, as many conveyance channels as possible are surveyed each year. The fixed sub-sample of 13 conveyance channels that were measured specifically to compare paved (7) and un-paved (6) road sections have all been paved and will continue to be surveyed annually, with the assumption that erosion, or changes in storage, from the paved segments will be zero. Conveyance channels located below the rock weirs are surveyed annually. If the rock weirs fail (as has been observed), changes in conveyance channel geometry may occur. Effectiveness of the rock weir can be evaluated in part by comparing the erosion rate in the conveyance channels located in proximity to treated and untreated road segments. Every conveyance channel is surveyed using a series of three cross sections located within the 150-foot boundary of the highway corridor (labeled A–C except for site 53CC, which has four cross sections labeled A–E).

Conditions allowed all 118 conveyance channels to be monitored in 2012, including two new conveyance channel monitoring sites (263CC and 265CC) (Table 4). Conveyance channel 212CC, which was lined with rip rap in 2011, was also surveyed as there was evidence that treatment was failing. Four conveyance channels (024CC, 114CC, 115CC, and 118CC) which were previously monitored through observation and photographs only were surveyed. Conveyance channels 099CC, 108CC, 111CC, 113CC, and 119CC were not surveyed due to the exposure of large boulders and the general instability of the slope following past rock weir failure. The field crew monitored these sites by recording observations in the field notes and using photo monitoring to document changes in conveyance channel geometry. Conveyance channels 099CC, 111CC, 118CC, and 119CC below rock weirs in the switchbacks (Basins 3 and 4) were disturbed by the highway crew during removal of existing rock weirs and construction of cutoff walls with riprap aprons below. If conditions allow, these four conveyance channels will be surveyed in 2013 to establish a baseline survey post construction.

applied to conveyance enamicis, and conveyance enamer survey dates on rikes reak, 2012.							
Site ID Basin Watershed		Road	Ditch	Channel	Survey		
0.110 12	#	materienea	Treatment	Treatment	Treatment	Date	
004CC	1	NCRY	Asphalt	Fabric Ditch	Rock Apron	7/09/2012	
012CC	2	SCAT	Asphalt	Fabric Ditch	Rock Weir	5/14/2012	
013CC	2	SCAT	Asphalt	Fabric Ditch	Rock Weir	7/17/2012	
016CC	2	NCRY	Asphalt	Shotcrete Ditch	Culvert Plugged	6/21/2012	
017CC	2	NCRY	Asphalt	Fabric Ditch	Culvert Plugged	7/30/2012	
018CC	2	NCRY	Asphalt	Shotcrete Ditch	Untreated	6/5/2012	
019CC	2	SCAT	Asphalt	Fabric Ditch	Culvert Plugged	7/31/2012	
020CC	2	NCRY	Asphalt	Shotcrete Ditch	Culvert Plugged	7/31/2012	
021CC	2	NCRY	Asphalt	Shotcrete Ditch	Culvert Plugged	7/9/2012	
022CC	2	NCRY	Asphalt	Shotcrete Ditch	Culvert Plugged	6/6/2012	
023CC	2	NCRY	Asphalt		Culvert Plugged	7/30/2012	
024CC	2	SCAT	Asphalt	Shotcrete Ditch	Culvert Plugged	7/31/2012	
025CC	2	SCAT	Asphalt	Shotcrete Ditch	Culvert Plugged	8/27/2012	
026CC	2	NCRY	Asphalt	Fabric Ditch	Culvert Plugged	8/27/2012	
027CC	2	SCAT	Asphalt		Culvert Plugged	8/28/2012	
028CC	2	NCRY	Asphalt		Culvert Plugged	8/1/2012	
029CC	2	NCRY	Asphalt	Fabric Ditch	Rock Weir	7/26/2012	
030CC	2	NCRY	Asphalt	Fabric Ditch	Rock Weir	7/18/2012	
031CC	2	NCRY	Asphalt	Fabric Ditch	Rock Weir	5/30/2012	
032CC	2	SKIC	Asphalt	Shotcrete Ditch	Culvert Plugged	8/15/2012	
033CC	2	NCRY	Asphalt	Asphalt Fabric Ditch Rock Apron		8/14/2012	
034CC	2	NCRY	Asphalt	Asphalt Fabric Ditch Rock Weir		6/5/2012	
035CC	7	SKIC	Asphalt	Asphalt Shotcrete Ditch		5/15/2012	
036CC	7	NCRY	Asphalt	Shotcrete Ditch	Culvert Plugged	7/9/2012	
037CC	7	NCRY	Asphalt	Shotcrete Ditch	Culvert	7/31/2012	
038CC	7	NCRY	Asphalt	Shotcrete Ditch Culvert		7/5/2012	
			Asphalt,				
040CC	1	NCRY	Asphalt Curb	Fabric Ditch	Straw Logs	7/2/2012	
053CC	7	SKIC	Asphalt	Shotcrete Ditch	Rip Rap	7/4/2012	
054CC	7	SKIC	Asphalt	Shotcrete Ditch	Untreated	8/13/2012	
058CC	7	SKIC	Asphalt	Shotcrete Ditch	Culvert	6/6/2012	
063CC	7	SKIC	Asphalt	Shotcrete Ditch	Rock Weir	5/29/2012	
064CC	7	SKIC	Asphalt	Shotcrete Ditch	Untreated	8/13/2012	
065CC	7	SKIC	Asphalt	Shotcrete Ditch	Untreated	8/13/2012	
066CC	7	SKIC	Asphalt	Shotcrete Ditch	Untreated	8/23/2012	
067CC	7	SKIC	Asphalt	Shotcrete Ditch	Untreated	8/23/2012	
068CC	7	SKIC	Asphalt	Shotcrete Ditch	Untreated	8/1/2012	
069CC	7	SKIC	Asphalt	Shotcrete Ditch	Untreated	8/23/2012	
070CC	7	SKIC	Asphalt	Shotcrete Ditch	Untreated	7/18/2012	
081CC	7	GLEN	Asphalt	Shotcrete Ditch	Culvert Plugged	5/22/2012	
084CC	7	GLEN	Asphalt	Shotcrete Ditch	Culvert Plugged	5/22/2012	
089CC	3	SKIC	Asphalt	Shotcrete Ditch	Rock Weir	6/12/2012	
091CC	3	SKIC	Asphalt		Culvert Plugged	7/4/2012	
094CC	3	SKIC	Asphalt		Culvert Plugged	6/18/2012	
095CC	3	SKIC	Asphalt		Culvert Plugged	7/11/2012	
096CC	3	SKIC	Asphalt		Culvert Plugged	7/11/2012	
097CC	3	SKIC	Asphalt	Shotcrete Ditch	Culvert Plugged	6/18/2012	
099CC	3	SKIC	Asphalt	Shotcrete Ditch	Rock Weir	7/5/2012	
100CC	3	SVRY	Asphalt	Shotcrete Ditch	Culvert Plugged	8/1/2012	

Table 4. Road and drainage ditch treatments associated with conveyance channels, treatments applied to conveyance channels, and conveyance channel survey dates on Pikes Peak, 2012.

Site ID	Basin	Watershed	Road	Ditch	Channel	Survey
	#		Treatment	Treatment	Treatment	Date
104CC	6	WBVR	Asphalt	Shotcrete Ditch	Untreated	8/15/2012
106CC	3	SVRY	Asphalt	Shotcrete Ditch	Rock Weir	8/21/2012
108CC	3	FRENCH	Asphalt	Shotcrete Ditch	Rock Weir	7/5/2012
109CC	3	SVRY	Asphalt	Shotcrete Ditch	Culvert Plugged	8/14/2012
110CC	3	SVRY	Asphalt	Shotcrete Ditch	Culvert Plugged	8/21/2012
111CC	3	SKIC	Asphalt	Shotcrete Ditch	Rock Weir	7/5/2012
112CC	3	FRENCH	Asphalt	Shotcrete Ditch	Culvert Plugged	8/15/2012
113CC	3	SKIC	Asphalt	Shotcrete Ditch	Rock Weir	8/15/2012
114CC	4	FRENCH	Asphalt	Shotcrete Ditch	Rock Weir	7/17/2012
115CC	4	FRENCH	Asphalt	Shotcrete Ditch	Untreated	8/14/2012
116CC	4	SKIC	Asphalt	Shotcrete Ditch	Culvert Plugged	8/1/2012
117CC	4	SKIC	Asphalt	Shotcrete Ditch	Culvert Plugged	8/1/2012
118CC	4	SKIC	Asphalt	Shotcrete Ditch	Rock Weir	7/3/2012
119CC	4	GLEN	Asphalt	Shotcrete Ditch	Rock Weir	7/17/2012
120CC	6	WBVR	Asphalt	Shotcrete Ditch	Sediment Pond	6/19/2012
121CC	6	WBVR	Asphalt	Shotcrete Ditch	Untreated	8/8/2012
122CC	6	WBVR	Asphalt	Shotcrete Ditch	Untreated	8/8/2012
125CC	6	WBVR	Asphalt	Shotcrete Ditch	Untreated	6/19/2012
126CC	6	WBVR	Asphalt	Shotcrete Ditch	Untreated	8/21/2012
						7/18/2012
127CC	6	WBVR	Asphalt	Shotcrete Ditch Untreated		8/14/2012
129CC	6	EBVR	Asphalt	Shotcrete Ditch	Untreated	7/18/2012
130CC	6	EBVR	Asphalt	Shotcrete Ditch	Culvert Plugged	6/19/2012
132CC	6	EBVR	Asphalt	Shotcrete Ditch	Untreated	6/19/2012
133CC	6	EBVR	Asphalt	Shotcrete Ditch	Untreated	8/15/2012
135CC	5	BHMR	Asphalt	Shotcrete Ditch	Untreated	8/8/2012
136CC	5	BHMR	Asphalt	Asphalt Shotcrete Ditch Untreated		8/21/2012
137CC	5	BHMR	Asphalt	Shotcrete Ditch	Untreated	8/14/2012
138CC	5	BHMR	Asphalt	Shotcrete Ditch	Untreated	7/18/2012
				Shotcrete Ditch	Rock Apron,	
139CC	6	EBVR	Asphalt		Dissipaters	7/2/2012
140CC	6	EBVR	Asphalt	Shotcrete Ditch	Untreated	6/18/2012
			Asphalt,			
175CC	1	NCRY	Asphalt Curb		Rock Apron	5/31/2012
			Asphalt,		.	_ / //
184CC	2	SKIC	Shotcrete Ditch	Shotcrete Ditch	Sediment Pond	6/20//2012
40000		NODY			Rock Apron,	0/40/0040
189CC	2	NCRY	Asphalt		Dissipaters	8/13/2012
40000		NODY			Rock Apron,	0/40/0040
190CC	2	NCRY	Asphalt		Dissipaters	8/13/2012
40400	0	NODY	A		Rock Apron,	0/00/0040
19100	2	NCRY	Asphalt		Dissipaters	8/22/2012
200000	2		Asphalt,	Fabria Ditab	l latro ata d	0/07/0040
20000	2			Shotoroto Ditch	Unitedied	6/10/2012
20700	07	VV DV K	Asphalt	Shotoroto Ditch	Unitedied	0/19/2012
20000	/ 7	SNIC	Asphalt	Shotoroto Ditch	Unitedied	0/13/2012
20900	1	SNIC	Asphalt	Sholcrete Ditch	Unitedied	0/10/2012
21000	2	SNIC	Asphalt		Untreated	F/20/2012
21100	2 7	SNIC	Asphalt	Capitor Ditch	Din Don	0/00/2012
21200	1 6		Asphalt	Shotoroto Ditch		0/20/2012
21300	0 F		Asphalt	Shotcrete Ditch	Unitedied	7/26/2012
21400	Э	BUINK	Asphalt	Shotcrete Ditch	Untreated	1/20/2012

Site ID	Basin #	Watershed	Road Treatment	Ditch Treatment	Channel Treatment	Survey Date
215CC	5	BHMR	Asphalt	halt Shotcrete Ditch Untre		8/14/2012
			Asphalt,			
216CC	1	Lower NCRY	Asphalt Curb	Asphalt Ditch	Rock Weir	7/11/2012
			Asphalt,			
217CC	1	Lower NCRY	Asphalt Curb	Asphalt Ditch	Rock Weir	7/10/2012
218CC	1	Lower SKIC	Asphalt	Untreated Ditch	Rock Weir	6/12/2012
219CC	1	Lower SKIC	Asphalt	Shotcrete Ditch	Rock Weir	5/23/2012
220CC	1	Lower SKIC	Asphalt	Fabric Ditch	Rock Weir	5/31/2012
221CC	1	Lower NCRY	Asphalt	Shotcrete Ditch	Rock Weir	5/31/2012
222CC	1	Lower NCRY	Asphalt	Shotcrete Ditch	Rock Weir	5/31/2012
223CC	1	Lower SKIC	Asphalt	Fabric Ditch	Rock Weir	7/10/2012
224CC	2	NCRY	Asphalt	Asphalt Asphalt Ditch Rock Weir		6/12/2012
225CC	2	SKIC	Asphalt	Fabric Ditch	Rock Weir	8/8/2012
			Asphalt,			
226CC	2	NCRY	Asphalt Curb	Fabric Ditch	Rock Weir	8/22/2012
			Asphalt,			
227CC	2	NCRY	Asphalt Curb	Asphalt Ditch	Rock Weir	6/20/2012
228CC	2	SKIC	Asphalt	Fabric Ditch	Rock Weir	7/17/2012
229CC	2	NCRY	Asphalt	Fabric Ditch	Rock Weir	7/26/2012
230CC	2	NCRY	Asphalt	Fabric Ditch	Rock Weir	6/5/2012
231CC	2	NCRY	Asphalt	Fabric Ditch	Rock Weir	6/5/2012
232CC	7	GLEN	Asphalt	Shotcrete Ditch	Untreated	7/4/2012
235CC	3	SVRY	Asphalt	Shotcrete Ditch	Rock Weir	5/30/2012
244CC	2	NCRY	Asphalt	Shotcrete Ditch	Untreated	7/30/2012
245CC	2	NCRY	Asphalt	Asphalt Ditch	Untreated	6/12/2012
246CC	5	EBVR	Asphalt	Asphalt Ditch	Sediment Pond	6/18/2012
247CC	6	WBVR	Asphalt	Asphalt Ditch	Sediment Pond	6/18/2012
251CC	7	NCRY	Asphalt	Shotcrete Ditch	Sediment Pond	6/21/2012
253CC	7	SKIC	Asphalt,	Shotcrete Ditch	Sediment Pond	5/30/2012
263CC	7	SKIC	Asphalt	Shotcrete Ditch	Sediment Pond	6/21/2012
265CC	7	SKIC	Asphalt	Shotcrete Ditch	Sediment Pond	8/29/2012

Cross sections for the conveyance channels listed in Table 4 are presented in Appendix I. At first glance, graphs of the conveyance channel cross sections presented in Appendix I may appear counter intuitive, as the low point in the cross section may be at the right or left end pin. This presentation is not an error. Not all conveyance channels were formed as a result of natural drainage processes. Many were formed as the result of road related discharges and the flow path is across the slope rather than downslope, thus causing rills to form across the slope. Conveyance channel survey data and photographs for 2012 are available on the accompanying data DVD.

Sediment Traps (Sediment Ponds and Rock Weirs)

The original mitigation plan called for building sediment ponds designed to trap sediment while allowing water to exit as a stream. Initially, the proposed monitoring consisted of periodic pond surveys to index sediment accumulation as well as measurement of the suspended sediment concentrations in discharge entering and exiting the pond. The combination of sediment accumulation in the pond plus the sediment exiting the pond in the outflow was intended to provide an estimate of total sediment transport. In accordance with the revised mitigation design, rock weirs capable of detaining all the water and sediment discharged from the road segment for events up to the design storm are being constructed. The current monitoring strategy assumes that the rock weirs detain all discharge long enough for the sediment to settle out, while the water percolates out of the rock weir through the porous berm. Measuring sediment accumulation in the rock weir will index total sediment movement. In the event the rock weir does not detain all the storm discharge delivered to it (actual discharge exceeds the design discharge or the rock weirs fail to function properly), silt fences have been installed on the downhill side of the rock weirs to trap sediment carried in surface discharge passing over or through the berm. A silt fence is preferred over grab samples of discharge because any overflow or through flow that occurs is most likely to be diffused and not concentrated. Also, using a silt fence provides a measure of total transport. The measurement protocol for these silt fences is the same as that employed for the cut and fill slope silt fences.

The field procedure for monitoring sediment accumulation in the rock weirs was modified in 2008 to simplify both instrument requirements for the survey and software requirements for subsequent data reduction and analysis as well as to allow for a more consistent comparison of volumetric change from survey to survey. A fixed area was defined and monumented within each rock weir to be surveyed each time, and compared from survey to survey or year to year. Prior to 2008, the area surveyed within each rock weir had not been predefined. Although the criteria for selecting the area to be surveyed within each rock weir was well defined in the survey protocol, the area actually surveyed as well as the number and distribution of survey points within that area were not necessarily consistent from one survey to the next. Much was left to the discretion of the field crew. As part of each survey (spring, fall, and as needed during the summer), the field crew would identify areas of sediment accumulation within the rock weirs and, although virtually all of the rock weir area was surveyed, sampling points were concentrated in the vicinity of the areas of deposition and more widely spaced over the balance of the rock weir area. The survey capabilities of the Trimble Robotics Total Station, which is used for all surveying on the Pikes Peak Project, records the geospatially correct location of survey points for virtually any survey pattern, so utilizing a variable sampling scheme did not create a problem. In order to compensate for the variable distribution of survey points, an AutoCAD package was used to develop a 0.5-foot Digital Terrain Model (DTM) for the surface of the sediment pond based on the survey points. This provided a very high resolution description of the topographic variability in the survey data collected in the vicinity of active deposition without requiring similar resolution (and sample size) in areas perceived to have had little or no activity. This DTM could then be intersected with the DTM for earlier or subsequent surveys to obtain an estimate of volumetric change between surveys. The procedure called for any non-overlapping areas to be clipped from either survey as needed, and resulted in two overlapping surfaces of equal size. The volumetric difference between the two intersected surfaces represented the estimate of the volumetric change in sediment accumulation that occurred in the rock weir during the interval between surveys. Although valid, it became apparent that this protocol had several drawbacks specific to this study that included: 1) dependence on the Trimble Robotics Total Station, 2) risk of inconsistent survey data, and 3) dependence on an AutoCAD package and associated technical skills that may or may not be available in the future.

First, the choice of survey tools was limited to automated systems such as the Trimble Robotics Total Station, limiting alternative instrument choices while requiring a specific level of technical expertise in the field crew. Second, because the area to be surveyed within each rock weir had not been predefined, the perimeter of the DTM's for individual surveys were not necessarily identical when intersected. Therefore, the clipping process that became necessary introduced the risk of inconsistent or lost information. Fortunately, the field crew leader was the same for each year of monitoring up to 2007 so disparities in survey areas are in fact minimal. Lastly, the protocol required the use of an AutoCAD package to develop and intersect the three dimensional surfaces used to estimate sediment accumulation. This required software and technical skills not readily available within the project, requiring that the data reduction be outsourced to other consultants.

In 2008 the field procedures for surveying the rock weirs were modified. First, each rock weir was visited and the perimeter of the critical portion of the sediment accumulating pond was identified and monumented with rebar. These monumented locations were then referenced to the three benchmark locations (control points) already established for each rock weir. An attempt was made to define the area to be surveyed in rectangular form, but sometimes five or six sides were needed to most efficiently define the perimeter of the area of interest. In every case, the area selected for a given rock weir encompassed all the areas surveyed prior to 2008. It should be noted that all unstable areas identified to be within the rock weir were also included in the survey area to ensure that migration of material from one location within the rock weir to another were balanced out in the survey and not construed to be additions or losses in accumulation between surveys. Because the permanent survey area defined for each rock weir encompasses the area of every previous survey, no loss of historic data occurred as a result of the change in procedure.

After the survey perimeter was defined, one side was arbitrarily selected as the baseline for the survey. Depending on the size and shape of the rock weir area of interest, a rectangular survey grid system was established that originates from the baseline, and uniformly and consistently covers the rock weir area. Survey lines initiate from the baseline at uniform intervals, and cross the rock weir perpendicular to the baseline, and extend to the opposite boundary line. Survey points along each line are also uniformly spaced. The spacing of both survey lines and survey points on a survey line vary with rock weir size. An example schematic for rock weir 008RW is shown in Figure 2. Lines located perpendicular to the baseline and survey points along the line resulted in a 1 X 1, 1 X 2, 2 X 1, 2 X 2, or comparable survey grid depending on the area and shape of the rock weir. The objective was to locate several hundred survey points, uniformly distributed in each rock weir that would be revisited at each survey. This approach has several advantages over the original survey protocol. First, surveying using a fixed grid system allows obtaining a simple estimate of elevation of the rock weir area relative to the control points for each survey. Following this protocol is not particularly instrument specific, nor is data reduction as software or skill dependent as the initial protocol. Second, because the area to be surveyed is fixed, repeated measures allow for a more uniform comparison of volumetric change from survey to survey and surveys are not biased by field crew changes or interpretations.

Changing the survey protocol may result in some loss of resolution (sampling intensity) in the areas of most active accumulation. However, because the current rock weir area is fixed and the same approximate points are surveyed each time, that loss should be minimal and offset by greater consistency from survey to survey. Changing the field procedure does not preclude the

Figure 2. Schematic map of rock weir 008RW defining a fixed area, baseline, perimeter points and survey grid on Pikes Peak, 2008.

use of AutoCAD packages for data analysis. However, if an AutoCAD package is not used to process the data, the average elevation of the rock weir surface can be obtained by determining the average elevation of the survey points. The volumetric change between any two surveys can be estimated by multiplying the difference in the average geo-referenced elevations for the two surveys by the area of the rock weir.

Presented in the 2009 and 2010 Annual Reports, as part of the process of changing a protocol, several quality control and quality assurance checks were implemented as a means of better defining errors that might be associated with the survey procedure. The concerns were; 1) whether or not the initial survey grid system selected for each rock weir was adequate to define the average elevation of the surface, 2) whether or not observed discrepancies in the total number of points observed in the successive surveys of the same pond were significant, and 3) whether or not measurement error associated with defining the reference elevation used for the feature of interest caused a significant error.

As noted in earlier reports, there is an additional error in the surveys of the rock weirs (and all other surveys as well) that is associated with defining the reference benchmarks for each feature. The benchmarks are used to orient the Trimble Robotics Total Station as to the elevation and the geospatial location of the feature being surveyed. Field experience in the use of the Total Station indicates that the measurement error in defining the reference elevation for the feature of interest, based on the use of three benchmarks, is 0.01 feet or less.

As with the road surface erosion transects, four sediment ponds (199RW, 237RW, 256RW, and 264RW) are surveyed using a series of cross sections (labeled A–C except for site 256RW, which has four cross sections labeled A–D and site 199RW, which has five cross sections labeled A–E) to estimate volumetric changes in sediment accumulation. Three sediment ponds (258RW, 260RW, and 262RW) are monitored by recording observations in the field notes and using photo monitoring to document changes. In those few cases where there is a defined inflow and outflow to a pond, water samples to estimate trap efficiency can be grab sampled from the inlet and outlet of the ponds as originally planned. Surveys of the sediment traps should be completed after spring snowmelt and again after significant rainfall events, perhaps a total of four times per year. In addition, surveys taken before and after rock weir cleaning can be used to estimate the total volume or amount of material removed and this cumulative estimate can be used to verify appropriateness of the incremental surveys.

As noted above, any conveyance channels that appear to be present below the rock weirs are monitored. If the rock weirs fail, as some did in 2012, any changes in the conveyance channel geometry that may result will be documented. If the rock weirs are effective in reducing the erosive energy of the discharge, the reduction in erosion in the conveyance channels can be documented by comparing response in channels draining treated and untreated road segments.

In 2012, the highway crew completed construction of sediment ponds 262RW and 264RW in Basin 7 and removed five breached rock weirs (236RW, 238RW, 240RW, 242RW, and 243RW) in the switchbacks (Basins 3 and 4) and replaced them with cutoff walls with riprap aprons below. Repair of the breached rock weir 234RW in the switchbacks (corner just above Elk Park in Basin 3) is in the design stage. Although planned construction will begin in 2013, the exact

scope has not yet been determined (personal communication with Jack Glavan, City of Colorado Springs, Capital Projects Manager). Thirty-six sediment traps were monitored in 2012, including 29 rock weirs and seven sediment ponds. Twenty-three sites were surveyed at least twice to monitor their effectiveness in trapping sediment from winter and summer runoff. Rock weir 250RW was surveyed and a cross section was established on the cut slope above the rock weir. The rock weirs were surveyed and sediment volume was measured in the silt fences located down slope of the rock weirs (15 rock weirs have associated silt fences). Twenty-two of the 29 rock weir sites and one of the sediment ponds (237RW) demonstrated some degree of failure, where water and sediment were seen piping under or through the rock weir, the rock weir was overtopped, or the rock weir was breached. Some of the rock weirs are full of sediment rendering them ineffective, resulting in an inability of the field crew to effectively evaluate these structures. Rock weirs 234RW, 236RW, 238RW, and 243RW (Basins 3 and 4) were not surveyed because failure in 2010 rendered them ineffective. The field crew monitored these sites by recording observations in the field notes and using photo monitoring to document changes. As noted earlier for silt fences on the cut and fill slopes, the data from the breached rock weirs or sediment fences below rock weirs may under estimate total sediment production. Survey dates for the rock weirs and sediment ponds are presented in Table 5. A summary of rock weir silt fence site visits, and sediment accumulation in rock weir silt fences and the rock weirs for the 2012 monitoring season, as well as rock weir and sediment pond cross sections from 2012 are presented in Appendix J.

The average elevations for the rock weir surfaces were obtained by determining the average elevation of the survey points. The volumetric change between the two surveys was then estimated by multiplying the difference in the average geo-referenced elevations for the two surveys by the area of the rock weir (Appendix J). As noted earlier, the negative values imply a decrease in estimate of sediment accumulation between two surveys. Sediment trap data and photographs for 2012 are available on the accompanying data DVD.

Grab samples of the sediment retained in both the rock weirs and silt fences below the weirs were collected each time the weirs were surveyed or the fences cleaned. As noted earlier, a subset of these grab samples was selected for analysis of particle size distribution. The balance of samples will be analyzed only if the variability in the particle size distribution of the subset of samples chosen for initial analysis warrants additional analysis. In addition, water samples to determine suspended sediment were collected from the inflow and outflow of the major sediment ponds 199RW and 237RW. Because laboratory analyses for the rock weir silt fence grab samples were not completed at the time of this report, they will be included in the 2013 Annual Report. Laboratory analyses for the 2011 grab samples have been completed and a summary of particle size distributions and graphs are presented in Appendix K and on the accompanying data DVD. Laboratory analyses on the suspended sediment samples for the 2012 field season are presented in Appendix L and on the accompanying data DVD.

Site ID	Basin #	Watershed	Management Practice	Survey	Dates
002RW	1	Lower SKIC	Untreated Ditch	6/12/2012	8/29/2012
003RW	1	Lower SKIC	Shotcrete Ditch	6/12/2012	8/29/2012
006RW	1	Lower SKIC	Fabric Ditch	5/15/2012	
008RW	1	Lower NCRY	Shotcrete Ditch	5/30/2012	
009RA	1	Lower SKIC	Fabric Ditch	5/18/2012	9/24/2012
152RW	2	SKIC	Fabric Ditch	5/24/2012	10/2/2012
153RW	2	SKIC	Fabric Ditch	5/14/2012	9/13/2012
161RW	2	NCRY	Asphalt Curb and Ditch	5/14/2012	9/13/2012
162RW	2	NCRY	Asphalt Ditch	5/14/2012	9/24/2012
176RW	2	NCRY	Fabric Ditch	6/11/2012	10/2/2012
178RW	2	NCRY	Fabric Ditch	6/11/2012	10/2/2012
179RW	2	NCRY	Fabric Ditch	6/12/2012	9/19/2012
180RW	2	NCRY	Fabric Ditch	6/5/2012	9/19/2012
181RW	2	NCRY	Fabric Ditch	6/5/2012	10/2/2012
199RW	2	SKIC	Shotcrete Ditch	6/20/2012	9/13/2012
200RW	1	Lower NCRY	Asphalt Curb and Ditch	6/20/2012	8/29/2012
201RW	2	NCRY	Asphalt Curb and Ditch	6/11/2012	8/22/2012
202RW	2	SKIC	Asphalt Ditch	6/11/2012	
233RW	3	SKIC	Shotcrete Ditch	6/11/2012	8/28/2012
237RW	3	SKIC	Shotcrete Ditch	5/23/2012	8/28/2012
239RW	3	FRENCH	Shotcrete Ditch	7/5/2012	8/27/2012
240RW †	3	SKIC	Shotcrete Ditch	7/5/2012	8/27/2012
241RW	4	FRENCH	Shotcrete Ditch	7/17/2012	8/27/2012
242RW †	4	SKIC	Shotcrete Ditch	7/4/2012	8/29/2012
250RW	7	NCRY	Shotcrete Ditch	5/29/2012	9/19/2012
252RW	7	SKIC	Shotcrete Ditch	5/23/2012	
254RW	7	SKIC	Shotcrete Ditch	5/29/2012	8/22/2012
256RW	6	WBVR	Shotcrete Ditch	7/3/2012	
264RW	7	SKIC	Shotcrete Ditch	8/29/2012	
† Rock wei	rs removed	l in 2012 and rep	placed with cutoff wall and ripra	ap apron below	

Table 5. Management practices implemented above sediment traps, and sediment trap survey dates on Pikes Peak, 2012.

VALIDATION MONITORING

Validating the effect of road restoration practices on aquatic, wetland, and riparian conditions is more difficult than determining the effectiveness of mitigation practices in reducing erosion and sedimentation at specific locations on site or close to the highway. On-site response to the mitigation practices should be direct, dramatic, and occur in real time. Off-site response, such as in the stream channels, is likely to be more diffused, less dramatic, cumulative in nature, and subject to changes in condition elsewhere in the watershed, all of which make validation of response to mitigation difficult. The watersheds of concern have been subject to road related impacts for more than 80 years. Any road-related degradation in the channel systems is the aggregate result of long-term, road-related discharge and sediment pulses. The interruption of those pulses as a result of road mitigation practices may be too subtle to be detectable in the near term, therefore creating a challenge in selecting the most appropriate indicator metric.

The scale chosen for validation monitoring is that of the stream channel reach. Within each stream reach selected, channel morphology, bed and bank particle size distribution, bank erosion, and vegetation diversity is monitored and characterized. A suite of tributaries in the Pikes Peak Watershed were identified as either impacted or non-impacted by the presence of the Pikes Peak Highway (Chavez et al. 1993). North Catamount, South Catamount, Glen Cove, Oil, and Boehmer Creeks represent non-impacted streams. Ski, Severy, East Fork of Beaver, North Fork of Crystal, and West Fork of Beaver Creeks are all considered stream systems impacted by the highway. Study reaches have been selected in each of the 10 streams, and periodic monitoring will be conducted in each stream reach for the entire 15-year study period. Oil Creek has only one monitored stream reach because it is a small tributary of South Catamount Creek, which has three stream reaches. All other streams have two stream reaches. Because response can be expected to be gradual, it is not necessary that all streams be measured every year; however, annual measurement is completed if time permits.

The monitoring assumption is that stream channel adjustments that might occur in the impacted stream reaches following road mitigation practices will not occur on either the reference stream reaches (those not influenced by the highway) or in the impacted streams draining the portions of highway that have not received mitigation. However, this does not imply that differences that may have existed at the start of the monitoring program between the five reference and the five impacted stream systems were the consequence of road-related impacts. Rather, any long-term trends in convergence or divergence in the comparison of conditions in the impacted and the control stream reaches following road mitigation will be evaluated as potential indicators of stream channel response to highway mitigation practices.

The techniques proposed by Harrelson et al. (1994) were used to establish the stream channel reference sites. Selected stream reaches are at least 100 meters in length and contain several meander lengths or riffle-pool-riffle complexes. In 2005, two additional reaches were established in response to the diversion wall built on Ski Creek to divert all alpine runoff into Glen Cove Creek. Glen Cove Creek is a tributary to South Catamount Creek, and enters upstream from the two reference stream reaches on South Catamount Creek. The diversion on

Ski Creek increased discharge into both Glen Cove and South Catamount Creeks and additional monitoring seemed warranted.

Stream Channel Cross Sections

Five channel cross sections have been located and permanently referenced in each of the stream reaches, following the selection and installation criteria in Harrelson et al. (1994). The purpose for the cross sections is to document changes in channel cross sectional geometry that may occur over time. Five cross sections in a 100-meter stream reach should be adequate to provide an indication of change in channel cross section geometry, should it occur naturally or as the consequence of mitigation. In addition to the cross sections, longitudinal surveys of the channel thalweg through the stream reach are conducted to document surface water and thalweg slope and location (Harrelson et al. 1994). Over time, changes in geometry such as width to depth ratios in the cross sections, thalweg elevation and location in the floodplain, longitudinal profile, or channel gradient may reflect a response to road mitigation impacts on sediment supply or discharge energy when compared to responses in the control reaches. If possible, cross sections are surveyed each fall so that changes in channel geometry can be documented on an annual basis. Because it can be expected that channel responses to the road mitigation practices will not be as robust as other metrics, it is not critical that each stream be surveyed each year.

Surveys were completed on all streams (Boehmer, East Fork of Beaver, Glen Cove, North Catamount, North Fork of Crystal, Oil, South Catamount, Ski, Severy, and West Fork of Beaver Creek). After 2012, Oil Creek will no longer be surveyed as the water level has increased as a result of an active beaver dam. Monitoring will consist of observation and photograph monitoring only until water levels return to normal. Stream channel cross sections from the 2012 monitoring season can be found in Appendix M. Stream channel cross section and thalweg survey data for 2012 are available on the accompanying data DVD.

Bank Erosion

Bank erosion is being documented primarily through the channel cross section surveys. If the channel is actively down cutting or migrating laterally, the change is an index to bank erosion. Additional bed and bank features are also displayed in a map of the stream reach (Harrelson et al., 1994) and through the use of permanent photo points. In each stream reach, measuring and comparing the lengths of bank that are stable versus lengths of bank that are actively eroding also provides an index of the proportion of eroding banks. If the stream reach contains areas of significant bank erosion, bank pins will be installed to measure the lateral rate of erosion. Installation of such pins is only warranted if erosion appears to be active and severe in certain locations within the stream reach or if the onset of bank erosion begins to occur during the monitoring period. Over the long-term, the five cross sections located within a 100-meter stream reach should index channel and bank stability by documenting changes in channel geometry and location. Secondary measures such as thalweg surveys and bank erosion monitoring should help document any further change.

In 2012, measurements specific to bank erosion consisted of channel cross section surveys, thalweg surveys, and photographic documentation. Visual indications were that bank erosion

was not significant enough to warrant installation of bank pins to measure the lateral rate of erosion.

Particle Size Distribution

Assuming that road mitigation practices are effective in reducing discharge energy and sediment delivery to the channel system, and that no offsetting responses occur, the percentage of fine particles in the stream channel bed can be expected to decrease over time. A greater percentage of the stream bed is likely to be composed of larger particles as the fine particles are winnowed out and not replaced. This assumes that the resulting flow regime is adequate to carry the sediment supply, as a severe reduction in flow without a reduction in available sediment could cause aggradation. The composition of the sediment trapped behind silt fences, and deposited in rock weirs and in bars on the stream reaches is assessed through the collection of grab samples and analyzed in the laboratory for particle size distribution. Comparing the particle size distribution in material captured in traps near the highway with sediment deposits (bars) in the streams and pebble counts taken in the stream channel should validate response to highway mitigation practices.

Pebble Counts

Pebble counts in each stream reach are conducted during each survey using the Bevenger and King Pebble Count Procedure (Bevenger and King, 1995). The procedure calls for a zigzag sampling pattern that passes through the stream reach, crossing from bank to bank. Three-hundred particles are sampled in each survey and one survey per field season is completed in each of the stream reaches. To help support this aspect of the validation monitoring, the particle size distribution of the material caught in silt fences and in the rock weir sediment traps is available for comparison to the bed material in the streams.

Stream pebble counts were completed on Boehmer, East Fork of Beaver, Glen Cove, North Catamount, North Fork of Crystal, South Catamount, Ski, Severy and West Fork of Beaver Creeks. A stream pebble count was not completed on Oil Creek as the stream reach is now a beaver pond. A summary of the stream channel particle size distribution from the pebble counts is presented in Table 6. Stream pebble count particle size distribution graphs from the 2012 monitoring season can be found in Appendix N and on the accompanying data DVD.

Grab Samples

Sediment grab samples were collected from bars on all streams. Comparing the distribution of material captured in traps near the highway to sediment deposits (bars) in the streams might be useful in validating response to highway mitigation practices. Laboratory analyses for the 2012 grab samples have been completed and a summary of stream channel particle size distributions and graphs for 2012 are presented in Appendix O and on the accompanying data DVD.

Site Name		Data	Particle Size Distribution					
Site Name	Site ID	Date	D15	D35	D50	D84	D95	D100
Boehmer Creek Reach 1	BHMR1	9/17/2012	0.542	2.890	6.067	23.131	79.842	265.0
Boehmer Creek Reach 2	BHMR2	9/17/2012	0.613	7.040	12.711	61.870	128.000	275.0
East Fork Beaver Creek Reach 1	EBVR1	9/18/2012	2.504	6.051	9.360	32.000	138.812	500.0
East Fork Beaver Creek Reach 2	EBVR2	9/18/2012	1.587	4.779	8.000	18.431	26.597	46.0
Glen Cove Reach 1	GLEN1	9/24/2012	2.362	8.832	13.609	48.000	121.477	263.0
North Catamount Creek Reach 1	NCAT1	9/10/2012	0.139	1.400	3.232	8.205	12.625	16.0
North Catamount Creek Reach 2	NCAT2	9/27/2012	0.857	2.828	5.533	12.863	19.424	26.0
North Fork Crystal Creek Reach 1	NCRY1	9/6/2012	0.174	1.137	3.077	11.132	23.399	50.0
North Fork Crystal Creek Reach 2	NCRY2	9/6/2012	0.682	2.497	4.598	12.792	20.172	55.0
Oil Creek Reach 1†	OILC1	9/25/2012						
South Catamount Creek Reach 1∞	SCAT1	9/11/2012	0.581	4.826	9.220	27.119	47.612	74.0
South Catamount Creek Reach 2	SCAT2	9/24/2012	2.116	5.829	9.533	28.195	96.000	334.0
South Catamount Creek Reach 3	SCAT3	9/24/2012	2.061	4.686	7.040	16.233	29.779	313.0
Ski Creek Reach 1	SKIC1	9/11/2012	0.740	4.319	6.838	16.507	34.237	91.0
Ski Creek Reach 2	SKIC2	9/6/2012	0.610	2.562	5.519	24.879	73.262	160.0
Severy Creek Reach 1	SVRY1	9/20/2012	0.081	0.117	1.219	7.748	16.000	90.0
Severy Creek Reach 2	SVRY2	9/20/2012	2.378	9.666	15.452	43.506	83.864	166.0
West Fork Beaver Creek Reach 1	WBVR1	10/1/2012	1.203	6.355	14.224	62.185	124.968	275.0
West Fork Beaver Creek Reach 2 WBVR2 10/1/2012 0.923 5.684 12.129 44.432 94						94.164	190.0	
† Pebble count not completed on Oil	Creek Rea	ch 1 as streai	m reach	is now a	beaver p	ond		
∞ Only 288 pebbles collected for peb	ble count				-			

Table 6. Summary of particle size distribution of pebble counts in stream channels on Pikes Peak, 2012.

Vegetation

Vegetation photo points established at the top of the left and right banks (facing downstream) at each cross section have been monumented and are intended to document changes in vegetation type, density, and percent cover over time as riparian and wetland areas recover (Hall 2002). Vegetation is grouped into general categories of moss, grass, sedge, forb, or shrub to document vegetation presence. Percent cover is estimated for the top of bank area 1.5-feet on either side of the center line of the cross section. This monitoring is not intended to determine the degree of departure that current conditions might reflect relative to a reference value. Monitoring will document the evolution or transition that occurs as the disturbed streams respond to the effects of road mitigation and will allow for comparison of any trends to those that occur in the control stream reaches.

The riparian vegetation summary from the 2012 monitoring season is presented in Appendix P. Vegetation data and photographs from 2012 are available on the accompanying data DVD.

SUMMARY

The 2012 monitoring season was extremely successful. A total of 204 sites were monitored during the 2012 field season, many of which were visited more than once. Precipitation measurements from the rain gauges and the NRCS Snotel site, located at Glen Cove indicated that precipitation was below average for 2012 allowing more time for routine monitoring and maintenance.

The field crew was able to visit the 56 silt fence sites every two weeks. The upper fences at the base of five fill slope sites in Basin 7 (Glen Cove, Ski, and North Fork of Crystal Creek Watersheds) were damaged during highway construction in 2011. As a result, these fences were removed from the sampling in 2012, but the lower fences continued to be monitored.

Six of the original 20 drainage ditches selected for monitoring were surveyed in 2012. Fourteen of the original 20 sites have been paved or lined with shotcrete. This eliminated the need for further monitoring unless visual inspection provides evidence of failure, in which case cross sections will be re-established and surveys completed to document change. The six drainage ditches in Basins 1 (Ski and Lower North Fork of Crystal Creek Watersheds) and 2 (North Fork of Crystal and Ski Creek Watersheds) are lined with erosion control fabric and will continue to be surveyed annually.

Conditions allowed all 118 conveyance channels to be monitored during the 2012 field season; some had not been surveyed since the start of the monitoring. Conveyance channel 212CC, which was lined with rip rap in 2011 was surveyed as there was evidence that treatment was failing. Monitoring the effectiveness of mitigation practices on conveyance channels represents a critical component in the monitoring program. Some of these channels have eroded into gullies and may have contributed to the sediment load in the adjacent wetland, riparian, and aquatic systems.

Thirty-six sediment traps were monitored in 2012; 29 rock weirs and seven sediment ponds. Of the 36 sites, 23 demonstrated some degree of failure. Some of the rock weirs are full of sediment rendering them ineffective, resulting in an inability of the field crew to evaluate these structures.

The entire highway has been paved since the onset of the project in 2003. In 2012, the highway crew completed construction of sediment ponds 262RW and 264RW in Basin 7 and removed five breached rock weirs (236RW, 238RW, 240RW, 242RW, and 243RW) in the switchbacks (Basin 3: Severy and Ski Creek Watersheds; and Basin 4: Upper Ski and French Creek Watersheds) and replaced them with cutoff walls with riprap aprons below. Although paving has been completed, construction and stabilization activities will continue in 2013 and possibly longer.

REFERENCES

Bevenger, G. S.; King R.M. 1995. A pebble count procedure for assessing watershed cumulative effects. Res. Pap. RM-RP-319. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 17 p.

Burke, M. 2002. Pikes Peak Highway drainage, erosion, and sediment control plan Forest Service engineering design review. Phase 2 Report, v. 1.4. U.S. Department of Agriculture, Forest Service.18 p.

Hall, F.C. 2002. Photo point monitoring handbook: part A-field procedures. Gen. Tech. Rep. PNW-GTR-526. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 48 p.

Harrelson, C.C.; Rawlins, C.L.; Potyondy J.P. 1994. Stream channel reference sites: an illustrated guide to field technique. Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 61 p.

Hydrosphere Resource Consultants. 1999. Pikes Peak Highway drainage, erosion and sediment control plan environmental assessment. Unpublished report. Boulder, CO. 97 p.

Nankervis, J.M. 2004. Monitoring effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. Blue Mountain Consultants, Berthoud, CO. 22 p.

Nankervis, J.M. 2005. Monitoring effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. Blue Mountain Consultants, Berthoud, CO. 29 p.

Nankervis, J.M. 2006. Monitoring effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. Blue Mountain Consultants, Berthoud, CO. 21 p.

Nankervis, J.M. 2007. Monitoring effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. Blue Mountain Consultants, Berthoud, CO. 19 p.

Robichaud, P.R.; Brown, R.E. 2002. Silt fences: an economical technique for measuring hillslope soil erosion. Gen. Tech. Rep. RMRS-GTR-94. Moscow, ID: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Forestry Sciences Laboratory. 24 p.

Troendle, C.A.; Winkler, S.; LaPerriere, M. 2008. Monitoring the effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. METI Inc., El Paso, TX. 24 p.

Troendle, C.A.; Winkler, S.; Derengowski, J.; VonLoh, J. 2009. Monitoring the effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. METI Inc., El Paso, TX. 32 p.

Troendle, C.A.; Winkler, S.; Derengowski, J.; VonLoh, J. 2010. Monitoring the effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. METI Inc., El Paso, TX. 34 p.

Troendle, C.A.; Winkler, S.; Derengowski, J.; VonLoh, J. 2011. Monitoring the effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. METI Inc., El Paso, TX. 32 p.

Troendle, C.A.; Winkler, S.; VonLoh, J.; Derengowski, J. 2012. Monitoring the effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. METI Inc., El Paso, TX. 33 p.

USDA Forest Service. 2000. Decision notice and finding of no significant impact – Pikes Peak Highway drainage, erosion, and sediment control plan. Unpublished report. Pike and San Isabel National Forests and Cimarron Comanche National Grassland. Pueblo, Colorado. 16 p.

USDA Forest Service. 2002. Monitoring the effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished monitoring plan. 16 p.

USDA Forest Service. 2003. Amendment #1 to Monitoring the effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. 2 p.

U.S. Department of Justice. 2002. Settlement Agreement between the U.S. Forest Service and the Sierra Club. Unpublished report. Denver, CO. 15 p.

Acknowledgements

Many thanks to the U.S. Forest Service Pikes Peak Ranger District and Rocky Mountain Research Station for all their logistical, technical, laboratory, and related assistance. Thanks to the City of Colorado Springs, the Pikes Peak Highway Crew, and Highway Project Managers who shared their time and invaluable knowledge.

We also appreciate the efforts of Leah Lessard, U.S. Forest Service, Pikes Peak Ranger District, Kyle Rodman, Rocky Mountain Field Institute, and Matt Cahalan, University of Colorado, Colorado Springs for their assistance with silt fence replacement and surveying.

Thanks also to the City of Colorado Springs, the Public Works Department of Cripple Creek, and Mr. Ed Tezak for allowing access to closed and/or private watersheds for the validation monitoring.

Special thanks to METI Inc., the U.S. Forest Service, EMC Resource Information Group, Blue Mountain Consultants, Black Creek Hydrology, LLC, Louise O'Deen, USFS/USGS Water Laboratory Manager, and Jeff Hovermale, U.S. Forest Service, Pikes Peak Ranger District for a successful tenth year.
Appendix A

Site Locations for Effectiveness and Validation Monitoring

Site ID	Latitude (hddd°mm.mmm)	Longitude (hddd°mm.mmm)	Altitude (ft)	Feature Description
001FS	N38 55.211	W105 02.238	9410	Fill Slope
002RW	N38 55.224	W105 02.264	9410	Rock Weir/Apron
003RW	N38 55.200	W105 02.258	9416	Rock Weir/Apron
004CC	N38 55.132	W105 02.278	9431	Conveyance Channel
005DD	N38 55.087	W105 02.415	9447	Drainage Ditch
006RW	N38 55.109	W105 02.482	9415	Rock Weir/Apron
007FS	N38 55.094	W105 02.520	9414	Fill Slope
008RW	N38 55.075	W105 02.554	9417	Rock Weir/Apron
009RA	N38 55.046	W105 02.655	9443	Rock Weir/Apron
010DD	N38 54.907	W105 02.734	9457	Drainage Ditch
011CS	N38 54.909	W105 02.730	9459	Cut Slope
012CC	N38 54.748	W105 03.060	9528	Conveyance Channel
013CC	N38 54.730	W105 03.068	9525	Conveyance Channel
015CC	N38 54.603	W105 03.174	9547	Conveyance Channel
016CC	N38 54.602	W105 03.111	9525	Conveyance Channel
017CC	N38 54.510	W105 03.246	9565	Conveyance Channel
018CC	N38 54.472	W105 03.298	9576	Conveyance Channel
019CC	N38 54.457	W105 03.384	9599	Conveyance Channel
020CC	N38 54.345	W105 03.383	9637	Conveyance Channel
021CC	N38 54.299	W105 03.461	9668	Conveyance Channel
022CC	N38 54.288	W105 03.552	9692	Conveyance Channel
023CC	N38 54.272	W105 03.583	9701	Conveyance Channel
024CC	N38 54.289	W105 03.638	9715	Conveyance Channel
025CC	N38 54.258	W105 03.697	9744	Conveyance Channel
026CC	N38 54.232	W105 03.643	9752	Conveyance Channel
027CC	N38 54.183	W105 03.652	9771	Conveyance Channel
028CC	N38 54.149	W105 03.714	9818	Conveyance Channel
029CC	N38 54.145	W105 03.816	9856	Conveyance Channel
030CC	N38 54.134	W105 03.828	9855	Conveyance Channel
031CC	N38 54.130	W105 03.829	9861	Conveyance Channel
032CC	N38 54.159	W105 03.836	9858	Conveyance Channel
033CC	N38 54.106	W105 03.854	9886	Conveyance Channel
034CC	N38 54.037	W105 03.896	9940	Conveyance Channel
035CC	N38 53.909	W105 04.000	10060	Conveyance Channel
036CC	N38 53.866	W105 03.875	10126	Conveyance Channel
037CC	N38 53.821	W105 03.855	10217	Conveyance Channel
038CC	N38 53.759	W105 03.787	10254	Conveyance Channel
039FS	N38 54.910	W105 02.812	9455	Fill Slope
040CC	N38 54.914	W105 02.789	9464	Conveyance Channel
041CP	N38 53.807	W105 03.893	10072	Road Survey Control Point
042DD	N38 53.719	W105 03.746	10161	Drainage Ditch
043FS	N38 53.726	W105 03.764	10180	Fill Slope
044RX	N38 53.726	W105 03.763	10183	Road Cross Section
045CS	N38 53.657	W105 03.868	10266	Cut Slope

Site Locations for Effectiveness and Validation Monitoring on Pikes Peak, 2012†

Site ID	Latitude	Longitude	Altitude	Feature Description
	(hddd°mm.mmm)	(hddd°mm.mmm)	(ft)	
046DD	N38 53.658	W105 03.868	10268	Drainage Ditch
047RX	N38 53.658	W105 03.868	10268	Road Cross Section
048FS	N38 53.651	W105 03.880	10275	Fill Slope
049CS	N38 53.592	W105 04.020	10406	Cut Slope
050RX	N38 53.593	W105 04.020	10404	Road Cross Section
051DD	N38 53.593	W105 04.021	10397	Drainage Ditch
052FS	N38 53.593	W105 04.021	10401	Fill Slope
053CC	N38 53.560	W105 04.127	10478	Conveyance Channel
054CC	N38 53.579	W105 04.148	10448	Conveyance Channel
055FS	N38 53.612	W105 04.095	10445	Fill Slope
056RX	N38 53.614	W105 04.096	10442	Road Cross Section
057DD	N38 53.613	W105 04.095	10445	Drainage Ditch
058CC	N38 53.513	W105 04.057	10512	Conveyance Channel
059CS	N38 53.353	W105 04.222	10697	Cut Slope
060RX	N38 53.354	W105 04.219	10691	Road Cross Section
061DD	N38 53.221	W105 04.381	10808	Drainage Ditch
062RX	N38 53.216	W105 04.381	10805	Road Cross Section
063CC	N38 53.223	W105 04.394	10803	Conveyance Channel
064CC	N38 53.448	W105 04.155	10634	Conveyance Channel
065CC	N38 53.382	W105 04.192	10679	Conveyance Channel
066CC	N38 53.336	W105 04.243	10701	Conveyance Channel
067CC	N38 53.297	W105 04.299	10736	Conveyance Channel
068CC	N38 53.251	W105 04.305	10841	Conveyance Channel
069CC	N38 53.019	W105 04.287	10989	Conveyance Channel
070CC	N38 52.956	W105 04.276	11028	Conveyance Channel
071DD	N38 52.972	W105 04.285	11017	Drainage Ditch
072RX	N38 52.972	W105 04.285	11015	Road Cross Section
073ST	N38 52.879	W105 04.311	11062	Sediment Trap
074FS	N38 52.927	W105 04.272	11053	Fill Slope
075RG	N38 53.797	W105 03.890	10109	Precipitation Gauge
076RG	N38 52.582	W105 03.970	11810	Precipitation Gauge
077RG	N38 51.783	W105 03.999	13069	Precipitation Gauge
078CS	N38 53.331	W105 04.275	10478	Cut Slope
079FS	N38 52.882	W105 04.382	11254	Fill Slope
080DD	N38 52.865	W105 04.391	11256	Drainage Ditch
081CC	N38 52.943	W105 04.415	11194	Conveyance Channel
082DD	N38 52.787	W105 04.376	11284	Drainage Ditch
083FS	N38 52.777	W105 04.362	11288	Fill Slope
084CC	N38 52.796	W105 04.471	11360	Conveyance Channel
085DD	N38 52.786	W105 04.410	11313	Drainage Ditch
086FS	N38 52.602	W105 04.390	11447	Fill Slope
087CS	N38 52.435	W105 04.432	11542	Cut Slope
088FS	N38 52.388	W105 04.549	11590	Fill Slope
089CC	N38 52.391	W105 04.555	11580	Conveyance Channel
090CS	N38 52.366	W105 04.540	11604	Cut Slope
091CC	N38 52.402	W105 04.414	11643	Conveyance Channel

Site ID	Latitude	Longitude	Altitude	Feature Description
	(hddd°mm.mmm)	(hddd°mm.mmm)	(ft)	
092DD	N38 52.432	W105 04.204	11781	Drainage Ditch
093FS	N38 52.399	W105 04.401	11642	Fill Slope
094CC	N38 52.540	W105 04.069	11873	Conveyance Channel
095CC	N38 52.452	W105 04.205	11787	Conveyance Channel
096CC	N38 52.379	W105 04.217	11746	Conveyance Channel
097CC	N38 52.381	W105 04.310	11678	Conveyance Channel
098FS	N38 52.265	W105 03.995	12242	Fill Slope
099CC	N38 52.131	W105 04.046	12319	Conveyance Channel
100CC	N38 52.133	W105 03.936	12353	Conveyance Channel
101FS	N38 52.097	W105 03.875	12390	Fill Slope
102CS	N38 51.641	W105 04.063	12963	Cut Slope
103FS	N38 51.491	W105 04.021	12950	Fill Slope
104CC	N38 51.444	W105 03.894	12923	Conveyance Channel
105FS	N38 51.062	W105 03.694	13083	Fill Slope
106CC	N38 52.082	W105 03.858	12251	Conveyance Channel
107DD	N38 52.044	W105 03.824	12312	Drainage Ditch
108CC	N38 51.994	W105 03.769	12362	Conveyance Channel
109CC	N38 52.027	W105 03.825	12393	Conveyance Channel
110CC	N38 52.062	W105 03.914	12448	Conveyance Channel
111CC	N38 52.051	W105 03.992	12511	Conveyance Channel
112CC	N38 52.049	W105 03.933	12531	Conveyance Channel
113CC	N38 52.002	W105 03.873	12577	Conveyance Channel
114CC	N38 51.956	W105 03.840	12601	Conveyance Channel
115CC	N38 51.977	W105 03.995	12692	Conveyance Channel
116CC	N38 51.940	W105 04.080	12736	Conveyance Channel
117CC	N38 51.925	W105 04.141	12777	Conveyance Channel
118CC	N38 51.912	W105 04.177	12797	Conveyance Channel
119CC	N38 51.914	W105 04.032	12850	Conveyance Channel
120CC	N38 51.823	W105 04.090	12876	Conveyance Channel
121CC	N38 51.439	W105 03.804	12877	Conveyance Channel
122CC	N38 51.347	W105 03.789	12920	Conveyance Channel
123CS	N38 51.361	W105 03.782	12920	Cut Slope
124FS	N38 51.362	W105 03.788	12931	Fill Slope
125CC	N38 51.238	W105 03.806	12986	Conveyance Channel
126CC	N38 51.158	W105 03.789	13031	Conveyance Channel
127CC	N38 51.032	W105 03.697	13064	Conveyance Channel
128FS	N38 50.930	W105 03.732	13072	Fill Slope
129CC	N38 50.897	W105 03.662	13068	Conveyance Channel
130CC	N38 50.900	W105 03.177	13183	Conveyance Channel
131CC	N38 50.940	W105 03.382	13088	Conveyance Channel
132CC	N38 50.840	W105 03.274	13217	Conveyance Channel
133CC	N38 50.768	W105 03.213	13282	Conveyance Channel
134CC	N38 50.671	W105 03.035	13401	Conveyance Channel
135CC	N38 50.285	W105 02.872	13677	Conveyance Channel
136CC	N38 50.299	W105 02.931	13624	Conveyance Channel
137CC	N38 50.260	W105 02.755	13733	Conveyance Channel

Site ID	Latitude	Longitude	Altitude	Feature Description
	(hddd°mm.mmm)	(hddd°mm.mmm)	(ft)	
138CC	N38 50.221	W105 02.605	13805	Conveyance Channel
139CC	N38 50.774	W105 03.110	13370	Conveyance Channel
140CC	N38 50.730	W105 03.195	13327	Conveyance Channel
141CS	N38 51.043	W105 03.690	13103	Cut Slope
152RW	N38 54.912	W105 02.837	9444	Rock Weir/Apron
153RW	N38 54.741	W105 03.066	9457	Rock Weir/Apron
154RX	N38 52.040	W105 03.817	12112	Road Cross Section
155DD	N38 51.245	W105 03.803	12917	Drainage Ditch
156RX	N38 51.244	W105 03.799	12922	Road Cross Section
157DD	N38 51.074	W105 03.684	13100	Drainage Ditch
158RX	N38 51.074	W105 03.683	13099	Road Cross Section
159DD	N38 51.610	W105 04.072	13091	Drainage Ditch
160RX	N38 51.611	W105 04.072	13066	Road Cross Section
161RW	N38 54.720	W105 03.055	9516	Rock Weir/Apron
162RW	N38 54.887	W105 02.854	9518	Rock Weir/Apron
163RA	N38 54.665	W105 03.115	9528	Rock Weir/Apron
175CC	N38 55.104	W105 02.532	9437	Conveyance Channel
176RW	N38 54.146	W105 03.795	9838	Rock Weir
177FS	N38 55.302	W105 02.224	9323	Fill Slope
178RW	N38 54.142	W105 03.821	9839	Rock Weir
179RW	N38 54.127	W105 03.852	9851	Rock Weir
180RW	N38 54.055	W105 03.903	9906	Rock Weir
181RW	N38 54.025	W105 03.918	9919	Rock Weir
182DD	N38 54.895	W105 02.860	9430	Drainage Ditch
183FS	N38 54.675	W105 03.109	9453	Fill Slope
184CC	N38 54.708	W105 03.363	9308	Conveyance Channel
185CS	N38 54.536	W105 03.246	9532	Cut Slope
186FS	N38 54.524	W105 03.242	9538	Fill Slope
187FS	N38 54.281	W105 03.658	9711	Fill Slope
188DD	N38 54.075	W105 03.892	9894	Drainage Ditch
189CC	N38 54.073	W105 03.886	9887	Conveyance Channel
190CC	N38 54.095	W105 03.869	9871	Conveyance Channel
191CC	N38 54.117	W105 03.854	9855	Conveyance Channel
192CS	N38 54.183	W105 03.677	9786	Cut Slope
193FS	N38 54.821	W105 02.983	9507	Fill Slope
194FS	N38 54.811	W105 03.004	9506	Fill Slope
195DD	N38 54.827	W105 02.983	9505	Drainage Ditch
196FS	N38 54.872	W105 02.900	9497	Fill Slope
197CS	N38 54.364	W105 03.383	9640	Cut Slope
198FS	N38 54.497	W105 03.254	9560	Fill Slope
199RW	N38 54.688	W105 03.389	9326	Sediment Pond
200RW	N38 55.261	W105 02.246	9418	Rock Weir
201RW	N38 54.805	W105 03.021	9522	Rock Weir
202RW	N38 54.619	W105 03.132	9450	Rock Weir
203FS	N38 54.603	W105 03.139	9517	Fill Slope
204FS	N38 54.273	W105 03.572	9707	Fill Slope
			3. 27	

Site ID	Latitude	Longitude	Altitude	Feature Description
20500			(11)	Droinege Ditch
20000	N36 54.022	W105 03.927	9903	
20000	N30 54.009	W105 03.097	12062	
20700	N30 51.004	W105 04.062	12902	
20000	N30 52.734	W105 04.445	11265	
20900	N38 52.047	W105 04.411	0940	
21000	N38 54 130	W105 03.910	9049	
21100	N29 52 140	W105 03.044	10902	
21200	N38 50 964	W105 04.311	13046	
21300	N38 50 234	W105 03.591	13108	
21400	N38 50 356	W105 02.001	13375	
21500	N38 55 263	W105 02.792	0280	
21000	N38 55 255	W105 02.230	9209	
21800	N38 55 226	W105 02.252	0350	
21000	N38 55 202	W105 02.200	9339	
21300	N38 55 108	W105 02.202	9/11	
22000	N38 55 107	W/105 02.402	9411	
22100	N38 55 070	W105 02.402	0310	
22200	N38 55 048	W105 02.554	9313	Conveyance Channel
22400	N38 54 878	W105 02.057	9493	
22400	N38 54 917	W105 02.052	9433	Conveyance Channel
22600	N38 54 796	W105 02.040	9431	
22000	N38 54 706	W105 03.010	9480	
22800	N38 54 746	W105 03.055	9400	Conveyance Channel
22000	N38 54 140	W105 03.078	9774	Conveyance Channel
23000	N38 54 028	W105 03 912	9902	
23100	N38 54 050	W105 03.912	9910	Conveyance Channel
232CC	N38 52 583	W105 04 557	11399	Conveyance Channel
233RW	N38 52 383	W105 04 560	11074	Rock Weir
234RW	N38 52 502	W105 03 924	11915	Rock Weir
235CC	N38 52 504	W105 03 920	11928	Conveyance Channel
236RW	N38 52 185	W105 04 066	12177	Rock Weir
237RW	N38 52.398	W105 04.393	11219	Sediment Pond
238RW	N38 52.131	W105 04.048	12340	Rock Weir
239RW	N38 52.008	W105 03.774	12517	Rock Weir
240RW	N38 52.048	W105 03.990	12644	Rock Weir
241RW	N38 51.976	W105 03.834	12686	Rock Weir
242RW	N38 51.903	W105 04.176	12851	Rock Weir
243RW	N38 51.919	W105 04.043	12900	Rock Weir
244CC	N38 54.487	W105 03.232	9569	Conveyance Channel
245CC	N38 54.872	W105 02.900	9497	Conveyance Channel
246CC	N38 50.709	W105 03.090	13423	Conveyance Channel
247CC	N38 50.709	W105 03.499	13080	Conveyance Channel
250RW				
	N38 53.724	W105 03.710	10232	Rock Weir
251CC	N38 53.724 N38 53.723	W105 03.710 W105 03.712	10232 10229	Rock Weir Conveyance Channel

Site ID	Latitude (hddd°mm.mmm)	Longitude (hddd°mm.mmm)	Altitude (ft)	Feature Description
253CC	N38 53.462	W105 03.998	10582	Conveyance Channel
254RW	N38 53.226	W105 04.396	10836	Rock Weir
256RW	N38 51.832	W105 04.112	12923	Sediment Pond
258RW	N38 50.938	W105 03.394	13091	Sediment Pond
260RW	N38 50.682	W105 03.043	13415	Sediment Pond
262RW	N38 52.890	W105 04.297	11086	Sediment Pond
263CC	N38 52.919	W105 04.258	11056	Conveyance Channel
264RW	N38 53.201	W105 04.228	10864	Sediment Pond
265CC	N38 53.209	W105 04.206	10843	Conveyance Channel
BHMR1	N38 48.951	W105 03.040	11885	Boehmer Creek 1
BHMR2	N38 49.061	W105 03.027	11995	Boehmer Creek 2
EBVR1	N38 49.832	W105 03.612	12156	East Fork Beaver Creek 1
EBVR2	N38 49.907	W105 03.598	12190	East Fork Beaver Creek 2
GLEN1	N38 54.457	W105 04.690	9519	Glen Cove Creek 1
NCAT1	N38 54.746	W105 05.994	9415	North Catamount Creek 1
NCAT2	N38 54.402	W105 06.106	9519	North Catamount Creek 2
NCRY1∞	N38 54.418	W105 03.199	9453	North Fork Crystal Creek 1 & 2
OILC1	N38 48.449	W105 06.511	10505	Oil Creek 1
SCAT1	N38 55.035	W105 04.112	9368	South Catamount Creek 1
SCAT2	N38 54.974	W105 04.181	9345	South Catamount Creek 2
SCAT3	N38 54.316	W105 04.899	9412	South Catamount Creek 3
SKIC1	N38 54.975	W105 04.078	9418	Ski Creek 1
SKIC2	N38 53.767	W105 03.987	10035	Ski Creek 2
SVRY1	N38 52.467	W105 03.039	10732	Severy Creek 1
SVRY2	N38 52.472	W105 03.339	10926	Severy Creek 2
WBVR1	N38 48.181	W105 05.710	10726	West Fork Beaver Creek 1
WBVR2	N38 48.349	W105 05.591	10698	West Fork Beaver Creek 2
1 1 1	· · · · · · · · · · · · · · · · · · ·			

† Not all sites were sampled during the 2012 field season.
∞ North Fork Crystal Creek Reach 2 (NCRY2) is located 200ft upstream from NCRY1.

Appendix B

USGS Topographic Map

Site Locations for Effectiveness and Validation Monitoring

Appendix C

Daily Precipitation and Periodic Precipitation

Dete	075RG†	076RG†	077RG∞ (Altitude 12.060')
Date	Precipitation (in)	Precipitation (in)	Precipitation (in)
5/1/2012	0	0	0
5/2/2012	0	0	0
5/3/2012	0	0	0
5/4/2012	0	0	0
5/5/2012	0	0	0
5/6/2012	0	0	0
5/7/2012	0.26	0	0.25
5/8/2012	0.25	0.45	0.09
5/9/2012	0	0.01	0
5/10/2012	0	0	0
5/11/2012	0	0	0
5/12/2012	0.19	0.19	0.09
5/13/2012	0.05	0.09	0.07
5/14/2012	0.27	0.39	0.23
5/15/2012	0	0	0.01
5/16/2012	0	0	0
5/17/2012	0	0	0
5/18/2012	0	0	0
5/19/2012	0.18	0.11	0.03
5/20/2012	0	0.02	0.02
5/21/2012	0	0.01	0
5/22/2012	0	0	0
5/23/2012	0.22	0.18	0
5/24/2012	0.28	0.12	0.02
5/25/2012	0	0	0
5/26/2012	0	0	0
5/27/2012	0	0	0
5/28/2012	0	0	0
5/29/2012	0	0	0
5/30/2012	0	0	0
5/31/2012	0	0	0
6/1/2012	0.01	0.01	0
6/2/2012	0.07	0.07	0.02
6/3/2012	0	0	0
6/4/2012	0	0.01	0
6/5/2012	0	0	0
6/6/2012	0	0	0
6/0/2012	0.02		0.02
0/0/2012 6/0/2012	0.02	0.02	0.02
6/10/2012	0	0	0
6/11/2012	0	0	0
6/10/2012	0	0	0
0/12/2012	0	0	0
0/13/2012	U	U	U

Daily Precipitation for Electronic Rain Gauges on Pikes Peak, 2012

Date	075RG <i>†</i> (Altitude 10,109') Precipitation (in)	076RG <i>†</i> (Altitude 11,810') Precipitation (in)	077RG∞ (Altitude 13,069') Precipitation (in)
6/14/2012	0	0	0
6/15/2012	0	0	0
6/16/2012	0	0	0
6/17/2012	0	0	0
6/18/2012	0	0	0
6/19/2012	0	0.02	0
6/20/2012	0	0	0
6/21/2012	0	0	0
6/22/2012	0	0	0
6/23/2012	0	0	0
6/24/2012	0	0	0
6/25/2012	0	0	0
6/26/2012	0	0	0
6/27/2012	0.17	0.08	0.10
6/28/2012	0.05	0.07	0.11
6/29/2012	0	0	0.01
6/30/2012	0	0	0
7/1/2012	0	0	0
7/2/2012	0.01	0.10	0.16
7/3/2012	0.68	0.91	0.65
7/4/2012	0	0.01	0
7/5/2012	0	0	0
7/6/2012	0.48	0.46	0.46
7/7/2012	0.14	0.16	0.22
7/8/2012	0.72	0.75	0.70
7/9/2012	0.12	0.08	0.09
7/10/2012	0	0	0.01
7/11/2012	0	0	0
7/12/2012	0.05	0.10	0.23
7/13/2012	0	0	0
7/14/2012	0	0	0
7/15/2012	0	0	0
7/16/2012	0.01†	0.30	0.17
7/17/2012	0†	0.13	0.12
7/18/2012	0†	0.08	0.08
7/19/2012	0†	0	0
7/20/2012	0†	0	0
7/21/2012	0†	0	0.02
7/22/2012	0†	0	0
7/23/2012	0†	0.01	0.02
7/24/2012	0†	0	0
7/25/2012	0†	0.06	0.10
7/26/2012	0†	0	0
7/27/2012	0†	0.04	0.06
7/28/2012	0†	0.25	0.27
7/29/2012	0†	0.04	0.04

Date	075RG <i>†</i> (Altitude 10,109') Precipitation (in)	076RG <i>†</i> (Altitude 11,810') Precipitation (in)	077RG∞ (Altitude 13,069') Precipitation (in)
7/30/2012	0.79	0.78	0.82
7/31/2012	0.42	0.42	0.34
8/1/2012	0.21	0.21	0.10
8/2/2012	0.34	0.34	0.32
8/3/2012	0	0	0
8/4/2012	0	0	0
8/5/2012	0	0	0
8/6/2012	0	0	0
8/7/2012	0.02	0.03	0.02
8/8/2012	0	0	0
8/9/2012	0.10	0.21	0.23
8/10/2012	0	0	0.16
8/11/2012	0.05	0.03	0
8/12/2012	0.01	0.02	0.07
8/13/2012	0.01	0.07	0.05
8/14/2012	0	0	0
8/15/2012	0	0	0
8/16/2012	0.18	0.18	0.19
8/17/2012	0	0	0
8/18/2012	0	0	0
8/19/2012	0	0	0
8/20/2012	0	0	0
8/21/2012	0	0	0
8/22/2012	0.09	0.08	0.08
8/23/2012	0.32	0.33	0.27
8/24/2012	0	0	0.05
8/25/2012	0.14	0.06	0.04
8/26/2012	0	0	0
8/27/2012	0.01	0.01†	Missing
8/28/2012	0	0.01†	Missing
8/29/2012	0.03†	0†	Missing
8/30/2012	0†	0†	Missing
8/31/2012	0†	0†	Missing
9/1/2012	0†	0†	Missing
9/2/2012	0†	0.10†	Missing
9/3/2012	0†	0.34†	Missing
9/4/2012	0.02†	0.01	Missing
9/5/2012	0	0	Missing
9/6/2012	0	0	Missing
9/7/2012	0.04	0.05	Missing
9/8/2012	0	0	Missing
9/9/2012	0	0	Missing
9/10/2012	0.03†	0	0.02
9/11/2012	0†	0.06	0.03
9/12/2012	0†	0.84	0.42
9/13/2012	0†	0.43	0.25

Date	075RG† (Altitude 10,109') Precipitation (in)	076RG† (Altitude 11,810') Precipitation (in)	077RG∞ (Altitude 13,069') Precipitation (in)		
9/14/2012					
9/15/2012	0.01+	0	0		
9/16/2012	0†	0	0		
9/17/2012	0†	0.09	0.07		
9/18/2012	0†	0.01	0.02		
9/19/2012	0.03†	0	0		
9/20/2012	0	0	0		
9/21/2012	0	0	0		
9/22/2012	0	0	0		
9/23/2012	0	0	0		
9/24/2012	0	0	0		
9/25/2012	0.16	0.05	0		
9/26/2012	0.05	0.10	0.09		
9/27/2012	0.11	0.11	0.05		
9/28/2012	0	0.01	0.02		
9/29/2012	0.01	0	0		
9/30/2012	0	0.01	0.02		
10/1/2012	0	0	0		
10/2/2012	0	0.01	0		
Total	7.41†	10.33†	8.3∞		
† Indicates I ∞ Indicates	inaccurate measurem missing data due to e	ent due to disturbanc equipment malfunctior	e of the rain gauge. າ.		

	075RG	076RG∞	077RG		
Date	(Altitude 10,109')	(Altitude 11,810')	(Altitude 13,069')		
	Precipitation (in)	Precipitation (in)	Precipitation (in)		
5/8/2012	0.20	0.13	0.18		
5/15/2012	0.83	1.04	0.47		
5/21/2012	0.24	0.24	0.17		
5/29/2012	0.50	0.35	0.02		
6/4/2012	0.10	0.13	0.05		
6/11/2012	0.02	0.07	0.03		
6/19/2012	0	0	0		
7/2/2012	0.24	Missing	0.22		
7/9/2012	2.72	2.7	2.20		
7/16/2012	0.06	0.13	0.26		
7/23/2012	0.40	0.61	0.39		
7/30/2012	0.45	0.53	0.53		
8/7/2012	1.77	1.82	1.43		
8/13/2012	0.22	0.36	0.49		
8/20/2012	0.24	0.32	0.27		
8/27/2012	0.65	0.56	0.46		
9/4/2012	0.39	0.65	0.42		
9/10/2012	0.04	0.08	0.05		
9/19/2012	1.45	1.81	0.81		
9/27/2012	0.27	0.19	0.11		
10/2/2012	0.15	0.23	0.12		
Total	10.94	11.95∞	8.68		
∞ Indicates	missing data due to c	lamage to the rain ga	uge.		

Periodic Precipitation for Standard Rain Gauges on Pikes Peak, 2012

Appendix D

Cut Slope

Site Visit Dates and Sediment Accumulation

						Cı	it Slop	e Site	Visit D	ates 20)12					
Sile ID	5/3	5/4	5/8	5/21	6/4	6/6	6/18	7/2	7/16	7/17	7/30	8/7	8/20	9/4	9/10	10/2
011CS	Х		Х	Х	Х		Х	Х	Х		Х	Х	Х	Х		Х
045CS	Х	Х		Х	Х		Х	Х	Х		Х	Х	Х	Х		Х
049CS	Х	Х		Х	Х		Х	Х	Х		Х	Х	Х	Х		Х
059CS	Х	Х		Х	Х		Х	Х	Х		Х	Х	Х	Х		Х
078CS		Х		Х	Х		Х	Х	Х		Х	Х	Х	Х		Х
087CS	Х	Х		Х	Х		Х	Х	Х		Х	Х	Х	Х		Х
090CS	Х			Х	Х		Х	Х	Х		Х	Х	Х	Х		Х
102CS	Х			Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х
123CS	Х			Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х
141CS	Х			Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х
185CS	Х			Х	Х		Х	Х	Х	Х	Х	Х	Х	Х		Х
192CS	Х	Х		Х	Х			Х	Х		Х	Х	Х	Х		Х
197CS	Х	Х		Х	Х		Х	Х	Х		Х	Х	Х	Х		Х

Site Visit Dates of Cut Slope Silt Fences on Pikes Peak, 2012

Site ID	Location	Date	Volume (ft ³)	Grab Sample	
011CS	Lower Fence	5/3/12	0.40	Yes	
011CS	Upper Fence	5/3/12	0.07	Yes	
185CS	Lower Fence	5/3/12	0.13	Yes	
045CS	Lower Fence	5/4/12	0.07	Yes	
049CS	Lower Fence	5/4/12	0.27	Yes	
059CS	Lower Fence	5/4/12	0.07	Yes†	
078CS	Lower Fence	5/4/12	0.27	Yes	
078CS	Upper Fence	5/4/12	0.07	Yes	
087CS	Lower Fence	5/4/12	0.67	Yes	
192CS	Lower Fence	5/4/12	1.60	Yes†	
192CS	Upper Fence	5/4/12	0.07	Yes†	
197CS	Lower Fence	5/4/12	0.13	Yes	
197CS	Upper Fence	5/4/12	0.60	Yes	
192CS	Lower Fence	5/21/12	0.60	Yes	
011CS	Lower Fence	6/4/12	0.50	Yes	
049CS	Lower Fence	6/4/12	0.27	Yes	
123CS	Upper Fence	6/4/12	0.60	Yes	
141CS	Upper Fence	6/4/12	1.34	Yes	
090CS	Lower Fence	6/18/12	0.20	Yes	
049CS	Lower Fence	7/2/12	0.20	Yes	
192CS	Lower Fence	7/2/12	0.33	Yes	
197CS	Lower Fence	7/2/12	0.33	Yes	
059CS	Lower Fence	7/16/12	0.33	Yes	
078CS	Lower Fence	7/16/12	0.27	Yes	
087CS	Lower Fence	7/16/12	0.53	Yes	
087CS	Upper Fence	7/16/12	0.27	Yes	
090CS	Lower Fence	7/16/12	0.07	Yes†	
141CS	Upper Fence	7/16/12	0.13	Yes	
192CS	Lower Fence	7/16/12	0.53	Yes	
185CS	Lower Fence	7/17/12	0.13	Yes	
185CS	Upper Fence	7/17/12	0.07	Yes	
011CS	Lower Fence	7/30/12	0.07	Yes†	
011CS	Upper Fence	7/30/12	0.07	Yes†	
049CS	Lower Fence	7/30/12	0.20	Yes	
192CS	Lower Fence	7/30/12	0.27	Yes	
197CS	Lower Fence	7/30/12	0.87	Yes	
197CS	Upper Fence	7/30/12	0.33	Yes	
045CS	Lower Fence	8/7/12	0.20	Yes	

Sediment Accumulation in Cut Slope Silt Fences on Pikes Peak, 2012

Site ID Location		Date	Volume (ft ³)	Grab Sample		
087CS	Lower Fence	8/7/12	0.47	Yes		
185CS	Lower Fence	8/7/12	0.13	Yes		
185CS	Upper Fence	8/7/12	0.13	Yes		
011CS	Lower Fence	8/20/12	0.87	Yes		
011CS	Upper Fence	8/20/12	0.07	Yes		
087CS	Upper Fence	8/20/12	0.33	Yes		
141CS	Upper Fence	8/20/12	0.07	Yes†		
192CS	Lower Fence	8/20/12	1.54	Yes		
197CS	Lower Fence	8/20/12	0.87	Yes		
197CS	Upper Fence	8/20/12	0.27	Yes		
049CS	Lower Fence	9/4/12	0.13	Yes†		
049CS	Upper Fence	9/4/12	0.07	Yes†		
078CS	Lower Fence	9/4/12	0.20	Yes		
087CS	Lower Fence	9/4/12	0.07	Yes		
087CS Upper Fence 123CS Upper Fence		9/4/12	0.07	Yes		
		9/4/12	0.13	Yes†		
192CS Lower Fence 9/4/12 1.54 Ye						
† Grab sa	mples selected for lab	analysis.				

Appendix E

Fill Slope Site Visit Dates and Sediment Accumulation

Site ID	Fill Slope Site Visit Dates 2012																	
Sile ID	5/3	5/4	5/8	5/9	5/21	6/4	6/6	6/13	6/18	6/21	7/2	7/16	7/17	7/30	8/7	8/20	9/4	10/2
001FS	Х				Х	Х			Х		Х	Х		Х	Х	Х	Х	Х
007FS	Х		Х		Х	Х			Х		Х	Х		Х	Х	Х	Х	Х
039FS	Х				Х	Х			Х		Х	Х		Х	Х	Х	Х	Х
043FS	Х				Х	Х			Х		Х	Х		Х	Х	Х	Х	Х
048FS		Х		Х	Х	Х			Х		Х	Х		Х	Х	Х	Х	Х
052FS	Х				Х	Х			Х		Х	Х		Х	Х	Х	Х	Х
055FS	Х				Х	Х	Х		Х		Х	Х		Х	Х	Х	Х	Х
074FS	Х				Х	Х			Х	Х	Х	Х		Х	Х	Х	Х	Х
079FS	Х				Х	Х			Х		Х	Х		Х	Х	Х	Х	Х
083FS		Х			Х	Х			Х		Х	Х		Х	Х	Х	Х	Х
086FS		Х			Х	Х			Х		Х	Х		Х	Х	Х	Х	Х
088FS	Х				Х		Х		Х		Х	Х		Х	Х	Х	Х	Х
093FS	Х				Х	Х			Х		Х	Х		Х	Х	Х	Х	Х
098FS	Х				Х	Х			Х		Х	Х		Х	Х	Х	Х	Х
101FS	Х				Х	Х			Х		Х	Х		Х	Х	Х	Х	Х
103FS	Х				Х	Х			Х		Х	Х		Х	Х	Х	Х	Х
105FS	Х				Х	Х			Х		Х	Х		Х	Х	Х	Х	Х
124FS	Х				Х	Х			Х		Х	Х		Х	Х	Х	Х	Х
128FS	Х				Х	Х			Х		Х	Х		Х	Х	Х	Х	Х
177FS	Х				Х	Х			Х		Х	Х		Х	Х	Х	Х	Х
183FS	Х			Х	Х	Х			Х		Х	Х		Х	Х	Х	Х	Х
186FS	Х				Х			Х	Х		Х	Х		Х	Х	Х	Х	Х
187FS	Х				Х	Х			Х		Х	Х	Х	Х	Х	Х	Х	Х
193FS	Х				Х	Х			Х		Х	Х		Х	Х	Х	Х	Х
194FS	Х				Х	Х			Х		Х	Х		Х	Х	Х	Х	Х
198FS	Х				Х	Х			Х		Х	Х		Х	Х	Х	Х	Х
203FS	Х				Х	Х			X		Х	Х		X	Х	X	Х	X
204FS	Х				Х	Х			Х		Х	Х		Х	Х	Х	Х	Х

Site Visit Dates of Fill Slope Silt Fences on Pikes Peak, 2012

Site ID	Location	Date	Volume (ft ³)	Grab Sample	
001FS	Upper Fence	5/3/12	0.74	Yes	
007FS	Upper Fence	5/3/12	0.07	Yes	
039FS	Upper Fence	5/3/12	0.27	Yes	
043FS	Upper Fence	5/3/12	0.67	Yes	
052FS	Lower Fence	5/3/12	0.07	Yes	
177FS	Upper Fence	5/3/12	0.27	Yes†	
183FS	Upper Fence	5/3/12	0.27	Yes	
186FS	Upper Fence	5/3/12	0.33	Yes	
186FS	Lower Fence	5/3/12	0.27	Yes	
187FS	Upper Fence	5/3/12	0.40	Yes	
193FS	Upper Fence	5/3/12	0.80	Yes†	
194FS	Upper Fence	5/3/12	0.40	Yes	
198FS	Upper Fence	5/3/12	0.60	Yes	
203FS	Upper Fence	5/3/12	0.20	Yes	
204FS	Upper Fence	5/3/12	0.27	Yes	
048FS	Lower Fence	5/4/12	0.33	Yes	
079FS	Upper Fence	5/21/02	6.82	Yes†	
093FS	Upper Fence	5/21/02	0.87	Yes†	
098FS	Upper Fence	5/21/02	3.34	Yes	
193FS	Upper Fence	5/21/02	0.74	Yes	
001FS	Upper Fence	6/4/12	0.20	Yes†	
043FS	Upper Fence	6/4/12	0.60	Yes†	
083FS	Lower Fence	6/4/12	0.87	Yes	
101FS	Upper Fence	6/4/12	0.93	Yes†	
101FS	Lower Fence	6/4/12	2.54	Yes†	
105FS	Lower Fence	6/4/12	2.67	Yes	
128FS	Upper Fence	6/4/12	0.27	Yes†	
128FS	Lower Fence	6/4/12	0.20	Yes†	
186FS	Upper Fence	6/4/12	0.27	Yes	
186FS	Lower Fence	6/4/12	0.40	Yes	
204FS	Upper Fence	6/4/12	0.53	Yes†	
204FS	Lower Fence	6/4/12	0.07	Yes†	
088FS	Lower Fence	6/18/12	0.74	Yes	
098FS	Upper Fence	6/18/12	1.14	Yes	
052FS	Lower Fence	7/2/12	0.20	Yes	
093FS	Upper Fence	7/2/12	0.33	Yes	
204FS	Upper Fence	7/2/12	0.40	Yes	
001FS	Upper Fence	7/16/12	1.07	Yes	

Sediment Accumulation in Fill Slope Silt Fences on Pikes Peak, 2012

Site ID	Location	Date	Volume (ft ³)	Grab Sample	
074FS	Upper Fence	7/16/12	10.70	Yes†	
083FS	Lower Fence	7/16/12	0.33	Yes	
093FS	Upper Fence	7/16/12	0.13	Yes	
093FS	Lower Fence	7/16/12	0.07	Yes	
098FS	Upper Fence	7/16/12	0.47	Yes†	
101FS	Upper Fence	7/16/12	1.40	Yes	
101FS	Lower Fence	7/16/12	0.33	Yes	
128FS	Upper Fence	7/16/12	0.13	Yes	
186FS	Upper Fence	7/17/12	0.33	Yes†	
187FS	Upper Fence	7/17/12	1.34	Yes	
001FS	Upper Fence	7/30/12	0.20	Yes	
124FS	Lower Fence	7/30/12	0.20	Yes†	
177FS	Upper Fence	7/30/12	0.27	Yes	
177FS	Lower Fence	7/30/12	0.27	Yes	
194FS	Upper Fence	7/30/12	0.20	Yes	
198FS	Upper Fence	7/30/12	0.53	Yes	
203FS	Upper Fence	7/30/12	0.47	Yes	
043FS	Upper Fence	8/7/12	1.00	Yes	
079FS	Upper Fence	8/7/12	2.41	Yes	
083FS	Lower Fence	8/7/12	0.20	Yes†	
088FS	Lower Fence	8/7/12	0.20	Yes†	
093FS	Upper Fence	8/7/12	0.40	Yes	
098FS	Upper Fence	8/7/12	0.47	Yes	
101FS	Upper Fence	8/7/12	14.04	Yes	
101FS	Lower Fence	8/7/12	0.33	Yes	
186FS	Upper Fence	8/7/12	4.21	Yes	
186FS	Lower Fence	8/7/12	0.87	Yes	
001FS	Upper Fence	8/20/12	2.41	Yes	
101FS	Upper Fence	8/20/12	1.00	Yes	
101FS	Lower Fence	8/20/12	0.20	Yes	
183FS	Upper Fence	8/20/12	1.34	Yes	
187FS	Upper Fence	8/20/12	2.61	Yes†	
193FS	Upper Fence	8/20/12	1.60	Yes	
198FS	Upper Fence	8/20/12	0.67	Yes	
203FS	Upper Fence	8/20/12	1.14	Yes	
001FS	Upper Fence	9/4/12	0.33	Yes†	
043FS	Upper Fence	9/4/12	0.27	Yes	
055FS	Lower Fence	9/4/12	0.07	Yes	
074FS	Upper Fence	9/4/12	1.07	Yes	

Site ID	Location	Date	Volume (ft ³)	Grab Sample
083FS	Lower Fence	9/4/12	0.07	Yes
086FS	086FS Lower Fence		1.14	Yes†
093FS	Upper Fence	9/4/12	0.40	Yes†
098FS	Upper Fence	9/4/12	0.33	Yes
103FS	Upper Fence	9/4/12	0.27	Yes†
186FS	Upper Fence	9/4/12	0.33	Yes
194FS	Upper Fence	9/4/12	0.74	Yes†
204FS	Upper Fence	9/4/12	2.07	Yes
† Grab sa	mples selected for lab	analysis.		

Appendix F

Cut and Fill Slope

Particle Size Distribution Summary and Graphs

						Particle Size Distribution–Grab Samples 2011						
Site Name	ID	Date	D15	D35	D50	D84	D95	D100				
Pikes Peak Highway - Cut Slope	011CS Lower Fence	5/7/2011	0.230	1.724	3.410	9.649	13.873	20.0				
Pikes Peak Highway - Cut Slope	011CS Upper Fence	5/7/2011	0.013	0.070	0.242	2.284	4.311	13.0				
Pikes Peak Highway - Cut Slope	045CS Upper Fence	5/31/2011	0.010	0.037	0.097	1.109	3.694	7.0				
Pikes Peak Highway - Cut Slope	049CS Lower Fence	8/8/2011	0.020	0.174	0.725	5.508	10.605	19.0				
Pikes Peak Highway - Cut Slope	078CS Lower Fence	8/8/2011	0.024	0.260	0.625	1.991	3.945	10.0				
Pikes Peak Highway - Cut Slope	087CS Lower Fence	8/8/2011	0.113	1.081	1.923	8.051	33.573	39.0				
Pikes Peak Highway - Cut Slope	087CS Upper Fence	8/8/2011	0.014	0.075	0.265	2.968	5.644	13.0				
Pikes Peak Highway - Cut Slope	090CS Lower Fence	6/13/2011	0.054	0.739	1.509	5.243	7.935	21.0				
Pikes Peak Highway - Cut Slope	102CS Upper Fence	6/13/2011	0.628	1.480	2.382	6.334	10.344	15.0				
Pikes Peak Highway - Cut Slope	141CS Upper Fence	7/6/2011	0.212	1.104	1.689	3.983	6.533	11.0				
Pikes Peak Highway - Cut Slope	192CS Lower Fence	8/8/2011	0.099	1.176	2.278	5.765	9.863	15.0				
Pikes Peak Highway - Cut Slope	197CS Lower Fence	5/7/2011	0.131	1.450	2.996	8.575	14.362	20.0				
Pikes Peak Highway - Cut Slope	197CS Upper Fence	5/7/2011	0.066	1.018	2.462	7.512	12.466	20.0				

Summary of Cut Slope Particle Size Distribution from Sieve Analysis of Grab Samples on Pikes Peak, 2011

		Particle Size Distribution–Grab Samples 2011						
Site Name	ID	Date	D15	D35	D50	D84	D95	D100
Pikes Peak Highway - Fill Slope	001FS Upper Fence	8/8/2011	0.057	0.749	1.385	4.213	7.136	15.0
Pikes Peak Highway - Fill Slope	039FS Upper Fence	5/9/2011	0.149	1.164	2.235	6.805	11.359	20.0
Pikes Peak Highway - Fill Slope	039FS Lower Fence	5/9/2011	0.596	1.475	2.364	5.641	9.100	19.0
Pikes Peak Highway - Fill Slope	043FS Upper Fence	9/20/2011	0.331	1.552	3.644	24.421	28.132	30.0
Pikes Peak Highway - Fill Slope	074FS Upper Fence	5/10/2011	0.167	1.059	1.862	6.678	12.174	28.0
Pikes Peak Highway - Fill Slope	074FS Lower Fence	5/10/2011	0.013	0.062	0.202	0.952	1.779	7.0
Pikes Peak Highway - Fill Slope	079FS Upper Fence	7/11/2011	0.040	0.567	0.959	4.323	10.241	23.0
Pikes Peak Highway - Fill Slope	083FS Upper Fence	6/13/2011	0.064	0.783	1.473	5.356	11.455	18.0
Pikes Peak Highway - Fill Slope	083FS Lower Fence	6/13/2011	0.088	0.987	1.719	4.593	7.147	13.0
Pikes Peak Highway - Fill Slope	086FS Upper Fence	8/8/2011	0.205	1.060	1.816	6.751	17.185	25.0
Pikes Peak Highway - Fill Slope	086FS Lower Fence	8/8/2011	1.490	3.449	4.992	12.551	25.559	34.0
Pikes Peak Highway - Fill Slope	093FS Upper Fence	7/11/2011	1.145	6.301	17.113	45.594	47.235	48.0
Pikes Peak Highway - Fill Slope	098FS Upper Fence	5/31/2011	1.490	3.449	4.992	12.551	25.559	34.0
Pikes Peak Highway - Fill Slope	101FS Upper Fence	8/29/2011	0.963	2.509	3.714	7.941	13.094	19.0
Pikes Peak Highway - Fill Slope	101FS Lower Fence	8/29/2011	0.533	1.837	4.042	18.408	33.269	35.0
Pikes Peak Highway - Fill Slope	124FS Lower Fence	6/13/2011	0.708	1.835	2.828	6.922	10.883	20.0
Pikes Peak Highway - Fill Slope	177FS Upper Fence	7/11/2011	0.632	1.495	2.583	6.745	11.175	15.0
Pikes Peak Highway - Fill Slope	186FS Lower Fence	7/11/2011	0.097	0.854	1.446	4.473	7.593	15.0
Pikes Peak Highway - Fill Slope	186FS Upper Fence	7/11/2011	0.052	0.695	1.327	4.586	7.227	10.0
Pikes Peak Highway - Fill Slope	187FS Upper Fence	9/20/2011	0.161	1.076	1.945	5.223	7.883	18.0
Pikes Peak Highway - Fill Slope	198FS Upper Fence	5/7/2011	0.042	0.657	1.426	4.953	8.595	18.0
Pikes Peak Highway - Fill Slope	203FS Upper Fence	8/8/2011	0.053	0.718	1.363	4.278	7.040	14.0

Summary of Fill Slope Particle Size Distribution from Sieve Analysis of Grab Samples on Pikes Peak, 2011

1	a. <u>-</u> .				1				
	Size Finer	Wt. on	% of Total	% Finer					
	Than (mm)	Sieve		Than					
	Pan	168.00	17.8%		SITE N				
	0.5	69.50	7.4%	17.8%	ID NUM				
	1.0	117.00	12.4%	25.2%	DATE:				
	2.0	62.30	6.6%	37.7%	CREW				
	2.8	97.30	10.3%	44.3%					
	4.0	99.50	10.6%	54.6%	Particl				
	5.6	111.30	11.8%	65.2%	Distrib				
	8.0	118.00	12.5%	77.0%					
	11.2	85.40	9.1%	89.6%					
	16.0	12.90	1.4%	98.6%					
	20.0	*		100.0%					
	32.0			-	1				
	45.0								
	64.0								
	90								
	128								
	181				E E				
	256				Lha				
	362				er				
	512				ine				
	1024				ц Ц				
	2048				l le				
	4096				ero				
					L .				
	Total	941.20							
*Measured value of the largest particle in									
the sample and not a sieve weight									

Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	451.00	58.8%		SITE N	NAME:
0.5	85.50	11.1%	58.8%	ID NU	MBER:
1.0	89.90	11.7%	69.9%	DATE	
2.0	46.40	6.0%	81.6%	CREW	/:
2.8	51.00	6.6%	87.7%		
4.0	23.90	3.1%	94.3%	Partic	le Size
5.6	12.00	1.6%	97.4%	Distrik	oution
8.0	4.70	0.6%	99.0%		
11.2	3.10	0.4%	99.6%		
13.0	*		100.0%		
22.4			-		
32.0					100%
45.0					00.0/
64.0					90 %
90					80%
128					
181				an	70%
256				μË	60%
362				er	00 /0
512				Li I	50%
1024				t l	
2048				E I	40%
4096				Per	30%
					00 /0
Total		20%			
the sample a		10%			
and sample a		10 /0			

	Size Finer	Wt. on	% of Total	% Finer					
	Than (mm)	Sieve		Than					
	Pan	355.90	44.7%		S	Т			
	0.5	78.10	9.8%	44.7%	ID	N			
	1.0	77.30	9.7%	54.6%	D	A٦			
	2.0	37.80	4.8%	64.3%	C	RE			
	2.8	55.60	7.0%	69.0%					
	4.0	66.90	8.4%	76.0%	Pa	ar			
	5.6	54.90	6.9%	84.4%	Di	s			
	8.0	35.00	4.4%	91.3%					
	11.2	12.20	1.5%	95.7%					
	16.0	21.90	2.8%	97.2%					
	19.0	*		100.0%					
	32.0			-					
	45.0								
	64.0								
	90								
	128								
	181								
	256					i			
	362					'			
	512					:			
	1024								
	2048								
	4096								
ļ	Total 795.60								
	*Measured va	alue of the	e largest part	ticle in					
	the sample a	nd not a s	sieve weight						

TE NAME: [•] Pike's Peak Highway - Cut Slope 049CS Lower Fence NUMBER: 8/8/2011 TE: VonLoh EW: rticle Size D15 D35 D50 D84 D95 Lpart stribution (mm) 0.020 0.174 0.725 5.508 10.605 19.0 **Cumulative Particle Size Distribution** 100% 90% 80% 70% Percent Finer Than 60% 50% 40% 30% 20% 10% 0% 0.1 10 100 1000 10000 1 Particle Size (mm)

[•] Pike's Peak Highway - Cut Slope

	Size Finer	Wt on	% of Total	% Finer		
	Than (mm)	Sieve	70 01 10tu	Than		
	Pan	230.70	21.6%		SITE I	NAME:
	0.5	120.80	11.3%	21.6%	ID NU	MBER:
	1.0	192.70	18.1%	33.0%	DATE	:
	2.0	92.50	8.7%	51.0%	CREV	/ :
	2.8	111.90	10.5%	59.7%		
	4.0	82.80	7.8%	70.2%	Partic	le Size
	5.6	63.80	6.0%	78.0%	Distril	oution
	8.0	34.70	3.3%	83.9%		
	11.2	40.10	3.8%	87.2%		
	16.0	0.00	0.0%	91.0%		
	22.4	26.10	2.4%	91.0%		
	32.0	70.40	6.6%	93.4%		100%
	39.0	*		100.0%		
	64.0			-		90%
	90					80%
	128					00 /0
	181				E	70%
	256				Lh ₈	CO 0/
	362				- -	60%
	512				i.	50%
	1024				۲ –	
	2048				Cer	40%
	4096				ere	200/
						30%
ļ	Total		20%			
	*Measured va					
	the sample a		10%			

[•] Pike's Peak Highway - Cut Slope

090CS Lower Fence

	Size Finer	Wt. on	% of Total	% Finer		
	Than (mm)	Sieve		Than		
	Pan	231.60	27.8%		SITE	NAME:
	0.5	107.10	12.8%	27.8%	ID NI	JMBER:
	1.0	131.90	15.8%	40.6%	DATE	Ξ:
	2.0	61.30	7.4%	56.4%	CRE	W:
	2.8	92.40	11.1%	63.8%		
	4.0	94.80	11.4%	74.9%	Parti	cle Size
	5.6	74.90	9.0%	86.2%	Distr	ibution (
	8.0	31.80	3.8%	95.2%		
	11.2	3.50	0.4%	99.0%		
	16.0	4.70	0.6%	99.4%		
	21.0	*		100.0%		
	32.0			-		100% -
	45.0					000/
	64.0					90% -
	90					80% -
	128					
	181					70% -
	256				The	600/
	362					60% -
	512					50% -
	1024				t l	
	2048				cer	40% -
	4096				er	30%
ļ	Total	834.00				20% -
	*Measured va					
	the sample a		10% -			

[•] Pike's Peak Highway - Cut Slope

192CS Lower Fence

8/8/2011

Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	215.00	22.5%		SITE	NAME:
0.5	86.60	9.1%	22.5%	ID NU	IMBER:
1.0	140.20	14.7%	31.6%	DATE	:
2.0	92.50	9.7%	46.3%	CREV	V:
2.8	138.30	14.5%	55.9%		
4.0	123.00	12.9%	70.4%	Partie	cle Size
5.6	83.10	8.7%	83.3%	Distri	bution (
8.0	46.20	4.8%	92.0%		
11.2	30.30	3.2%	96.8%		
15.0	*		100.0%		
22.4			-		
32.0					100% -
45.0					000/
64.0					90% -
90					80% -
128					
181				E	70% -
256				Th I	609/
362				ש	60% -
512				i i	50% -
1024				_ بخ	
2048				Ge	40% -
4096				e	30%
				- -	30 /8 -
Total	955.20				20% -
*Measured va		400/			
the sample a		10% -			

Size Finer	Wt. on	% of Total	% Finer						
Than (mm)	Sieve		Than						
Pan	286.00	27.1%		SITE N	IAME:		Pike's Peak I	lighway - Fill S	Slope
0.5	142.40	13.5%	27.1%	ID NU	MBER:		001FS Upper	Fence	
1.0	210.20	19.9%	40.6%	DATE:			8/8/2011		
2.0	109.80	10.4%	60.6%	CREW	1:		VonLoh		
2.8	122.70	11.6%	71.0%						
4.0	95.00	9.0%	82.6%	Partic	le Size		D15	D35	
5.6	52.50	5.0%	91.6%	Distrib	ution (mn	n)	0.057	0.749	1
8.0	30.30	2.9%	96.6%						
11.2	5.60	0.5%	99.5%					Cumulative	Par
15.0	*		100.0%						
22.4			-						
32.0					100% T		<u> </u>		
45.0					000/				•
64.0					90%				
90					80%			,₽	
128									
181				E	70% +			─ │ 	++
256				That	60%				
362				<u>د</u>	00 %			$\overline{\mathbf{\Lambda}}$	
512				-in	50%			/	
1024				1 H					
2048				cer	40% +				
4096				e	30%				
					50 /0				
Total	1054.50				20% –				
*Measured v	alue of th	e largest par	ticle in						
the sample a	and not a s	sieve weight			10% +				

[•] Pike's Peak Highway - Fill Slope

Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	70.40	12.2%		SITE	NAME:
0.5	62.70	10.9%	12.2%	ID NU	JMBER:
1.0	122.00	21.2%	23.1%	DATE	:
2.0	65.90	11.4%	44.3%	CRE\	V:
2.8	88.80	15.4%	55.8%		
4.0	72.70	12.6%	71.2%	Parti	cle Size
5.6	53.20	9.2%	83.8%	Distri	bution (mm
8.0	29.30	5.1%	93.1%		
11.2	0.00	0.0%	98.1%		
16.0	10.70	1.9%	98.1%		
19.0	*		100.0%		
32.0			-		100% T
45.0					000/
64.0					90%
90					80%
128					
181				E	70% +
256				Lh ₈	CO0(
362				ש	60%
512				i.	50%
1024				t I	
2048				Cer	40% +
4096				e	20%
					30 %
Total	575.70				20% —
*Measured v	alue of th	e largest par	ticle in		1001
the sample a	nd not a s	sieve weight			10%
				1	

[•] Pike's Peak Highway - Fill Slope

043FS Upper Fence

Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	139.90	16.4%		SITE I	NAME:
0.5	90.20	10.6%	16.4%	ID NU	MBER:
1.0	108.20	12.7%	27.0%	DATE	:
2.0	49.00	5.7%	39.6%	CREW	/ :
2.8	53.40	6.3%	45.4%		
4.0	38.80	4.5%	51.6%	Partic	le Size
5.6	32.40	3.8%	56.2%	Distrik	oution (
8.0	22.90	2.7%	60.0%		
11.2	37.20	4.4%	62.7%		
16.0	87.60	10.3%	67.0%		
22.4	193.90	22.7%	77.3%		
30.0	*		100.0%		100% ·
45.0			-		000/
64.0					90%
90					80% ·
128					
181				L L	70% ·
256				Th	609/
362				er .	60 % ·
512				ii	50% ·
1024				_ ج	
2048				cer	40% ·
4096				Per	30%
				-	50 /0
Total		20% ·			
*Measured va	alue of the	e largest par	ticle in		400/
the sample a		10%			

[•] Pike's Peak Highway - Fill Slope

074FS Upper Fence

	Size Finer	Wt. on	% of Total	% Finer		
	Than (mm)	Sieve		Than		
	Pan	162.90	19.4%		SITE N	NAME:
	0.5	118.50	14.1%	19.4%	ID NU	MBER:
	1.0	155.10	18.4%	33.5%	DATE	1
	2.0	70.00	8.3%	51.9%	CREW	/:
	2.8	87.40	10.4%	60.2%		
	4.0	78.80	9.4%	70.6%	Partic	le Size
	5.6	68.20	8.1%	80.0%	Distrik	oution (
	8.0	51.90	6.2%	88.1%		
	11.2	25.90	3.1%	94.3%		
	16.0	0.00	0.0%	97.4%		
	22.4	22.20	2.6%	97.4%		
	28.0	*		100.0%		100% -
	45.0			-		000/
	64.0					90% -
	90					80% -
	128					
	181				E E	70% ·
	256				Th	600/
	362				e.	60 %
	512					50% ·
	1024				_ ج	
	2048				Cer	40% -
	4096				e l	30%
					-	50 /0
ļ	Total		20% -			
	*Measured va	alue of the	e largest par	ticle in		400/
	the sample a		10%			

[•] Pike's Peak Highway - Fill Slope

Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	200.50	18.4%		SITE N	NAME:
0.5	163.40	15.0%	18.4%	ID NU	MBER:
1.0	210.70	19.3%	33.4%	DATE	
2.0	83.20	7.6%	52.7%	CREW	/:
2.8	115.30	10.6%	60.3%		
4.0	109.30	10.0%	70.9%	Partic	le Size
5.6	64.30	5.9%	80.9%	Distrik	oution
8.0	62.10	5.7%	86.8%		
11.2	17.50	1.6%	92.5%		
16.0	46.00	4.2%	94.1%		
22.4	18.30	1.7%	98.3%		
25.0	*		100.0%		100%
45.0			-		000/
64.0					90%
90					80%
128					
181				L L	70%
256				Th	609/
362				e.	00%
512					50%
1024				_ ج	
2048				cer	40%
4096				Jer	20%
				-	30 /0
Total		20%			
*Measured va	alue of the	e largest part	ticle in		
the sample a		10%			

86

[•] Pike's Peak Highway - Fill Slope

Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	77.40	8.5%		SITE N	NAME:
0.5	47.00	5.2%	8.5%	ID NU	MBER:
1.0	59.40	6.6%	13.7%	DATE	:
2.0	31.20	3.4%	20.3%	CREW	/ :
2.8	43.30	4.8%	23.7%		
4.0	46.90	5.2%	28.5%	Partic	le Size
5.6	36.50	4.0%	33.7%	Distrik	oution
8.0	38.90	4.3%	37.7%		
11.2	59.50	6.6%	42.0%		
16.0	65.80	7.3%	48.5%		
22.4	140.60	15.5%	55.8%		
32.0	78.00	8.6%	71.3%		100%
45.0	182.00	20.1%	79.9%		000/
48.0	*		100.0%		90%
90			-		80%
128					
181				E	70%
256				Th	c00/
362				er .	60%
512				i i	50%
1024				۲ –	
2048				cer	40%
4096				ere	200/
					30%
Total	906.50				20%
*Measured va	alue of the	e largest part	icle in		
the sample a		10%			

COMMENTS:

[•] Pike's Peak Highway - Fill Slope

Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	40.10	3.8%		SITE	NAME:
0.5	50.10	4.8%	3.8%	ID NU	MBER:
1.0	115.10	11.0%	8.7%	DATE	:
2.0	81.90	7.9%	19.7%	CREV	V:
2.8	133.10	12.8%	27.5%		
4.0	153.50	14.7%	40.3%	Partic	cle Size
5.6	154.00	14.8%	55.0%	Distri	bution
8.0	121.00	11.6%	69.8%		
11.2	84.80	8.1%	81.4%		
16.0	48.20	4.6%	89.5%		
22.4	23.70	2.3%	94.2%		
32.0	37.20	3.6%	96.4%		100%
34.0	*		100.0%		00.0/
64.0			-		90%
90					80%
128					
181				an	70%
256				μË	60%
362				e	00 /0
512				Li I	50%
1024				t l	
2048				Cel	40%
4096				Per	30%
					0070
I Otal		20%			
the comple of	nd not a c	e largest part			10%
ule samule al	nu nu d S				10 /0

098FS Upper Fence NUMBER: 5/31/2011 ATE: VonLoh REW: article Size D15 D35 D50 D84 D95 Lpart stribution (mm) 1.490 3.449 4.992 12.551 25.559 34.0 **Cumulative Particle Size Distribution** 100% 90% 80% 70% Percent Finer Than 60% ¥. 50% 40% 30% 20% 10% 0% 0.1 10 100 1000 1 10000 Particle Size (mm)

[•] Pike's Peak Highway - Fill Slope

Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	57.90	8.4%		SITE I	NAME:
0.5	48.30	7.0%	8.4%	ID NU	MBER:
1.0	93.90	13.6%	15.4%	DATE	:
2.0	61.80	8.9%	29.0%	CREW	/ :
2.8	105.30	15.2%	37.9%		
4.0	109.40	15.8%	53.2%	Partic	le Size
5.6	105.70	15.3%	69.0%	Distrik	oution
8.0	61.90	9.0%	84.3%		
11.2	27.10	3.9%	93.3%		
16.0	19.30	2.8%	97.2%		
19.0	*		100.0%		
32.0			-		100%
45.0					00.0/
64.0					90 %
90					80%
128					
181				an	70%
256				μË	60%
362				e	00 /6
512				Ei	50%
1024				- t	
2048				Cel	40%
4096				Per	30%
				-	50 /0
Total		20%			
"Measured va		100/			
the sample a		10%			

[•] Pike's Peak Highway - Fill Slope

101FS Lower Fence

Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	95.70	14.0%		SITE N	NAME:
0.5	73.30	10.7%	14.0%	ID NU	MBER:
1.0	79.70	11.7%	24.8%	DATE	
2.0	39.30	5.8%	36.4%	CREW	/:
2.8	51.50	7.5%	42.2%		
4.0	57.40	8.4%	49.7%	Partic	le Size
5.6	51.80	7.6%	58.1%	Distrib	oution (
8.0	66.70	9.8%	65.7%		
11.2	40.40	5.9%	75.5%		
16.0	42.20	6.2%	81.4%		
22.4	24.30	3.6%	87.6%		
32.0	60.30	8.8%	91.2%		100% ·
35.0	*		100.0%		000/
64.0			-		90%
90					80% ·
128					
181				E E	70% ·
256				Th	600/
362				<u>د</u>	00 %
512				L L	50% ·
1024				t l	
2048				Cer	40% ·
4096				e	30%
					50 /0
Total	682.60				20%
*Measured va		400/			
the sample a		10%			

91

COMMENTS:

[•] Pike's Peak Highway - Fill Slope

124FS Lower Fence

	Size Finer	Wt. on	% of Total	% Finer		
	Than (mm)	Sieve		Than		
	Pan	74.20	10.7%		SITE I	NAME:
	0.5	59.30	8.6%	10.7%	ID NU	MBER:
	1.0	124.60	18.0%	19.3%	DATE	:
	2.0	85.60	12.4%	37.2%	CREV	V:
	2.8	101.90	14.7%	49.6%		
	4.0	85.50	12.3%	64.3%	Partic	le Size
	5.6	86.00	12.4%	76.6%	Distril	bution (
	8.0	45.20	6.5%	89.0%		
	11.2	18.90	2.7%	95.6%		
	16.0	11.90	1.7%	98.3%		
	20.0	*		100.0%		
	32.0			-		100% -
	45.0					000/
	64.0					90% -
	90					80% -
	128					
	181				L L	70% ·
	256				Τμ	60%
	362				e.	00 %
	512				Li I	50% -
	1024				_ ج	
	2048				cel	40% -
	4096				e	30%
					-	00 /0
ļ	Total		20% -			
	"ivieasured va		109/			
	the sample a		10%			

92

	Size Finer	Wt. on	% of Total	% Finer		
	Than (mm)	Sieve		Than	[
	Pan	163.60	28.2%		SITE	
	0.5	83.20	14.3%	28.2%	ID N	
	1.0	106.30	18.3%	42.5%	DAT	
	2.0	52.80	9.1%	60.8%	CRE	
	2.8	59.60	10.3%	69.9%		
	4.0	54.20	9.3%	80.2%	Par	
	5.6	44.30	7.6%	89.5%	Dist	
	8.0	16.40	2.8%	97.2%		
	10.0	*		100.0%		
	16.0			-		
	22.4					
	32.0					
	45.0					
	64.0					
	90					
	128					
	181					
	256					
	362					
	512					
	1024					
	2048					
	4096					
ļ	Total	580.40			ı	
	*Measured value of the largest particle in					
the sample and not a sieve weight						

	Size Finer	Wt. on	% of Total	% Finer		
	Than (mm)	Sieve		Than		
	Pan	140.90	22.7%		SIT	
	0.5	99.00	15.9%	22.7%	ID N	
	1.0	132.80	21.4%	38.6%	DAT	
	2.0	59.80	9.6%	60.0%	CRE	
	2.8	72.00	11.6%	69.6%		
	4.0	52.10	8.4%	81.2%	Par	
	5.6	39.30	6.3%	89.6%	Dist	
	8.0	13.60	2.2%	95.9%		
	11.2	11.70	1.9%	98.1%		
	15.0	*		100.0%		
	22.4			-		
	32.0					
	45.0					
	64.0					
	90					
	128					
	181					
	256					
	362					
	512					
	1024					
	2048					
	4096					
ļ	Total	621.20				
	*Measured value of the largest particle in					
the sample and not a sieve weight						

COMMENTS:

Lpart

14.0

1000

10000

Appendix G

Cut Slope

Cross Section Graphs

2012

Appendix H

Drainage Ditch Cross Section Graphs

2012

Appendix I

Conveyance Channel

Cross Section Graphs

2012

Appendix J

Rock Weir and Sediment Pond

Site Visit Dates Sediment Accumulation and Cross Section Graphs

2012

Site Visit Dates of Rock Weir Silt Fences on Pikes Peak, 2012

Site ID		Site Visit Dates of Rock Weir Silt Fences on Pikes Peak, 2012																											
Sile ID	5/3	5/9	5/14	5/15	5/18	5/21	5/30	6/4	6/5	6/11	6/12	6/18	6/20	7/2	7/3	7/16	7/17	7/30	7/31	8/7	8/20	8/22	8/23	8/29	9/4	9/13	9/19	9/24	10/2
002RW	Х					Х		Х			Х	Х		Х		Х		Х		Х	Х			Х	Х				Х
003RW	Х					Х		Х			Х	Х		Х		Х		Х		Х	Х			Х	Х				Х
006RW	Х			Х		Х		Х				Х		Х		Х	Х	Х	Х	Х	Х				Х				Х
008RW	Х					Х	Х	Х				Х		Х		Х		Х		Х	Х				Х				Х
009RA	Х				Х	Х		Х				Х		Х		Х		Х		Х	Х				Х			Х	
161RW	Х		Х			Х		Х				Х		Х		Х		Х		Х	Х				Х	Х			
162RW	Х		Х			Х		Х				Х		Х		Х		Х		Х	Х				Х			Х	
176RW	Х					Х		Х		Х		Х		Х		Х		Х		Х	Х				Х				Х
178RW	Х					Х		Х		Х		Х		Х		Х		Х		Х	Х				Х				Х
179RW	Х					Х		Х			Х	Х		Х		Х		Х		Х	Х				Х		Х		
180RW	Х	Х				Х		Х	Х			Х		Х		Х		Х	Х	Х	Х		Х		Х		Х		
181RW	Х	Х				Х		Х	Х			Х		Х	Х	Х		Х	Х	Х	Х		Х		Х				Х
200RW	Х					Х		Х				Х	Х	Х		Х		Х		Х	Х			Х	Х				
201RW	Х					Х		Х		Х		Х		Х		Х		Х		Х	Х	Х			Х				
202RW	Х					X		Х		Х		X		Х		Х		Х	Х	Х	Х				Х				Х

Site ID	Location	Date	Volume (ft ³)	Grab Sample			
002RW	Silt Fence	5/3/12	0.07	Yes			
009RA	Silt Fence	5/3/12	0.07	Yes			
162RW	Silt Fence	5/3/12	0.07	Yes			
178RW	Silt Fence	5/3/12	0.07	Yes			
180RW	Silt Fence	5/3/12	0.13	Yes			
180RW	Silt Fence	5/9/12	0.20	Yes†			
181RW	Silt Fence	5/9/12	0.27	Yes			
178RW	Silt Fence	6/11/12	0.07	Yes			
201RW	Silt Fence	6/11/12	0.07	Yes			
180RW	Silt Fence	7/2/12	0.27	Yes			
180RW	Silt Fence	7/16/12	0.67	Yes			
181RW	Silt Fence	7/16/12	0.47	Yes			
006RW	Silt Fence	7/17/12	0.07	Yes			
162RW	Silt Fence	7/30/12	0.13	Yes			
181RW	Silt Fence	7/30/12	0.13	Yes			
180RW	Silt Fence	8/7/12	1.14	Yes			
181RW	Silt Fence	8/7/12	0.20	Yes			
002RW	Silt Fence	8/20/12	0.07	Yes			
008RW	Silt Fence	8/20/12	0.07	Yes†			
176RW	Silt Fence	8/20/12	0.13	Yes†			
180RW	Silt Fence	8/20/12	0.20	Yes			
181RW	Silt Fence	8/20/12	0.13	Yes			
202RW	Silt Fence	8/20/12	0.27	Yes			
162RW	Silt Fence	9/4/12	0.20	Yes			
180RW Silt Fence 9/19/12 0.74 Yes							
† Grab samples selected for lab analysis.							

Sediment Accumulation in Rock Weir Silt Fences on Pikes Peak, 2012

		Surv	vey1	Survey 2						
Site ID	Area (sq		Average		Average	Elevation	Volume			
Site ib	ft)	Date	Elevation	Date	Elevation	Change	Change			
			(ft)		(ft)	(ft)	(ft°)			
002RW	1679	6/12/12	8997.97	8/29/12	8998.15	0.18	302.22			
003RW	521	6/12/12	8991.24	8/29/12	8991.22	-0.02	-10.42			
006RW	798	5/15/12	8997.13							
008RW	1044	5/30/12	9499.04							
009RA	905	5/18/12	9695.85	9/24/12	9695.80	-0.05	-45.25			
152RW	817	5/24/12	9791.92	10/2/12	9791.91	-0.01	-8.17			
153RW	1568	5/14/12	9523.40	9/13/12	9523.37	-0.03	-47.04			
161RW	263	5/14/12	9504.93	9/13/12	9504.95	0.02	5.26			
162RW	130	5/15/12	9512.13	9/24/12	9512.17	0.04	5.20			
176RW	372	6/11/12	10193.88	10/2/12	10193.88	0.00	0.00			
178RW	377	6/11/12	10202.28	10/2/12	10202.43	0.15	56.55			
179RW	792	6/12/12	10214.70	9/19/12	10214.58	-0.12	-95.04			
180RW	542	6/5/12	10235.28	9/19/12	10235.48	0.20	108.40			
181RW	1299	6/5/12	10252.91	10/2/12	10252.78	-0.13	-168.87			
200RW	412	6/20/12	9194.72	8/29/12	9194.59	-0.13	-53.56			
201RW	183	6/11/12	9588.53	8/22/12	9588.51	-0.02	-3.66			
202RW	179	6/11/12	9690.58							
233RW	359	6/11/12	11902.26	8/28/12	11902.42	0.16	57.44			
239RW	381	7/5/12	12799.08	8/27/12	12799.08	0.00	0.00			
240RW	634	7/5/12	12897.39	8/27/12	12897.43	0.04	25.36			
241RW	1015	7/17/12	12551.64	8/27/12	12551.54	-0.10	-101.50			
242RW	1170	7/4/12	12901.48	8/29/12	12901.55	0.07	83.48			
250RW	598	5/29/12	10117.20	9/19/12	10117.21	0.01	5.98			
252RW	448	5/23/12	10524.89							

Rock Weir Sediment Accumulation Values on Pikes Peak, 2012

†Cross section placed on cut slope above rock weir

Appendix K

Rock Weir and Sediment Pond

Particle Size Distribution Summary and Graphs

2011

		Particle Size Distribution–Grab Samples 2011							
Site Name	ID	Date	D15	D35	D50	D84	D95	D100	
Pikes Peak Highway - Rock Weir	002RW Silt Fence	7/11/2011	0.010	0.037	0.095	0.811	1.624	10.0	
Pikes Peak Highway - Rock Weir	003RW Rock Weir	8/31/2011	0.284	1.301	2.382	6.994	11.489	20.0	
Pikes Peak Highway - Rock Weir	153RW Rock Weir	6/2/2011	0.439	1.408	2.381	6.702	11.756	19.0	
Pikes Peak Highway - Rock Weir	161RW Rock Weir	5/18/2011	0.107	1.041	1.844	5.273	9.975	15.0	
Pikes Peak Highway - Rock Weir	161RW Silt Fence	5/18/2011	0.590	1.707	3.165	9.540	24.270	31.0	
Pikes Peak Highway - Rock Weir	178RW Rock Weir	9/21/2011	0.138	1.111	2.101	6.547	11.075	19.0	
Pikes Peak Highway - Rock Weir	180RW Silt Fence	7/25/2011	0.027	0.348	0.653	1.604	2.744	10.0	
Pikes Peak Highway - Rock Weir	181RW Silt Fence	8/29/2011	0.085	1.233	2.627	6.959	12.278	18.0	
Pikes Peak Highway - Rock Weir	199RW Sed Pond	6/6/2011	0.057	0.762	1.431	4.549	7.539	20.0	
Pikes Peak Highway - Rock Weir	200RW Rock Weir	5/31/2011	0.075	0.778	1.446	6.469	12.521	22.0	
Pikes Peak Highway - Rock Weir	200RW Silt Fence	5/31/2011	0.682	3.202	7.487	25.883	27.988	29.0	
Pikes Peak Highway - Rock Weir	200RW Rock Weir	9/7/2011	0.313	1.253	2.379	7.566	13.796	23.0	
Pikes Peak Highway - Rock Weir	200RW Silt Fence	9/7/2011	1.291	4.188	9.277	37.006	42.332	33.0	
Pikes Peak Highway - Rock Weir	233RW Rock Weir	9/1/2011	0.026	0.328	0.743	2.610	6.024	12.0	
Pikes Peak Highway - Rock Weir	237RW Sed Pond	6/6/2011	0.377	1.683	3.117	8.326	13.400	24.0	
Pikes Peak Highway - Rock Weir	239RW Rock Weir	6/30/2011	0.111	0.867	1.493	5.919	10.288	15.0	
Pikes Peak Highway - Rock Weir	240RW Rock Weir	6/30/2011	0.143	2.493	4.404	10.359	14.585	21.0	
Pikes Peak Highway - Rock Weir	242RW Rock Weir	6/30/2011	0.032	0.520	1.224	5.710	11.852	25.0	

Summary of Rock Weir and Silt Fence Particle Size Distribution from Sieve Analysis of Grab Samples on Pikes Peak, 2011

[•] Pike's Peak Highway - Rock Weir

Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	514.20	75.9%		SITE I	NAME:
0.5	78.40	11.6%	75.9%	ID NU	MBER:
1.0	72.70	10.7%	87.5%	DATE	:
2.0	6.20	0.9%	98.2%	CREV	/ :
2.8	2.40	0.4%	99.1%		
4.0	1.90	0.3%	99.5%	Partic	le Size
5.6	0.20	0.0%	99.8%	Distril	oution
8.0	1.30	0.2%	99.8%		
10.0	*		100.0%		
16.0			-		
22.4					
32.0					100%
45.0					00.0/
64.0					90 %
90					80%
128					
181				an	70%
256				Ë	60%
362				er	00 /8
512				Fin	50%
1024				ť	
2048				e e	40%
4096				Per	30%
T ()		0070			
Iotal *Moosured.vr		20%			
the sample a		10%			
and sumple a		10 /0			

COMMENTS:

[•] Pike's Peak Highway - Rock Weir

	Size Finer	Wt. on	% of Total	% Finer		
	Than (mm)	Sieve		Than		
	Pan	116.80	15.4%		SITE	NAME:
	0.5	79.10	10.4%	15.4%	ID NU	IMBER:
	1.0	140.30	18.5%	25.9%	DATE	:
	2.0	82.30	10.9%	44.4%	CREV	V:
	2.8	96.10	12.7%	55.2%		
	4.0	86.40	11.4%	67.9%	Partie	cle Size
	5.6	70.60	9.3%	79.3%	Distri	bution
	8.0	44.60	5.9%	88.6%		
	11.2	27.30	3.6%	94.5%		
	16.0	14.30	1.9%	98.1%		
	19.0	*		100.0%		
	32.0			-		100%
	45.0					00%
	64.0					90 /8
	90					80%
	128					
	181				a	70%
	256				Ë	60%
	362				er	00 /0
	512				Fi	50%
	1024				ť	40.07
	2048				ခို	40%
	4096				Pel	30%
	Tatal	757 00				
ļ	IOTAI		20%			
	the comple of		10%			
	ule sample al	nu not a s	sieve weight			10 /0

249

Grab Sample of 2011 Sediment Accumulation

	Size Finer	ize Finer Wt. on % of Total % Finer							
	Than (mm)	Sieve		Than					
	Pan	68.10	12.7%		SI				
0.5 28.10		28.10	5.2%	12.7%	ID				
	1.0	44.50	8.3%	17.9%	D				
	2.0	32.10	6.0%	26.2%	C				
	2.8	41.00	7.6%	32.1%					
	4.0	40.20	7.5%	39.8%	Pa				
	5.6	18.30	3.4%	47.2%	Di				
	8.0	33.40	6.2%	50.6%					
	11.2	25.70	4.8%	56.8%					
	16.0	11.00	2.0%	61.6%					
	22.4	195.40	36.3%	63.7%					
	29.0	*		100.0%					
	45.0			-					
	64.0								
	90								
	128								
	181								
	256								
	362								
	512								
	1024								
	2048								
	4096								
Total 537.80									
	*Measured value of the largest particle in								
	the sample and not a sieve weight								

COMMENTS:

	Size Finer	Wt. on	% of Total	% Finer					
	Than (mm)	Sieve		Than	[
	Pan	47.30	6.8%		SITE				
	0.5	34.60	5.0%	6.8%	ID N				
	1.0	61.10	8.8%	11.8%	DAT				
	2.0	37.20	5.3%	20.5%	CRE				
	2.8	55.80	8.0%	25.9%					
	4.0	55.40	8.0%	33.9%	Par				
	5.6	43.30	6.2%	41.9%	Dist				
	8.0	30.10	4.3%	48.1%					
	11.2	23.50	3.4%	52.4%					
	16.0	19.80	2.8%	55.8%					
	22.4	93.70	13.5%	58.6%					
	32.0	194.10	27.9%	72.1%					
	33.0	*		100.0%					
	64.0			-					
	90								
	128								
	181								
	256								
	362								
	512								
	1024								
	2048								
	4096								
ļ	Total	695.90			.				
*Measured value of the largest particle in									
the sample and not a sieve weight									

E NAME: [•] Pike's Peak Highway - Rock Weir 200RW Silt Fence UMBER: 9/7/2011 TE: VonLoh EW: ticle Size D15 D35 D50 D84 D95 Lpart tribution (mm) 1.291 4.188 9.277 32.423 32.818 33.0 **Cumulative Particle Size Distribution** Sand Boulder Gravel Cobble 100% 90% 80% 70% Ihan 60% Finer 50% Percent 40% 30% 20% 10% 0% 0.1 10 100 1 1000 10000 Particle Size (mm)

Lpart

24.0

ШЦ 10000

Size Finer	Wt. on	% of Total	% Finer								
Than (mm)	Sieve		Than			_					
Pan	142.60	15.9%		SITE	NAME:	Pike's Peak F	lighway - Sedi	ment Pond			
0.5	68.20	7.6%	15.9%	ID NU	MBER:	237RW Sedin	nent Pond				
1.0	136.70	15.3%	23.5%	DATE	:	6/6/2011					
2.0	69.10	7.7%	38.8%	CREV	V:	Derengowski,	VonLoh				
2.8	103.90	11.6%	46.5%								
4.0	118.50	13.2%	58.1%	Partic	le Size	D15	D35	D50	D84	D95	
5.6	104.20	11.6%	71.3%	Distri	bution (mm)	0.377	1.683	3.117	8.326	13.400	
8.0	76.60	8.6%	83.0%								
11.2	61.70	6.9%	91.5%				Cumulative	Particle S	ize Distribu	tion	
16.0	0.00	0.0%	98.4%								
22.4	14.10	1.6%	98.4%			Sand	(Gravel	Cobble	Bould	ler
24.0	*		100.0%		100%		• I I I I	╵║╴╭┻┼┹╵		•	
45.0			-		00%						
64.0					30 /8						
90					80%						
128											
181				an	70%		<u> </u>			+++++++++	
256				님	60%						
362				ler							
512				Ë	50%		<u> </u>				
1024				ţ	40.9/						
2040				20	40 %						
4096				Pe	30%		Z	+++			
Total	895.60				20.9/						
*Measured v	alue of the	e largest par	ticle in		20 %						
the sample a	nd not a s	sieve weight			10%				+++++++		
					0%						
					0.1	1		10	100	1000	0
								Particle Siz	ze (mm)		

COMMENTS:

	Size Finer	Wt. on	% of Total	% Finer			
	Than (mm)	Sieve		Than			
	Pan	308.60	34.3%		S	ITE I	NAME:
	0.5	104.10	11.6%	34.3%	ID	D NU	MBER:
	1.0	125.40	14.0%	45.9%	D	ATE	:
	2.0	65.10	7.2%	59.9%	С	REW	/:
	2.8	77.20	8.6%	67.1%			
	4.0	71.50	8.0%	75.7%	Р	artic	le Size
	5.6	53.80	6.0%	83.7%	D	istrik	oution
	8.0	45.10	5.0%	89.7%	Г		
	11.2	18.10	2.0%	94.7%			
	16.0	12.30	1.4%	96.7%			
	22.4	17.40	1.9%	98.1%			
	25.0	*		100.0%			100%
	45.0			-			000/
	64.0						90%
	90						80%
	128						
	181					E	70%
	256					Τĥ	CO 0/
	362					Б	60%
	512					i.	50%
	1024					Ţ	
	2048					cer	40%
	4096					er	200/
						ш	30%
ļ	Total	898.60					20%
	*Measured va						
	the sample a			10%			

Appendix L

Sediment Pond

Suspended Sediment Data

2012

Site ID	Data	Tin + Filter	Tin +Filter	Bottle	Bottle	Weight	Weight	Solids
Site ID	Date	Initial (g)	Final (g)	Initial (g)	Final (g)	Sample (g)	Solids (g)	(mg/l)
199RW Entrance Culvert	05/24/12	1.0905	1.0978	1129.3	107.5	1021.8	0.0073	7.1
199RW Above Sed Pond	05/24/12	1.1010	1.1073	1093.8	106.8	987.0	0.0063	6.4
199RW Exit Culvert	05/24/12	1.0806	1.0877	1119.7	103.0	1016.7	0.0071	7.0
199RW Entrance Culvert	07/02/12	1.0730	1.0880	1142.0	92.3	1049.7	0.0150	14.3
199RW Above Sed Pond	07/02/12	1.0881	1.1519	1113.8	107.3	1006.5	0.0638	63.4
199RW Exit Culvert	07/02/12	1.0644	1.0673	1121.4	106.0	1015.4	0.0029	2.9
199RW Entrance Culvert	07/03/12	1.0747	1.4790	1100.3	107.2	993.1	0.4043	407.1
199RW Above Sed Pond	07/03/12	1.0729	1.5159	996.1	106.3	889.8	0.4430	497.9
199RW Exit Culvert	07/03/12	1.0834	1.7137	1105.3	106.7	998.6	0.6303	631.2
199RW Entrance Culvert	08/01/12	1.0824	1.3708	1139.8	105.4	1034.4	0.2884	278.8
199RW Above Sed Pond	08/01/12	1.0862	1.5381	1100.1	92.2	1007.9	0.4519	448.4
199RW Exit Culvert	08/01/12	1.0964	1.1020	1127.3	103.4	1023.9	0.0056	5.5
199RW Entrance Culvert	08/23/12	1.0797	1.8650	1094.4	108.5	985.9	0.7853	796.5
199RW Above Sed Pond	08/23/12	1.0850	1.1903	1084.5	109.1	975.4	0.1053	108.0
199RW Exit Culvert	08/23/12	1.0805	1.1638	1076.0	107.5	968.5	0.0833	86.0
199RW Entrance Culvert	09/27/12	1.0892	1.2118	1096.0	111.4	984.6	0.1226	124.5
199RW Above Sed Pond	09/27/12	1.0766	1.1236	1113.4	109.4	1004.0	0.0470	46.8
199RW Exit Culvert	09/27/12	1.1005	1.3240	1086.4	110.0	976.4	0.2235	228.9
237RW Entrance Culvert	07/16/12	1.0712	2.8869	1054.2	106.1	948.1	1.8157	1915.1
237RW Exit Culvert	07/16/12	1.0771	1.1683	1112.3	102.9	1009.4	0.0912	90.4
237RW Entrance Culvert	08/01/12	1.0997	3.2873	1118.9	93.0	1025.9	2.1876	2132.4
237RW Exit Culvert	08/01/12	1.0709	1.2065	1130.1	108.8	1021.3	0.1356	132.8
237RW Entrance Culvert	08/13/12	1.0931	1.2055	1121.3	106.2	1015.1	0.1124	110.7
237RW Exit Culvert	08/13/12	1.1053	1.1396	1101.4	104.4	997.0	0.0343	34.4
237RW Entrance Culvert	08/23/12	1.0940	9.0943	1100.8	108.6	992.2	8.0003	8063.2
237RW Exit Culvert	08/23/12	1.0904	1.1175	1122.2	108.3	1013.9	0.0271	26.7

Summary of Sediment Pond Suspended Sediment Analysis of Grab Samples on Pikes Peak, 2012

Appendix M

Stream Channel

Cross Section Graphs

2012

†Thalweg not marked as wetted perimeter not identified.

†Thalweg not marked as wetted perimeter not identified.

†Thalweg not marked as wetted perimeter not identified.

†Thalweg not marked as wetted perimeter not identified.

†Thalweg not marked as wetted perimeter not identified.

†Thalweg not marked as wetted perimeter not identified.

†Thalweg not marked as wetted perimeter not identified.

†Thalweg not marked as wetted perimeter not identified

†Thalweg not marked as wetted perimeter not identified.
Appendix N

Stream Pebble Count

Particle Size Distribution Graphs

COMMENTS:

Particle Size # in Size % of % Finer (mm) Class Total Than < 0.062 26 8.7% 0.062 - 0.125 0 0.0% 9% 0.125 - 0.25 16 5.3% 14% 0.25 - .5 0 0.0% 14% 0.5 - 1.0 26 8.7% 23% 1 - 2 6.7% 29% 20 2 - 4 10.7% 40% 32 4 - 6 29 9.7% 50% 6 - 8 26 8.7% 58% 8 - 12 29 9.7% 68% 12 - 16 18 6.0% 74% 16 - 24 33 11.0% 85% 24 - 32 10 3.3% 88% 32 - 48 12 4.0% 92% 48 - 64 2 0.7% 93% 64 - 96 3.7% 97% 11 96 - 128 5 1.7% 98% 128 - 192 3 1.0% 99% 192 - 256 0.3% 100% 1 256 - 384 0.3% 1 100% 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 Total 300.00

ITS: ERO Reach

COMMENTS:

Particle Size	# in Size	% of	% Finer
(mm)	Class	Total	Than
<0.062	27	9.0%	
0.062 - 0.125	0	0.0%	9%
0.125 - 0.25	13	4.3%	13%
0.255	0	0.0%	13%
0.5 - 1.0	17	5.7%	19%
1 - 2	8	2.7%	22%
2 - 4	28	9.3%	31%
4 - 6	7	2.3%	33%
6 - 8	9	3.0%	36%
8 - 12	35	11.7%	48%
12 - 16	30	10.0%	58%
16 - 24	29	9.7%	68%
24 - 32	19	6.3%	74%
32 - 48	15	5.0%	79%
48 - 64	17	5.7%	85%
64 - 96	19	6.3%	91%
96 - 128	12	4.0%	95%
128 - 192	10	3.3%	98%
192 - 256	4	1.3%	100%
256 - 384	1	0.3%	100%
384 - 512			
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	300.00		

STREAM NAME: Pikes Peak Highway - Boehmer Creek Reach 2 BHMR2 ID NUMBER: 9/17/2012 DATE: CREW: VonLoh, Willis **Particle Size** D15 D35 D50 D84 0.613 7.040 12.711

D95

Lpart

COMMENTS:

Particle Size	# in Size	% of	% Finer
(mm)	Class	Total	Than
<0.062	12	4.0%	
0.062 - 0.125	0	0.0%	4%
0.125 - 0.25	6	2.0%	6%
0.255	0	0.0%	6%
0.5 - 1.0	4	1.3%	7%
1 - 2	11	3.7%	11%
2 - 4	37	12.3%	23%
4 - 6	34	11.3%	35%
6 - 8	34	11.3%	46%
8 - 12	31	10.3%	56%
12 - 16	36	12.0%	68%
16 - 24	28	9.3%	78%
24 - 32	19	6.3%	84%
32 - 48	13	4.3%	88%
48 - 64	1	0.3%	89%
64 - 96	16	5.3%	94%
96 - 128	2	0.7%	95%
128 - 192	5	1.7%	96%
192 - 256	3	1.0%	97%
256 - 384	4	1.3%	99%
384 - 512	4	1.3%	100%
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	300.00		

: ERO Reach

COMMENTS:

Second reach 500 ft of ERO Reach

Particle Size	# in Size	% of	% Finer
(mm)	Class	Total	Than
<0.062	6	2.0%	
0.062 - 0.125	0	0.0%	2%
0.125 - 0.25	10	3.3%	5%
0.255	0	0.0%	5%
0.5 - 1.0	17	5.7%	11%
1 - 2	18	6.0%	17%
2 - 4	36	12.0%	29%
4 - 6	41	13.7%	43%
6 - 8	22	7.3%	50%
8 - 12	62	20.7%	71%
12 - 16	25	8.3%	79%
16 - 24	43	14.3%	93%
24 - 32	14	4.7%	98%
32 - 48	6	2.0%	100%
48 - 64			
64 - 96			
96 - 128			
128 - 192			
192 - 256			
256 - 384			
384 - 512			
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	300.00		
Totai	300.00		

STREAM NAME:Pikes Peak Highway - East Fork Beaver Creek Reach 2ID NUMBER:EBVR2DATE:9/18/2012CREW:VonLoh, Willis

Class

Particle Size # in Size

(mm)

COMMENTS:

Reach established upstream from confluence with South Catamount Creek because of the transbasin diversion installed in Ski Creek

STREAM NAME: Pikes Peak Highway - Glen Cove Creek Reach 1 ID NUMBER: GLEN1

% of

Total

% Finer

Than

COMMENTS:

0.01

0.1

ERO Study Site

Particle Size	# in Size	% of	% Finer
(mm)	Class	Total	Than
<0.062	42	14.0%	
0.062 - 0.125	0	0.0%	14%
0.125 - 0.25	20	6.7%	21%
0.255	0	0.0%	21%
0.5 - 1.0	26	8.7%	29%
1 - 2	35	11.7%	41%
2 - 4	39	13.0%	54%
4 - 6	54	18.0%	72%
6 - 8	34	11.3%	83%
8 - 12	32	10.7%	94%
12 - 16	17	5.7%	100%
16 - 24	1	0.3%	100%
24 - 32			
32 - 48			
48 - 64			
64 - 96			
96 - 128			
128 - 192			
192 - 256			
256 - 384			
384 - 512			
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	300.00		

10

Particle Size (mm)

100

1000

10000

293

COMMENTS:

DATE:

Particle Size	# in Size	% of	% Finer
(mm)	Class	Total	Than
<0.062	16	5.3%	
0.062 - 0.125	0	0.0%	5%
0.125 - 0.25	8	2.7%	8%
0.255	0	0.0%	8%
0.5 - 1.0	27	9.0%	17%
1 - 2	29	9.7%	27%
2 - 4	50	16.7%	43%
4 - 6	25	8.3%	52%
6 - 8	42	14.0%	66%
8 - 12	48	16.0%	82%
12 - 16	29	9.7%	91%
16 - 24	23	7.7%	99%
24 - 32	3	1.0%	100%
32 - 48			
48 - 64			
64 - 96			
96 - 128			
128 - 192			
192 - 256			
256 - 384			
384 - 512			
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	300.00		
Total	300.00		

STREAM NAME: [•] Pikes Peak Highway - North Catamount Creek Reach 2 NCAT2 ID NUMBER: 9/27/2012

VonLoh, Willis

COMMENTS:

0.01

0.1

ERO Study Site

Particle Size	# in Size	% of	% Finer
(mm)	Class	Total	Than
<0.062	27	9.0%	
0.062 - 0.125	0	0.0%	9%
0.125 - 0.25	38	12.7%	22%
0.255	0	0.0%	22%
0.5 - 1.0	35	11.7%	33%
1 - 2	27	9.0%	42%
2 - 4	37	12.3%	55%
4 - 6	29	9.7%	64%
6 - 8	37	12.3%	77%
8 - 12	27	9.0%	86%
12 - 16	13	4.3%	90%
16 - 24	16	5.3%	95%
24 - 32	6	2.0%	97%
32 - 48	6	2.0%	99%
48 - 64	2	0.7%	100%
64 - 96			
96 - 128			
128 - 192			
192 - 256			
256 - 384			
384 - 512			
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	300.00		

10

Particle Size (mm)

100

1000

10000

STREAM NAME: Pikes Peak Highway - North Fork Crystal Creek Reach 1 ID NUMBER: NCRY1

COMMENTS:

(mm)ClassTotalThan <0.062 72.3%0.062 - 0.12500.0%2% $0.125 - 0.25$ 217.0%9%9%0.25500.0%9% 0.255 00.0%9%9%0.25500.0%9% $1 - 2$ 237.7%30%245016.7%46% $4 - 6$ 3210.7%57%6 - 8237.7%65% $8 - 12$ 5217.3%82%12 - 16279.0%91% $16 - 24$ 217.0%98%24 - 3231.0%99% $32 - 48$ 20.7%100%48 - 6410.3%100% $64 - 96$ 96 - 128128 - 192192 - 256256 - 384384 - 512 $512 - 1024$ 1024 - 20482044 - 40962044 - 40967100%	Particle Size	# in Size	% of	% Finer
<0.06272.3% $0.062 - 0.125$ 00.0%2% $0.125 - 0.25$ 217.0%9% 0.255 00.0%9% $0.5 - 1.0$ 3812.7%22% $1 - 2$ 237.7%30% $2 - 4$ 5016.7%46% $4 - 6$ 3210.7%57% $6 - 8$ 237.7%65% $8 - 12$ 5217.3%82% $12 - 16$ 279.0%91% $16 - 24$ 217.0%98% $24 - 32$ 31.0%99% $32 - 48$ 20.7%100% $48 - 64$ 10.3%100% $64 - 96$ 96-128 $128 - 192$ 192-256 $256 - 384$ 384 - 512 $512 - 1024$ 1024 - 2048 $2044 - 4096$ -	(mm)	Class	Total	Than
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<0.062	7	2.3%	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.062 - 0.125	0	0.0%	2%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.125 - 0.25	21	7.0%	9%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.255	0	0.0%	9%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5 - 1.0	38	12.7%	22%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 - 2	23	7.7%	30%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 - 4	50	16.7%	46%
	4 - 6	32	10.7%	57%
8 - 12 52 17.3% 82% 12 - 16 27 9.0% 91% 16 - 24 21 7.0% 98% 24 - 32 3 1.0% 99% 32 - 48 2 0.7% 100% 48 - 64 1 0.3% 100% 64 - 96 96 -128 128 128 - 192 192 256 256 256 - 384 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 2044 - 4096	6 - 8	23	7.7%	65%
12 - 16 27 9.0% 91% 16 - 24 21 7.0% 98% 24 - 32 3 1.0% 99% 32 - 48 2 0.7% 100% 48 - 64 1 0.3% 100% 64 - 96 96 128 128 128 - 192 192 - 256 256 - 384 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 2044 - 4096 200 00	8 - 12	52	17.3%	82%
16 - 24 21 7.0% 98% 24 - 32 3 1.0% 99% 32 - 48 2 0.7% 100% 48 - 64 1 0.3% 100% 64 - 96 96 102 102 96 - 128 128 - 192 192 - 256 256 - 384 256 - 384 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 2044 - 4096 2040 - 00 1000 - 00	12 - 16	27	9.0%	91%
24 - 32 3 1.0% 99% 32 - 48 2 0.7% 100% 48 - 64 1 0.3% 100% 64 - 96 96 100% 100% 96 - 128 128 - 192 192 - 256 256 - 384 254 - 512 512 - 1024 1024 - 2048 2044 - 4096	16 - 24	21	7.0%	98%
32 - 48 2 0.7% 100% 48 - 64 1 0.3% 100% 64 - 96 96 100% 100% 96 - 128 128 - 192 192 - 256 256 - 384 192 - 256 256 - 384 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 204 - 4096	24 - 32	3	1.0%	99%
48 - 64 1 0.3% 100% 64 - 96 96 - 128 128 - 192 192 - 256 256 - 384 384 - 512 512 - 1024 1024 - 2048 2044 - 4096	32 - 48	2	0.7%	100%
64 - 96 96 - 128 128 - 192 192 - 256 256 - 384 384 - 512 512 - 1024 1024 - 2048 2044 - 4096	48 - 64	1	0.3%	100%
96 - 128 128 - 192 192 - 256 256 - 384 384 - 512 512 - 1024 1024 - 2048 2044 - 4096	64 - 96			
128 - 192 192 - 256 256 - 384 384 - 512 512 - 1024 1024 - 2048 2044 - 4096	96 - 128			
192 - 256 256 - 384 384 - 512 512 - 1024 1024 - 2048 2044 - 4096	128 - 192			
256 - 384 384 - 512 512 - 1024 1024 - 2048 2044 - 4096	192 - 256			
384 - 512 512 - 1024 1024 - 2048 2044 - 4096	256 - 384			
512 - 1024 1024 - 2048 2044 - 4096	384 - 512			
1024 - 2048 2044 - 4096	512 - 1024			
2044 - 4096	1024 - 2048			
T-1-1 000 00	2044 - 4096			
T-1-1 000 00				
lotal 300.00	Total	300.00		

STREAM NAME: Pikes Peak Highway - North Fork Crystal Creek Reach 2

COMMENTS:

STREAM NAME:

ERO Study Site

Particle Size	# in Size	% of	% Finer
(mm)	Class	Total	Than
<0.062	24	8.3%	
0.062 - 0.125	0	0.0%	8%
0.125 - 0.25	14	4.9%	13%
0.255	0	0.0%	13%
0.5 - 1.0	24	8.3%	22%
1 - 2	15	5.2%	27%
2 - 4	15	5.2%	32%
4 - 6	19	6.6%	39%
6 - 8	19	6.6%	45%
8 - 12	40	13.9%	59%
12 - 16	29	10.1%	69%
16 - 24	34	11.8%	81%
24 - 32	21	7.3%	88%
32 - 48	20	6.9%	95%
48 - 64	9	3.1%	98%
64 - 96	5	1.7%	100%
96 - 128			
128 - 192			
192 - 256			
256 - 384			
384 - 512			
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	288.00		

Particle Size (mm)

Pikes Peak Highway - South Catamount Creek Reach 1 SCAT1

COMMENTS:

(mm)ClassTotalThan<0.062134.3% $0.062 - 0.125$ 0 0.0% 4% $0.125 - 0.25$ 4 1.3% 6% 0.255 0 0.0% 6% $0.5 - 1.0$ 10 3.3% 9% $1 - 2$ 15 5.0% 14% $2 - 4$ 37 12.3% 26% $4 - 6$ 28 9.3% 36% $6 - 8$ 27 9.0% 45% $8 - 12$ 37 12.3% 57% $12 - 16$ 27 9.0% 66% $16 - 24$ 40 13.3% 79% $24 - 32$ 25 8.3% 88% $32 - 48$ 9 3.0% 91% $48 - 64$ 3 1.0% 92% $64 - 96$ 10 3.3% 95% $96 - 128$ 4 1.3% 96% $122 - 256$ 2 0.7% 99% $256 - 384$ 2 0.7% 100% $384 - 512$ $512 - 1024$ $1024 - 2048$ $2044 - 4096$ 300.00 -70%	Particle Size	# in Size	% of	% Finer
<0.062134.3% $0.062 - 0.125$ 00.0%4% $0.125 - 0.25$ 41.3%6% 0.255 00.0%6% $0.5 - 1.0$ 103.3%9% $1 - 2$ 155.0%14% $2 - 4$ 3712.3%26% $4 - 6$ 289.3%36% $6 - 8$ 279.0%45% $8 - 12$ 3712.3%57% $12 - 16$ 279.0%66% $16 - 24$ 4013.3%79% $24 - 32$ 258.3%88% $32 - 48$ 93.0%91% $48 - 64$ 31.0%92% $64 - 96$ 103.3%95% $96 - 128$ 41.3%96% $128 - 192$ 72.3%99% $192 - 256$ 20.7%99% $256 - 384$ 20.7%100% $384 - 512$ 5121024 $1024 - 2048$ 2044 - 4096Total	(mm)	Class	Total	Than
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<0.062	13	4.3%	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.062 - 0.125	0	0.0%	4%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.125 - 0.25	4	1.3%	6%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.255	0	0.0%	6%
1 - 2 15 $5.0%$ $14%$ $2 - 4$ 37 $12.3%$ $26%$ $4 - 6$ 28 $9.3%$ $36%$ $6 - 8$ 27 $9.0%$ $45%$ $8 - 12$ 37 $12.3%$ $57%$ $12 - 16$ 27 $9.0%$ $66%$ $16 - 24$ 40 $13.3%$ $79%$ $24 - 32$ 25 $8.3%$ $88%$ $32 - 48$ 9 $3.0%$ $91%$ $48 - 64$ 3 $1.0%$ $92%$ $64 - 96$ 10 $3.3%$ $95%$ $96 - 128$ 4 $1.3%$ $96%$ $128 - 192$ 7 $2.3%$ $99%$ $192 - 256$ 2 $0.7%$ $99%$ $256 - 384$ 2 $0.7%$ $100%$ $384 - 512$ $512 - 1024$ $1024 - 2048$ $2044 - 4096$ 300.00	0.5 - 1.0	10	3.3%	9%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 - 2	15	5.0%	14%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 - 4	37	12.3%	26%
6 - 8 27 9.0% 45% 8 - 12 37 12.3% 57% 12 - 16 27 9.0% 66% 16 - 24 40 13.3% 79% 24 - 32 25 8.3% 88% 32 - 48 9 3.0% 91% 48 - 64 3 1.0% 92% 64 - 96 10 3.3% 95% 96 - 128 4 1.3% 96% 128 - 192 7 2.3% 99% 192 - 256 2 0.7% 99% 256 - 384 2 0.7% 100% 384 - 512 512 1024 1024 - 2048 2044 - 4096 300.00 500.00 500.00	4 - 6	28	9.3%	36%
8 - 12 37 12.3% 57% 12 - 16 27 9.0% 66% 16 - 24 40 13.3% 79% 24 - 32 25 8.3% 88% 32 - 48 9 3.0% 91% 48 - 64 3 1.0% 92% 64 - 96 10 3.3% 95% 96 - 128 4 1.3% 96% 128 - 192 7 2.3% 99% 192 - 256 2 0.7% 100% 384 - 512 512 1024 1024 - 2048 2044 - 4096 300.00 500.00	6 - 8	27	9.0%	45%
12 - 16 27 9.0% 66% 16 - 24 40 13.3% 79% 24 - 32 25 8.3% 88% 32 - 48 9 3.0% 91% 48 - 64 3 1.0% 92% 64 - 96 10 3.3% 95% 96 - 128 4 1.3% 96% 128 - 192 7 2.3% 99% 192 - 256 2 0.7% 99% 256 - 384 2 0.7% 100% 384 - 512 512 1024 1024 - 2048 2044 - 4096 300.00	8 - 12	37	12.3%	57%
16 - 24 40 13.3% 79% 24 - 32 25 8.3% 88% 32 - 48 9 3.0% 91% 48 - 64 3 1.0% 92% 64 - 96 10 3.3% 95% 96 - 128 4 1.3% 96% 128 - 192 7 2.3% 99% 192 - 256 2 0.7% 99% 256 - 384 2 0.7% 100% 384 - 512 512 1024 1024 - 2048 2044 - 4096 300.00	12 - 16	27	9.0%	66%
24 - 32 25 8.3% 88% 32 - 48 9 3.0% 91% 48 - 64 3 1.0% 92% 64 - 96 10 3.3% 95% 96 - 128 4 1.3% 96% 128 - 192 7 2.3% 99% 192 - 256 2 0.7% 99% 256 - 384 2 0.7% 100% 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 Total 300.00	16 - 24	40	13.3%	79%
32 - 48 9 3.0% 91% 48 - 64 3 1.0% 92% 64 - 96 10 3.3% 95% 96 - 128 4 1.3% 96% 128 - 192 7 2.3% 99% 192 - 256 2 0.7% 99% 256 - 384 2 0.7% 100% 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 Total 300.00	24 - 32	25	8.3%	88%
48 - 64 3 1.0% 92% 64 - 96 10 3.3% 95% 96 - 128 4 1.3% 96% 128 - 192 7 2.3% 99% 192 - 256 2 0.7% 99% 256 - 384 2 0.7% 100% 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 Total 300.00	32 - 48	9	3.0%	91%
64 - 96 10 3.3% 95% 96 - 128 4 1.3% 96% 128 - 192 7 2.3% 99% 192 - 256 2 0.7% 99% 256 - 384 2 0.7% 100% 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 Total 300.00 300.00 300.00	48 - 64	3	1.0%	92%
96 - 128 4 1.3% 96% 128 - 192 7 2.3% 99% 192 - 256 2 0.7% 99% 256 - 384 2 0.7% 100% 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 Total 300.00 300.00 300.00	64 - 96	10	3.3%	95%
128 - 192 7 2.3% 99% 192 - 256 2 0.7% 99% 256 - 384 2 0.7% 100% 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 Total 300.00	96 - 128	4	1.3%	96%
192 - 256 2 0.7% 99% 256 - 384 2 0.7% 100% 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 Total 300.00 300.00 300.00	128 - 192	7	2.3%	99%
256 - 384 2 0.7% 100% 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 Total 300.00	192 - 256	2	0.7%	99%
384 - 512 512 - 1024 1024 - 2048 2044 - 4096 Total 300.00	256 - 384	2	0.7%	100%
512 - 1024 1024 - 2048 2044 - 4096 Total 300.00	384 - 512			
1024 - 2048 2044 - 4096 Total 300.00	512 - 1024			
2044 - 4096 Total 300.00	1024 - 2048			
Total 300.00	2044 - 4096			
Total 300.00				
	Total	300.00		

STREAM NAME: Pikes Peak Highway - South Catamount Creek Reach 2 SCAT2 ID NUMBER: 9/24/2012 DATE:

VonLoh, Willis

COMMENTS:

DATE:

Reach established upstream from confluence with Glen Cove Creek because of the transbasin diversion installed in Ski Creek

STREAM NAME: Pikes Peak Highway - South Catamount Creek Reach 3 SCAT3 ID NUMBER: 9/24/2012

VonLoh, Willis

Particle Size	# in Size	% of	% Finer
(mm)	Class	Total	Than
< 0.062	10	3.3%	
0.062 - 0.125	0	0.0%	3%
0.125 - 0.25	3	1.0%	4%
0.255	0	0.0%	4%
0.5 - 1.0	8	2.7%	7%
1 - 2	22	7.3%	14%
2 - 4	46	15.3%	30%
4 - 6	41	13.7%	43%
6 - 8	36	12.0%	55%
8 - 12	56	18.7%	74%
12 - 16	29	9.7%	84%
16 - 24	28	9.3%	93%
24 - 32	8	2.7%	96%
32 - 48	2	0.7%	96%
48 - 64	0	0.0%	96%
64 - 96	0	0.0%	96%
96 - 128	2	0.7%	97%
128 - 192	4	1.3%	98%
192 - 256	3	1.0%	99%
256 - 384	2	0.7%	100%
384 - 512			
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	300.00		

COMMENTS:

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c cccc} ss & Tota \\ \hline 1 & 7.0^{\circ} \\ 0 & 0.0^{\circ} \\ 1 & 3.7^{\circ} \\ 0 & 0.0^{\circ} \\ 3 & 7.7^{\circ} \\ 5 & 5.3^{\circ} \\ 7 & 9.0^{\circ} \end{array}$	al Than % % 7% % 11% % 11% % 18%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 1 & 7.0^{\circ} \\ 0 & 0.0^{\circ} \\ 1 & 3.7^{\circ} \\ 0 & 0.0^{\circ} \\ 3 & 7.7^{\circ} \\ 5 & 5.3^{\circ} \\ 7 & 9.0^{\circ} \end{array}$	% % 7% % 11% % 11% % 18%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 0 & 0.0^{\circ} \\ 1 & 3.7^{\circ} \\ 0 & 0.0^{\circ} \\ 3 & 7.7^{\circ} \\ 5 & 5.3^{\circ} \\ 7 & 9.0^{\circ} \end{array}$	% 7% % 11% % 11% % 18%
$\begin{array}{ccccccc} 0.125 & -0.25 & 11 \\ 0.25 &5 & 0.5 \\ 0.5 & -1.0 & 22 \\ 1 & -2 & 11 \\ 2 & -4 & 27 \\ 4 & -6 & 37 \\ 6 & -8 & 37 \\ 6 & -8 & 37 \\ 12 & -16 & 24 \\ 12 & -16 & 24 \\ 16 & -24 & 26 \\ 32 & -48 & 66 \\ 48 & -64 & 37 \\ 64 & -96 & 77 \\ 96 & -128 \\ 128 & -192 \\ 192 & -256 \\ 256 & -384 \\ 384 & -512 \\ 512 & -1024 \end{array}$	1 3.7 ⁴) 0.0 ⁴ 3 7.7 ⁴ 5 5.3 ⁴ 7 9.0 ⁴	% 11% % 11% % 18%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$) 0.0 ⁶ 3 7.7 ⁶ 6 5.3 ⁶ 7 9.0 ⁶	% 11% % 18%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 7.7° 6 5.3° 7 9.0°	% 18%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 5.3° 7 9.0°	/0 /0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 9.0	% 24%
$\begin{array}{ccccccc} 4-6 & 3 \\ 6-8 & 3 \\ 8-12 & 5 \\ 12-16 & 24 \\ 16-24 & 24 \\ 24-32 & 8 \\ 32-48 & 6 \\ 48-64 & 3 \\ 64-96 & 7 \\ 96-128 \\ 128-192 \\ 192-256 \\ 256-384 \\ 384-512 \\ 512-1024 \end{array}$		% 33%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 12.3	3% 45%
8 - 12 54 12 - 16 24 16 - 24 24 24 - 32 8 32 - 48 66 48 - 64 33 64 - 96 7 96 - 128 128 - 192 192 - 256 256 - 384 384 - 512 512 - 1024	3 11.0)% 56%
12 - 16 24 16 - 24 24 24 - 32 8 32 - 48 6 48 - 64 3 64 - 96 7 96 - 128 128 - 192 192 - 256 256 - 384 384 - 512 512 - 1024	4 18.0)% 74%
16 - 24 24 24 - 32 8 32 - 48 6 48 - 64 3 64 - 96 7 96 - 128 128 128 - 192 192 - 256 256 - 384 384 - 512 512 - 1024 1024	8 9.39	% 83%
24 - 32 8 32 - 48 6 48 - 64 3 64 - 96 7 96 - 128 128 - 192 192 - 256 256 - 384 384 - 512 512 - 1024	6 8.7°	% 92%
32 - 48 6 48 - 64 3 64 - 96 7 96 - 128 128 - 192 192 - 256 256 - 384 384 - 512 512 - 1024	3 2.79	% 95%
48 - 64 3 64 - 96 7 96 - 128 128 - 192 192 - 256 256 - 384 384 - 512 512 - 1024	o 2.0°	% 97%
64 - 96 7 96 - 128 128 - 192 192 - 256 256 - 384 384 - 512 512 - 1024	3 1.09	% 98%
96 - 128 128 - 192 192 - 256 256 - 384 384 - 512 512 - 1024	⁷ 2.3 ⁶	% 100%
128 - 192 192 - 256 256 - 384 384 - 512 512 - 1024		
192 - 256 256 - 384 384 - 512 512 - 1024		
256 - 384 384 - 512 512 - 1024		
384 - 512 512 - 1024		
512 - 1024		
512 - 1024		
1024 - 2048		
2044 - 4096		
Total 300		

COMMENTS:

Particle Size	# in Size	% of	% Finer
(mm)	Class	Total	Than
<0.062	20	6.7%	
0.062 - 0.125	0	0.0%	7%
0.125 - 0.25	15	5.0%	12%
0.255	0	0.0%	12%
0.5 - 1.0	35	11.7%	23%
1 - 2	25	8.3%	32%
2 - 4	28	9.3%	41%
4 - 6	34	11.3%	52%
6 - 8	23	7.7%	60%
8 - 12	28	9.3%	69%
12 - 16	22	7.3%	77%
16 - 24	20	6.7%	83%
24 - 32	16	5.3%	89%
32 - 48	7	2.3%	91%
48 - 64	9	3.0%	94%
64 - 96	9	3.0%	97%
96 - 128	8	2.7%	100%
128 - 192	1	0.3%	100%
192 - 256			
256 - 384			
384 - 512			
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	300.00		

COMMENTS:

Particle Size	# in Size	% of	% Finer
(mm)	Class	Total	Than
<0.062	116	38.7%	
0.062 - 0.125	0	0.0%	39%
0.125 - 0.25	5	1.7%	40%
0.255	0	0.0%	40%
0.5 - 1.0	23	7.7%	48%
1 - 2	21	7.0%	55%
2 - 4	38	12.7%	68%
4 - 6	33	11.0%	79%
6 - 8	18	6.0%	85%
8 - 12	20	6.7%	91%
12 - 16	11	3.7%	95%
16 - 24	8	2.7%	98%
24 - 32	0	0.0%	98%
32 - 48	4	1.3%	99%
48 - 64	1	0.3%	99%
64 - 96	2	0.7%	100%
96 - 128			
128 - 192			
192 - 256			
256 - 384			
384 - 512			
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	300.00		

S: ERO Reach

COMMENTS:

(mm)ClassTotalThan<0.06200.0%0% $0.062 - 0.125$ 00.0%0% $0.125 - 0.25$ 00.0%0% 0.255 00.0%0% $0.5 - 1.0$ 28 9.3% 9% $1 - 2$ 13 4.3% 14% $2 - 4$ 16 5.3% 19% $4 - 6$ 12 4.0% 23% $6 - 8$ 22 7.3% 30% $8 - 12$ 3010.0%40% $12 - 16$ 3311.0%51% $16 - 24$ 5016.7%68% $24 - 32$ 23 7.7% 76% $32 - 48$ 3311.0%87% $48 - 64$ 15 5.0% 92% $64 - 96$ 15 5.0% 97% $96 - 128$ 3 1.0% 98% $128 - 192$ 7 2.3% 100% $192 - 256$ 256 384 $384 - 512$ $512 - 1024$ $1024 - 2048$ $2044 - 4096$ Total 300.00 300.00	Particle Size	# in Size	% of	% Finer
<0.06200.0% $0.062 - 0.125$ 00.0%0% $0.125 - 0.25$ 00.0%0% 0.255 00.0%0% $0.5 - 1.0$ 289.3%9% $1 - 2$ 134.3%14% $2 - 4$ 165.3%19% $4 - 6$ 124.0%23% $6 - 8$ 227.3%30% $8 - 12$ 3010.0%40% $12 - 16$ 3311.0%51% $16 - 24$ 5016.7%68% $24 - 32$ 237.7%76% $32 - 48$ 3311.0%87% $48 - 64$ 155.0%92% $64 - 96$ 155.0%97% $96 - 128$ 31.0%98% $128 - 192$ 72.3%100% $192 - 256$ 256384 $254 - 302$ 300.001004	(mm)	Class	Total	Than
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<0.062	0	0.0%	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.062 - 0.125	0	0.0%	0%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.125 - 0.25	0	0.0%	0%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.255	0	0.0%	0%
1 - 2 13 $4.3%$ $14%$ $2 - 4$ 16 $5.3%$ $19%$ $4 - 6$ 12 $4.0%$ $23%$ $6 - 8$ 22 $7.3%$ $30%$ $8 - 12$ 30 $10.0%$ $40%$ $12 - 16$ 33 $11.0%$ $51%$ $16 - 24$ 50 $16.7%$ $68%$ $24 - 32$ 23 $7.7%$ $76%$ $32 - 48$ 33 $11.0%$ $87%$ $48 - 64$ 15 $5.0%$ $92%$ $64 - 96$ 15 $5.0%$ $97%$ $96 - 128$ 3 $1.0%$ $98%$ $128 - 192$ 7 $2.3%$ $100%$ $192 - 256$ $256 - 384$ $384 - 512$ $512 - 1024$ $1024 - 2048$ $2044 - 4096$ Total 300.00	0.5 - 1.0	28	9.3%	9%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 - 2	13	4.3%	14%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 - 4	16	5.3%	19%
6 - 8 22 7.3% 30% 8 - 12 30 10.0% 40% 12 - 16 33 11.0% 51% 16 - 24 50 16.7% 68% 24 - 32 23 7.7% 76% 32 - 48 33 11.0% 87% 48 - 64 15 5.0% 92% 64 - 96 15 5.0% 97% 96 - 128 3 1.0% 98% 128 - 192 7 2.3% 100% 192 - 256 256 384 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 2044 - 4096	4 - 6	12	4.0%	23%
8 - 12 30 10.0% 40% 12 - 16 33 11.0% 51% 16 - 24 50 16.7% 68% 24 - 32 23 7.7% 76% 32 - 48 33 11.0% 87% 48 - 64 15 5.0% 92% 64 - 96 15 5.0% 97% 96 - 128 3 1.0% 98% 128 - 192 7 2.3% 100% 192 - 256 256 384 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 Total 300.00 300.00	6 - 8	22	7.3%	30%
12 - 16 33 11.0% 51% 16 - 24 50 16.7% 68% 24 - 32 23 7.7% 76% 32 - 48 33 11.0% 87% 48 - 64 15 5.0% 92% 64 - 96 15 5.0% 97% 96 - 128 3 1.0% 98% 128 - 192 7 2.3% 100% 192 - 256 256 384 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 2044 - 4096	8 - 12	30	10.0%	40%
16 - 24 50 16.7% 68% 24 - 32 23 7.7% 76% 32 - 48 33 11.0% 87% 48 - 64 15 5.0% 92% 64 - 96 15 5.0% 97% 96 - 128 3 1.0% 98% 128 - 192 7 2.3% 100% 192 - 256 256 - 384 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 Total 300.00	12 - 16	33	11.0%	51%
24 - 32 23 7.7% 76% 32 - 48 33 11.0% 87% 48 - 64 15 5.0% 92% 64 - 96 15 5.0% 97% 96 - 128 3 1.0% 98% 128 - 192 7 2.3% 100% 192 - 256 256 384 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 100.00	16 - 24	50	16.7%	68%
32 - 48 33 11.0% 87% 48 - 64 15 5.0% 92% 64 - 96 15 5.0% 97% 96 - 128 3 1.0% 98% 128 - 192 7 2.3% 100% 192 - 256 256 384 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 Total 300.00	24 - 32	23	7.7%	76%
48 - 64 15 5.0% 92% 64 - 96 15 5.0% 97% 96 - 128 3 1.0% 98% 128 - 192 7 2.3% 100% 192 - 256 256 - 384 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 7 7 Total 300.00 300.00 300.00	32 - 48	33	11.0%	87%
64 - 96 15 5.0% 97% 96 - 128 3 1.0% 98% 128 - 192 7 2.3% 100% 192 - 256 256 - 384 384 - 512 512 - 1024 512 - 1024 1024 - 2048 2044 - 4096 7 Total 300.00 300.00 300.00	48 - 64	15	5.0%	92%
96 - 128 3 1.0% 98% 128 - 192 7 2.3% 100% 192 - 256 256 - 384 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 Total 300.00	64 - 96	15	5.0%	97%
128 - 192 7 2.3% 100% 192 - 256 256 - 384 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 Total 300.00	96 - 128	3	1.0%	98%
192 - 256 256 - 384 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 Total 300.00	128 - 192	7	2.3%	100%
256 - 384 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 Total 300.00	192 - 256			
384 - 512 512 - 1024 1024 - 2048 2044 - 4096 Total 300.00	256 - 384			
512 - 1024 1024 - 2048 2044 - 4096 Total 300.00	384 - 512			
1024 - 2048 2044 - 4096 Total 300.00	512 - 1024			
2044 - 4096 Total 300.00	1024 - 2048			
Total 300.00	2044 - 4096			
Total 300.00				
	Total	300.00		

COMMENTS:

Particle Size	# in Size	% of	% Finer
(mm)	Class	Total	Than
<0.062	18	6.0%	
0.062 - 0.125	0	0.0%	6%
0.125 - 0.25	4	1.3%	7%
0.255	0	0.0%	7%
0.5 - 1.0	19	6.3%	14%
1 - 2	15	5.0%	19%
2 - 4	33	11.0%	30%
4 - 6	13	4.3%	34%
6 - 8	15	5.0%	39%
8 - 12	20	6.7%	46%
12 - 16	22	7.3%	53%
16 - 24	37	12.3%	65%
24 - 32	27	9.0%	74%
32 - 48	20	6.7%	81%
48 - 64	10	3.3%	84%
64 - 96	21	7.0%	91%
96 - 128	12	4.0%	95%
128 - 192	7	2.3%	98%
192 - 256	6	2.0%	100%
256 - 384	1	0.3%	100%
384 - 512			
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	300.00		

STREAM NAME: Pikes Peak Highway - West Fork Beaver Creek Reach 2

COMMENTS:

Particle Size	# in Size	% of	% Finer
(mm)	Class	Total	Than
< 0.062	14	4.7%	
0.062 - 0.125	0	0.0%	5%
0.125 - 0.25	8	2.7%	7%
0.255	0	0.0%	7%
0.5 - 1.0	26	8.7%	16%
1 - 2	15	5.0%	21%
2 - 4	29	9.7%	31%
4 - 6	15	5.0%	36%
6 - 8	16	5.3%	41%
8 - 12	26	8.7%	50%
12 - 16	27	9.0%	59%
16 - 24	33	11.0%	70%
24 - 32	26	8.7%	78%
32 - 48	21	7.0%	85%
48 - 64	9	3.0%	88%
64 - 96	21	7.0%	95%
96 - 128	7	2.3%	98%
128 - 192	7	2.3%	100%
192 - 256			
256 - 384			
384 - 512			
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	300.00		

STREAM NAME: Pikes Peak Highway - West Fork Beaver Creek Reach 2 ID NUMBER: WBVR2

Appendix O

Stream Bar Sample

Particle Size Distribution Summary and Graphs

Site Name		Data		Particle Size Distribution						
Site Name	Site ID	Date	D15	D35	D50	D84	D95	D100		
Boehmer Creek Reach 1	BHMR1	9/17/2012	0.018	0.140	0.538	1.935	5.236	15.0		
Boehmer Creek Reach 2	BHMR2	9/17/2012	0.628	1.168	1.633	4.708	24.311	29.0		
East Fork Beaver Creek Reach 1	EBVR1	9/18/2012	0.602	1.692	2.954	7.350	11.378	15.0		
East Fork Beaver Creek Reach 2	EBVR2	9/18/2012	1.312	3.317	4.457	7.512	9.827	15.0		
Glen Cove Reach 1	GLEN1	9/24/2012	0.595	1.549	2.707	8.503	12.487	20.0		
North Catamount Creek Reach 1	NCAT1	9/10/2012	0.805	1.701	2.548	5.054	7.324	9.0		
North Catamount Creek Reach 2	NCAT2	9/27/2012	0.799	2.475	3.781	8.613	12.339	19.0		
North Fork Crystal Creek Reach 1	NCRY1	9/6/2012	0.805	1.701	2.548	5.054	7.324	9.0		
North Fork Crystal Creek Reach 2	NCRY2	9/6/2012	0.106	0.888	1.463	4.455	8.818	14.0		
Oil Creek Reach 1	OILC1	9/25/2012	0.017	0.124	0.528	3.797	8.523	20.0		
South Catamount Creek Reach 1	SCAT1	9/11/2012	0.228	2.598	4.666	13.589	23.688	29.0		
South Catamount Creek Reach 2	SCAT2	9/24/2012	1.173	3.176	4.813	9.452	16.237	26.0		
South Catamount Creek Reach 3	SCAT3	9/24/2012	0.305	1.064	2.168	11.189	19.976	28.0		
Ski Creek Reach 1	SKIC1	9/11/2012	0.437	1.768	3.565	9.785	15.503	21.0		
Ski Creek Reach 2	SKIC2	9/6/2012	0.110	0.794	1.319	4.274	7.400	14.0		
Severy Creek Reach 1	SVRY1	9/20/2012	0.030	0.471	0.998	3.398	5.503	12.0		
Severy Creek Reach 2	SVRY2	9/20/2012	0.501	1.156	1.893	6.469	10.633	15.0		
West Fork Beaver Creek Reach 1	WBVR1	10/1/2012	0.121	1.345	3.470	21.148	27.054	30.0		
West Fork Beaver Creek Reach 2	WBVR2	10/1/2012	2.595	4.673	6.293	11.900	17.552	21.0		

Summary of Stream Channel Particle Size Distribution from Sieve Analysis of Bar Samples on Pikes Peak, 2012

Size Finer	Wt. on	% of Total	% Finer							
Than (mm)	Sieve		Than		_					
Pan	447.30	47.4%		SITE NAME:	Pikes Peak H	ighway - Boeh	mer Creek Re	ach 1		
0.5	231.20	24.5%	47.4%	ID NUMBER:	BHMR1					
1.0	119.50	12.7%	71.9%	DATE:	9/17/2012					
2.0	30.40	3.2%	84.6%	CREW:	VonLoh, Willis	6				
2.8	38.60	4.1%	87.8%							
4.0	36.30	3.8%	91.9%	Particle Size	D15	D35	D50	D84	D95	Lpart
5.6	14.10	1.5%	95.8%	Distribution (mm)	0.018	0.140	0.538	1.935	5.236	15.0
8.0	4.60	0.5%	97.3%							
11.2	21.20	2.2%	97.8%		(Cumulative	Particle Si	ize Distribu	tion	
15.0	*		100.0%							
22.4			-		Sand	(Gravel	Cobble	Boulde	r
32.0				100% —			<u></u> <u> </u>		•	
45.0				90%						
64.0				00 /0						
90				80%	+ + + + + + + + + + + + + + + + + + + +	<u>/ </u>				
128				700/						
181				au /0%						
256				F 60% -	<u> </u>					
302				ner						
51Z 1024				E 50%	╶┼╶┼┼┟┟╎┼┼┤			++++++		
20/18										
2040										
4000				u 30% –	+ + + + + + + + + + + + + + + + + + + +					
Total	943.20			20%						
*Measured v	alue of the	e largest par	ticle in	20 %						
the sample a	ind not a s	sieve weight		10%						
		-		0%						
				0.1	1		10	100	1000	10000
							Particle Siz	ze (mm)		

[•] Pikes Peak Highway - Boehmer Creek Reach 2

Si	ze Finer	Wt. on	% of Total	% Finer			
Th	an (mm)	Sieve		Than			
	Pan	49.10	8.6%		SIT	E١	AME:
	0.5	111.10	19.5%	8.6%	ID N	IUI	MBER:
	1.0	177.20	31.0%	28.1%	DA	TE:	
	2.0	69.00	12.1%	59.1%	CRI	ΞW	/:
	2.8	62.30	10.9%	71.2%			
	4.0	22.60	4.0%	82.1%	Par	tic	le Size
	5.6	6.80	1.2%	86.0%	Dis	trik	oution
	8.0	2.10	0.4%	87.2%			
	11.2	7.40	1.3%	87.6%			
	16.0	21.60	3.8%	88.9%			
	22.4	41.80	7.3%	92.7%			
	29.0	*		100.0%			100%
	45.0			-			000/
	64.0						90%
	90						80%
	128						
	181					S	70%
	256					ĽP	c00/
	362					Ŀ	60%
	512					Ě	50%
	1024					ž	
	2048					Ser	40%
	4096					ē	200/
						-	30 %
L	Total	571.00					20%
*M	easured va	alue of the	e largest part	ticle in			400/
the	e sample a	na not a s	sieve weight				10%

Size Finer	Wt. on	% of Total	% Finer							
Than (mm)	Sieve		Than							
Pan	86.30	12.1%		SITE NAME:	Pikes Peak H	ighway - East	Fork Beaver C	creek Reach 1		
0.5	77.00	10.8%	12.1%	ID NUMBER:	EBVR1					
1.0	113.80	16.0%	22.9%	DATE:	9/18/2012					
2.0	66.20	9.3%	38.8%	CREW:	VonLoh, Willis	6				
2.8	88.90	12.5%	48.1%							
4.0	94.70	13.3%	60.6%	Particle Size	D15	D35	D50	D84	D95	Lpart
5.6	94.80	13.3%	73.9%	Distribution (mm)	0.602	1.692	2.954	7.350	11.378	15.0
8.0	53.90	7.6%	87.2%							
11.2	37.70	5.3%	94.7%			Cumulative	Particle Si	ize Distribu	tion	
15.0	*		100.0%							
22.4			-		Sand	C	Gravel	Cobble	Boulde	r
32.0				100%		- <u>-</u>			• • • • • • • • • • • • • • • • • • • •	
45.0				00.9/						
64.0				90%						
90				80%	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	///////////////////////////////////	1			
128										
181				g ^{70%}	+ + + + + + + + + + + + + + + + + + + +			+++++++-		
256				The cov						
362				b						
512				1 50%	+ + + + + + + + + + + + + + + + + + + +	/ ↓↓↓↓				
1024										
2048				i j 40%	+ + + + + + + + + + + + + + + + + + + +	≠				
4096				b 30%		<u> </u>				
				- 50 /8		´				
Total	713.30			20%	╷╷╷╷╢╢		+++++			
*Measured v	alue of the	e largest par	ticle in	1001						
the sample a	nd not a s	sieve weight		10%	┼┼┼╀┼╢╢╴					
				0%						
				0.1	1		10	100	1000	10000
							Particle Siz	e (mm)		

EBVR2

Size Finer	Wt. on	% of Total	% Finer				
Than (mm)	Sieve		Than				
Pan	94.30	9.3%			SITE N	JAME:	
0.5	27.90	2.7%	9.3%		id Nui	MBER:	
1.0	76.70	7.6%	12.0%		DATE:		
2.0	80.90	8.0%	19.6%		CREW	1:	
2.8	158.90	15.7%	27.6%				
4.0	214.10	21.1%	43.2%		Partic	le Size	;
5.6	242.60	23.9%	64.3%		Distrib	oution	(m)
8.0	112.60	11.1%	88.2%	Г			
11.2	7.00	0.7%	99.3%				
15.0	*		100.0%				
22.4			-				
32.0						100%	Т
45.0						000/	
64.0						90%	T
90						80%	+
128							
181					U	70%	╈
256					Th	600/	
362					e.	60 %	T
512					Ë	50%	+
1024					Ţ		
2048					cer	40%	┢
4096					Jer.	20%	
						30 /0	Τ
Total	1015.00					20%	┢
*Measured v	alue of the	e largest par	ticle in			1001	
the sample a	nd not a s	sieve weight				10%	┢

Pikes Peak Highway - East Fork Beaver Creek Reach 2

Size Finer	Wt. on	% of Total	% Finer	
Than (mm)	Sieve		Than	
Pan	124.30	12.1%		SITE N
0.5	117.60	11.5%	12.1%	ID NU
1.0	185.10	18.1%	23.6%	DATE:
2.0	95.10	9.3%	41.7%	CREW
2.8	112.40	11.0%	50.9%	
4.0	98.10	9.6%	61.9%	Partic
5.6	108.00	10.5%	71.5%	Distrik
8.0	113.40	11.1%	82.0%	
11.2	65.40	6.4%	93.1%	
16.0	5.80	0.6%	99.4%	
20.0	*		100.0%	
32.0			-	1
45.0				1
64.0				
90				
128				
181				Ē
256				Lha
362				5
512				ŭ.
1024				LL LL
2048				Sen
4096				ero
				–
Total	1025.20			1
*Measured va	alue of the	e largest part	icle in	
the sample a	nd not a s	ieve weight		1

Size Finer	Wt. on	% of Total	% Finer									
Than (mm)	Sieve		Than			_						
Pan	59.90	6.6%		SITE N	NAME:	Pikes Peak	Highway - North	n Catamount	Creek Reach 1			
0.5	110.90	12.2%	6.6%	ID NU	MBER:	NCAT1						
1.0	191.50	21.1%	18.8%	DATE	:	9/10/2012						
2.0	126.90	14.0%	39.9%	CREW	V:	VonLoh, Wi	lis					
2.8	175.50	19.3%	53.9%									
4.0	140.30	15.5%	73.3%	Partic	le Size	D15	D35	D50	D84	D95	Lpart	
5.6	75.80	8.4%	88.7%	Distrik	oution (mm)	0.805	1.701	2.548	5.054	7.324	9.0	
8.0	26.60	2.9%	97.1%									
9.0	*		100.0%				Cumulative	Particle S	Size Distribu	tion		
16.0			-									
22.4						Sand	(Gravel	Cobble	Boulde	r	
32.0					100%		• I I I I			•		
45.0					00%			ΤΙΙ ΙΙ				
64.0					30 /8							
90					80%		<u> </u>					
128												
181				an	/0%					+++++++++		
256				1 년	60%							
362				ler	00,0							
512					50%		$-+$ $\Lambda+++$					
1024				ţ	40.9/							
2048				2 C	40%							
4096				Pe	30%		_/	+++ + +	+++++++			
Total	907 /0						/					
*Measured v	alue of the	largest na	rticle in		20%		í <u>† † † † † † †</u>					
the sample a	nd not a s	iava waiaht			10%							
the sample a	nu not u s	ieve weight			10 / 0	🖌						
					0%							
					0.1	1		10	100	1000	1000)0
								Particle S	ize (mm)			

Size Finer	Wt. on	% of Total	% Finer						
Than (mm)	Sieve		Than						
Pan	70.90	8.8%		SITE NAME:	Pikes Peak H	ighway - North	n Catamount C	reek Reach 2	
0.5	73.90	9.2%	8.8%	ID NUMBER:	NCAT2				
1.0	97.40	12.1%	18.0%	DATE:	9/27/2012				
2.0	63.00	7.8%	30.1%	CREW:	VonLoh, Willis	6			
2.8	116.10	14.4%	37.9%						
4.0	115.80	14.4%	52.3%	Particle Size	D15	D35	D50	D84	
5.6	118.50	14.7%	66.6%	Distribution (mm) 0.799	2.475	3.781	8.613	12
8.0	97.30	12.1%	81.4%						
11.2	46.80	5.8%	93.4%			Cumulative	Particle S	ize Distribu	tion
16.0	6.20	0.8%	99.2%						
19.0	*		100.0%		Sand	(Gravel	Cobble	
32.0			-	100% T		- <u>-</u>			•
45.0				90%					
64.0				0070			$\boldsymbol{\lambda}$		
90				80%			∲┼──┼─┤		
128				700/					
181				a /0% +					
256				ב 60% ⊢		///			
362									
512				i 50%		─┼╶┼/ᢪ┼┼┤			++
1024						_ <i>V</i>			
2046				9 40 %					
4090				å 30% –		_₩			
Total	805.90			200/		/			
*Measured v	alue of the	e largest par	ticle in	20%					
the sample a	nd not a s	ieve weight		10%					
		-		0%					
				0.1	1		10	100	
							Particle Si	70 (mm)	

D95

12.339

Boulder

1000

Lpart

19.0

Size Finer	Wt. on	% of Total	% Finer																			
Than (mm)	Sieve		Than			_																
Pan	153.20	22.0%		SITE NA	AME:	Pikes I	Peak	Highwa	y - No	orth I	Fork Cry	/stal C	reek	Reacl	h 2							
0.5	109.00	15.7%	22.0%	ID NUM	BER:	NCRY2	2															
1.0	156.10	22.4%	37.7%	DATE:	•	9/6/201	12															
2.0	69.00	9.9%	60.1%	CREW:	•	Dereng	jowsk	i, VonL	oh													
2.8	79.50	11.4%	70.0%																			
4.0	55.20	7.9%	81.5%	Particle	e Size	D	15		D35		D50)		D84		DS	95		Lp	bart		
5.6	31.20	4.5%	89.4%	Distribu	ition (mm)	0.1	06	0	.888		1.46	3	4	.455		8.8	18		1	4.0		
8.0	27.00	3.9%	93.9%																			
11.2	15.60	2.2%	97.8%					Cum	ulati	ve	Partic	le Siz	e D	istrib	outio	n						
14.0	*		100.0%							-			-									
22.4			-			Sand				Gr	avel			Cobbl	е		Во	ulder				
32.0				10	00%			Ţ									Ш		—		Т	Π
45.0					0.0%																	
64.0					90 %					7												Π
90				1	80%		$\left \right \left \right \left \right $		╡						+ +				—	\vdash	++	
128									V													
181				a	70% ++				4+++										+	\vdash	+++	┥
256				Ĕ I	60%																	
362				ē	00 /8			Л														
512				Li -	50% +		$\left\{ + + + + + + + + + + + + + + + + + + +$	\rightarrow	+++	+++			$\left\{ + + \right\}$			++			+	$\left \right $	+++'	+
1024				Ĕ																		
2048				e é	40%		╎╎╎┝	í		111								11	+			1
4096				Le L	30%		N		+++						+				\perp	\square	Щ	4
Total	60F 90						<u> </u>															
TOLAI	095.00		tiolo in		20% +	╶┼┼┯	╎╎╎		+++						+		$\left \right $		+	$\left \right $	++	┦
the comple of		e largest par			10%																	
line sample a	nu not a s	sieve weigin			10 /8																	
					0%		ШЦ				lļ L			4				Ц		Ш		Щ
					0.1		1				10			00			10	000			1	0000
											Particl	e Size	e (mr	n)								

Size Finer Wt. on % of Total %	Finer						
Than (mm) Sieve	Than						
Pan 311.50 49.1%	SITE NAME:	Pikes Peak H	ighway - Oil C	reek Reach 1			
0.5 70.90 11.2% 4	9.1% ID NUMBER:	OILC1					
1.0 75.80 12.0% 6	0.3% DATE:	9/25/2012					
2.0 37.80 6.0% 72	2.2% CREW:	VonLoh, Willis	3				
2.8 43.10 6.8% 7	8.2%						
4.0 37.90 6.0% 8	5.0% Particle Size	D15	D35	D50	D84	D95	Lpart
5.6 22.20 3.5% 9	1.0% Distribution (mm)	0.017	0.124	0.528	3.797	8.523	20.0
8.0 18.00 2.8% 9	4.5%						
11.2 9.10 1.4% 9	7.3%		Cumulative	Particle S	ize Distribut	ion	
16.0 8.00 1.3% 9	8.7%						
20.0 * 10	00.0%	Sand	0	Gravel	Cobble	Boulde	er
32.0	- 100%		• I I I I I			1 1 1 1 1 1 1 1 1	
45.0	00%						
64.0	30 /8						
90	80%	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	_ ∕ /!!!			+ + + + + + + + + +	
128							
181	6 6 6 6 6 6 6 6 6 6		∕⊺ ┼┼┼┼				
256	<u></u>						
362							
512	1 1 50%	┼┼┼┢┦╢╢╴				+ + + + + + + + + +	
1024	t 100/						
2048	9 40%						
4096	a 30%	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$				+ + + + + + + + + + - + + + + + + + + +	
Total 624.20							
*Mossured value of the largest particle	20%	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$				+ + + + + + + + + + + - + + + + + + + +	
the sample and not a sieve weight	10%						
the sample and not a sleve weight	10 /3						
	0%					<u></u>	
	0.1	1		10	100	1000	10000
				Particle Siz	ze (mm)		

10%

0% 0.1

[•]Pikes Peak Highway - South Catamount Creek Reach 1

	Size Finer	Wt. on	% of Total	% Finer		
	Than (mm)	Sieve		Than		
	Pan	116.40	17.9%		SITE I	NAME:
	0.5	41.80	6.4%	17.9%	ID NU	MBER:
	1.0	42.50	6.5%	24.3%	DATE	:
	2.0	34.60	5.3%	30.9%	CREV	V:
	2.8	61.10	9.4%	36.2%		
	4.0	62.80	9.7%	45.6%	Partic	le Size
	5.6	77.00	11.8%	55.2%	Distril	bution
	8.0	70.80	10.9%	67.1%		
	11.2	72.40	11.1%	78.0%		
	16.0	29.40	4.5%	89.1%		
	22.4	41.50	6.4%	93.6%		
	29.0	*		100.0%		100%
	45.0			-		00.0/
	64.0					90%
	90					80%
	128					
	181				L L	70%
	256				Th	600/
	362				e.	60%
	512				i i	50%
	1024				۲.	
	2048				cer	40%
	4096				er	20%
					1 -	30 /6
ļ	Total	650.30				20%
	*Measured va	alue of the	e largest part	icle in		
	the comple of	nd not o c	novo woight		1	1/10/-

10

100

Particle Size (mm)

1000

10000

the sample and not a sieve weight

	Size Finer	Wt. on	% of Total	% Finer		
	Than (mm)	Sieve		Than		
	Pan	35.00	4.0%		SITE I	NAME:
	0.5	71.50	8.2%	4.0%	ID NU	MBER:
	1.0	105.30	12.1%	12.2%	DATE	:
	2.0	58.40	6.7%	24.3%	CREW	/ :
	2.8	98.70	11.3%	31.0%		
	4.0	121.60	14.0%	42.3%	Partic	le Size
	5.6	185.20	21.3%	56.3%	Distrik	oution
	8.0	113.70	13.0%	77.5%		
	11.2	37.60	4.3%	90.6%		
	16.0	21.20	2.4%	94.9%		
	22.4	23.30	2.7%	97.3%		
	26.0	*		100.0%		100%
	45.0			-		000/
	64.0					90%
	90					80%
	128					
	181				L L	70%
	256				That	60%
	362				e	00 %
	512					50%
	1024				_ ج	
	2048				cer	40%
	4096				er	30%
					-	50 /0
ļ	Total	871.50				20%
	*Measured va		100/			
	the sample a		10%			

Pikes Peak Highway - South Catamount Creek Reach 2 SCAT2 9/24/2012

VonLoh, Willis

Size Finer	Wt. on	% of Total	% Finer							
Than (mm)	Sieve		Than		_					
Pan	173.40	16.7%		SITE NAME:	Pike's Peak H	lighway - Sout	h Catamount	Creek Reach 3		
0.5	176.00	17.0%	16.7%	ID NUMBER:	SCAT3					
1.0	155.60	15.0%	33.7%	DATE:	9/24/2012					
2.0	58.10	5.6%	48.7%	CREW:	Derengowski,	VonLoh				
2.8	66.80	6.4%	54.3%							
4.0	69.40	6.7%	60.7%	Particle Size	D15	D35	D50	D84	D95	Lpart
5.6	80.40	7.7%	67.4%	Distribution (mm)	0.305	1.064	2.168	11.189	19.976	28.0
8.0	92.40	8.9%	75.1%							
11.2	92.60	8.9%	84.0%		(Cumulative	Particle S	ize Distribu	tion	
16.0	32.30	3.1%	92.9%							
22.4	40.90	3.9%	96.1%		Sand	G	Gravel	Cobble	Boulde	er
28.0	*		100.0%	100% T		• • • • • •			•	
45.0			-	00%						
64.0				90 %						
90				80%	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		╢┸──┼─┼			
128										
181				E ^{70%}	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$					
256				Ŭ 60%						
362										
512				i i 50% +	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$					
1024				- 		∕⊺				
2048				9 40%	<u> /</u>					
4096				a 30%						
				_ 00 / 0						
Iotal	1037.90			20%	┼┼┼┟╱╢╢─					
^Measured v	alue of the	e largest pa	rticle in	100/	¶					
the sample a	ind not a s	ieve weight	ſ	10%						
				0%						
				0.1	1		10	100	1000	10000
							Particle Si	70 (mm)		
								20 (1111)		

Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	94.80	15.4%		SITE N	NAME:
0.5	63.10	10.3%	15.4%	ID NU	MBER:
1.0	69.50	11.3%	25.7%	DATE	:
2.0	40.60	6.6%	37.0%	CREW	/:
2.8	57.90	9.4%	43.6%		
4.0	70.80	11.5%	53.0%	Partic	le Size
5.6	69.60	11.3%	64.6%	Distrik	oution (
8.0	83.20	13.5%	75.9%		
11.2	37.50	6.1%	89.4%		
16.0	27.40	4.5%	95.5%		
21.0	*		100.0%		
32.0			-		100%
45.0					000/
64.0					90%
90					80% ·
128					
181				E E	70% ·
256				Th	609/
362				er .	60 % ·
512				i i	50% ·
1024				۲.	
2048				cer	40% ·
4096				ere	200/
				1 4	30 %
Total	614.40				20% ·
*Measured v	alue of the	e largest par	ticle in		
the sample a		10% ·			

D95

Lpart

Size Finer	Wt. on	% of Total	% Finer								
Than (mm)	Sieve		Than		_						
Pan	159.60	21.8%		SITE NAME:	Pikes Pea	k Highway - S	ki Creek Reach	2			
0.5	144.70	19.8%	21.8%	ID NUMBER:	SKIC2						
1.0	154.30	21.1%	41.6%	DATE:	9/6/2012						
2.0	66.50	9.1%	62.7%	CREW:	VonLoh, W	illis					
2.8	77.20	10.5%	71.7%								_
4.0	63.80	8.7%	82.3%	Particle Size	D15	D35	D50	D84	D95	Lpart	
5.6	37.50	5.1%	91.0%	Distribution (m	m) 0.110	0.794	1.319	4.274	7.400	14.0	
8.0	24.70	3.4%	96.1%								
11.2	3.70	0.5%	99.5%			Cumulat	ive Particle	Size Distribu	Ition		
14.0	*		100.0%								
22.4			-		Sand		Gravel	Cobble	Boulde	ər	
32.0				100% T		T T	╷╷╻ <mark>┙╕</mark> ╴╷╶╷		•		ΠΠ
45.0				90%							
64.0				00 /0			<i>1</i>				
90				80% —		╞╴╞╴╞╱╇		+++++++++			++++
128				700/							
181				a /0% +							
256				⊢ _{60%}		╞╴╷╇╴╞╞		+++++++++++++++++++++++++++++++++++++++			
362				Jer		/					
512				E 50% +		+/ + ++		+++++++++++++++++++++++++++++++++++++++			
2048											
2048				90,40,10							
4030				4 30% –	<u> </u>	+ $+$ $+$ $+$		+++++++++			
Total	732.00			000/							
*Measured v	alue of the	e largest par	rticle in	20%							
the sample a	ind not a s	ieve weight	1	10% -				+++++++++++++++++++++++++++++++++++++++			
		- 5									
				0% +				100			<u>шц</u>
				0.1		1	10	100	1000		10000
							Particle S	ize (mm)			

SVRY1

[•] Pikes Peak Highway - Severy Creek Reach 1

Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	260.10	35.4%		SITE I	NAME:
0.5	107.20	14.6%	35.4%	ID NU	MBER:
1.0	135.90	18.5%	50.0%	DATE	:
2.0	60.90	8.3%	68.6%	CREW	/:
2.8	96.60	13.2%	76.9%		
4.0	38.60	5.3%	90.0%	Partic	le Size
5.6	18.50	2.5%	95.3%	Distrik	oution (
8.0	13.30	1.8%	97.8%		
11.2	2.90	0.4%	99.6%		
12.0	*		100.0%		
22.4			-		
32.0					100% ·
45.0					00.0/
64.0					90%
90					80% ·
128					
181				an	70% ·
256				The T	60%
362				er	00 /8
512				Li I	50% ·
1024				보	
2048				cel	40% ·
4096				Der	30%
					50 /0
Total	734.00				20% ·
*Measured va	alue of the	e largest par	ticle in		100/
the sample a		10%			

[•] Pike's Peak Highway - Severy Creek Reach 2

SVRY2 9/20/2012

Size Finer	Wt. on	% of Total	% Finer			
Than (mm)	Sieve		Than			
Pan	133.40	15.0%		SITE N	NAME:	
0.5	139.10	15.6%	15.0%	ID NU	MBER:	
1.0	187.80	21.1%	30.6%	DATE		
2.0	81.00	9.1%	51.7%	CREW	/:	
2.8	94.70	10.6%	60.8%			
4.0	83.10	9.3%	71.4%	Partic	le Size	•
5.6	72.30	8.1%	80.7%	Distrib	oution	m
8.0	65.00	7.3%	88.8%			
11.2	34.50	3.9%	96.1%			
15.0	*		100.0%			
22.4			-			
32.0					100%	г
45.0					000/	
64.0					90%	t
90					80%	
128					0070	
181				E	70%	┝
256				Lha	000/	
362				5	60%	T
512				Ŭ.	50%	╞
1024				H H		
2048				cer	40%	┢
4096				ere	200/	
				–	30%	Γ
Total	890.90				20%	-
*Measured va	alue of the	e largest par	ticle in			
the sample a	nd not a s	sieve weight			10%	┢
				1		

WBVR1

^{*}Pikes Peak Highway - West Fork Beaver Creek Reach 1

Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	234.80	21.2%		SITE I	NAME:
0.5	107.80	9.7%	21.2%	ID NU	MBER:
1.0	104.70	9.5%	31.0%	DATE	:
2.0	57.40	5.2%	40.4%	CREW	/ :
2.8	80.90	7.3%	45.6%		
4.0	75.20	6.8%	52.9%	Partic	le Size
5.6	78.70	7.1%	59.7%	Distrik	oution
8.0	37.00	3.3%	66.8%		
11.2	52.90	4.8%	70.2%		
16.0	120.90	10.9%	74.9%		
22.4	156.40	14.1%	85.9%		
30.0	*		100.0%		100%
45.0			-		00.0/
64.0					90%
90					80%
128					
181				L L	70%
256				That	60%
362				e	00 %
512					50%
1024				_ ج	
2048				cer	40%
4096				Per	30%
				-	50 /0
Total	1106.70				20%
*Measured va	alue of the	e largest par	ticle in		400/
the sample a		10%			

WBVR2

[•]Pikes Peak Highway - West Fork Beaver Creek Reach 2

	Size Finer	Wt. on	% of Total	% Finer		
	Than (mm)	Sieve		Than		
	Pan	34.90	3.6%		SITE N	NAME:
	0.5	20.60	2.1%	3.6%	ID NU	MBER:
	1.0	51.90	5.4%	5.7%	DATE	:
	2.0	48.90	5.1%	11.1%	CREW	/:
	2.8	112.30	11.6%	16.1%		
	4.0	152.10	15.7%	27.7%	Partic	le Size
	5.6	193.90	20.0%	43.5%	Distrik	oution
	8.0	182.00	18.8%	63.5%		
	11.2	98.20	10.1%	82.3%		
	16.0	73.40	7.6%	92.4%		
	21.0	*		100.0%		
	32.0			-		100%
	45.0					000/
	64.0					90%
	90					80%
	128					
	181				E	70%
	256				Th	609/
	362				г	60%
	512				i i	50%
	1024				۲ ۲	
	2048				Cer	40%
	4096				e	20%
					–	30 /6
ļ	Total	968.20				20%
	*Measured va	alue of the	e largest part	icle in		
	the sample a		10%			

Appendix P

Riparian Vegetation Summary

2012

Site ID	Date	Camera	Cross Section and Pin to Pin Distance in (ft)	Bar Sample	Bank	Bank Distance from LPIN (ft)	Camera Distance from LPIN (ft)	Percent Cover	Comments
				Downstream					
BHMR1	9/17/2012	Olympus Stylus 400	A (24.36)	from XSE	Left	11.2	14.0	20	Grass, Sedge, Forb
BHMR1		Olympus Stylus 400	А		Right	13.4	10.5	20	Grass, Sedge
BHMR1		Olympus Stylus 400	B (31.95)		Left	6.5	10.8	15	Grass, Sedge
BHMR1		Olympus Stylus 400	В		Right	9.9	5.8	20	Grass, Sedge
BHMR1		Olympus Stylus 400	C (16.81)		Left	8.2	13.0	10	Sedge, Forb
BHMR1		Olympus Stylus 400	С		Right	11.8	7.5	15	Sedge, Forb
BHMR1		Olympus Stylus 400	D (20.28)		Left	7.4	11.0	25	Grass, Sedge, Forb
BHMR1		Olympus Stylus 400	D		Right	10.6	7.0	15	Grass, Sedge
BHMR1		Olympus Stylus 400	E (34.42)		Left	21.8	27.0	25	Sedge
BHMR1		Olympus Stylus 400	E		Right	27.6	22.5	15	Grass, Sedge
				18' upstream					
BHMR2	9/17/2012	Olympus Stylus 400	A (25.43)	from XSB	Left	6.0	11.0	15	Sedge, Forb
BHMR2		Olympus Stylus 400	A		Right	10.0	6.0	20	Sedge, Forb
BHMR2		Olympus Stylus 400	B (17.59)		Left	6.9	10.0	20	Grass, Sedge, Forb
BHMR2		Olympus Stylus 400	В		Right	10.0	6.0	20	Sedge, Forb
BHMR2		Olympus Stylus 400	C (18.46)		Left	6.0	10.0	10	Sedge, Forb, Shrub
BHMR2		Olympus Stylus 400	С		Right	9.4	6.0	15	Sedge, Forb
BHMR2		Olympus Stylus 400	D (30.44)		Left	15.5	19.0	25	Grass, Sedge, Forb
BHMR2		Olympus Stylus 400	D		Right	18.6	15.0	30	Sedge
BHMR2		Olympus Stylus 400	E (43.02)		Left	11.0	16.0	15	Sedge, Forb
BHMR2		Olympus Stylus 400	E		Right	14.7	11.5	20	Sedge
FBVR1	9/18/2012	Olympus Stylus 400	A (20 70)	2' downstream from XSB right bank	l eft	1.3	5.0	0	Boulder
EBVR1	0,10,2012	Olympus Stylus 400	Α	Dank	Right	17.1	13.6	5	Moss Sedge Shrub
FBVR1		Olympus Stylus 400	B (24 53)		Left	3.0	5.0	15	Grass Sedge
EBVR1		Olympus Stylus 400	B		Right	13.5	9.0	35	Grass, Sedge, Forb

Riparian Vegetation Summary Pikes Peak, 2012

Site ID	Date	Camera	Cross Section and Pin to Pin Distance in (ft)	Bar Sample	Bank	Bank Distance from LPIN (ft)	Camera Distance from LPIN (ft)	Percent Cover	Comments
EBVR1		Olympus Stylus 400	C (29.05)		Left	6.8	11.0	30	Grass, Sedge, Shrub
EBVR1		Olympus Stylus 400	C		Right	17.0	12.0	15	Grass, Shrub
EBVR1		Olympus Stylus 400	D (12.77)		Left	3.5	6.0	45	Moss, Grass, Forb
EBVR1		Olympus Stylus 400	D		Right	9.0	5.0	35	Moss, Forb, Shrub
EBVR1		Olympus Stylus 400	E (18.48)		Left	8.3	11.0	35	Moss, Sedge, Forb
EBVR1		Olympus Stylus 400	E		Right	13.6	10.0	75	Moss, Grass, Forb
FBVR2	9/18/2012	Olympus Stylus 400	A (37 63)	6' upstream from XSF	Left	14.3	19.0	30	Sedae
EBVR2	0, 10, 2012	Olympus Stylus 400	A		Right	20.0	16.0	35	Sedge
EBVR2		Olympus Stylus 400	B (21.24)		Left	9.2	15.0	10	Sedge
EBVR2		Olympus Stylus 400	B		Right	14.3	11.0	15	Grass, Sedge
EBVR2		Olympus Stylus 400	C (20.46)		Left	9.2	13.0	20	Moss, Forb, Sedge
EBVR2		Olympus Stylus 400	С		Right	13.4	11.0	25	Sedge
EBVR2		Olympus Stylus 400	D (17.45)		Left	7.7	12.5	10	Sedge
EBVR2		Olympus Stylus 400	D		Right	13.2	10.0	10	Grass, Sedge, Forb
EBVR2		Olympus Stylus 400	E (19.66)		Left	9.8	14.0	20	Sedge, Forb
EBVR2		Olympus Stylus 400	E		Right	14.6	11.0	15	Sedge
GLEN1	9/24/2012	Olympus Stylus 400	A (20.03)	At XSE right bank	Left	9.0	12.0	10	Sedge, Forb, Shrub
GLEN1		Olympus Stylus 400	А		Right	13.0	8.5	60	Moss, Sedge, Forb, Shrub
GLEN1		Olympus Stylus 400	B(16.57)		Left	6.3	9.5	5	Grass, Shrub
GLEN1		Olympus Stylus 400	В		Right	9.0	5.7	10	Grass, Sedge, Forb, shrub
GLEN1		Olympus Stylus 400	C (17.31)		Left	5.9	9.9	10	Sedge
GLEN1		Olympus Stylus 400	С		Right	9.6	6.0	20	Sedge, Forb
GLEN1		Olympus Stylus 400	D (49.99)		Left	16.8	21.0	5	Shrub
GLEN1		Olympus Stylus 400	D		Right	29.0	27.2	5	Shrub, Forb, Tree, Grass
GLEN1		Olympus Stylus 400	E (24.29)		Left	8.0	15.5	15	Sedge, Forb, Shrub
GLEN1		Olympus Stylus 400	E		Right	19.7	12.0	20	Grass, Forb, Shrub
NCAT1	9/10/2012	Olympus Stylus 400	A (57.53)	XSB <> XSC right bank	Left	12.0	17.0	35	Grass, Sedge, Forb

Site ID	Date	Camera	Cross Section and Pin to Pin Distance in (ft)	Bar Sample	Bank	Bank Distance from LPIN (ft)	Camera Distance from LPIN (ft)	Percent Cover	Comments
NCAT1		Olympus Stylus 400	А		Right	16.5	12.0	45	Sedge, Grass, Forb
NCAT1		Olympus Stylus 400	B (58.83)		Left	46.0	50.0	35	Sedge
NCAT1		Olympus Stylus 400	В		Right	50.5	47.0	35	Sedge
NCAT1		Olympus Stylus 400	C (38.85)		Left	16.7	21.5	35	Grass, Sedge, Forb, shrub
NCAT1		Olympus Stylus 400	С		Right	30.3	26.0	25	Grass, Sedge, Forb
NCAT1		Olympus Stylus 400	D (44.77)		Left	28.7	30.0	35	Sedge, Forb, Shrub
NCAT1		Olympus Stylus 400	D		Right	32.5	29.3	45	Sedge, Forb
NCAT1		Olympus Stylus 400	E (60.78)		Left	42.8	47.0	25	Grass, Sedge, Shrub
NCAT1		Olympus Stylus 400	E		Right	45.5	41.0	30	Grass, Sedge
				3' downstream					
NCAT2	9/27/2012	Olympus Stylus 400	A (29.17)	from XSB	Left	12.0	16.5	45	Grass, Sedge, Shrub
NCAT2		Olympus Stylus 400	A		Right	16.2	12.0	34	Grass, Sedge
NCAT2		Olympus Stylus 400	B (40.59)		Left	8.8	13.0	30	Grass, Sedge
NCAT2		Olympus Stylus 400	В		Right	11.8	8.0	20	Grass, Sedge
NCAT2		Olympus Stylus 400	C (42.34)		Left	12.4	17.0	25	Grass, Sedge
NCAT2		Olympus Stylus 400	С		Right	16.4	11.5	30	Grass, Sedge, Forb
NCAT2		Olympus Stylus 400	D (29.78)		Left	6.0	10.5	35	Grass, Sedge, Forb, shrub
NCAT2		Olympus Stylus 400	D		Right	9.7	5.0	30	Grass, Sedge, Forb
NCAT2		Olympus Stylus 400	E (34.25)		Left	10.0	15.0	50	Moss, Forb, Sedge, Shrub
NCAT2		Olympus Stylus 400	E		Right	13.1	2.5	25	Grass, Sedge
NCRY1	9/6/2012	Olympus Stylus 400	A (54.53)	At XSA left bank	Left	35.5	39.0	15	Grass, Sedge, Forb
NCRY1		Olympus Stylus 400	A		Right	38.8	36.0	20	Grass, Sedge, forb
NCRY1		Olympus Stylus 400	B (51.31)		Left	38.8	42.0	15	Sedge, Tree
NCRY1		Olympus Stylus 400	В		Right	41.5	38.0	20	Moss, Sedge, Shrub
NCRY1		Olympus Stylus 400	C (43.61)		Left	26.3	29.0	80	Moss, Grass, Forb, Tree
NCRY1		Olympus Stylus 400	С		Right	28.7	25.0	60	Moss, Sedge, Forb
NCRY1		Olympus Stylus 400	D (41.53)		Left	29.6	32.8	15	Sedge
NCRY1		Olympus Stylus 400	D		Right	31.5	29.5	10	Sedge, Shrub
NCRY1		Olympus Stylus 400	E (37.98)		Left	30.0	33.7	45	Sedge
NCRY1		Olympus Stylus 400	E		Right	34.3	31.0	75	Moss, Grass, Forb, Shrub

Site ID	Date	Camera	Cross Section and Pin to Pin Distance in (ft)	Bar Sample	Bank	Bank Distance from LPIN (ft)	Camera Distance from LPIN (ft)	Percent Cover	Comments
				Upstream from					
NCRY2	9/6/2012	Olympus Stylus 400	A (24.23)	XSE	Left	10.5	15.5	20	Grass, Shrub
NCRY2		Olympus Stylus 400	А		Right	20.6	15.0	10	Moss, Grass, Forb
NCRY2		Olympus Stylus 400	B (35.00)		Left	21.4	25.0	15	Grass, Forb, Shrub
NCRY2		Olympus Stylus 400	В		Right	30.5	26.0	10	Moss, Forb, Shrub
NCRY2		Olympus Stylus 400	C (33.82)		Left	19.3	24.0	30	Grass, Shrub
NCRY2		Olympus Stylus 400	С		Right	27.4	23.0	15	Grass, Forb, Shrub
NCRY2		Olympus Stylus 400	D (28.71)		Left	14.5	18.3	5	Grass, Forb
NCRY2		Olympus Stylus 400	D		Right	22.9	19.3	0	Sediment
NCRY2		Olympus Stylus 400	E (34.35)		Left	5.3	7.1	5	Shrub
NCRY2		Olympus Stylus 400	E		Right	18.4	15.6	50	Moss
				4' downstream from XSA right					
OILC1	9/25/2012	Olympus Stylus 400	A (48.75)	bank	Left	5.4	11.0	50	Grass, Sedge, Forb, Shrub
OILC1		Olympus Stylus 400	А		Right	37.0	33.0	40	Sedge, Shrub
OILC1		Olympus Stylus 400	B (41.34)		Left	3.5	6.0	35	Sedge, Shrub
OILC1		Olympus Stylus 400	В		Right	36.0	32.0	75	Moss, Forb, Sedge, Shrub
OILC1		Olympus Stylus 400	C (32.67)		Left	3.0	6.0	60	Moss, Forb, Sedge, Shrub
OILC1		Olympus Stylus 400	С		Right	31.0	26.0	55	Sedge, Shrub
OILC1		Olympus Stylus 400	D (45.68)		Left	3.5	6.0	60	Sedge, Forb, Shrub
OILC1		Olympus Stylus 400	D		Right	37.0	33.0	30	Sedge
OILC1		Olympus Stylus 400	E (38.35)		Left	8.9	12.0	25	Sedge
OILC1		Olympus Stylus 400	E		Right	26.6	21.0	30	Sedge, Forb
SVRY1	9/20/2012	Olympus Stylus 400	A (13.70)	At XSA	Left	2.0	7.0	35	Moss, Grass, Sedge, Forb
SVRY1		Olympus Stylus 400	А		Right	7.8	4.0	25	Sedge
SVRY1		Olympus Stylus 400	B (11.83)		Left	5.0	8.0	20	Sedge
SVRY1		Olympus Stylus 400	В		Right	5.0	5.0	25	Sedge, Shrub
SVRY1		Olympus Stylus 400	C (14.82)		Left	4.9	8.0	30	Sedge
SVRY1		Olympus Stylus 400	С		Right	7.8	5.0	20	Sedge, Shrub
SVRY1		Olympus Stylus 400	D (12.09)		Left	4.6	8.0	30	Sedge, Shrub

Site ID	Date	Camera	Cross Section and Pin to Pin Distance in (ft)	Bar Sample	Bank	Bank Distance from LPIN (ft)	Camera Distance from LPIN (ft)	Percent Cover	Comments
SVRY1		Olympus Stylus 400	D		Right	8.6	4.0	80	Moss, Forb, Shrub
SVRY1		Olympus Stylus 400	E (9.57)		Left	2.7	7.0	45	Grass, Sedge
SVRY1		Olympus Stylus 400	E		Right	6.6	4.0	80	Moss, Sedge, Forb, Shrub
				Downstream					
SVRY2	9/20/2012	Olympus Stylus 400	A (95.72)	from XSE	Left	20.2	28.0	0	Sediment
SVRY2		Olympus Stylus 400	A		Right	37.0	32.0	0	Sediment
SVRY2		Olympus Stylus 400	B (116.96)		Left	29.5	35.0	0	Sediment
SVRY2		Olympus Stylus 400	В		Right	47.2	41.0	0	Sediment
SVRY2		Olympus Stylus 400	C (158.61)		Left	59.2	65.0	0	Sediment
SVRY2		Olympus Stylus 400	С		Right	79.5	73.0	0	Sediment
SVRY2		Olympus Stylus 400	D (156.58)		Left	74.8	79.0	0	Sediment
SVRY2		Olympus Stylus 400	D		Right	91.5	87.0	0	Sediment
SVRY2		Olympus Stylus 400	E (211.52)		Left	62.5	72.0	0	Sediment
SVRY2		Olympus Stylus 400	E		Right	81.0	71.0	0	Sediment
SKIC1	9/11/2012	Olympus Stylus 400	A (15.04)	10' downstream from XSD	Left	6.2	8.0	20	Moss, Grass, Forb
SKIC1		Olympus Stylus 400	A		Right	11.1	8.5	40	Lichen, Moss, Grass, Forb
SKIC1		Olympus Stylus 400	B (14.15)		Left	4.9	7.0	5	Moss, Forb
SKIC1		Olympus Stylus 400	В		Right	10.5	7.5	5	Forb, Tree
SKIC1		Olympus Stylus 400	C (16.60)		Left	4.1	7.0	35	Grass, Forb
SKIC1		Olympus Stylus 400	С		Right	11.0	9.0	25	Moss, Grass, Forb
SKIC1		Olympus Stylus 400	D (33.57)		Left	16.0	19.5	60	Moss, Grass, Forb, Shrub
SKIC1		Olympus Stylus 400	D		Right	23.2	19.5	5	Forb, Shrub
SKIC1		Olympus Stylus 400	E (21.78)		Left	14.5	17.5	35	Grass, Forb, Shrub
SKIC1		Olympus Stylus 400	E		Right	19.2	15.0	55	Moss, Grass, Forb, Tree
SKIC2	9/6/2012	Olympus Stylus 400	A (50.70)	6' upstream from XSA left bank	Left	32.8	36.0	20	Moss, Grass, Forb, Shrub, Fungi
SKIC2		Olympus Stylus 400	А		Right	40.7	35.0	35	Moss, Grass, Forb, Tree
SKIC2		Olympus Stylus 400	B (46.73)		Left	28.5	35.5	5	Moss
SKIC2		Olympus Stylus 400	В		Right	34.5	32.5	15	Moss, Grass, Forb, Shrub

Site ID	Date	Camera	Cross Section and Pin to Pin Distance in (ft)	Bar Sample	Bank	Bank Distance from LPIN (ft)	Camera Distance from LPIN (ft)	Percent Cover	Comments
SKIC2		Olympus Stylus 400	C (29.76)		Left	2.6	6.0	15	Moss, Grass, Forb, Shrub
SKIC2		Olympus Stylus 400	С		Right	10.6	7.0	5	Moss, Forb
SKIC2		Olympus Stylus 400	D (28.31)		Left	4.3	11.0	35	Moss, Forb, Shrub
SKIC2		Olympus Stylus 400	D		Right	12.5	8.0	5	Grass, Forb
SKIC2		Olympus Stylus 400	E (41.90)		Left	24.9	31.0	35	Lichen, Moss, Grass, Forb
SKIC2		Olympus Stylus 400	E		Right	31.1	26.0	5	Moss, Grass
SCAT1	0/11/2012	Olympus Stylus 400	A (22.06)	3' upstream from	Loft	6.4	11 5	25	Grass Sodao Forb
SCAT1	9/11/2012	Olympus Stylus 400	A (22.90)	730	Dight	0.4	8.0	20 75	Moss Grass Sodge
SCAT1		Olympus Stylus 400	B (20.83)			10.5	14.0	80	Moss Grass Forb
SCAT1		Olympus Stylus 400	B (20.03)		Right	18.3	14.0	20	Moss Grass Sedge Forb
SCAT1		Olympus Stylus 400	C (21.86)			4.0	10.0	10	Grass Sedge, 1010
SCAT1		Olympus Stylus 400	C (21.00)		Right	13.7	9.6	15	Grass Sedge
SCAT1		Olympus Stylus 400	D (18.12)		Left	5.5	12.0	30	Grass, Sedge, Forb
SCAT1		Olympus Stylus 400	D		Right	11.7	6.0	75	Moss, Grass, Sedge, Forb
SCAT1		Olympus Stylus 400	E (24.02)		Left	10.0	16.0	30	Grass, Sedge, Forb
SCAT1		Olympus Stylus 400	E		Right	15.5	10.0	60	Moss, Grass, Sedge
				10' upstream from XSE left					
SCAT2	9/24/2012	Olympus Stylus 400	A (28.57)	bank	Left	3.9	9.0	5	Grass, Sedge
SCAT2		Olympus Stylus 400	A		Right	15.0	9.5	15	Sedge
SCAT2		Olympus Stylus 400	B (17.05)		Left	3.0	7.0	5	Grass, Sedge
SCAT2		Olympus Stylus 400	В		Right	11.3	7.0	25	Moss, Sedge, Forb
SCAT2		Olympus Stylus 400	C (19.81)		Left	4.0	6.0	30	Moss, Sedge, Forb
SCAT2		Olympus Stylus 400	С		Right	13.2	9.0	10	Moss, Sedge, Forb
SCAT2		Olympus Stylus 400	D (38.50)		Left	7.6	11.0	10	Sedge, Forb
SCAT2		Olympus Stylus 400	D		Right	15.4	12.7	25	Moss, Grass, Sedge
SCAT2		Olympus Stylus 400	E (18.95)		Left	3.3	7.0	15	Sedge, Forb
SCAT2		Olympus Stylus 400	E		Right	11.2	8.0	35	Moss, Sedge, Forb

Site ID	Date	Camera	Cross Section and Pin to Pin Distance in (ft)	Bar Sample	Bank	Bank Distance from LPIN (ft)	Camera Distance from LPIN (ft)	Percent Cover	Comments
				10' downstream from XSD right					
SCAT3	9/24/2012	Olympus Stylus 400	A (44.32)	bank	Left	26.0	29.4	15	Grass, Sedge, Forb, Shrub
SCAT3		Olympus Stylus 400	A		Right	29.2	25.2	35	Moss, Sedge, Forb
SCAT3		Olympus Stylus 400	B (32.19)		Left	12.1	16.0	5	Sedge
SCAT3		Olympus Stylus 400	В		Right	15.5	12.7	25	Grass, Sedge
SCAT3		Olympus Stylus 400	C (15.79)		Left	2.6	6.8	35	Sedge
SCAT3		Olympus Stylus 400	С		Right	6.2	3.1	25	Moss, Sedge
SCAT3		Olympus Stylus 400	D (19.60)		Left	8.0	11.6	25	Sedge
SCAT3		Olympus Stylus 400	D		Right	10.0	8.1	25	Sedge
SCAT3		Olympus Stylus 400	E (18.48)		Left	4.6	8.2	30	Moss, Sedge, Forb
SCAT3		Olympus Stylus 400	E		Right	6.5	3.8	10	sedge, forb, shrub
WBVR1	10/1/2012	Olympus Stylus 400	A (36.64)	XSD <> XSE	Left	15.9	20.0	15	Grass, Sedge
WBVR1		Olympus Stylus 400	А		Right	31.0	27.0	5	Grass, Sedge
WBVR1		Olympus Stylus 400	B (20.98)		Left	4.3	10.0	20	Moss, Grass, Shrub
WBVR1		Olympus Stylus 400	В		Right	15.5	11.0	10	Grass, Sedge
WBVR1		Olympus Stylus 400	C (28.83)		Left	3.8	9.0	70	Moss, Grass, Sedge, Shrub
WBVR1		Olympus Stylus 400	С		Right	17.0	11.0	25	Sedge, Forb, Shrub
WBVR1		Olympus Stylus 400	D (34.18)		Left	9.0	14.0	30	Moss, Shrub
WBVR1		Olympus Stylus 400	D		Right	25.0	20.0	15	Sedge
WBVR1		Olympus Stylus 400	E (29.56)		Left	6.0	12.0	60	Moss, Forb, Shrub
WBVR1		Olympus Stylus 400	E		Right	20.0	16.0	25	Grass, Sedge
W/B\/R2	10/1/2012	Olympus Stylus 400	Δ (ΔΔ ΔΟ)	XSB <> XSC left	l oft	75	16.0	40	Moss Shrub
WBVR2	10/1/2012	Olympus Stylus 400	Δ	Darik	Right	25.0	10.0	5	Grass
WBVR2		Olympus Stylus 400	B (90.60)		Left	14.0	21.0	5	Grass Shrub
WBVR2		Olympus Stylus 400	B (30.00)		Right	42.3	37.0	0	Sediment
WBVR2		Olympus Stylus 400	C (151 93)		Left	100 5	107.0	5	Grass
WBVR2		Olympus Stylus 400	C		Right	126.0	119.0	25	Grass Shrub
WBVR2		Olympus Stylus 400	D (149.43)		Left	97.0	108.0	0	Sediment

Site ID	Date	Camera	Cross Section and Pin to Pin Distance in (ft)	Bar Sample	Bank	Bank Distance from LPIN (ft)	Camera Distance from LPIN (ft)	Percent Cover	Comments
WBVR2		Olympus Stylus 400	D		Right	127.5	123.0	0	Sediment
WBVR2		Olympus Stylus 400	E (96.25).		Left	32.2	38.0	40	Moss, Grass, Shrub, Tree
WBVR2		Olympus Stylus 400	E		Right	54.5	43.0	15	Sedge, Forb, Shrub