# **Annual Progress Report for 2013**

# MONITORING THE EFFECTIVENESS AND VALIDATING RESPONSE TO THE ROAD RELATED MITIGATION PRACTICES IMPLEMENTED ON THE PIKES PEAK HIGHWAY

May 2, 2014



Pikes Peak, Colorado. Photo by Josh VonLoh, METI Inc.

# **Submitted by:**

C.A. Troendle, S. Winkler, J. VonLoh, and P. Hauser METI, Inc. 8600 Boeing Drive El Paso, Texas 79925

#### **Submitted to:**

USDA Forest Service 2150A Centre Ave Fort Collins, CO 80526

# TABLE OF CONTENTS

| INTRODUCTION                                   | 5   |
|------------------------------------------------|-----|
| SITE LOCATION AND IDENTIFICATION               | 7   |
| OBJECTIVE                                      | 7   |
| EFFECTIVENESS MONITORING                       | 8   |
| PRECIPITATION                                  | 8   |
| HIGHWAY SURFACE STABILIZATION                  | 12  |
| STABILIZING CUT AND FILL SLOPES                | 13  |
| ARMORING DRAINAGE CHANNELS                     | 16  |
| DRAINAGE DITCHES                               | 16  |
| CONVEYANCE CHANNELS                            | 17  |
| SEDIMENT TRAPS (SEDIMENT PONDS AND ROCK WEIRS) | 18  |
| VALIDATION MONITORING                          | 28  |
| STREAM CHANNEL CROSS SECTIONS                  | 29  |
| BANK EROSION                                   | 29  |
| PARTICLE SIZE DISTRIBUTION                     | 31  |
| PEBBLE COUNTS                                  | 31  |
| GRAB SAMPLES                                   | 32  |
| VEGETATION                                     | 32  |
| SUMMARY                                        | 33  |
| REFERENCES                                     | 35  |
| APPENDIX A                                     | 39  |
| APPENDIX B                                     | 47  |
| APPENDIX C                                     | 49  |
| APPENDIX D                                     | 55  |
| APPENDIX E                                     | 59  |
| APPENDIX F                                     | 63  |
| APPENDIX G                                     | 129 |
| APPENDIX H                                     | 137 |
| APPENDIX I                                     | 145 |
| APPENDIX J                                     | 243 |
| APPENDIX K                                     | 255 |
| APPENDIX L                                     | 271 |
| APPENDIX M                                     | 273 |
| APPENDIX N                                     | 289 |
| APPENDIX O                                     | 301 |
| ADDENINIY D                                    | 221 |

# **Executive Summary**

# Monitoring the Effectiveness and Validating Response to the Road Related Mitigation Practices Implemented on the Pikes Peak Highway

### C.A. Troendle, S. Winkler, J. VonLoh, and P. Hauser

This is the eleventh report documenting the annual monitoring efforts on the Pikes Peak Highway as part of the Settlement Agreement between the Sierra Club and the United States Department of Agriculture, Forest Service in Sierra Club v. Veneman, Civil Action No. 98-M-662 (D. Colo.), (U.S. Department of Justice 2002). The original monitoring plan and subsequent amendments call for effectiveness monitoring, designed to determine how well the mitigation practices implemented contribute to meeting their objectives; and validation monitoring, designed to determine how the mitigation practices affect the riparian, wetland, and aquatic systems within the area of influence of the Pikes Peak Highway (USDA Forest Service 2002 and 2003).

Effectiveness monitoring for the Pikes Peak Highway is focused on the 14-mile-long, 300-footwide highway corridor (150-feet each side of the highway centerline), starting at mile marker seven and continuing to the summit. The only resurfacing treatment used on the highway for mitigation purposes was asphalt paving which was completed in 2011. In 2013, the highway crew lined drainage ditch 188DD (Basin 2: North Fork of Crystal and Ski Creek Watersheds) with shotcrete and installed a pipe back to divert water under the highway to the shotcrete ditch above sediment pond 199RW. This diverted drainage from North Fork of Crystal Creek Watershed to South Catamount Creek Watershed. Rock weir 176RW was also lined with shotcrete and is the only remaining active rock weir along drainage ditch 188DD. Construction of a *RediRock* wall in Basin 3 (Severy and Ski Creek Watersheds) was also completed. Revegetation work included hydro mulching disturbed areas once construction was completed along drainage ditch 188DD and the RediRock wall. The design for the breached rock weir 234RW in the switchbacks (corner just above Elk Park in Basin 3) has been completed and construction will begin in August-early September, 2014 (personal communication with Jack Glavan, City of Colorado Springs, Capital Projects Manager). In addition, one ton of gravel was removed from rock weir 202RW (Basin 2) and three tons of gravel was removed from shotcrete drainage ditches in Basin 2 (personal communication with Dave Jordan, City of Colorado Springs, Skilled Maintenance Supervisor).

The 2013 field season was characterized by weather extremes. The entire mountain was affected by higher than normal temperatures in June and July, with less than average rainfall. By mid-August, the monsoon season arrived resulting in several intense storm events and eventually the flood in September, 2013. As a result, not all stream channels were surveyed during the 2013 field season, but several stream reaches were surveyed both pre and post flooding to document changes resulting from higher than normal precipitation.

A major challenge for the field crew was the flash flood potential on Highway 24 as a result of the Waldo Canyon Fire of 2012. During all rain events through October, Highway 24 was closed

by the Colorado Department of Transportation. This will likely be an ongoing occurrence until the burn scar becomes stabilized and the flash flood risk reduced.

September brought Hollywood to Pikes Peak. Filming of the movie *Fast and Furious* 7 took place in multiple locations on the highway. Due to the high volume of film related traffic along the highway, survey emphasis focused on stream channels (off the highway). In addition, two weeks of field work was lost due to the furlough in October. Despite these limiting factors, 2013 was a successful year with the majority of sites surveyed.

Precipitation measurements from the three electronic rain gauges (Onset Computer Corp.) and the NRCS Snotel site, located at Glen Cove indicated that precipitation was above average for 2013. In addition to the electronic rain gauges, standard non-recording rain gauges (All-Weather) were installed at each monitoring site as described in the 2010 Annual Report. Electronic rain gauge 075RG was struck by lightning near the end of the season and did not record data after August 26, 2013. In addition, data from the shuttle was lost from September 18-24, 2013 for electronic rain gauges 076RG and 077RG due to an equipment malfunction. Standard rain gauge 077RG was tampered with (vandalized) in June and did not record data from May 29 through June 10, 2013 when it was replaced.

Silt fences were not exposed to high runoff and erosion activities in 2013 except during the flood event. The field crew completed site visits periodically on 56 sites. The upper fence at cut slope site 059CS in Basin 7 (Glen Cove, Ski, and North Fork of Crystal Creek Watersheds) was removed in 2012 after highway construction limited access and relocated large boulders preventing fence material from being reliably fastened. The upper fences at five fill slope sites (048FS, 052FS, 055FS, 083FS, and 086FS) in Basin 7 were damaged during highway construction in 2011. As a result, the upper fences were removed from the sampling in 2012 and not replaced, and the lower fences continued to be monitored. Silt fences from 13 cut slope, 28 fill slope, and 15 rock weir sites were monitored in 2013. In addition, one of the fill slope silt fences was breached during the 2013 field season. All silt fence sites were visited periodically, sediment volume measured, and silt fences evaluated for repair or replacement.

Six of the original 20 drainage ditches selected for monitoring were surveyed in 2013. As noted earlier, drainage ditch 188DD (Basin 2) was lined with shotcrete in 2013 and a pipe back was installed to divert water under the highway to the shotcrete ditch above sediment pond 199RW. Fifteen of the original drainage ditches have been paved or lined with shotcrete since monitoring began, including nine drainage ditches in Basin 7 that were treated in 2011. This eliminates the need for further monitoring unless visual inspection provides evidence of failure, in which case cross sections will be re-established and surveys completed to document change. The five drainage ditches located in Basins 1 (Lower North Fork of Crystal Creek Watershed) and 2 are lined with erosion control fabric and will continue to be surveyed annually.

Ninety-seven of 118 conveyance channels were surveyed in 2013. In addition, five conveyance channels (024CC, 112CC, 117CC, 118CC, and 119CC) were documented using photographic and observation monitoring. These sites were not surveyed due to the exposure of large boulders and the general instability of the slope following past rock weir failure. Conveyance channel 212CC, which was lined with rip rap in 2011 was surveyed as treatment is failing. Three

conveyance channels (111CC, 114CC, and 115CC) which were previously monitored through observation and photographs only were also surveyed. Conveyance channels 111CC, 118CC, and 119CC below rock weirs in the switchbacks (Basins 3 and 4: Upper Ski and North French Creek Watersheds) were disturbed by the highway crew during removal of existing rock weirs and construction of cutoff walls with riprap aprons below in 2012. In 2013, the field crew was able to monitor these sites, as well as document activity in the channels during rain events.

Thirty-six sediment traps were monitored in 2013; 24 rock weirs, five cutoff walls with riprap aprons below, and seven sediment ponds. Six sites were surveyed at least twice to monitor their effectiveness in trapping sediment from winter and summer runoff. The rock weirs were surveyed and sediment volume was measured in the silt fences located down slope of the rock weirs (15 rock weirs have associated silt fences). In 2012, the highway crew removed five breached rock weirs (236RW, 238RW, 240RW, 242RW, and 243RW) in the switchbacks (Basins 3 and 4) and replaced them with cutoff walls with riprap aprons below. Photographic and observation monitoring were used to document changes at these sites along with three sediment ponds (258RW, 260RW, and 262RW). Eleven of the 24 rock weir sites and two of the sediment ponds (258RW and 260RW) demonstrated some degree of failure, where water and sediment were seen piping under or through the sediment trap, the sediment trap was overtopped, or the sediment trap was breached. Some of the rock weirs are full of sediment rendering them ineffective, resulting in an inability of the field crew to effectively monitor these structures.

The primary focus of the validation monitoring is to address the condition of the riparian wetland and aquatic systems along the Pikes Peak Highway. As a result of the flood, not all stream channels were surveyed during the 2013 field season, but several stream reaches were surveyed both pre and post flooding to document changes resulting from higher than normal precipitation. Surveys were completed (pre flood) on Glen Cove, North Catamount, North Fork of Crystal, Ski, and South Catamount Creeks. Additional surveys were completed after the flood event on North Catamount, Oil, Ski (Reach1), and South Catamount (Reach 2) Creeks. Surveys were not completed on Boehmer and East Fork Beaver Creeks as the access road was washed out during the flood. Oil Creek which was photographic and observation monitoring only as a result of an active beaver dam inundating the cross sections was surveyed (post flood) in 2013. The beaver dam was breached during the flood and stream water levels returned to normal. Due to staffing and time constraints, surveys were not completed on Severy and West Fork Beaver Creeks. Photographic and observation monitoring was completed on Severy and West Fork Beaver (Reach 2) Creeks. In the past, stream channel surveys have included planview surveys, profile surveys, cross section surveys, thalweg surveys, bankfull surveys, bank erosion surveys, vegetation surveys, pebble counts, and grab samples. In 2013, stream channel surveys included only cross section surveys, thalweg surveys, vegetation surveys, pebble counts, and grab samples.

Numerous grab samples were collected from the cut slope and fill slope silt fences, the rock weirs and their associated silt fences, and from the stream bars throughout the 2013 field season. A subset of these was selected to be analyzed in the laboratory for particle size distribution. The balance of samples will be analyzed only if the variability in the particle size distribution of the subset of samples chosen for initial analysis warrants additional analysis. Laboratory analyses for the 2013 field season have been completed on the grab samples and a summary of particle

size distributions and graphs are presented in this report. Comparing the distribution of material captured in traps near the highway to sediment deposits (bars) in the streams will validate response to highway mitigation practices.

Included with the full report is a data DVD containing all survey data (field and post processing) plus digital photographs (recommended viewing) for all sites for the 2013 field season. The annual reports and data may also be accessed from:

# http://www.fs.fed.us/emc/rig/pikespeak/index.shtml

As the Pikes Peak Highway Monitoring Project approaches its end date in 2017, it is time to consider which components of the monitoring program should be amended to meet the core requirements of the ongoing National BMP Monitoring Program.

#### INTRODUCTION

The proposed actions presented in the Pikes Peak Highway Drainage, Erosion and Sediment Control Plan Environmental Assessment (Hydrosphere Resource Consultants 1999) were designed to achieve the following goals:

- Stabilize road surface materials, cut slopes, and fill slopes
- Reduce runoff velocities and dissipate erosive energy
- Collect runoff in armored ditches and conveyance channels
- Reduce erosion and sediment deposition in drainage channels
- Retain sediment in traps and ponds to reduce downstream sedimentation

In May 2001, a monitoring plan was approved as part of the Settlement Agreement between the Sierra Club and the United States Department of Agriculture, Forest Service in Sierra Club v. Venneman, Civil Action No. 98-M-662 (D. Colo.), (U.S. Department of Justice 2002). The monitoring plan outlines appropriate procedures for monitoring and documenting the effectiveness of mitigation practices in achieving the above desired goals (USDA Forest Service 2002). The monitoring effort, which includes implementation monitoring, effectiveness monitoring, and validation monitoring, began in 2003 and ends in 2017.

Implementation monitoring verifies that mitigation practices are properly implemented. Staffs from both the city of Colorado Springs and the U.S. Forest Service are responsible for this aspect of the monitoring program. Because all parties assume that mitigation practices will be properly implemented, successes or failures in design or implementation will be addressed in the annual monitoring reports only to the extent that they impact subsequent monitoring.

Effectiveness monitoring is intended to document whether or not the properly implemented mitigation practice is effective in achieving the desired goal(s) or purpose(s) for that practice. Effectiveness monitoring for the Pikes Peak Highway is focused on the 14-mile-long, 300-footwide highway corridor (150-feet each side of the highway centerline), starting at mile marker seven and continuing to the summit, and is intended to document how effective the mitigation practices are in reducing erosion and sedimentation from features such as the road surface, cut and fill slopes, drainage ditches and conveyance channels. Precipitation is also monitored to provide an index to the amount and erosive energy of rainfall events. Effectiveness monitoring is the cornerstone of the monitoring effort described in this report.

An equally critical component in the monitoring program is validation monitoring, which is intended to document the degree to which the properly implemented and effective mitigation practices ultimately influence the resource of concern. In this report, validation monitoring addresses the condition of the riparian, wetland, and aquatic systems adjacent to the Pikes Peak Highway and attempts to provide data to validate that discharge management and reductions in sedimentation from the highway do in fact result in improvements in the channel and riparian environment below.

Subsequent changes in the proposed action plan for road mitigation (Burke 2002) required amendment of the approved monitoring plan (USDA Forest Service 2003). Initially, a variety of

highway surface stabilization practices were proposed for road mitigation. Those were reduced to a single surfacing procedure, asphalt paving, eliminating the need for a monitoring design that incorporated multiple surface treatments. Rock weirs to detain the water and sediment exiting the highway corridor from all events up to the magnitude of the design storm are completed or under construction in selected locations. By design, sediment should settle out in the rock weir, where it can be measured directly, while water percolates through a porous berm. The addition of rock weirs eliminated the need to sample sediment concentrations in pond inflow and outflow as well as measure material trapped in the pond as originally stated in the monitoring plan. Additional revisions in the mitigation design concentrate road drainage from very long segments or reaches (as long as two miles) of both pavement and ditch line into fewer diversion points and conveyance channels, reducing the number of diversions off the highway and the number of proposed sampling sites.

The entire highway has been paved with asphalt, rather than surfaced using a variety of treatments, which should significantly reduce or eliminate the potential for continued surface erosion to occur from the road surface. Erosion rates from the gravel portion of the highway were monitored as described in the approved monitoring plan, but since paving of the entire highway was completed in 2011, it is assumed that erosion from the road surface has been reduced to zero. As noted above, sediment pond design has been altered but monitoring will still focus on quantifying total sediment exported in the discharge water and the effectiveness of the mitigation practices in reducing that export. This report includes a brief description of the current monitoring protocol for each metric of concern and documents any changes in the monitoring protocol that may have occurred since the previous annual report.

The U.S. Forest Service oversees monitoring of the streams draining the basins below the highway to validate that discharge management and reductions in sedimentation from the highway result in improvements in the channel and riparian environment. A suite of tributaries in the Pikes Peak Watershed has been identified as either impacted or non-impacted by the presence and maintenance of the Pikes Peak Highway. North Catamount, South Catamount, Glen Cove, Oil, and Boehmer Creeks represent previously non-impacted streams. Ski, Severy, East Fork of Beaver, North Fork of Crystal, and West Fork of Beaver Creeks are all considered stream systems impacted by the highway. Depending on the magnitude of the reduction in the amount of sediment delivered to the stream system and changes in discharge amount and energy, it may be possible to document changes in channel morphology and riparian condition that occur as a consequence of highway management.

In 2013, the highway crew lined drainage ditch 188DD (Basin 2: North Fork of Crystal and Ski Creek Watersheds) with shotcrete and installed a pipe back to divert water under the highway to the shotcrete ditch above sediment pond 199RW. This diverted drainage from North Fork of Crystal Creek Watershed to South Catamount Creek Watershed. Rock weir 176RW was also lined with shotcrete and is the only remaining active rock weir along drainage ditch 188DD. Construction of a *RediRock* wall in Basin 3 (Severy and Ski Creek Watersheds) was also completed. The design for the breached rock weir 234RW in the switchbacks (corner just above Elk Park in Basin 3) has been completed and construction will begin in August-early September, 2014 (personal communication with Jack Glavan, City of Colorado Springs, Capital Projects Manager).

#### **Site Location and Identification**

A 15-year study requires that monitoring sites be uniquely identified and periodically relocated. Each precipitation gauge, cut slope and fill slope, road reach, drainage ditch and conveyance channel, rock weir and sediment pond, and stream channel reach monitored as part of this study has been uniquely identified and located. Each site is marked as a waypoint in a geographic information system (GIS) platform with attributes for latitude, longitude, and altitude, as well as a unique code, to distinguish it in the field. The coding convention used for the effectiveness monitoring sites is a five-character alpha-numeric code comprised of a three-digit feature number followed by a two-letter feature identifier (e.g., for site 001FS where 001 is the feature number and FS identifies the feature, a fill slope). The validation monitoring sites also use a five-character coding convention in which four letters identify the stream name and the last digit identifies the stream reach (e.g., OILC1 = Oil Creek, Reach 1).

Every feature being monitored has at least three benchmarks or control points used to locate the feature and obtain repeated, spatially similar, three-dimensional surveys, as appropriate. The benchmarks or control points are monumented by 2.5-foot lengths of 0.5-inch rebar pounded into the ground and topped with plastic yellow caps. Aluminum nursery tags wired to the rebar identify the individual benchmarks or control points (e.g., CP01). Every feature surveyed has at least three points with which to register the survey, although some features in close proximity may share control points.

In 2013, no new monitoring sites were established. Site names, locations, and feature descriptions can be found in Appendix A. Note that Appendix A provides a complete list of all waypoints established since the project began in 2003; not all of the sites listed were sampled during the 2013 monitoring season. A USGS topographic map that documents the location of each monitoring site is presented in Appendix B.

#### **OBJECTIVE**

The objective of this report is to document the data collected and progress made in the effectiveness and validation monitoring of the mitigation practices implemented on the Pikes Peak Highway during the 2013 field season. Each annual report beginning in 2007 follows a consistent format that provides a description of the protocol used to monitor each metric of concern as defined by the monitoring plan or its amendment, and a summary of the data collected for that particular year. It should be realized that, by design, not all metrics or sampling locations will be monitored every year. As a result, some reports will contain site data not presented in other reports. A full data set from all years is available in the data archive. It should also be noted that it was not the intent of the settlement agreement to include analysis of the data beyond a quality assurance and quality control assessment of the monitoring effort. Therefore the annual report will state the intended purpose for collecting the data and present the data in a format useful for subsequent analysis.

#### **EFFECTIVENESS MONITORING**

The road mitigation practices implemented by the City of Colorado Springs are intended to control erosion and manage the erosive energy of surface water discharge from the Pikes Peak Highway. Effectiveness monitoring consists of documenting the impact that various mitigation practices have on the erosion and sedimentation processes that occur within the road corridor. Erosion rates and sediment volumes are primarily indexed using a combination of survey techniques and sediment traps (silt fences, rock weirs and sediment ponds). Grab samples of sediment and water are analyzed to document particle size distributions of deposited material and sediment concentration in discharge water leaving the site. Precipitation is also monitored to provide an index to the amount and erosive energy of rainfall events.

The following sections describe the metrics being monitored and the data collected in order to document the effectiveness of mitigation. The standard protocol for identifying and numbering the various sample sites is presented up front, followed by a description of the monitoring sites and metrics.

# **Precipitation**

Three tipping bucket rain gauges (Onset Computer Corp.) equipped with event data loggers (HOBO) were installed at the beginning of the field season to index precipitation over the elevational range of the monitored portion of the highway. Although precipitation is not a response variable, it is a significant causal variable in evaluating the effectiveness of mitigation. Rain gauge 075RG is located just uphill from the Halfway Picnic Area near mile marker 10 at an elevation of 10,109 feet. This is at the upper end of Basin 2, in the subalpine zone. Rain gauge 076RG is located near the Elk Park Trailhead (No. 652) at the boundary between the subalpine and the alpine zones at 11,810 feet elevation. Rain gauge 077RG is located near the Devil's Playground and well into the alpine area at 13,069 feet elevation. Rain gauges installed for this study operate from early May, or as soon as the field crew starts for the season, until late September or early October when the crew finishes for the year. Data loggers record a date-time stamp for each tip of the rain gauge bucket (1 tip = 0.01 inches) from which volume, duration, and intensity (or rate) of each rainfall event can be determined.

In 2013, the three tipping bucket rain gauges were installed by May 6. In addition, to avoid loss of data should a tipping bucket rain gauge fail, a standard, non-recording rain gauge (All-Weather) was also installed as described in the 2010 Annual Report. The standard rain gauges provide a second index of precipitation amount for the sampling interval.

Total seasonal precipitation (May 6 – September 30, 2013) for the three monitoring sites for both the electronic and standard rain gauges is listed in Table 1. Electronic rain gauge 075RG was struck by lightning near the end of the season and did not record data after August 26, 2013. Precipitation in the standard rain gauge 075RG for that period measured 7.91 inches. In addition, data from the shuttle was lost from September 18 - 24, 2013 for electronic rain gauges 076RG and 077RG due to equipment malfunction. Precipitation in the standard rain gauges 076RG and 077RG for that period measured .98 inches and .19 inches respectively. Standard rain gauge 077RG was tampered with (vandalized) in June and data was lost from May 29

through June 10, 2013 when it was replaced. Precipitation in the electronic rain gauge 077RG measured .09 inches for that period. Where appropriate total precipitation for the rain gauges was adjusted (Table 1). The maximum rainfall intensity that the electronic rain gauge smart sensor can accurately measure is one inch of rain per hour. If intensity exceeds one inch per hour, precipitation may be under estimated (Onset Computer Corp.). This may be the cause of the disparity between the electronic and standard rain gauge measurements, especially during intense storm events. Prior to the 2014 field season, the tipping buckets for all electronic rain gauges will be re-calibrated.

In 2013, seasonal totals varied between the three sites with the lower elevation receiving the most precipitation (Figure 1). Daily and periodic precipitation is presented in Appendix C and the basic rain gauge data (date-time stamp) is presented on the data DVD accompanying the report.

Table 1. Location, measured and adjusted precipitation accumulation, and dates of operation for electronic and standard rain gauges on Pikes Peak, 2013.

| Gauge<br>ID | Latitude<br>(hddd°mm.mmm)                                                              | Longitude<br>(hddd°mm.mmm) | Altitude |               | •        |                | •        |            |  |
|-------------|----------------------------------------------------------------------------------------|----------------------------|----------|---------------|----------|----------------|----------|------------|--|
| ן וט        | (IIdda IIIIII.IIIIIII)                                                                 | (Hudu Hilli.Hillihi)       | (ft)     | Measured      | Adjusted | Measured       | Adjusted | 2013       |  |
| 075RG       | N38 53.797                                                                             | W105 03.890                | 10,109   | 8.19 <i>†</i> | 16.10    | 17.83          | N/A      | 5/6 - 9/30 |  |
| 076RG       | N38 52.582                                                                             | W105 03.970                | 11,810   | 13.53†        | 14.51    | 17.26          | N/A      | 5/6 - 9/30 |  |
| 077RG       | N38 51.783                                                                             | W105 03.999                | 13,069   | 12.82†        | 13.01    | 14.04 <i>†</i> | 14.13    | 5/6 - 9/30 |  |
| † Indica    | † Indicates missing data due to equipment malfunction and/or damage to the rain gauge. |                            |          |               |          |                |          |            |  |

The 2013 Colorado flood (September 9 through 16, 2013) was a natural disaster resulting in heavy rain and catastrophic flooding along Colorado's Front Range from Colorado Springs north to Fort Collins. Daily and total precipitation accumulation for electronic rain gauges 076RG and 077RG during the flood are listed in Table 2. The most precipitation occurred on September 12, 2013 (Figure 2).

Table 2. Daily and total precipitation accumulation, during the Colorado flood (September 9 through 16, 2013) for electronic rain gauges 076RG and 077RG on Pikes Peak, 2013.

| Date      | 076RG Total Precipitation Electronic (in) | 077RG<br>Total Precipitation<br>Electronic (in) |
|-----------|-------------------------------------------|-------------------------------------------------|
| 5/9/2013  | 0.02                                      | 0                                               |
| 5/10/2013 | 0.11                                      | 0.13                                            |
| 5/11/2013 | 0.92                                      | 0.40                                            |
| 5/12/2013 | 1.26                                      | 1.35                                            |
| 5/13/2013 | 0.44                                      | 0.47                                            |
| 5/14/2013 | 0.05                                      | 0.05                                            |
| 5/15/2013 | 0.41                                      | 0.31                                            |
| 5/16/2013 | 0.12                                      | 0.11                                            |
| Total     | 3.33                                      | 2.82                                            |

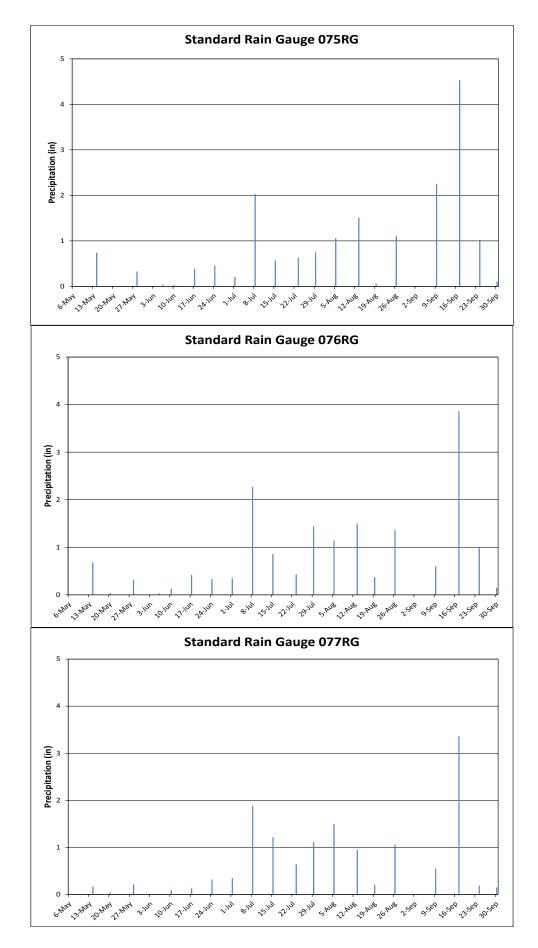



Figure 1. Precipitation by measurement date for the three standard rain gauges on Pikes Peak, 2013.

In addition to the three sites established as part of this study, a Natural Resources Conservation Service (NRCS) Snotel site located at Glen Cove, between rain gauges 075RG and 076RG at an elevation of 11,469 feet, has precipitation data available for the entire year. Data for the NRCS Snotel site can be accessed from:

http://www.wcc.nrcs.usda.gov/snotel/snotel.pl?sitenum=1057&state=co

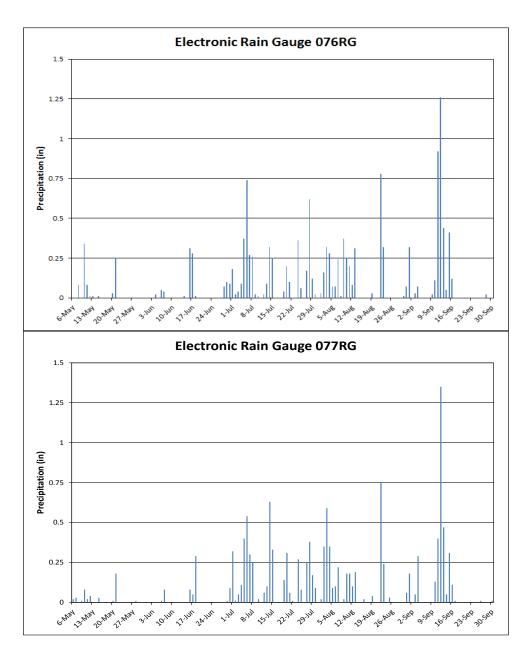



Figure 2. Daily precipitation for two electronic rain gauges on Pikes Peak, 2013.

# **Highway Surface Stabilization**

Historically, thousands of cubic yards of gravel material had been added to the Pikes Peak Highway road surface annually as part of the continuing maintenance program. Most of this material has since migrated elsewhere; either washed down the ditch line during snowmelt or following rainfall events or cast over the side onto the fill slope and the hillside below during road grading procedures. This material has been perceived to be the primary source for the sediment deposited in the streams (Chavez et al. 1993). The primary emphasis in the road mitigation practices was to reduce the volume of material available to be eroded (supply) and to manage the discharge water (energy) to reduce sediment transport. Initially a variety of alternate surfacing options were proposed.

As noted earlier, and as documented in amendments to the monitoring plan, the design of the monitoring protocol, appropriate for estimating road erosion, was significantly modified to reflect changes to the road bed stabilization practices implemented on the highway. The entire highway has been paved with asphalt, rather than surfaced using a variety of treatments, which should significantly reduce or eliminate the potential for continued surface erosion to occur from the road surface. Prior to 2011, erosion rates from the gravel portion of the highway were monitored as described in the approved monitoring plan, but since paving of the entire highway was completed in 2011, it is assumed that erosion from the paved road surface is zero.

As a surrogate for estimating actual erosion rates, road surface elevation for selected road reaches prior to paving was monitored over time to document erosion rates, or changes in the volume of material stored on untreated road segments. Uniform road reaches were selected with survey cross sections permanently established at five intervals along each selected road reach (i.e., approximately one cross section per 20 meters of road). The road cross sections were periodically surveyed to provide the basis for estimating the degree of erosion or deposition occurring in the road reach they represent. Individual road cross sections were monumented using a 2.5-foot piece of rebar driven into the road surface at the upper edge of the fill slope. In addition, permanently monumented baseline elevation points (benchmarks) were established for each road reach and were used as references for each cross section. Monitoring consisted of surveying the surface elevation of the road cross sections, relative to the benchmark for the road reach.

Either the average elevation of the cross section, or the survey transect, can be compared for different surveys to determine changes in the volume of material stored, or changes in surface configuration that may have occurred between measurements. Averaging the response for the five cross sections and multiplying that by the area of the road reach (estimated as average length times average width) yields an estimate of the change in the volume of material stored on the road reach during the interval between measurements.

Road surface data were not gathered during the 2013 monitoring season. The highway crew completed the last three miles of paving on the Pikes Peak Highway in 2011 eliminating the need for further monitoring of the road reaches.

# **Stabilizing Cut and Fill Slopes**

Erosion from cut and fill slopes along the highway may provide a continuous source of sediment to wetland, riparian, and aquatic systems. It is expected that highway mitigation practices will reduce sediment movement from these slopes in two ways. First, stabilizing the road bed through paving should also stabilize the angle of repose of adjacent cut and fill slopes, eliminating the constant adjustments that occur in the angle of repose of those slopes following changes to the plane of the road bed. Second, paving has eliminated the need for the continual addition of road base material, the primary source of material that had eroded onto fill slopes and hillsides. Effectiveness will be estimated by comparing changes in the amount and timing of sediment trapped in silt fences at the base of the cut and fill slopes following paving.

A 30-foot silt fence placed at the base of the slope of interest is used to trap sediment. Periodic measurements of the volume of material trapped behind the fence (i.e., after spring snowmelt and again after each large rainfall event) provide an index of the amount of material being eroded from the slope above the fence. Each silt fence is routinely visited to ensure timely measurement and maintenance. Should the silt fence fill to the point of reduced efficiency or fail during the period between measurements, the fence is either repaired, replaced, cleaned out, or relocated to a new monitoring site. Initially (2003 and 2004), the volume trapped was determined from surveys of the surface behind the fence before and after the sediment was removed. Since then, the volume of trapped sediment behind the silt fence has been estimated by removing the accumulated material and measuring the amount removed by placing it in graduated containers for a measure of total volume. A sub-sample of the material removed is collected for laboratory analysis to determine total weight per unit volume and particle size distribution.

On cut slopes, erosion is monitored using two silt fences per site: one is placed across the base of the cut slope just above the ditch line to capture the sediment coming off the cut slope (lower fence); a second is placed on the upper edge of the cut slope to intercept and trap the sediment delivered to the cut slope from the undisturbed hill slope above (upper fence). This partitioning allows separation of the contribution of the cut slope to the road or ditch line from that of the undisturbed hill slope above. The latter measurement also provides an index of natural erosion rates. The contributing area of the lower fence is represented by a rectangle above the fence that spans the width of the fence and extends to just below the upper fence at the toe of the undisturbed slope. The contributing area of the upper fence is more difficult to define and depends on the topographic features of the hill slope above. Contributing area for both lower and upper fences has been determined and measured for all cut slope monitoring sites. Currently, 22 cut slope silt fences have been installed at 13 sites. Initially, they were proportionally divided between the treated (paved) and untreated portions of the highway. The sampling design included cut slopes located in road segments that were treated at differing times, ensuring a wide range in the variability of conditions sampled both before and after highway mitigation. Paving of the entire highway was completed in 2011 resulting in all portions of the highway being treated.

Cut slope silt fences were not exposed to high runoff and erosion activity in 2013 except during the flood event. The sediment volume measured immediately after the flood in the lower fence of cut slope sites 192CS and 197CS (Basin 2) was 2.6 and 1.40 cubic feet respectively. This

represents a depth of .09 inches for 192CS and .05 inches for 197CS of eroded material from the contributing area.

The upper fence at cut slope site 059CS in Basin 7 (Glen Cove, Ski, and North Fork of Crystal Creek Watersheds) was removed in 2012 after highway construction limited access and relocated large boulders preventing fence material from being reliably fastened. Notes were taken in the field to document the condition of the silt fence during each site visit. In the *SiteSummary.xls file* on the data DVD, site visit and survey dates are annotated with the condition of the silt fence, any repairs or replacements that were done to maintain the silt fence, and an indication if the fence was breached prior to the survey date. The sediment volume for each cut slope silt fence was recorded in the *SiteSummary.xls file* if there was sediment removed from the cut slope silt fence. It can be assumed that there was zero sediment removed on all other silt fence site visits. A summary of cut slope site visits, and sediment removed from cut slope silt fences for the 2013 monitoring season are presented in Appendix D. All cut slope data and photographs for the 2013 season are available on the accompanying data DVD.

A similar design has been implemented for monitoring the effectiveness of mitigation practices intended to minimize erosion from fill slopes. The design includes the use of two silt fences per site: one is placed at the base of the fill slope to trap what originates from the fill slope (upper fence); a second is placed at the base of the hill slope on which the fill slope resides or at the boundary of the 150-foot corridor associated with the road right-of-way, whichever is the shorter distance (lower fence). The second lower fence is offset from the first fence and presumably not influenced by the upper fence. This design allows for trapping the eroded material in the upper fence as it leaves the fill slope as well as estimating the sediment being delivered off-site or down slope as indexed by the lower fence. Material trapped in the lower fence includes natural erosion from the slope below the fill slope as well as material contributed from the fill slope and transported downslope to the boundary of the corridor. In this way, not only will the on-site effectiveness of the mitigation practice as it effects fill slope erosion be evaluated, but an estimate of the amount of eroded material from the fill slope that is attenuated downslope will also be obtained. The contributing area of the upper fill slope fence spans the width of the fence and extends upslope to the edge of the road bed. The contributing area of the lower fence is defined by the width of the lower fence and the distance to the upper fence. However, like the fences above cut slopes, the actual contributing area of the lower fence is influenced by the topographic features of the hill slope. Contributing area for both the lower and upper fences has been determined and measured for all fill slope monitoring sites. Currently, 50 fill slope silt fences have been installed at 28 sites. Again, the sites were initially distributed between treated and untreated sections of the highway. Paving of the entire highway was completed in 2011 resulting in all sections of the highway being treated. Estimating the volume of material trapped behind the fill slope silt fences is accomplished in the same manner as that for the cut slope fences.

As with the cut slope silt fences, accumulation in the fill slope silt fences did not exhibit high runoff and erosion activity in 2013, except during the flood event. The sediment volume measured immediately after the flood in the upper fence of fill slope sites 203FS and 204FS (Basin 2) was 1.6 and 2.07 cubic feet respectively. This represents a depth of .06 inches for 203FS and .05 inches for 204FS of eroded material from the contributing area. In contrast, the

sediment volume measured in the lower fence of fill slope site 204FS was .34 cubic feet, which represents a depth of .0001 inches from the contributing area.

The upper fences at five fill slope sites (048FS, 052FS, 083FS, and 086FS) in Basin 7 were damaged during highway construction in 2011. As a result, the upper fences were removed from the sampling in 2012 and not replaced, and the lower fences continue to be monitored. In addition, one of the 50 fill slope silt fences was breached during the 2013 field season. Notes were taken in the field to document the condition of the silt fence during each site visit. In the *SiteSummary.xls file* on the data DVD, site visit and survey dates are annotated with the condition of the silt fence, any repairs or replacements that were done to maintain the silt fence, and an indication if the fence was breached prior to the survey date. The sediment volume for the fill slope silt fences was recorded in the *SiteSummary.xls file* only if there was sediment removed from the fill slope silt fence. It can be assumed that there was zero sediment removed on all other silt fence site visits. A summary of fill slope site visits and sediment removed from fill slope silt fences for the 2013 monitoring season can be found in Appendix E. All fill slope data and photographs for 2013 are available on the accompanying data DVD.

Numerous grab samples were collected from material trapped in the cut slope and fill slope silt fences throughout the 2013 field season. A subset of these was selected to be analyzed in the laboratory for particle size distribution. The balance of samples will be analyzed only if the variability in the particle size distribution of the subset of samples chosen for initial analysis warrants additional analysis. Laboratory analyses for the 2012 and 2013 grab samples have been completed and a summary of particle size distributions and graphs are presented in Appendix F and on the accompanying data DVD.

Initially, the monitoring plan anticipated taking measurements of the accumulation behind all silt fences two to three times per year. The actual number of measurements taken is dependent on many factors including; winter snowpack, soil moisture, number and size of rainfall events, and availability of crew members to clean out silt fences while completing other tasks. Estimates of human induced erosion and sediment delivery (from cut slope, fill slope, and silt fences located down slope near the streamside or boundary of the 150-foot corridor), can be compared with estimates of "natural movement" estimated from what is trapped in the silt fencing placed above cut slopes for periods before and after mitigation to determine the effectiveness of the practice and other best management practices (BMPs) intended to reduce human induced erosion.

Using silt fences to monitor sediment transport has proven to be difficult where silt fences cross rock surfaces—frequent breaching and fence failure have occurred over the course of the study. Silt fences fail most frequently where fence material cannot be reliably fastened to rock surfaces, particularly at the base of cut slopes at higher elevations. As a corrective measure, the sampling protocol was revised for three cut slope monitoring sites (102CS, 123CS, and 141CS) that cross rock surfaces. The lower cut slope silt fences on each of these sites were replaced with two permanent survey cross sections (labeled A and B), one established at the vegetation line just below the upper fence and a second established 1/3 of the distance between the top of the cut slope and the road. The cross sections are the same length as the original fence and are monumented with rebar at each end. Monitoring consists of surveying the surface elevation, relative to the benchmark, of the cut slope cross section. The silt fence at the top of the cut slope

has been maintained at all three sites. This procedural change is intended to provide a qualitative estimate of cut slope erosion in situations where a quantitative estimate is not feasible.

Cross section graphs for the three surveyed cut slope monitoring sites that correspond to the survey dates presented in Table 3 can be found in Appendix G. Photographs and survey data for all sites are available on the accompanying data DVD.

Table 3. Management practices implemented below cut slope monitoring sites, and cut slope monitoring site survey dates on Pikes Peak, 2013.

| Site ID | Basin # | Watershed | Management Practice           | Practice Survey Dates |           |  |
|---------|---------|-----------|-------------------------------|-----------------------|-----------|--|
| 102CS   | 6       | WBVR      | Asphalt Road, Shotcrete Ditch | 6/10/2013             | 9/30/2013 |  |
| 123CS   | 6       | WBVR      | Asphalt Road, Shotcrete Ditch | 6/10/2013             | 9/30/2013 |  |
| 141CS   | 6       | WBVR      | Asphalt Road, Shotcrete Ditch | 6/10/2013             | 9/26/2013 |  |

# **Armoring Drainage Channels**

Drainage channels, which include both the drainage ditches along roads and the conveyance channels below culverts, were to be lined (armored) with riprap or concrete to control further erosion and deposition of sediment as mitigation progressed. However, instead of armoring roadside drainage ditches, all reaches except those meeting the criteria stated in the latest U.S. Forest Service Design Review (Burke 2002) are lined with shotcrete, lined with erosion control fabric, or left untreated.

Effectiveness monitoring consists of sampling the fabric-lined and unlined drainage ditches, by establishing cross sections in the channels to be periodically surveyed, so that measured changes in cross sectional area could be used to determine if erosion or deposition was reduced or increased in armored channels relative to unarmored channels. Once drainage ditches are paved or lined with shotcrete, they are no longer surveyed. If visual inspection provides evidence of failure in the pavement or shotcrete, cross sections will be re-established and surveys completed to document change.

Conveyance channels are those features that drain water away from the road system to the streams below. For the most part, they are not physically treated or stabilized as part of the road mitigation effort, but road management practices may greatly alter the amount of discharge and sediment delivered to the conveyance channels. The monitoring technique is similar for both ditches and conveyance channels, but the sample size differs.

#### **Drainage Ditches**

Most of the drainage ditches selected for monitoring were aligned with the road reaches previously selected for monitoring. Additional drainage ditches were selected independently of the road reaches, as needed, to complete the desired road slope/contributing area/armoring material matrix. As with the road surface erosion transects, five cross sectional transects per segment of drainage channel (lined, not lined) were established (labeled A–E except for site 188DD, which had eight cross sections labeled A–H). For each cross section, a reference pin was located at the base of the cut slope on the inside of the ditch; a second pin was located on the edge of the road surface, if possible. Asphalt nails were used in the paved road surfaces to mark

the end point if road conditions prohibited installation of rebar. The effectiveness of the lining methods in reducing erosion and deposition can be determined by obtaining cross section information at control sites for several years prior to treatment. This information will be useful in the future as new drainage ditch segments are lined.

Six of the original 20 drainage ditches selected for monitoring were surveyed in 2013. Drainage ditch 188DD (Basin 2) was lined with shotcrete in 2013 and a pipe back was installed to divert water under the highway to the shotcrete ditch above sediment pond 199RW. This diverted drainage from rock weirs 178RW, 179RW, 180RW, and 181RW (North Fork of Crystal Creek Watershed) to South Catamount Creek Watershed, a previously non-impacted stream. Rock weir 176RW was also lined with shotcrete and is the only remaining active rock weir along drainage ditch 188DD. Fifteen of the original drainage ditches have been paved or lined with shotcrete since monitoring began, including nine drainage ditches in Basin 7 that were treated in 2011. This eliminates the need for further monitoring unless visual inspection provides evidence of failure, in which case cross sections will be re-established and surveys completed to document change. The five drainage ditches located in Basins 1 (Lower North Fork of Crystal Creek Watershed) and 2 are lined with erosion control fabric and will continue to be surveyed annually. Drainage ditch survey cross sections that correspond to the survey dates presented in Table 4 can be found in Appendix H. Drainage ditch survey data and photographs for 2013 are available on the accompanying data DVD.

Table 4. Drainage ditches surveyed including description of road treatments above drainage ditches, treatments for drainage ditches, and drainage ditch survey dates on Pikes Peak, 2013.

| Site ID        | Basin #                                            | Watershed  | Road Treatment | Ditch Treatment        | Survey Date |  |  |
|----------------|----------------------------------------------------|------------|----------------|------------------------|-------------|--|--|
| 005DD          | 1                                                  | Lower SKIC | Asphalt        | Erosion Control Fabric | 7/8/2013    |  |  |
| 010DD          | 1                                                  | Lower SKIC | Asphalt        | Erosion Control Fabric | 7/8/2013    |  |  |
| 182DD          | 2                                                  | SKIC       | Asphalt        | Erosion Control Fabric | 7/10/2013   |  |  |
| 188DD          | 2                                                  | SCAT       | Asphalt        | Shotcrete, Culvert     | 6/20/2013†  |  |  |
| 195DD          | 2                                                  | SKIC       | Asphalt        | Erosion Control Fabric | 7/8/2013    |  |  |
| 205DD          | 2                                                  | SKIC       | Asphalt        | Erosion Control Fabric | 7/10/2013   |  |  |
| †Drainage dito | †Drainage ditch surveyed prior to ditch treatment. |            |                |                        |             |  |  |

# **Conveyance Channels**

Monitoring the effectiveness of mitigation practices on conveyance channels also represents a critical component in the monitoring program. Many of these channels have eroded into gullies and have contributed to the sediment load of the wetland, riparian, and aquatic systems below. From mile marker seven to the summit, 115 conveyance channels were identified and surveyed during the first three years of monitoring. Two additional channels were identified and surveyed in 2009 and four additional channels were identified and surveyed in 2011. Two conveyance channels were eliminated during construction of sediment ponds in Basin 5 (Boehmer and East Fork of Beaver Creek Watersheds) and Basin 6 (East Fork and West Fork of Beaver Creek Watersheds). Conveyance channel 014CC was originally identified as a monitoring site, but was never surveyed. Conveyance channel 015CC located above sediment pond 199RW was lined with shotcrete in 2003 and is no longer surveyed. Conveyance channel 212CC was lined with rip rap in 2011. However, it continues to be monitored as the channel is exhibiting signs of failure. In 2012, two additional sites in Basin 7 (263CC and 265CC) were established in the channels below the new sediments ponds (262RW and 264RW).

It is not always possible to survey all 118 conveyance channels every year. Instead, as many conveyance channels as possible are surveyed each year. Although, the entire highway has been paved, the fixed sub-sample of 13 conveyance channels that were measured specifically to compare paved (7) and un-paved (6) road sections will continue to be surveyed annually, with the assumption that erosion, or changes in storage, from the paved segments will be zero. Conveyance channels located below the rock weirs are surveyed annually. If the rock weirs fail (as has been observed), changes in conveyance channel geometry may occur. Effectiveness of the rock weir can be evaluated in part by comparing the erosion rate in the conveyance channels located or initiated below the rock weirs with erosion rates observed in other conveyance channel is surveyed using a series of three cross sections located within the 150-foot boundary of the highway corridor (labeled A–C except for site 053CC, which has four cross sections labeled A–D and site 232CC, which has five cross sections labeled A–E).

Ninety-seven of 118 conveyance channels were surveyed in 2013 (Table 5). In addition, five conveyance channels (024CC, 112CC, 117CC, 118CC, and 119CC) were documented using photographic and observation monitoring. These sites were not surveyed due to the exposure of large boulders and the general instability of the slope following past rock weir failure. Conveyance channel 212CC, which was lined with rip rap in 2011 was surveyed as treatment is failing. Three conveyance channels (111CC, 114CC, and 115CC) which were previously monitored through observation and photographs only were also surveyed. Conveyance channels 111CC, 118CC, and 119CC below rock weirs in the switchbacks (Basins 3 and 4: Upper Ski and North French Creek Watersheds) were disturbed by the highway crew during removal of existing rock weirs and construction of cutoff walls with riprap aprons below in 2012. In 2013, the field crew was able to monitor these sites, as well as document activity in the channels during rain events.

Cross sections for the conveyance channels listed in Table 5 are presented in Appendix I. At first glance, graphs of the conveyance channel cross sections presented in Appendix I may appear counter intuitive, as the low point in the cross section may be at the right or left end pin. This presentation is not an error. Not all conveyance channels were formed as a result of natural drainage processes. Many were formed as the result of road related discharges and the flow path is across the slope rather than downslope, thus causing rills to form across the slope. The comparison of successive measurements provides the most useful information. Conveyance channel survey data and photographs for 2013 are available on the accompanying data DVD.

# **Sediment Traps (Sediment Ponds and Rock Weirs)**

The original mitigation plan called for building sediment ponds designed to trap sediment while allowing water to exit as a stream. Initially, the proposed monitoring consisted of periodic pond surveys to index sediment accumulation as well as measurement of the suspended sediment concentrations in discharge entering and exiting the pond. The combination of sediment accumulation in the pond plus the sediment exiting the pond in the outflow was intended to provide an estimate of total sediment transport. In accordance with the revised mitigation design, rock weirs capable of detaining all the water and sediment discharged from the road

Table 5. Road and drainage ditch treatments associated with conveyance channels, treatments applied to conveyance channels, and conveyance channel survey dates on Pikes Peak, 2013.

| Site ID                 | Basin    | Watershed      | Road         | Ditch                                       | Channel                      | Survey               |
|-------------------------|----------|----------------|--------------|---------------------------------------------|------------------------------|----------------------|
| Site ID                 | #        | watersned      | Treatment    | Treatment                                   | Treatment                    | Date                 |
| 004CC                   | 1        | NCRY           | Asphalt      | Fabric                                      | Rock Apron                   | 8/27/13              |
| 012CC                   | 2        | SCAT           | Asphalt      | Fabric                                      | Rock Weir                    | 5/30/13              |
| 013CC                   | 2        | SCAT           | Asphalt      | Fabric                                      | Rock Weir                    | 7/25/13              |
| 016CC                   | 2        | NCRY           | Asphalt      | Shotcrete                                   | Culvert Plugged              | 8/27/13              |
| 019CC                   | 2        | SCAT           | Asphalt      | Fabric                                      | Culvert Plugged              | 7/29/13              |
| 021CC                   | 2        | NCRY           | Asphalt      | Shotcrete                                   | Culvert Plugged              | 8/14/2013            |
| 024CC <i>†</i>          | 2        | SCAT           | Asphalt      | Fabric                                      | Culvert Plugged              | 8/1/2013             |
| 025CC                   | 2        | SCAT           | Asphalt      | Shotcrete                                   | Culvert Plugged              | 7/15/2013            |
| 028CC                   | 2        | NCRY           | Asphalt      | Shotcrete                                   | Culvert Plugged              | 7/18/2013            |
| 029CC                   | 2        | NCRY           | Asphalt      | Shotcrete                                   | Rock Weir                    | 6/17/2013            |
| 030CC                   | 2        | NCRY           | Asphalt      | Shotcrete                                   | Rock Weir                    | 7/1/2013             |
| 031CC                   | 2        | NCRY           | Asphalt      | Shotcrete                                   | Rock Weir                    | 5/21/2013            |
| 034CC                   | 2        | NCRY           | Asphalt      | Shotcrete                                   | Rock Weir                    | 8/19/2013            |
| 035CC                   | 7        | SKIC           | Asphalt      | Shotcrete                                   | Rip Rap                      | 6/17/2013            |
| 036CC                   | 7        | NCRY           | Asphalt      | Shotcrete                                   | Culvert Plugged              | 6/18/2013            |
| 037CC                   | 7        | NCRY           | Asphalt      | Shotcrete                                   | Culvert                      | 7/1/2013             |
| 038CC                   | 7        | NCRY           | Asphalt      | Shotcrete                                   | Culvert                      | 7/15/2013            |
|                         | <u> </u> |                | Asphalt,     | C. I C. | <b>5 </b>                    | .,,                  |
| 040CC                   | 1        | NCRY           | Asphalt Curb | Fabric                                      | Straw Logs                   | 5/21/2013            |
| 053CC                   | 7        | SKIC           | Asphalt      | Shotcrete                                   | Rip Rap                      | 6/6/2013             |
| 054CC                   | 7        | SKIC           | Asphalt      | Shotcrete                                   | Untreated                    | 6/6/2013             |
| 058CC                   | 7        | SKIC           | Asphalt      | Shotcrete                                   | Culvert                      | 7/30/2013            |
| 063CC                   | 7        | SKIC           | Asphalt      | Shotcrete                                   | Rock Weir                    | 7/2/2013             |
| 064CC                   | 7        | SKIC           | Asphalt      | Shotcrete                                   | Untreated                    | 8/15/2013            |
| 065CC                   | 7        | SKIC           | Asphalt      | Shotcrete                                   | Untreated                    | 8/20/2013            |
| 066CC                   | 7        | SKIC           | Asphalt      | Shotcrete                                   | Untreated                    | 7/30/2013            |
| 067CC                   | 7        | SKIC           | Asphalt      | Shotcrete                                   | Untreated                    | 7/30/2013            |
| 068CC                   | 7        | SKIC           | Asphalt      | Shotcrete                                   | Untreated                    | 7/18/2013            |
| 069CC                   | 7        | SKIC           | Asphalt      | Shotcrete                                   | Untreated                    | 8/8/2013             |
| 070CC                   | 7        | SKIC           | Asphalt      | Shotcrete                                   | Untreated                    | 7/24/2013            |
| 081CC                   | 7        | GLEN           | Asphalt      | Shotcrete                                   | Culvert Plugged              | 6/18/2013            |
| 084CC                   | 7        | GLEN           | Asphalt      | Shotcrete                                   | Culvert Plugged              | 6/18/2013            |
| 089CC                   | 3        | SKIC           | Asphalt      | Shotcrete                                   | Rock Weir                    | 6/12/2013            |
| 091CC                   | 3        | SKIC           | Asphalt      | Shotcrete                                   | Culvert Plugged              | 6/19/2013            |
| 094CC                   | 3        | SKIC           | Asphalt      | Shotcrete                                   | Culvert Plugged              | 7/18/2013            |
| 095CC                   | 3        | SKIC           | Asphalt      | Shotcrete                                   | Culvert Plugged              | 6/19/2013            |
| 096CC                   | 3        | SKIC           | Asphalt      | Shotcrete                                   | Culvert Plugged              | 6/19/2013            |
| 097CC                   | 3        | SKIC           | Asphalt      | Shotcrete                                   | Culvert Plugged              | 6/19/2013            |
| 100CC                   | 3        | SVRY           | Asphalt      | Shotcrete                                   | Culvert Plugged              | 6/25/2013            |
| 104CC                   | 6        | WBVR           |              | Shotcrete                                   | Untreated                    | 7/31/2013            |
| 111CC                   | 3        | SKIC           | Asphalt      |                                             | Rock Weir                    | 8/6/2013             |
|                         | 3        | FRENCH         | Asphalt      | Shotcrete<br>Shotcrete                      |                              |                      |
| 112CC <i>†</i><br>114CC | 4        | FRENCH         | Asphalt      | Shotcrete                                   | Culvert Plugged<br>Rock Weir | 8/6/2013<br>8/6/2013 |
| 114CC<br>115CC          |          |                | Asphalt      | Shotcrete                                   | Untreated                    |                      |
|                         | 4        | FRENCH<br>SKIC | Asphalt      |                                             |                              | 8/20/2013            |
| 116CC                   | 4        |                | Asphalt      | Shotcrete                                   | Culvert Plugged              | 8/20/2013            |
| 117CC†                  | 4        | SKIC           | Asphalt      | Shotcrete                                   | Culvert Plugged              | 8/20/2013            |
| 118CC†                  | 4        | SKIC           | Asphalt      | Shotcrete                                   | Rock Weir                    | 8/5/2013             |
| 119CC†                  | 4        | GLEN           | Asphalt      | Shotcrete                                   | Rock Weir                    | 8/19/2013            |
| 120CC                   | 6        | WBVR           | Asphalt      | Shotcrete                                   | Sediment Pond                | 7/11/2013            |

| Site ID | Basin | Watershed  | Road                     | Ditch     | Channel         | Survey      |
|---------|-------|------------|--------------------------|-----------|-----------------|-------------|
|         | #     | watersneu  | Treatment                | Treatment | Treatment       | Date        |
| 121CC   | 6     | WBVR       | Asphalt                  | Shotcrete | Untreated       | 7/31/2013   |
| 122CC   | 6     | WBVR       | Asphalt                  | Shotcrete | Untreated       | 8/15/2013   |
| 125CC   | 6     | WBVR       | Asphalt                  | Shotcrete | Untreated       | 8/15/2013   |
| 126CC   | 6     | WBVR       | Asphalt                  | Shotcrete | Untreated       | 7/10/2013   |
| 127CC   | 6     | WBVR       | Asphalt                  | Shotcrete | Untreated       | 8/5/2013    |
| 129CC   | 6     | EBVR       | Asphalt                  | Shotcrete | Untreated       | 8/15/2013   |
| 130CC   | 6     | EBVR       | Asphalt                  | Shotcrete | Culvert Plugged | 7/24/2013   |
| 132CC   | 6     | EBVR       | Asphalt                  | Shotcrete | Untreated       | 7/24/2013   |
| 133CC   | 6     | EBVR       | Asphalt                  | Shotcrete | Untreated       | 7/24/2013   |
| 135CC   | 5     | BHMR       | Asphalt                  | Shotcrete | Untreated       | 7/23/2013   |
| 136CC   | 5     | BHMR       | Asphalt                  | Shotcrete | Untreated       | 7/23/2013   |
| 137CC   | 5     | BHMR       | Asphalt                  | Shotcrete | Untreated       | 7/23/2013   |
| 138CC   | 5     | BHMR       | Asphalt                  | Shotcrete | Untreated       | 7/10/2013   |
|         |       |            |                          |           | Rock Apron,     |             |
| 139CC   | 6     | EBVR       | Asphalt                  | Shotcrete | Dissipaters     | 7/10/2013   |
| 140CC   | 6     | EBVR       | Asphalt                  | Shotcrete | Untreated       | 7/23/2013   |
|         |       |            | Asphalt,                 |           |                 |             |
| 175CC   | 1     | NCRY       | Asphalt Curb             | None      | Rock Apron      | 7/2/2013    |
| 184CC   | 2     | SKIC       | Asphalt                  | Shotcrete | Sediment Pond   | 7/25/2013   |
|         |       |            |                          |           | Rock Apron,     |             |
| 189CC   | 2     | NCRY       | Asphalt                  | Shotcrete | Dissipaters     | 8/19/2013   |
|         |       |            | - I                      |           | Rock Apron,     |             |
| 190CC   | 2     | NCRY       | Asphalt                  | Shotcrete | Dissipaters     | 8/19/2013   |
| 70000   |       |            | Asphalt,                 |           |                 | 0, 10, 2010 |
| 206CC   | 2     | NCRY       | Asphalt Curb             | Fabric    | Untreated       | 8/27/2013   |
| 207CC   | 6     | WBVR       | Asphalt                  | Shotcrete | Untreated       | 8/15/2013   |
| 208CC   | 7     | SKIC       | Asphalt                  | Shotcrete | Untreated       | 7/25/2013   |
| 209CC   | 7     | SKIC       | Asphalt                  | Shotcrete | Untreated       | 7/25/2013   |
| 210CC   | 2     | SKIC       | Asphalt                  | Fabric    | Untreated       | 7/18/2013   |
| 211CC   | 2     | SKIC       | Asphalt                  | Fabric    | Untreated       | 5/21/2013   |
| 212CC   | 7     | SKIC       | Asphalt                  | Shotcrete | Rip Rap         | 6/6/2013    |
| 213CC   | 6     | FRENCH     | Asphalt                  | Shotcrete | Untreated       | 8/1/2013    |
| 214CC   | 5     | BHMR       | Asphalt                  | Shotcrete | Untreated       | 7/23/2013   |
| 215CC   | 5     | BHMR       | Asphalt                  | Shotcrete | Untreated       | 8/1/2013    |
| 21000   | -     | Lower      | Asphalt,                 | Onotorete | Ontrodica       | 0/1/2010    |
| 216CC   | 1     | NCRY       | Asphalt Curb             | Asphalt   | Rock Weir       | 5/29/2013   |
| 21000   | '     | Lower      | Asphalt,                 | ποριιαίτ  | TOOK WOII       | 0/20/2010   |
| 217CC   | 1     | NCRY       | Asphalt Curb             | Asphalt   | Rock Weir       | 5/29/2013   |
| 218CC   | 1     | Lower SKIC | Asphalt                  | Untreated | Rock Weir       | 5/28/2013   |
| 219CC   | 1     | Lower SKIC | Asphalt                  | Shotcrete | Rock Weir       | 5/20/2013   |
| 220CC   | 1     | Lower SKIC | Asphalt                  | Fabric    | Rock Weir       | 7/2/2013    |
| 22000   | '     | Lower      | Порнан                   | 1 45110   | TOOK WOII       | 5/22/2013   |
| 221CC   | 1     | NCRY       | Asphalt                  | Shotcrete | Rock Weir       | 3/22/2013   |
| 22100   | '     | Lower      | Азрнан                   | Onotoroto | TOOK WOII       | 5/22/2013   |
| 222CC   | 1     | NCRY       | Asphalt                  | Shotcrete | Rock Weir       | 3/22/2013   |
| 223CC   | 1     | Lower SKIC | Asphalt                  | Fabric    | Rock Weir       | 7/2/2013    |
| 224CC   | 2     | NCRY       | Asphalt                  | Asphalt   | Rock Weir       | 5/16/2013   |
| 225CC   | 2     | SKIC       | Asphalt                  | Fabric    | Rock Weir       | 5/16/2013   |
| 22000   |       | SINIC      |                          | i aviic   | INDUK VVEII     | 3/10/2013   |
| 226CC   | 2     | NCRY       | Asphalt,                 | Fabric    | Rock Weir       | 5/29/2013   |
| 22000   |       | INCRT      | Asphalt Curb             | Fabilit   | NOCK WEII       | 3/28/2013   |
| 227CC   | 2     | NCRY       | Asphalt,<br>Asphalt Curb | Asphalt   | Rock Weir       | 5/13/2013   |
| 22100   |       | INCKT      | Aspirall Cuib            | Aspiiail  | NUCK WEII       | 3/13/2013   |

| Site ID | Basin<br># | Watershed | Road<br>Treatment | Ditch<br>Treatment | Channel<br>Treatment | Survey<br>Date |
|---------|------------|-----------|-------------------|--------------------|----------------------|----------------|
| 228CC   | 2          | SKIC      | Asphalt           | Fabric             | Rock Weir            | 7/25/2013      |
| 229CC   | 2          | NCRY      | Asphalt           | Shotcrete          | Rock Weir            | 7/1/2013       |
| 230CC   | 2          | NCRY      | Asphalt           | Shotcrete          | Rock Weir            | 5/21/2013      |
| 231CC   | 2          | NCRY      | Asphalt           | Shotcrete          | Rock Weir            | 8/19/2013      |
| 232CC   | 7          | GLEN      | Asphalt           | Shotcrete          | Untreated            | 6/26/2013      |
| 235CC   | 3          | SVRY      | Asphalt           | Shotcrete          | Rock Weir            | 8/5/2013       |
| 245CC   | 2          | NCRY      | Asphalt           | Asphalt            | Untreated            | 7/16/2013      |
| 246CC   | 5          | EBVR      | Asphalt           | Shotcrete          | Sediment Pond        | 6/25/2013      |
| 247CC   | 6          | WBVR      | Asphalt           | Shotcrete          | Sediment Pond        | 6/25/2013      |
| 251CC   | 7          | NCRY      | Asphalt           | Shotcrete          | Sediment Pond        | 6/24/2013      |
| 253CC   | 7          | SKIC      | Asphalt,          | Shotcrete          | Sediment Pond        | 6/24/2013      |
| 263CC   | 7          | SKIC      | Asphalt           | Shotcrete          | Sediment Pond        | 6/6/2013       |
| 265CC   | 7          | SKIC      | Asphalt           | Shotcrete          | Sediment Pond        | 6/12/2013      |

† Site no longer surveyed due to instability of conveyance channel. Photographic and observation monitoring only.

segment for events up to the design storm have been constructed. The current monitoring strategy assumes that the rock weirs detain all discharge long enough for the sediment to settle out, while the water percolates out of the rock weir through the porous berm. Measuring sediment accumulation in the rock weir will index total sediment movement. In the event the rock weir does not detain all the storm discharge delivered to it (actual discharge exceeds the design discharge or the rock weirs fail to function properly), silt fences have been installed on the downhill side of the rock weirs to trap sediment carried in surface discharge passing over or through the berm. A silt fence is preferred over grab samples of discharge because any overflow or through flow that occurs is most likely to be diffused and not concentrated. Also, using a silt fence provides a measure of total transport. The measurement protocol for these silt fences is the same as that employed for the cut and fill slope silt fences.

The field procedure for monitoring sediment accumulation in the rock weirs was modified in 2008 to simplify both instrument requirements for the survey and software requirements for subsequent data reduction and analysis as well as to allow for a more consistent comparison of volumetric change from survey to survey. A fixed area was defined and monumented within each rock weir to be surveyed each time, and compared from survey to survey or year to year. Prior to 2008, the area surveyed within each rock weir had not been predefined. Although the criteria for selecting the area to be surveyed within each rock weir was well defined in the survey protocol, the area actually surveyed as well as the number and distribution of survey points within that area were not necessarily consistent from one survey to the next. Much was left to the discretion of the field crew. As part of each survey (spring, fall, and as needed during the summer), the field crew would identify areas of sediment accumulation within the rock weirs and, although virtually all of the rock weir area was surveyed, sampling points were concentrated in the vicinity of the areas of deposition and more widely spaced over the balance of the rock weir area. The survey capabilities of the Trimble Robotics Total Station, which is used for all surveying on the Pikes Peak Project, records the geospatially correct location of survey points for virtually any survey pattern, so utilizing a variable sampling scheme did not create a problem. In order to compensate for the variable distribution of survey points, an AutoCAD package was used to develop a 0.5-foot Digital Terrain Model (DTM) for the surface of the sediment pond based on the survey points. This provided a very high resolution description of the topographic

variability in the survey data collected in the vicinity of active deposition without requiring similar resolution (and sample size) in areas perceived to have had little or no activity. This DTM could then be intersected with the DTM for earlier or subsequent surveys to obtain an estimate of volumetric change between surveys. The procedure called for any non-overlapping areas to be clipped from either survey as needed, and resulted in two overlapping surfaces of equal size. The volumetric difference between the two intersected surfaces represented the estimate of the volumetric change in sediment accumulation that occurred in the rock weir during the interval between surveys. Although valid, it became apparent that this protocol had several drawbacks specific to this study that included: 1) dependence on the Trimble Robotics Total Station, 2) risk of inconsistent survey data, and 3) dependence on an AutoCAD package and associated technical skills that may or may not be available in the future.

First, the choice of survey tools was limited to automated systems such as the Trimble Robotics Total Station, limiting alternative instrument choices while requiring a specific level of technical expertise in the field crew. Second, because the area to be surveyed within each rock weir had not been predefined, the perimeter of the DTM's for individual surveys were not necessarily identical when intersected. Therefore, the clipping process that became necessary introduced the risk of inconsistent or lost information. Fortunately, the field crew leader was the same for each year of monitoring up to 2007 so disparities in survey areas are in fact minimal. Lastly, the protocol required the use of an AutoCAD package to develop and intersect the three dimensional surfaces used to estimate sediment accumulation. This required software and technical skills not readily available within the project, requiring that the data reduction be outsourced to other consultants.

In 2008 the field procedures for surveying the rock weirs were modified. First, each rock weir was visited and the perimeter of the critical portion of the sediment accumulating pond was identified and monumented with rebar. These monumented locations were then referenced to the three benchmark locations (control points) already established for each rock weir. An attempt was made to define the area to be surveyed in rectangular form, but sometimes five or six sides were needed to most efficiently define the perimeter of the area of interest. In every case, the area selected for a given rock weir encompassed all the areas surveyed prior to 2008. It should be noted that all unstable areas identified to be within the rock weir were also included in the survey area to ensure that migration of material from one location within the rock weir to another were balanced out in the survey and not construed to be additions or losses in accumulation between surveys. Because the permanent survey area defined for each rock weir encompasses the area of every previous survey, no loss of historic data occurred as a result of the change in procedure.

After the survey perimeter was defined, one side was arbitrarily selected as the baseline for the survey. Depending on the size and shape of the rock weir area of interest, a rectangular survey grid system was established that originates from the baseline, and uniformly and consistently covers the rock weir area. Survey lines initiate from the baseline at uniform intervals, and cross the rock weir perpendicular to the baseline, and extend to the opposite boundary line. Survey points along each line are also uniformly spaced. The spacing of both survey lines and survey points on a survey line vary with rock weir size. An example schematic for rock weir 008RW is shown in Figure 3. Lines located perpendicular to the baseline and survey points along the line

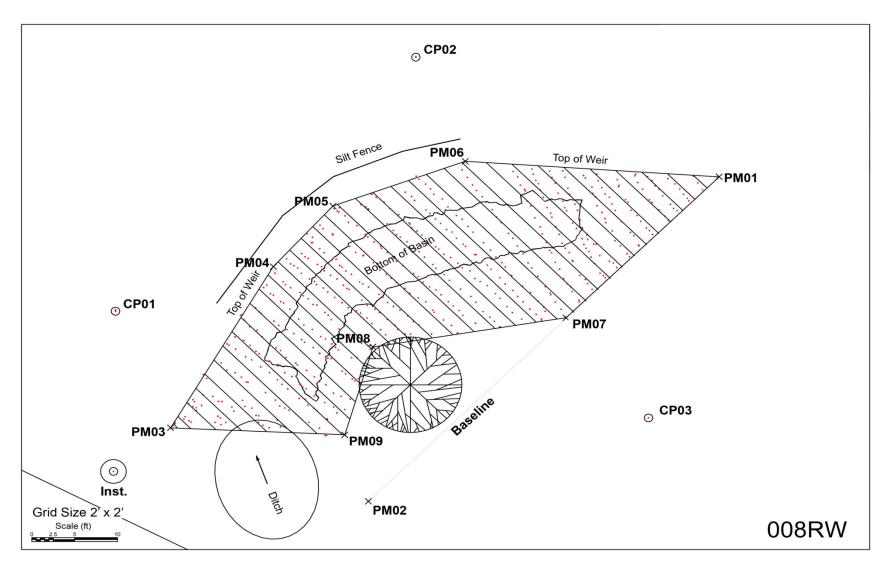



Figure 3. Schematic map of rock weir 008RW defining a fixed area, baseline, perimeter points and survey grid on Pikes Peak, 2008.

resulted in a 1 X 1, 1 X 2, 2 X 1, 2 X 2, or comparable survey grid depending on the area and shape of the rock weir. The objective was to locate several hundred survey points, uniformly distributed in each rock weir that would be revisited at each survey. This approach has several advantages over the original survey protocol. First, surveying using a fixed grid system allows obtaining a simple estimate of elevation of the rock weir area relative to the control points for each survey. Following this protocol is not particularly instrument specific, nor is data reduction as software or skill dependent as the initial protocol. Second, because the area to be surveyed is fixed, repeated measures allow for a more uniform comparison of volumetric change from survey to survey and surveys are not biased by field crew changes or interpretations.

Changing the survey protocol may result in some loss of resolution (sampling intensity) in the areas of most active accumulation. However, because the current rock weir area is fixed and the same approximate points are surveyed each time, that loss should be minimal and offset by greater consistency from survey to survey. Changing the field procedure does not preclude the use of AutoCAD packages for data analysis. However, if an AutoCAD package is not used to process the data, the average elevation of the rock weir surface can be obtained by determining the average elevation of the survey points. The volumetric change between any two surveys can be estimated by multiplying the difference in the average geo-referenced elevations for the two surveys by the area of the rock weir.

Presented in the 2009 and 2010 Annual Reports, as part of the process of changing a protocol, several quality control and quality assurance checks were implemented as a means of better defining errors that might be associated with the survey procedure. The concerns were; 1) whether or not the initial survey grid system selected for each rock weir was adequate to define the average elevation of the surface, 2) whether or not observed discrepancies in the total number of points observed in the successive surveys of the same pond were significant, and 3) whether or not measurement error associated with defining the reference elevation used for the feature of interest caused a significant error.

As noted in earlier reports, there is an additional error in the surveys of the rock weirs (and all other surveys as well) that is associated with defining the reference benchmarks for each feature. The benchmarks are used to orient the Trimble Robotics Total Station as to the elevation and the geospatial location of the feature being surveyed. Field experience in the use of the Total Station indicates that the measurement error in defining the reference elevation for the feature of interest, based on the use of three benchmarks, is 0.01 feet or less.

As with the road surface erosion transects, four sediment ponds (199RW, 237RW, 256RW, and 264RW) are surveyed using a series of cross sections (labeled A–C except for site 256RW, which has four cross sections labeled A–D and site 199RW, which has five cross sections labeled A–E) to estimate volumetric changes in sediment accumulation. Three sediment ponds (258RW, 260RW, and 262RW) are monitored by recording observations in the field notes and using photographic monitoring to document changes. In those few cases where there is a defined inflow and outflow to a pond, water samples to estimate trap efficiency can be grab sampled from the inlet and outlet of the ponds as originally planned. Surveys of the sediment traps should be completed after spring snowmelt and again after significant rainfall events, perhaps a total of four times per year. In addition, surveys taken before and after rock weir cleaning can be used to

estimate the total volume or amount of material removed and this cumulative estimate can be used to verify appropriateness or adjust estimates based on the incremental surveys.

As noted above, any conveyance channels that appear to be present below the rock weirs are monitored. If the rock weirs fail, as some did in 2013, any changes in the conveyance channel geometry that may result will be documented. If the rock weirs are effective in reducing the erosive energy of the discharge, the reduction in erosion in the conveyance channels can be documented by comparing response in channels draining treated and untreated road segments.

In 2013, the highway crew lined drainage ditch 188DD (Basin 2) with shotcrete and installed a pipe back to divert water under the highway to the shotcrete ditch above sediment pond 199RW. This diverted drainage from rock weirs 178RW, 179RW, 180RW, and 181RW (North Fork of Crystal Creek Watershed) to South Catamount Creek Watershed. Rock weir 176RW was also lined with shotcrete and is the only remaining active rock weir along drainage ditch 188DD. In 2012, the highway crew removed five breached rock weirs (236RW, 238RW, 240RW, 242RW, and 243RW) in the switchbacks (Basins 3 and 4) and replaced them with cutoff walls with riprap aprons below (Figure 4). Photographic and observation monitoring are used to document changes at these sites along with three sediment ponds (258RW, 260RW, and 262RW). The design for the breached rock weir 234RW in the switchbacks (corner just above Elk Park in Basin 3) has been completed and construction will begin in August-early September, 2014 (personal communication with Jack Glavan, City of Colorado Springs, Capital Projects Manager).

Thirty-six sediment traps were monitored in 2013, including 24 rock weirs, five cutoff walls with riprap aprons below, and seven sediment ponds. Six sites were surveyed at least twice to monitor their effectiveness in trapping sediment from winter and summer runoff. The rock weirs were surveyed and sediment volume was measured in the silt fences located down slope of the rock weirs (15 rock weirs have associated silt fences). Eleven of the 24 rock weir sites and two of the sediment ponds (258RW and 260RW) demonstrated some degree of failure, where water and sediment were seen piping under or through the sediment trap, the sediment trap was overtopped, or the sediment trap was breached. Some of the rock weirs are full of sediment rendering them ineffective, resulting in an inability of the field crew to effectively monitor these structures. As noted earlier for silt fences on the cut and fill slopes, the data from the breached rock weirs or sediment fences below rock weirs may under estimate total sediment production. Survey dates for the rock weirs and sediment ponds are presented in Table 6. A summary of rock weir silt fence site visits, and sediment accumulation in rock weir silt fences and the rock weirs for the 2013 monitoring season, as well as rock weir and sediment pond cross sections from 2013 are presented in Appendix J.

The average elevations for the rock weir surfaces were obtained by determining the average elevation of the survey points. The volumetric change between the two surveys was then estimated by multiplying the difference in the average geo-referenced elevations for the two surveys by the area of the rock weir (Appendix J). As noted earlier, the negative values imply a decrease in sediment accumulation between two surveys. Sediment trap data and photographs for 2013 are available on the accompanying data DVD.



Figure 4. Rock weir 243RW was removed and replaced with cutoff wall with riprap apron below Pikes Peak, 2012.

Grab samples of the sediment retained in both the rock weirs and silt fences below the weirs were collected each time the weirs were surveyed or the fences cleaned. As noted earlier, a subset of these grab samples was selected for analysis of particle size distribution. The balance of samples will be analyzed only if the variability in the particle size distribution of the subset of samples chosen for initial analysis warrants additional analysis. In addition, water samples to determine suspended sediment were collected from the inflow and outflow of the sediment ponds 199RW, 237RW, and 262RW. Laboratory analyses for the 2012 and 2013 grab samples have been completed and a summary of particle size distributions and graphs are presented in Appendix K and on the accompanying data DVD. Laboratory analyses on the suspended sediment samples for the 2013 field season are presented in Appendix L and on the accompanying data DVD.

Table 6. Management practices implemented above sediment traps, and sediment trap survey dates on Pikes Peak, 2013.

| Site ID | Basin # | Watershed  | Management Practice | Survey Dates |
|---------|---------|------------|---------------------|--------------|
| 002RW   | 1       | Lower SKIC | Untreated Ditch     | 5/28/2013    |
| 003RW   | 1       | Lower SKIC | Shotcrete Ditch     | 5/28/2013    |
| 006RW   | 1       | Lower SKIC | Fabric Ditch        | 5/15/2013    |
| 008RW   | 1       | Lower NCRY | Shotcrete Ditch     | 5/22/2013    |
| 009RA   | 1       | Lower SKIC | Fabric Ditch        | 5/14/2013    |
| 152RW   | 2       | SKIC       | Fabric Ditch        | 5/16/2013    |
| 153RW   | 2       | SKIC       | Fabric Ditch        | 5/14/2013    |

| Site ID        | Basin # | Watershed  | Management Practice    | Survey    | Dates     |
|----------------|---------|------------|------------------------|-----------|-----------|
| 161RW          | 2       | NCRY       | Asphalt Curb and Ditch | 5/13/2013 |           |
| 162RW          | 2       | NCRY       | Asphalt Ditch          | 5/16/2013 |           |
| 176RW          | 2       | NCRY       | Shotcrete Ditch        | 5/15/2013 | 9/18/2013 |
| 178RW          | 2       | NCRY       | Shotcrete Ditch        | 5/15/2013 |           |
| 179RW          | 2       | NCRY       | Shotcrete Ditch        | 5/15/2013 |           |
| 180RW <i>†</i> | 2       | NCRY       | Shotcrete Ditch        | 5/6/2013  |           |
| 181RW          | 2       | NCRY       | Shotcrete Ditch        | 6/25/2013 |           |
| 199RW          | 2       | SKIC       | Shotcrete Ditch        | 6/20/2013 | 9/9/2013  |
| 200RW          | 1       | Lower NCRY | Asphalt Curb and Ditch | 5/29/2013 | 9/17/2013 |
| 201RW          | 2       | NCRY       | Asphalt Curb and Ditch | 5/29/2013 |           |
| 202RW          | 2       | SKIC       | Asphalt Ditch          | 5/22/2013 | 9/18/2013 |
| 233RW          | 3       | SKIC       | Shotcrete Ditch        | 6/12/2013 |           |
| 234RW <i>†</i> | 3       | SKIC       | Shotcrete Ditch        | 7/30/2013 |           |
| 236RW∞         | 3       | SKIC       | Shotcrete Ditch        | 6/17/2013 |           |
| 237RW          | 3       | SKIC       | Shotcrete Ditch        | 6/11/2013 |           |
| 238RW∞         | 3       | SKIC       | Shotcrete Ditch        | 6/17/2013 |           |
| 239RW <i>†</i> | 3       | French     | Shotcrete Ditch        | 7/30/2013 |           |
| 240RW∞         | 3       | SKIC       | Shotcrete Ditch        | 6/17/2013 |           |
| 241RW          | 4       | FRENCH     | Shotcrete Ditch        | 8/6/2013  |           |
| 242RW∞         | 4       | SKIC       | Shotcrete Ditch        | 7/30/2013 |           |
| 243RW∞         | 4       | SKIC       | Shotcrete Ditch        | 7/30/2013 |           |
| 250RW          | 7       | NCRY       | Shotcrete Ditch        | 5/28/2013 | 9/26/2013 |
| 252RW <i>†</i> | 7       | SKIC       | Shotcrete Ditch        | 6/17/2013 |           |
| 254RW          | 7       | SKIC       | Shotcrete Ditch        | 6/11/2013 | 9/26/2013 |
| 256RW          | 6       | WBVR       | Shotcrete Ditch        | 7/11/2013 |           |
| 258RW <i>†</i> | 6       | WBVR       | Shotcrete Ditch        | 9/17/2013 |           |
| 260RW <i>†</i> | 5       | EBVR       | Shotcrete Ditch        | 7/15/2013 |           |
| 262RW <i>†</i> | 7       | SKIC       | Shotcrete Ditch        | 6/17/2013 |           |
| 264RW          | 7       | SKIC       | Shotcrete Ditch        | 6/12/2013 |           |

<sup>†</sup> Photographic and observation monitoring only.

© Rock weir removed in 2012 and replaced with cutoff wall and riprap apron below.

Photographic and observation monitoring only.

## **VALIDATION MONITORING**

Validating the effect of road restoration practices on aquatic, wetland, and riparian conditions is more difficult than determining the effectiveness of mitigation practices in reducing erosion and sedimentation at specific locations on site or close to the highway. On-site response to the mitigation practices should be direct, dramatic, and occur in real time. Off-site response, such as in the stream channels, is likely to be more diffused, less dramatic, cumulative in nature, and subject to changes in condition elsewhere in the watershed, all of which make validation of response to mitigation complex. The watersheds of concern have been subject to road related impacts for more than 80 years. Any road-related degradation in the channel systems is the aggregate result of long-term, road-related discharge and sediment pulses. The interruption of those pulses as a result of road mitigation practices may be too subtle to be detectable in the near term, therefore creating a challenge in selecting the most appropriate indicator metric.

The scale chosen for validation monitoring is that of the stream channel reach. Within each stream reach selected, channel morphology, bed and bank particle size distribution, bank erosion, and vegetation diversity is monitored and characterized. A suite of tributaries in the Pikes Peak Watershed were identified as either impacted or non-impacted by the presence of the Pikes Peak Highway (Chavez et al. 1993). North Catamount, South Catamount, Glen Cove, Oil, and Boehmer Creeks represent previously non-impacted streams. Ski, Severy, East Fork of Beaver, North Fork of Crystal, and West Fork of Beaver Creeks are all considered stream systems impacted by the highway. Study reaches have been selected in each of the 10 streams, and periodic monitoring will be conducted in each stream reach for the entire 15-year study period. Oil Creek has only one monitored stream reach because the upper portion of the stream is on private land and not accessible. Glen Cove Creek has only one stream reach because it is a small tributary of South Catamount Creek, which has three stream reaches. All other streams have two stream reaches. Because response can be expected to be gradual, it is not necessary that all streams be measured every year; however, annual measurement is completed if time permits.

The monitoring assumption is that stream channel adjustments that might occur in the impacted stream reaches following road mitigation practices will not occur on either the reference stream reaches (those not influenced by the highway) or in the impacted streams draining the portions of highway that have not received mitigation. However, this does not imply that differences that may have existed at the start of the monitoring program between the five reference and the five impacted stream systems were the consequence of road-related impacts. Rather, any long-term trends in convergence or divergence in the comparison of conditions in the impacted and the control stream reaches following road mitigation will be evaluated as potential indicators of stream channel response to highway mitigation practices.

The techniques proposed by Harrelson et al. (1994) were used to establish the stream channel reference sites. Selected stream reaches are at least 100 meters in length and contain several meander lengths or riffle-pool-riffle complexes. In 2005, two additional reaches were established in response to the diversion wall built on Ski Creek to divert all alpine runoff into Glen Cove Creek. Glen Cove Creek is a tributary to South Catamount Creek, and enters upstream from the two reference stream reaches on South Catamount Creek. The diversion on Ski Creek increased discharge into both Glen Cove and South Catamount Creeks and additional

monitoring seemed warranted, since what were considered non-impacted streams are now being impacted.

#### **Stream Channel Cross Sections**

Five channel cross sections have been located and permanently referenced in each of the stream reaches, following the selection and installation criteria in Harrelson et al. (1994). The purpose for the cross sections is to document changes in channel cross sectional geometry that may occur over time. Five cross sections in a 100-meter stream reach should be adequate to provide an indication of change in channel cross section geometry, should it occur naturally or as the consequence of mitigation. In addition to the cross sections, longitudinal surveys of the channel thalweg through the stream reach are conducted to document surface water and thalweg slope and location (Harrelson et al. 1994). Over time, changes in geometry such as width to depth ratios in the cross sections, thalweg elevation and location in the floodplain, longitudinal profile, or channel gradient may reflect a response to road mitigation impacts on sediment supply or discharge energy when compared to responses in the control reaches. If possible, cross sections are surveyed each fall so that changes in channel geometry can be documented on an annual basis. Because it can be expected that channel responses to the road mitigation practices will not be as robust as other metrics, it is not critical that each stream be surveyed each year.

As a result of the flood, not all stream channels were surveyed during the 2013 field season, but several stream reaches were surveyed both pre and post flooding to document changes resulting from higher than normal precipitation. Surveys were completed (pre flood) on Glen Cove, North Catamount, North Fork of Crystal, Ski, and South Catamount Creeks. Additional surveys were completed after the flood event on North Catamount, Oil, Ski (Reach1), and South Catamount (Reach 2) Creeks. Surveys were not completed on Boehmer and East Fork Beaver Creeks as the access road was washed out during the flood. In 2012, a beaver dam was constructed across Oil Creek and the resultant beaver pond inundated the monumented cross sections. Since then, monitoring has been reduced to qualitative observations documented by photographs. High flows in September of 2013 caused the dam to breach and flow returned to a single channel (Figure 5), allowing the original cross sections to be surveyed for the first time since 2012. Due to staffing and time constraints, surveys were not completed on Severy and West Fork Beaver Creeks. Photographic and observation monitoring was completed on Severy and West Fork Beaver (Reach 2) Creeks. Stream channel cross sections from the 2013 monitoring season can be found in Appendix M. Stream channel cross section and thalweg survey data for 2013 are available on the accompanying data DVD.

#### **Bank Erosion**

Bank erosion is being documented primarily through the channel cross section surveys. If the channel is actively down cutting or migrating laterally, the change is an index to bank erosion. Additional bed and bank features are also displayed in a map of the stream reach (Harrelson et al., 1994) and through the use of permanent photo points. In each stream reach, measuring and comparing the lengths of bank that are stable versus lengths of bank that are actively eroding also provides an index of the proportion of eroding banks. If the stream reach contains areas of significant bank erosion, bank pins will be installed to measure the lateral rate of erosion.





Figure 5. Comparison of Oil Creek in 2012 (top) showing the beaver pond and 2013 (bottom) post flood showing a single stream channel Pikes Peak, 2013.

Installation of such pins is only warranted if erosion appears to be active and severe in certain locations within the stream reach or if the onset of bank erosion begins to occur during the monitoring period. Over the long-term, the five cross sections located within a 100-meter stream reach should index channel and bank stability by documenting changes in channel geometry and location. Secondary measures such as thalweg surveys and bank erosion monitoring should help document any further change.

In 2013, measurements specific to bank erosion consisted of channel cross section surveys, thalweg surveys, and photographic documentation. There were no visual indications that bank erosion was significant enough to warrant installation of bank pins to measure the lateral rate of erosion.

#### **Particle Size Distribution**

Assuming that road mitigation practices are effective in reducing discharge energy and sediment delivery to the channel system, and that no offsetting responses occur, the percentage of fine particles in the stream channel bed can be expected to decrease over time. A greater percentage of the stream bed is likely to be composed of larger particles as the fine particles are winnowed out and not replaced. This assumes that the resulting flow regime is adequate to carry the sediment supply, as a severe reduction in flow without a reduction in available sediment could cause aggradation. The composition of the sediment trapped behind silt fences, and deposited in rock weirs and in bars on the stream reaches is assessed through the collection of grab samples and analyzed in the laboratory for particle size distribution. Comparing the particle size distribution in material captured in traps near the highway with sediment deposits (bars) in the streams and pebble counts taken in the stream channel should validate response to highway mitigation practices.

#### **Pebble Counts**

Pebble counts in each stream reach are conducted during each survey using the Bevenger and King Pebble Count Procedure (Bevenger and King, 1995). The procedure calls for a zigzag sampling pattern that passes through the stream reach, crossing from bank to bank. Three-hundred particles are sampled in each survey and one survey per field season is completed in each of the stream reaches. To help support this aspect of the validation monitoring, the particle size distribution of the material caught in silt fences and in the rock weir sediment traps is available for comparison to the bed material in the streams.

Stream pebble counts were completed on Glen Cove, North Catamount, North Fork of Crystal, Oil, Ski, and South Catamount Creeks. Lower water levels allowed a pebble count to be completed on Oil Creek for the first time since 2010. Stream pebble counts were not completed on Boehmer, East Fork of Beaver, Severy, and West Fork of Beaver Creeks. A summary of the stream channel particle size distribution from the pebble counts is presented in Table 7. Stream pebble count particle size distribution graphs from the 2013 monitoring season can be found in Appendix N and on the accompanying data DVD.

# **Grab Samples**

Sediment grab samples were collected from bars on all streams surveyed in 2013. In addition, grab samples were collected from Severy and West Fork of Beaver Creeks during photographic and observation monitoring. Comparing the distribution of material captured in traps near the highway to sediment deposits (bars) in the streams might be useful in validating response to highway mitigation practices. Laboratory analyses for the 2013 grab samples have been completed and a summary of stream channel particle size distributions and graphs for 2013 are presented in Appendix O and on the accompanying data DVD.

Table 7. Summary of particle size distribution of pebble counts in stream channels on Pikes Peak, 2013.

| Site Name                        | Site ID | e ID Date |       | Particle Size Distribution |        |        |         |       |
|----------------------------------|---------|-----------|-------|----------------------------|--------|--------|---------|-------|
| Site Name                        | Site ID | Date      | D15   | D35                        | D50    | D84    | D95     | D100  |
| Glen Cove Reach 1                | GLEN1   | 8/28/2013 | 0.189 | 6.496                      | 9.612  | 19.978 | 40.085  | 302.0 |
| North Catamount Creek Reach 1    | NCAT1   | 9/3/2013  | 0.108 | 3.317                      | 5.483  | 10.551 | 14.119  | 21.0  |
| North Catamount Creek Reach 2    | NCAT2   | 9/3/2013  | 0.108 | 2.611                      | 4.899  | 11.183 | 15.251  | 24.0  |
| North Fork Crystal Creek Reach 1 | NCRY1   | 8/21/2013 | 0.642 | 2.862                      | 5.671  | 14.000 | 21.162  | 34.0  |
| North Fork Crystal Creek Reach 2 | NCRY2   | 8/21/2013 | 0.132 | 2.959                      | 6.188  | 14.333 | 20.615  | 33.0  |
| Oil Creek Reach 1                | OILC1   | 9/25/2013 | 0.587 | 5.241                      | 9.025  | 24.582 | 40.998  | 148.0 |
| Ski Creek Reach 1                | SKIC1   | 8/26/2013 | 0.157 | 2.828                      | 6.385  | 14.182 | 23.131  | 152.0 |
| Ski Creek Reach 2                | SKIC2   | 8/22/2013 | 1.163 | 6.265                      | 11.171 | 36.986 | 83.864  | 175.0 |
| South Catamount Creek Reach 1    | SCAT1   | 9/9/2013  | 1.532 | 6.272                      | 9.842  | 24.537 | 46.093  | 103.0 |
| South Catamount Creek Reach 2    | SCAT2   | 8/26/2013 | 1.656 | 6.159                      | 9.389  | 29.585 | 117.900 | 275.0 |
| South Catamount Creek Reach 3    | SCAT3   | 8/28/2013 | 1.091 | 4.124                      | 5.819  | 11.471 | 15.686  | 160.0 |

# Vegetation

Vegetation photo points established at the top of the left and right banks (facing downstream) at each cross section have been monumented and are intended to document changes in vegetation type, density, and percent cover over time as riparian and wetland areas recover (Hall 2002). Vegetation is grouped into general categories of moss, grass, sedge, forb, or shrub to document vegetation presence. Percent cover is estimated for the top of bank area 1.5-feet on either side of the center line of the cross section. This monitoring is not intended to determine the degree of departure that current conditions might reflect relative to a reference value. Monitoring will document the evolution or transition that occurs as the disturbed streams respond to the effects of road mitigation and will allow for comparison of any trends to those that occur in the control stream reaches.

Vegetation photo points were completed for Glen, North Catamount, North Fork of Crystal, Ski, and South Catamount Creeks prior to the 2013 flood. Vegetation photo points were completed for Oil, Severy, and West Fork of Beaver (Reach 2) Creeks post flood event. Vegetation photo points were not completed for Boehmer and East Fork Beaver Creeks as the access road was washed out during the flood and West Fork Beaver (Reach 1) Creek as water levels were dangerously high. The riparian vegetation summary from the 2013 monitoring season is presented in Appendix P. Vegetation data and photographs from 2013 are available on the accompanying data DVD.

# **SUMMARY**

The 2013 monitoring season was characterized by weather extremes. The entire mountain was affected by higher than normal temperatures in June and July, with less than average rainfall. By mid-August, the monsoon season arrived resulting in several intense storm events and eventually the flood September, 2013. As a result, not all stream channels were surveyed during the 2013 field season, but several stream reaches were surveyed both pre and post flooding to document changes resulting from higher than normal precipitation.

A total of 196 sites were monitored during the 2013 field season, many of which were visited more than once. Precipitation measurements from the rain gauges and the NRCS Snotel site, located at Glen Cove indicated that precipitation was above average for 2013 as a result of the flood.

As the Pikes Peak Highway Monitoring Project approaches its end date in 2017, it is time to consider which components of the monitoring program should be amended to meet the core requirements of the ongoing National BMP Monitoring Program. An amendment of the current monitoring would address the following two of three objectives stated in the National Best Management Practices (BMP's) for Water Quality Management on National Forest System Lands (USDA Forest Service 2012):

- To establish a consistent Process to monitor and evaluate Forest Service efforts to implement BMP's and the effectiveness of those BMP's at protecting water quality at national, regional, and forest scales
- To establish a creditable process to document and report agency BMP implementation and effectiveness.

Based on pages 111-114 in the Core BMP's it could be assumed that extension of BMP monitoring on the Pikes Peak Highway would focus primarily on the proper functioning of the sediment detention structures, ditches, diversions, surfacing, etc. implemented as part of the road restoration project. This would assess whether or not the structures installed to mitigate the initial problem are properly managed, maintained, and functioning. In the current Pikes Peak Highway Monitoring Study effectiveness as addressed in this report has been measured in both quantitative and qualitative terms. Significant emphasis has been placed on quantifying sediment and water movement in an attempt to account for or quantify sources and sinks of sediment and energy potentially responsible for stream degradation. Significant effort has also been expended on qualitatively documenting the function and stability of the mitigation practices to provide a context in which to evaluate and analyze the quantitative metrics. The current Pikes Peak Highway monitoring study is very quantitative and was intended to provide a basis for determining if what was thought to be the cause of the stream degradation was in-fact the cause and if so, did the restoration of the highway mitigate the problem. The same degree of monitoring rigor would not be needed into the future. If it can be assumed that the BMP's implemented on the highway corridor are effective and appropriate for mitigating the perceived stream degradation problem, extended monitoring could be far more qualitative than the quantitative techniques implemented as the core monitoring in the current Pikes Peak Highway Project.

As part of the current monitoring program, visual inspection of the BMP infrastructures are visually assessed frequently to determine if sediment storage features are full, breached, cleaned out or if conveyance channels and ditches are properly functioning. The annual reports have well documented the successes and failures of these structures and this documentation should in turn be related to the quantitative response in erosion and sedimentation documented by the physical measurements. Starting in 2018 and beyond, spring and fall "windshield tours" could assess whether the structures are being maintained and functioning properly, compromised, full, etc. and the appropriate recommendations made to the city. Visual inspections, supported by text and photographs, would be sufficient to document if sediment traps are cleaned and maintained as required and the conveyance channels and ditches appear stable and non-erosive. Specific protocols could be established for the surveys and measurements that would be most effective should they be warranted to document failure or change. It would be advisable to retain all reference survey sites, but not plan to complete the surveys unless it seemed appropriate. The point being that if the proper BMP's have been implemented, simply documenting that they are properly functioning should meet the core BMP monitoring requirements. Over the next few years, an effort can be made to identify the most efficient way to qualitatively assess the effectiveness of the structures and thus define the protocol for extended monitoring. It should not be necessary to maintain the quantitative rigor currently being implemented because the objectives of the Pikes Peak Highway Monitoring Project differ from those of the core BMP Monitoring objectives.

Doing the above should meet the objectives of BMP monitoring with respect to highway mitigation, regardless of whether or not the BMP's implemented were effective in mitigating issues in the channels below.

Extended validation that the properly implemented BMP's are effective in mitigating the channel degradation issues is more complex. If, as part of the analysis of data currently being collected, it can be determined that the BMP's implemented on the highway have resulted in an "improved aquatic environment", one can argue that it would be appropriate to eliminate the stream channel measurements and depend solely on documenting the proper implementation/maintenance of the road BMP's. If, at the conclusion of the current Pikes Peak Highway Monitoring Study in 2017, it cannot be validated that the BMP's were or were not beneficial, then extended monitoring of some of the channel parameters is warranted under the core BMP effectiveness requirements. Initially, continuation of the cross section surveys, including thalweg measurements, every two or three years would be warranted. It should not be necessary to continue the pebble counts, vegetation surveys, etc. Again, the recommended protocol could be further refined over the next two or three years.

Extending the monitoring beyond 2017, even in skeletal fashion, would represent an investment with a very high return simply because of the linkage with the long term intensive monitoring that has already been done on the site.

#### REFERENCES

Bevenger, G. S.; King R.M. 1995. A pebble count procedure for assessing watershed cumulative effects. Res. Pap. RM-RP-319. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 17 p.

Burke, M. 2002. Pikes Peak Highway drainage, erosion, and sediment control plan Forest Service engineering design review. Phase 2 Report, v. 1.4. U.S. Department of Agriculture, Forest Service.18 p.

Hall, F.C. 2002. Photo point monitoring handbook: part A-field procedures. Gen. Tech. Rep. PNW-GTR-526. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 48 p.

Harrelson, C.C.; Rawlins, C.L.; Potyondy J.P. 1994. Stream channel reference sites: an illustrated guide to field technique. Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 61 p.

Hydrosphere Resource Consultants. 1999. Pikes Peak Highway drainage, erosion and sediment control plan environmental assessment. Unpublished report. Boulder, CO. 97 p.

Nankervis, J.M. 2004. Monitoring effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. Blue Mountain Consultants, Berthoud, CO. 22 p.

Nankervis, J.M. 2005. Monitoring effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. Blue Mountain Consultants, Berthoud, CO. 29 p.

Nankervis, J.M. 2006. Monitoring effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. Blue Mountain Consultants, Berthoud, CO. 21 p.

Nankervis, J.M. 2007. Monitoring effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. Blue Mountain Consultants, Berthoud, CO. 19 p.

Robichaud, P.R.; Brown, R.E. 2002. Silt fences: an economical technique for measuring hillslope soil erosion. Gen. Tech. Rep. RMRS-GTR-94. Moscow, ID: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Forestry Sciences Laboratory. 24 p.

Troendle, C.A.; Winkler, S.; LaPerriere, M. 2008. Monitoring the effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. METI Inc., El Paso, TX. 24 p.

Troendle, C.A.; Winkler, S.; Derengowski, J.; VonLoh, J. 2009. Monitoring the effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. METI Inc., El Paso, TX. 32 p.

Troendle, C.A.; Winkler, S.; Derengowski, J.; VonLoh, J. 2010. Monitoring the effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. METI Inc., El Paso, TX. 34 p.

Troendle, C.A.; Winkler, S.; Derengowski, J.; VonLoh, J. 2011. Monitoring the effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. METI Inc., El Paso, TX. 32 p.

Troendle, C.A.; Winkler, S.; VonLoh, J.; Derengowski, J. 2012. Monitoring the effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. METI Inc., El Paso, TX. 33 p.

Troendle, C.A.; Winkler, S.; VonLoh, J.; Willis, J. 2013. Monitoring the effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. METI Inc., El Paso, TX. 33 p.

USDA Forest Service. 2000. Decision notice and finding of no significant impact – Pikes Peak Highway drainage, erosion, and sediment control plan. Unpublished report. Pike and San Isabel National Forests and Cimarron Comanche National Grassland. Pueblo, CO. 16 p.

USDA Forest Service. 2002. Monitoring the effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished monitoring plan. 16 p.

USDA Forest Service. 2003. Amendment #1 to Monitoring the effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. 2 p.

USDA Forest Service. 2012. National best management practices for water quality management on National Forest System lands, volume 1: national core BMP technical guide. Washington D.C. USDA Forest Service. 165p.

U.S. Department of Justice. 2002. Settlement Agreement between the U.S. Forest Service and the Sierra Club. Unpublished report. Denver, CO. 15 p.

### Acknowledgements

Many thanks to the U.S. Forest Service Pikes Peak Ranger District and Rocky Mountain Research Station for all their logistical, technical, laboratory, and related assistance. Thanks to the City of Colorado Springs, the Pikes Peak Highway Crew, and Highway Project Managers who shared their time and invaluable knowledge.

We also appreciate the efforts of Tom Shackleford for his assistance with the photographic monitoring of Severy Creek

Thanks also to the City of Colorado Springs, the Public Works Department of Cripple Creek, and the Tezak Family for allowing access to closed and/or private watersheds for the validation monitoring.

Special thanks to METI Inc., the U.S. Forest Service, EMC Resource Information Group, Black Creek Hydrology, LLC, Blue Mountain Consultants, and Jeff Hovermale, U.S. Forest Service, Pikes Peak Ranger District for a successful eleventh year.

# Appendix A

# Site Locations for Effectiveness and Validation Monitoring

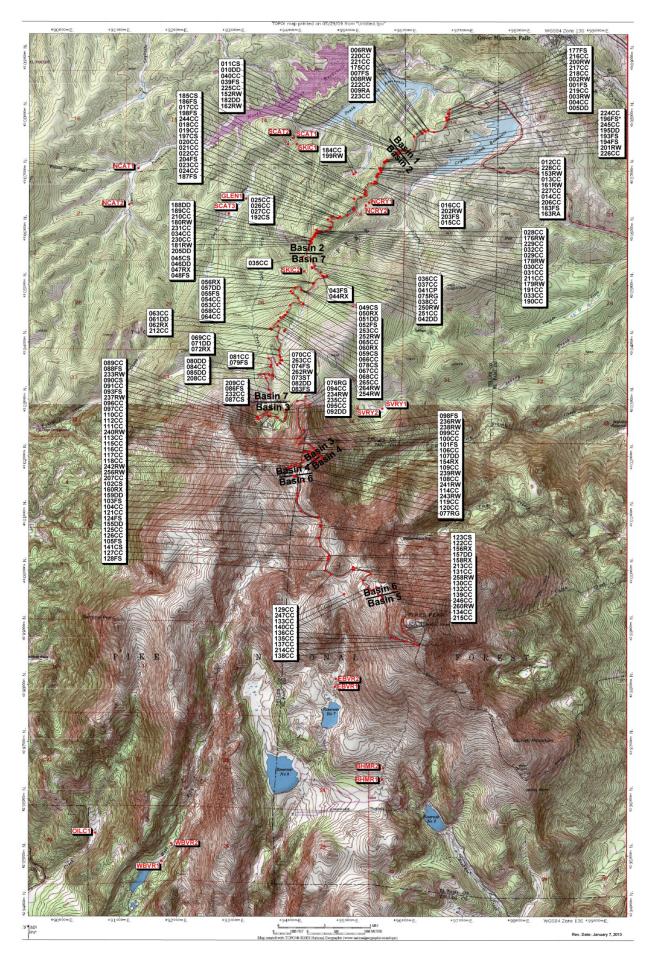
| Site ID | Latitude (hddd°mm.mmm) | Longitude<br>(hddd°mm.mmm) | Altitude<br>(ft) | Feature Description       |
|---------|------------------------|----------------------------|------------------|---------------------------|
| 001FS   | N38 55.211             | W105 02.238                | 9410             | Fill Slope                |
| 002RW   | N38 55.224             | W105 02.264                | 9410             | Rock Weir/Apron           |
| 003RW   | N38 55.200             | W105 02.258                | 9416             | Rock Weir/Apron           |
| 004CC   | N38 55.132             | W105 02.278                | 9431             | Conveyance Channel        |
| 005DD   | N38 55.087             | W105 02.415                | 9447             | Drainage Ditch            |
| 006RW   | N38 55.109             | W105 02.482                | 9415             | Rock Weir/Apron           |
| 007FS   | N38 55.094             | W105 02.520                | 9414             | Fill Slope                |
| 008RW   | N38 55.075             | W105 02.554                | 9417             | Rock Weir/Apron           |
| 009RA   | N38 55.046             | W105 02.655                | 9443             | Rock Weir/Apron           |
| 010DD   | N38 54.907             | W105 02.734                | 9457             | Drainage Ditch            |
| 011CS   | N38 54.909             | W105 02.730                | 9459             | Cut Slope                 |
| 012CC   | N38 54.748             | W105 03.060                | 9528             | Conveyance Channel        |
| 013CC   | N38 54.730             | W105 03.068                | 9525             | Conveyance Channel        |
| 015CC   | N38 54.603             | W105 03.174                | 9547             | Conveyance Channel        |
| 016CC   | N38 54.602             | W105 03.111                | 9525             | Conveyance Channel        |
| 017CC   | N38 54.510             | W105 03.246                | 9565             | Conveyance Channel        |
| 018CC   | N38 54.472             | W105 03.298                | 9576             | Conveyance Channel        |
| 019CC   | N38 54.457             | W105 03.384                | 9599             | Conveyance Channel        |
| 020CC   | N38 54.345             | W105 03.383                | 9637             | Conveyance Channel        |
| 021CC   | N38 54.299             | W105 03.461                | 9668             | Conveyance Channel        |
| 022CC   | N38 54.288             | W105 03.552                | 9692             | Conveyance Channel        |
| 023CC   | N38 54.272             | W105 03.583                | 9701             | Conveyance Channel        |
| 024CC   | N38 54.289             | W105 03.638                | 9715             | Conveyance Channel        |
| 025CC   | N38 54.258             | W105 03.697                | 9744             | Conveyance Channel        |
| 026CC   | N38 54.232             | W105 03.643                | 9752             | Conveyance Channel        |
| 027CC   | N38 54.183             | W105 03.652                | 9771             | Conveyance Channel        |
| 028CC   | N38 54.149             | W105 03.714                | 9818             | Conveyance Channel        |
| 029CC   | N38 54.145             | W105 03.816                | 9856             | Conveyance Channel        |
| 030CC   | N38 54.134             | W105 03.828                | 9855             | Conveyance Channel        |
| 031CC   | N38 54.130             | W105 03.829                | 9861             | Conveyance Channel        |
| 032CC   | N38 54.159             | W105 03.836                | 9858             | Conveyance Channel        |
| 033CC   | N38 54.106             | W105 03.854                | 9886             | Conveyance Channel        |
| 034CC   | N38 54.037             | W105 03.896                | 9940             | Conveyance Channel        |
| 035CC   | N38 53.909             | W105 04.000                | 10060            | Conveyance Channel        |
| 036CC   | N38 53.866             | W105 03.875                | 10126            | Conveyance Channel        |
| 037CC   | N38 53.821             | W105 03.855                | 10217            | Conveyance Channel        |
| 038CC   | N38 53.759             | W105 03.787                | 10254            | Conveyance Channel        |
| 039FS   | N38 54.910             | W105 02.812                | 9455             | Fill Slope                |
| 040CC   | N38 54.914             | W105 02.789                | 9464             | Conveyance Channel        |
| 041CP   | N38 53.807             | W105 03.893                | 10072            | Road Survey Control Point |
| 042DD   | N38 53.719             | W105 03.746                | 10161            | Drainage Ditch            |
| 043FS   | N38 53.726             | W105 03.764                | 10180            | Fill Slope                |
| 044RX   | N38 53.726             | W105 03.763                | 10183            | Road Cross Section        |
| 045CS   | N38 53.657             | W105 03.868                | 10266            | Cut Slope                 |

| Site ID | Latitude (hddd°mm.mmm) | Longitude<br>(hddd°mm.mmm) | Altitude<br>(ft) | Feature Description |
|---------|------------------------|----------------------------|------------------|---------------------|
| 046DD   | N38 53.658             | W105 03.868                | 10268            | Drainage Ditch      |
| 047RX   | N38 53.658             | W105 03.868                | 10268            | Road Cross Section  |
| 048FS   | N38 53.651             | W105 03.880                | 10275            | Fill Slope          |
| 049CS   | N38 53.592             | W105 04.020                | 10406            | Cut Slope           |
| 050RX   | N38 53.593             | W105 04.020                | 10404            | Road Cross Section  |
| 051DD   | N38 53.593             | W105 04.021                | 10397            | Drainage Ditch      |
| 052FS   | N38 53.593             | W105 04.021                | 10401            | Fill Slope          |
| 053CC   | N38 53.560             | W105 04.127                | 10478            | Conveyance Channel  |
| 054CC   | N38 53.579             | W105 04.148                | 10448            | Conveyance Channel  |
| 055FS   | N38 53.612             | W105 04.095                | 10445            | Fill Slope          |
| 056RX   | N38 53.614             | W105 04.096                | 10442            | Road Cross Section  |
| 057DD   | N38 53.613             | W105 04.095                | 10445            | Drainage Ditch      |
| 058CC   | N38 53.513             | W105 04.057                | 10512            | Conveyance Channel  |
| 059CS   | N38 53.353             | W105 04.222                | 10697            | Cut Slope           |
| 060RX   | N38 53.354             | W105 04.219                | 10691            | Road Cross Section  |
| 061DD   | N38 53.221             | W105 04.381                | 10808            | Drainage Ditch      |
| 062RX   | N38 53.216             | W105 04.381                | 10805            | Road Cross Section  |
| 063CC   | N38 53.223             | W105 04.394                | 10803            | Conveyance Channel  |
| 064CC   | N38 53.448             | W105 04.155                | 10634            | Conveyance Channel  |
| 065CC   | N38 53.382             | W105 04.192                | 10679            | Conveyance Channel  |
| 066CC   | N38 53.336             | W105 04.243                | 10701            | Conveyance Channel  |
| 067CC   | N38 53.297             | W105 04.299                | 10736            | Conveyance Channel  |
| 068CC   | N38 53.251             | W105 04.305                | 10841            | Conveyance Channel  |
| 069CC   | N38 53.019             | W105 04.287                | 10989            | Conveyance Channel  |
| 070CC   | N38 52.956             | W105 04.276                | 11028            | Conveyance Channel  |
| 071DD   | N38 52.972             | W105 04.285                | 11017            | Drainage Ditch      |
| 072RX   | N38 52.972             | W105 04.285                | 11015            | Road Cross Section  |
| 073ST   | N38 52.879             | W105 04.311                | 11062            | Sediment Trap       |
| 074FS   | N38 52.927             | W105 04.272                | 11053            | Fill Slope          |
| 075RG   | N38 53.797             | W105 03.890                | 10109            | Precipitation Gauge |
| 076RG   | N38 52.582             | W105 03.970                | 11810            | Precipitation Gauge |
| 077RG   | N38 51.783             | W105 03.999                | 13069            | Precipitation Gauge |
| 078CS   | N38 53.331             | W105 04.275                | 10478            | Cut Slope           |
| 079FS   | N38 52.882             | W105 04.382                | 11254            | Fill Slope          |
| 080DD   | N38 52.865             | W105 04.391                | 11256            | Drainage Ditch      |
| 081CC   | N38 52.943             | W105 04.415                | 11194            | Conveyance Channel  |
| 082DD   | N38 52.787             | W105 04.376                | 11284            | Drainage Ditch      |
| 083FS   | N38 52.777             | W105 04.362                | 11288            | Fill Slope          |
| 084CC   | N38 52.796             | W105 04.471                | 11360            | Conveyance Channel  |
| 085DD   | N38 52.786             | W105 04.410                | 11313            | Drainage Ditch      |
| 086FS   | N38 52.602             | W105 04.390                | 11447            | Fill Slope          |
| 087CS   | N38 52.435             | W105 04.432                | 11542            | Cut Slope           |
| 088FS   | N38 52.388             | W105 04.549                | 11590            | Fill Slope          |
| 089CC   | N38 52.391             | W105 04.555                | 11580            | Conveyance Channel  |
| 090CS   | N38 52.366             | W105 04.540                | 11604            | Cut Slope           |
| 091CC   | N38 52.402             | W105 04.414                | 11643            | Conveyance Channel  |

| Site ID | Latitude (hddd°mm.mmm) | Longitude<br>(hddd°mm.mmm) | Altitude<br>(ft) | Feature Description |
|---------|------------------------|----------------------------|------------------|---------------------|
| 092DD   | N38 52.432             | W105 04.204                | 11781            | Drainage Ditch      |
| 093FS   | N38 52.399             | W105 04.401                | 11642            | Fill Slope          |
| 094CC   | N38 52.540             | W105 04.069                | 11873            | Conveyance Channel  |
| 095CC   | N38 52.452             | W105 04.205                | 11787            | Conveyance Channel  |
| 096CC   | N38 52.379             | W105 04.217                | 11746            | Conveyance Channel  |
| 097CC   | N38 52.381             | W105 04.310                | 11678            | Conveyance Channel  |
| 098FS   | N38 52.265             | W105 03.995                | 12242            | Fill Slope          |
| 099CC   | N38 52.131             | W105 04.046                | 12319            | Conveyance Channel  |
| 100CC   | N38 52.133             | W105 03.936                | 12353            | Conveyance Channel  |
| 101FS   | N38 52.097             | W105 03.875                | 12390            | Fill Slope          |
| 102CS   | N38 51.641             | W105 04.063                | 12963            | Cut Slope           |
| 103FS   | N38 51.491             | W105 04.021                | 12950            | Fill Slope          |
| 104CC   | N38 51.444             | W105 03.894                | 12923            | Conveyance Channel  |
| 105FS   | N38 51.062             | W105 03.694                | 13083            | Fill Slope          |
| 106CC   | N38 52.082             | W105 03.858                | 12251            | Conveyance Channel  |
| 107DD   | N38 52.044             | W105 03.824                | 12312            | Drainage Ditch      |
| 108CC   | N38 51.994             | W105 03.769                | 12362            | Conveyance Channel  |
| 109CC   | N38 52.027             | W105 03.825                | 12393            | Conveyance Channel  |
| 110CC   | N38 52.062             | W105 03.914                | 12448            | Conveyance Channel  |
| 111CC   | N38 52.051             | W105 03.992                | 12511            | Conveyance Channel  |
| 112CC   | N38 52.049             | W105 03.933                | 12531            | Conveyance Channel  |
| 113CC   | N38 52.002             | W105 03.873                | 12577            | Conveyance Channel  |
| 114CC   | N38 51.956             | W105 03.840                | 12601            | Conveyance Channel  |
| 115CC   | N38 51.977             | W105 03.995                | 12692            | Conveyance Channel  |
| 116CC   | N38 51.940             | W105 04.080                | 12736            | Conveyance Channel  |
| 117CC   | N38 51.925             | W105 04.141                | 12777            | Conveyance Channel  |
| 118CC   | N38 51.912             | W105 04.177                | 12797            | Conveyance Channel  |
| 119CC   | N38 51.914             | W105 04.032                | 12850            | Conveyance Channel  |
| 120CC   | N38 51.823             | W105 04.090                | 12876            | Conveyance Channel  |
| 121CC   | N38 51.439             | W105 03.804                | 12877            | Conveyance Channel  |
| 122CC   | N38 51.347             | W105 03.789                | 12920            | Conveyance Channel  |
| 123CS   | N38 51.361             | W105 03.782                | 12920            | Cut Slope           |
| 124FS   | N38 51.362             | W105 03.788                | 12931            | Fill Slope          |
| 125CC   | N38 51.238             | W105 03.806                | 12986            | Conveyance Channel  |
| 126CC   | N38 51.158             | W105 03.789                | 13031            | Conveyance Channel  |
| 127CC   | N38 51.032             | W105 03.697                | 13064            | Conveyance Channel  |
| 128FS   | N38 50.930             | W105 03.732                | 13072            | Fill Slope          |
| 129CC   | N38 50.897             | W105 03.662                | 13068            | Conveyance Channel  |
| 130CC   | N38 50.900             | W105 03.177                | 13183            | Conveyance Channel  |
| 131CC   | N38 50.940             | W105 03.382                | 13088            | Conveyance Channel  |
| 132CC   | N38 50.840             | W105 03.274                | 13217            | Conveyance Channel  |
| 133CC   | N38 50.768             | W105 03.213                | 13282            | Conveyance Channel  |
| 134CC   | N38 50.671             | W105 03.035                | 13401            | Conveyance Channel  |
| 135CC   | N38 50.285             | W105 02.872                | 13677            | Conveyance Channel  |
| 136CC   | N38 50.299             | W105 02.931                | 13624            | Conveyance Channel  |
| 137CC   | N38 50.260             | W105 02.755                | 13733            | Conveyance Channel  |

| Site ID | Latitude<br>(hddd°mm.mmm) | Longitude<br>(hddd°mm.mmm) | Altitude<br>(ft) | Feature Description |
|---------|---------------------------|----------------------------|------------------|---------------------|
| 138CC   | N38 50.221                | W105 02.605                | 13805            | Conveyance Channel  |
| 139CC   | N38 50.774                | W105 03.110                | 13370            | Conveyance Channel  |
| 140CC   | N38 50.730                | W105 03.195                | 13327            | Conveyance Channel  |
| 141CS   | N38 51.043                | W105 03.690                | 13103            | Cut Slope           |
| 152RW   | N38 54.912                | W105 02.837                | 9444             | Rock Weir/Apron     |
| 153RW   | N38 54.741                | W105 03.066                | 9457             | Rock Weir/Apron     |
| 154RX   | N38 52.040                | W105 03.817                | 12112            | Road Cross Section  |
| 155DD   | N38 51.245                | W105 03.803                | 12917            | Drainage Ditch      |
| 156RX   | N38 51.244                | W105 03.799                | 12922            | Road Cross Section  |
| 157DD   | N38 51.074                | W105 03.684                | 13100            | Drainage Ditch      |
| 158RX   | N38 51.074                | W105 03.683                | 13099            | Road Cross Section  |
| 159DD   | N38 51.610                | W105 04.072                | 13091            | Drainage Ditch      |
| 160RX   | N38 51.611                | W105 04.072                | 13066            | Road Cross Section  |
| 161RW   | N38 54.720                | W105 03.055                | 9516             | Rock Weir/Apron     |
| 162RW   | N38 54.887                | W105 02.854                | 9518             | Rock Weir/Apron     |
| 163RA   | N38 54.665                | W105 03.115                | 9528             | Rock Weir/Apron     |
| 175CC   | N38 55.104                | W105 02.532                | 9437             | Conveyance Channel  |
| 176RW   | N38 54.146                | W105 03.795                | 9838             | Rock Weir           |
| 177FS   | N38 55.302                | W105 02.224                | 9323             | Fill Slope          |
| 178RW   | N38 54.142                | W105 03.821                | 9839             | Rock Weir           |
| 179RW   | N38 54.127                | W105 03.852                | 9851             | Rock Weir           |
| 180RW   | N38 54.055                | W105 03.903                | 9906             | Rock Weir           |
| 181RW   | N38 54.025                | W105 03.918                | 9919             | Rock Weir           |
| 182DD   | N38 54.895                | W105 02.860                | 9430             | Drainage Ditch      |
| 183FS   | N38 54.675                | W105 03.109                | 9453             | Fill Slope          |
| 184CC   | N38 54.708                | W105 03.363                | 9308             | Conveyance Channel  |
| 185CS   | N38 54.536                | W105 03.246                | 9532             | Cut Slope           |
| 186FS   | N38 54.524                | W105 03.242                | 9538             | Fill Slope          |
| 187FS   | N38 54.281                | W105 03.658                | 9711             | Fill Slope          |
| 188DD   | N38 54.075                | W105 03.892                | 9894             | Drainage Ditch      |
| 189CC   | N38 54.073                | W105 03.886                | 9887             | Conveyance Channel  |
| 190CC   | N38 54.095                | W105 03.869                | 9871             | Conveyance Channel  |
| 191CC   | N38 54.117                | W105 03.854                | 9855             | Conveyance Channel  |
| 192CS   | N38 54.183                | W105 03.677                | 9786             | Cut Slope           |
| 193FS   | N38 54.821                | W105 02.983                | 9507             | Fill Slope          |
| 194FS   | N38 54.811                | W105 03.004                | 9506             | Fill Slope          |
| 195DD   | N38 54.827                | W105 02.983                | 9505             | Drainage Ditch      |
| 196FS   | N38 54.872                | W105 02.900                | 9497             | Fill Slope          |
| 197CS   | N38 54.364                | W105 03.383                | 9640             | Cut Slope           |
| 198FS   | N38 54.497                | W105 03.254                | 9560             | Fill Slope          |
| 199RW   | N38 54.688                | W105 03.389                | 9326             | Sediment Pond       |
| 200RW   | N38 55.261                | W105 02.246                | 9418             | Rock Weir           |
| 201RW   | N38 54.805                | W105 03.021                | 9522             | Rock Weir           |
| 202RW   | N38 54.619                | W105 03.132                | 9450             | Rock Weir           |
| 203FS   | N38 54.603                | W105 03.139                | 9517             | Fill Slope          |
| 204FS   | N38 54.273                | W105 03.572                | 9707             | Fill Slope          |

| Site ID | Latitude (hddd°mm.mmm) | Longitude<br>(hddd°mm.mmm) | Altitude<br>(ft) | Feature Description |
|---------|------------------------|----------------------------|------------------|---------------------|
| 205DD   | N38 54.022             | W105 03.927                | 9983             | Drainage Ditch      |
| 206CC   | N38 54.689             | W105 03.097                | 9506             | Conveyance Channel  |
| 207CC   | N38 51.664             | W105 04.062                | 12962            | Conveyance Channel  |
| 208CC   | N38 52.754             | W105 04.445                | 11172            | Conveyance Channel  |
| 209CC   | N38 52.647             | W105 04.411                | 11365            | Conveyance Channel  |
| 210CC   | N38 54.059             | W105 03.916                | 9849             | Conveyance Channel  |
| 211CC   | N38 54.130             | W105 03.844                | 9853             | Conveyance Channel  |
| 212CC   | N38 53.149             | W105 04.311                | 10893            | Conveyance Channel  |
| 213CC   | N38 50.964             | W105 03.391                | 13046            | Conveyance Channel  |
| 214CC   | N38 50.234             | W105 02.661                | 13198            | Conveyance Channel  |
| 215CC   | N38 50.356             | W105 02.792                | 13375            | Conveyance Channel  |
| 216CC   | N38 55.263             | W105 02.236                | 9289             | Conveyance Channel  |
| 217CC   | N38 55.255             | W105 02.232                | 9284             | Conveyance Channel  |
| 218CC   | N38 55.226             | W105 02.268                | 9359             | Conveyance Channel  |
| 219CC   | N38 55.202             | W105 02.262                | 9371             | Conveyance Channel  |
| 220CC   | N38 55.108             | W105 02.482                | 9411             | Conveyance Channel  |
| 221CC   | N38 55.107             | W105 02.482                | 9305             | Conveyance Channel  |
| 222CC   | N38 55.070             | W105 02.554                | 9319             | Conveyance Channel  |
| 223CC   | N38 55.048             | W105 02.657                | 9394             | Conveyance Channel  |
| 224CC   | N38 54.878             | W105 02.852                | 9493             | Conveyance Channel  |
| 225CC   | N38 54.917             | W105 02.840                | 9441             | Conveyance Channel  |
| 226CC   | N38 54.796             | W105 03.010                | 9431             | Conveyance Channel  |
| 227CC   | N38 54.706             | W105 03.053                | 9480             | Conveyance Channel  |
| 228CC   | N38 54.746             | W105 03.078                | 9431             | Conveyance Channel  |
| 229CC   | N38 54.140             | W105 03.788                | 9774             | Conveyance Channel  |
| 230CC   | N38 54.028             | W105 03.912                | 9902             | Conveyance Channel  |
| 231CC   | N38 54.050             | W105 03.908                | 9910             | Conveyance Channel  |
| 232CC   | N38 52.583             | W105 04.557                | 11399            | Conveyance Channel  |
| 233RW   | N38 52.383             | W105 04.560                | 11074            | Rock Weir           |
| 234RW   | N38 52.502             | W105 03.924                | 11915            | Rock Weir           |
| 235CC   | N38 52.504             | W105 03.920                | 11928            | Conveyance Channel  |
| 236RW   | N38 52.185             | W105 04.066                | 12177            | Rock Weir           |
| 237RW   | N38 52.398             | W105 04.393                | 11219            | Sediment Pond       |
| 238RW   | N38 52.131             | W105 04.048                | 12340            | Rock Weir           |
| 239RW   | N38 52.008             | W105 03.774                | 12517            | Rock Weir           |
| 240RW   | N38 52.048             | W105 03.990                | 12644            | Rock Weir           |
| 241RW   | N38 51.976             | W105 03.834                | 12686            | Rock Weir           |
| 242RW   | N38 51.903             | W105 04.176                | 12851            | Rock Weir           |
| 243RW   | N38 51.919             | W105 04.043                | 12900            | Rock Weir           |
| 244CC   | N38 54.487             | W105 03.232                | 9569             | Conveyance Channel  |
| 245CC   | N38 54.872             | W105 02.900                | 9497             | Conveyance Channel  |
| 246CC   | N38 50.709             | W105 03.090                | 13423            | Conveyance Channel  |
| 247CC   | N38 50.709             | W105 03.499                | 13080            | Conveyance Channel  |
| 250RW   | N38 53.724             | W105 03.710                | 10232            | Rock Weir           |
| 251CC   | N38 53.723             | W105 03.712                | 10229            | Conveyance Channel  |
| 252RW   | N38 53.456             | W105 03.998                | 10598            | Rock Weir           |


| Site ID | Latitude<br>(hddd°mm.mmm) | Longitude<br>(hddd°mm.mmm) | Altitude<br>(ft) | Feature Description            |
|---------|---------------------------|----------------------------|------------------|--------------------------------|
| 253CC   | N38 53.462                | W105 03.998                | 10582            | Conveyance Channel             |
| 254RW   | N38 53.226                | W105 04.396                | 10836            | Rock Weir                      |
| 256RW   | N38 51.832                | W105 04.112                | 12923            | Sediment Pond                  |
| 258RW   | N38 50.938                | W105 03.394                | 13091            | Sediment Pond                  |
| 260RW   | N38 50.682                | W105 03.043                | 13415            | Sediment Pond                  |
| 262RW   | N38 52.890                | W105 04.297                | 11086            | Sediment Pond                  |
| 263CC   | N38 52.919                | W105 04.258                | 11056            | Conveyance Channel             |
| 264RW   | N38 53.201                | W105 04.228                | 10864            | Sediment Pond                  |
| 265CC   | N38 53.209                | W105 04.206                | 10843            | Conveyance Channel             |
| BHMR1   | N38 48.951                | W105 03.040                | 11885            | Boehmer Creek 1                |
| BHMR2   | N38 49.061                | W105 03.027                | 11995            | Boehmer Creek 2                |
| EBVR1   | N38 49.832                | W105 03.612                | 12156            | East Fork Beaver Creek 1       |
| EBVR2   | N38 49.907                | W105 03.598                | 12190            | East Fork Beaver Creek 2       |
| GLEN1   | N38 54.457                | W105 04.690                | 9519             | Glen Cove Creek 1              |
| NCAT1   | N38 54.746                | W105 05.994                | 9415             | North Catamount Creek 1        |
| NCAT2   | N38 54.402                | W105 06.106                | 9519             | North Catamount Creek 2        |
| NCRY1∞  | N38 54.418                | W105 03.199                | 9453             | North Fork Crystal Creek 1 & 2 |
| OILC1   | N38 48.449                | W105 06.511                | 10505            | Oil Creek 1                    |
| SCAT1   | N38 55.035                | W105 04.112                | 9368             | South Catamount Creek 1        |
| SCAT2   | N38 54.974                | W105 04.181                | 9345             | South Catamount Creek 2        |
| SCAT3   | N38 54.316                | W105 04.899                | 9412             | South Catamount Creek 3        |
| SKIC1   | N38 54.975                | W105 04.078                | 9418             | Ski Creek 1                    |
| SKIC2   | N38 53.767                | W105 03.987                | 10035            | Ski Creek 2                    |
| SVRY1   | N38 52.467                | W105 03.039                | 10732            | Severy Creek 1                 |
| SVRY2   | N38 52.472                | W105 03.339                | 10926            | Severy Creek 2                 |
| WBVR1   | N38 48.181                | W105 05.710                | 10726            | West Fork Beaver Creek 1       |
| WBVR2   | N38 48.349                | W105 05.591                | 10698            | West Fork Beaver Creek 2       |

<sup>†</sup> Not all sites were sampled during the 2013 field season. ∞ North Fork Crystal Creek Reach 2 (NCRY2) is located 200ft upstream from NCRY1.

## Appendix B

## USGS Topographic Map

Site Locations for Effectiveness and Validation Monitoring



# Appendix C

Daily Precipitation and Periodic Precipitation

Daily Precipitation for Electronic Rain Gauges on Pikes Peak, 2013

| Date      | 075RG†<br>(Altitude 10,109')<br>Precipitation (in) | 076RG <i>†</i><br>(Altitude 11,810')<br>Precipitation (in) | 077RG <i>†</i><br>(Altitude 13,069')<br>Precipitation (in) |
|-----------|----------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
| 5/6/2012  | 0                                                  | 0                                                          | 0.02                                                       |
| 5/7/2012  | 0.01                                               | 0                                                          | 0.03                                                       |
| 5/8/2013  | 0.22                                               | 0.08                                                       | 0                                                          |
| 5/9/2013  | 0.28                                               | 0                                                          | 0.01                                                       |
| 5/10/2013 | 0.16                                               | 0.34                                                       | 0.08                                                       |
| 5/11/2013 | 0.02                                               | 0.08                                                       | 0.02                                                       |
| 5/12/2013 | 0                                                  | 0.01                                                       | 0.04                                                       |
| 5/13/2013 | 0.01                                               | 0.01                                                       | 0                                                          |
| 5/14/2013 | 0.01                                               | 0                                                          | 0                                                          |
| 5/15/2013 | 0                                                  | 0.01                                                       | 0.03                                                       |
| 5/16/2013 | 0                                                  | 0                                                          | 0                                                          |
| 5/17/2013 | 0                                                  | 0                                                          | 0                                                          |
| 5/18/2013 | 0                                                  | 0                                                          | 0                                                          |
| 5/19/2013 | 0                                                  | 0                                                          | 0                                                          |
| 5/20/2013 | 0.06                                               | 0.03                                                       | 0.01                                                       |
| 5/21/2013 | 0.22                                               | 0.25                                                       | 0.18                                                       |
| 5/22/2013 | 0.02                                               | 0                                                          | 0                                                          |
| 5/23/2013 | 0                                                  | 0                                                          | 0                                                          |
| 5/24/2013 | 0                                                  | 0                                                          | 0                                                          |
| 5/25/2013 | 0                                                  | 0                                                          | 0                                                          |
| 5/26/2013 | 0                                                  | 0                                                          | 0                                                          |
| 5/27/2013 | 0                                                  | 0                                                          | 0                                                          |
| 5/28/2013 | 0                                                  | 0                                                          | 0.01                                                       |
| 5/29/2013 | 0                                                  | 0                                                          | 0                                                          |
| 5/30/2013 | 0                                                  | 0                                                          | 0                                                          |
| 5/31/2013 | 0                                                  | 0                                                          | 0                                                          |
| 6/1/2013  | 0                                                  | 0                                                          | 0                                                          |
| 6/2/2013  | 0                                                  | 0                                                          | 0                                                          |
| 6/3/2013  | 0                                                  | 0                                                          | 0                                                          |
| 6/4/2013  | 0.03                                               | 0.02                                                       | 0                                                          |
| 6/5/2013  | 0                                                  | 0                                                          | 0                                                          |
| 6/6/2013  | 0.03                                               | 0.05                                                       | 0.01                                                       |
| 6/7/2013  | 0                                                  | 0.04                                                       | 0.08                                                       |
| 6/8/2013  | 0                                                  | 0                                                          | 0                                                          |
| 6/9/2013  | 0                                                  | 0                                                          | 0                                                          |
| 6/10/2013 | 0                                                  | 0                                                          | 0                                                          |
| 6/11/2013 | 0                                                  | 0                                                          | 0                                                          |
| 6/12/2013 | 0                                                  | 0                                                          | 0                                                          |
| 6/13/2013 | 0                                                  | 0                                                          | 0                                                          |
| 6/14/2013 | 0.02                                               | 0.01                                                       | 0                                                          |
| 6/15/2013 | 0                                                  | 0                                                          | 0                                                          |
| 6/16/2013 | 0.27                                               | 0.31                                                       | 0.08                                                       |

| Date      | 075RG†<br>(Altitude 10,109')<br>Precipitation (in) | 076RG†<br>(Altitude 11,810')<br>Precipitation (in) | 077RG†<br>(Altitude 13,069')<br>Precipitation (in) |
|-----------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| 6/17/2013 | 0.45                                               | 0.28                                               | 0.05                                               |
| 6/18/2013 | 0.43                                               | 0.01                                               | 0.29                                               |
| 6/19/2013 | 0                                                  | 0.01                                               | 0.25                                               |
| 6/20/2013 | 0                                                  | 0                                                  | 0                                                  |
| 6/21/2013 | 0                                                  | 0                                                  | 0                                                  |
| 6/22/2013 | 0                                                  | 0                                                  | 0                                                  |
| 6/23/2013 | 0                                                  | 0                                                  | 0                                                  |
| 6/24/2013 | 0                                                  | 0                                                  | 0                                                  |
| 6/25/2013 | 0                                                  | 0                                                  | 0                                                  |
| 6/26/2013 | 0                                                  | 0                                                  | 0                                                  |
| 6/27/2013 | 0                                                  | 0                                                  | 0                                                  |
| 6/28/2013 | 0.04                                               | 0.07                                               | 0                                                  |
| 6/29/2013 | 0.05                                               | 0.1                                                | 0.01                                               |
| 6/30/2013 | 0.06                                               | 0.09                                               | 0.09                                               |
| 7/1/2013  | 0.1                                                | 0.18                                               | 0.32                                               |
| 7/2/2013  | 0                                                  | 0.02                                               | 0.01                                               |
| 7/3/2013  | 0.04                                               | 0.04                                               | 0.05                                               |
| 7/4/2013  | 0.07                                               | 0.09                                               | 0.11                                               |
| 7/5/2013  | 0.35                                               | 0.37                                               | 0.4                                                |
| 7/6/2013  | 0.58                                               | 0.74                                               | 0.54                                               |
| 7/7/2013  | 0.29                                               | 0.27                                               | 0.3                                                |
| 7/8/2013  | 0.13                                               | 0.26                                               | 0.25                                               |
| 7/9/2013  | 0.02                                               | 0.02                                               | 0                                                  |
| 7/10/2013 | 0.01                                               | 0.01                                               | 0.02                                               |
| 7/11/2013 | 0                                                  | 0                                                  | 0                                                  |
| 7/12/2013 | 0                                                  | 0.02                                               | 0.06                                               |
| 7/13/2013 | 0.06                                               | 0.09                                               | 0.1                                                |
| 7/14/2013 | 0.27                                               | 0.32                                               | 0.63                                               |
| 7/15/2013 | 0.13                                               | 0.25                                               | 0.33                                               |
| 7/16/2013 | 0                                                  | 0                                                  | 0                                                  |
| 7/17/2013 | 0                                                  | 0                                                  | 0                                                  |
| 7/18/2013 | 0.13                                               | 0                                                  | 0                                                  |
| 7/19/2013 | 0.1                                                | 0.04                                               | 0.14                                               |
| 7/20/2013 | 0.16                                               | 0.2                                                | 0.31                                               |
| 7/21/2013 | 0.1                                                | 0.1                                                | 0.06                                               |
| 7/22/2013 | 0.01                                               | 0                                                  | 0.01                                               |
| 7/23/2013 | 0                                                  | 0                                                  | 0                                                  |
| 7/24/2013 | 0.23                                               | 0.36                                               | 0.27                                               |
| 7/25/2013 | 0.12                                               | 0.06                                               | 0.08                                               |
| 7/26/2013 | 0                                                  | 0                                                  | 0                                                  |
| 7/27/2013 | 0.1                                                | 0.17                                               | 0.25                                               |
| 7/28/2013 | 0.15                                               | 0.62                                               | 0.38                                               |
| 7/29/2013 | 0.12                                               | 0.12                                               | 0.17                                               |

| Date      | 075RG <i>†</i><br>(Altitude 10,109') | 076RG <i>†</i><br>(Altitude 11,810') | 077RG <i>†</i><br>(Altitude 13,069') |
|-----------|--------------------------------------|--------------------------------------|--------------------------------------|
| 2410      | Precipitation (in)                   | Precipitation (in)                   | Precipitation (in)                   |
| 7/30/2013 | 0                                    | 0.02                                 | 0.09                                 |
| 7/31/2013 | 0                                    | 0                                    | 0                                    |
| 8/1/2013  | 0.03                                 | 0.03                                 | 0.02                                 |
| 8/2/2013  | 0.1                                  | 0.16                                 | 0.35                                 |
| 8/3/2013  | 0.23                                 | 0.32                                 | 0.59                                 |
| 8/4/2013  | 0.33                                 | 0.28                                 | 0.35                                 |
| 8/5/2013  | 0                                    | 0.07                                 | 0.09                                 |
| 8/6/2013  | 0.05                                 | 0.07                                 | 0.1                                  |
| 8/7/2013  | 0.23                                 | 0.24                                 | 0.22                                 |
| 8/8/2013  | 0.02                                 | 0.01                                 | 0                                    |
| 8/9/2013  | 0.51                                 | 0.37                                 | 0.02                                 |
| 8/10/2013 | 0.15                                 | 0.25                                 | 0.18                                 |
| 8/11/2013 | 0.25                                 | 0.2                                  | 0.18                                 |
| 8/12/2013 | 0.1                                  | 0.08                                 | 0.1                                  |
| 8/13/2013 | 0.06                                 | 0.31                                 | 0.19                                 |
| 8/14/2013 | 0                                    | 0                                    | 0                                    |
| 8/15/2013 | 0                                    | 0                                    | 0                                    |
| 8/16/2013 | 0                                    | 0                                    | 0.02                                 |
| 8/17/2013 | 0                                    | 0                                    | 0                                    |
| 8/18/2013 | 0                                    | 0                                    | 0                                    |
| 8/19/2013 | 0.05                                 | 0.03                                 | 0.04                                 |
| 8/20/2013 | 0                                    | 0                                    | 0                                    |
| 8/21/2013 | 0                                    | 0                                    | 0                                    |
| 8/22/2013 | 0.73                                 | 0.78                                 | 0.75                                 |
| 8/23/2013 | 0.12                                 | 0.32                                 | 0.24                                 |
| 8/24/2013 | 0                                    | 0                                    | 0                                    |
| 8/25/2013 | 0                                    | 0                                    | 0.03                                 |
| 8/26/2013 | 0                                    | 0                                    | 0                                    |
| 8/27/2013 | Missing                              | 0                                    | 0                                    |
| 8/28/2013 | Missing                              | 0                                    | 0                                    |
| 8/29/2013 | Missing                              | 0                                    | 0                                    |
| 8/30/2013 | Missing                              | 0.01                                 | 0                                    |
| 8/31/2013 | Missing                              | 0.07                                 | 0.06                                 |
| 9/1/2013  | Missing                              | 0.32                                 | 0.18                                 |
| 9/2/2013  | Missing                              | 0                                    | 0                                    |
| 9/3/2013  | Missing                              | 0.03                                 | 0.05                                 |
| 9/4/2013  | Missing                              | 0.07                                 | 0.29                                 |
| 9/5/2013  | Missing                              | 0                                    | 0                                    |
| 9/6/2013  | Missing                              | 0                                    | 0                                    |
| 9/7/2013  | Missing                              | 0                                    | 0                                    |
| 9/8/2013  | Missing                              | 0                                    | 0                                    |
| 9/9/2013  | Missing                              | 0.02                                 | 0                                    |
| 9/10/2013 | Missing                              | 0.11                                 | 0.13                                 |

| Date      | 075RG†<br>(Altitude 10,109')<br>Precipitation (in) | 076RG†<br>(Altitude 11,810')<br>Precipitation (in) | 077RG†<br>(Altitude 13,069')<br>Precipitation (in) |
|-----------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| 9/11/2013 | Missing                                            | 0.92                                               | 0.4                                                |
| 9/12/2013 | Missing                                            | 1.26                                               | 1.35                                               |
| 9/13/2013 | Missing                                            | 0.44                                               | 0.47                                               |
| 9/14/2013 | Missing                                            | 0.05                                               | 0.05                                               |
| 9/15/2013 | Missing                                            | 0.41                                               | 0.31                                               |
| 9/16/2013 | Missing                                            | 0.12                                               | 0.11                                               |
| 9/17/2013 | Missing                                            | 0                                                  | 0.01                                               |
| 9/18/2013 | Missing                                            | Missing                                            | Missing                                            |
| 9/19/2013 | Missing                                            | Missing                                            | Missing                                            |
| 9/20/2013 | Missing                                            | Missing                                            | Missing                                            |
| 9/21/2013 | Missing                                            | Missing                                            | Missing                                            |
| 9/22/2013 | Missing                                            | Missing                                            | Missing                                            |
| 9/23/2013 | Missing                                            | Missing                                            | Missing                                            |
| 9/24/2013 | Missing                                            | Missing                                            | Missing                                            |
| 9/25/2013 | Missing                                            | 0                                                  | 0                                                  |
| 9/26/2013 | Missing                                            | 0                                                  | 0.01                                               |
| 9/27/2013 | Missing                                            | 0                                                  | 0                                                  |
| 9/28/2013 | Missing                                            | 0.02                                               | 0                                                  |
| 9/29/2013 | Missing                                            | 0                                                  | 0                                                  |
| 9/30/2013 | Missing                                            | 0                                                  | 0.01                                               |
| Total     | 8.19†                                              | 13.53†                                             | 12.82†                                             |

<sup>†</sup> Indicates missing data due to equipment malfunction and/or damage to the rain gauge.

Periodic Precipitation for Standard Rain Gauges on Pikes Peak, 2013

| Date        | 075RG<br>(Altitude 10,109')<br>Precipitation (in) | 076RG<br>(Altitude 11,810')<br>Precipitation (in) | 077RG†<br>(Altitude 13,069')<br>Precipitation (in) |
|-------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------------|
| 5/6/13      | 0.33                                              | 0.34                                              | 0.08                                               |
| 5/14/13     | 0.74                                              | 0.68                                              | 0.17                                               |
| 5/20/13     | 0.01                                              | 0.04                                              | 0.04                                               |
| 5/28/13     | 0.33                                              | 0.32                                              | 0.21                                               |
| 6/6/13      | 0.04                                              | 0.03                                              | Missing                                            |
| 6/10/13     | 0.03                                              | 0.13                                              | Missing                                            |
| 6/17/13     | 0.39                                              | 0.42                                              | 0.13                                               |
| 6/24/13     | 0.46                                              | 0.33                                              | 0.32                                               |
| 7/1/13      | 0.21                                              | 0.35                                              | 0.35                                               |
| 7/8/13      | 2.03                                              | 2.27                                              | 1.88                                               |
| 7/15/13     | 0.57                                              | 0.86                                              | 1.22                                               |
| 7/23/13     | 0.63                                              | 0.43                                              | 0.64                                               |
| 7/29/13     | 0.75                                              | 1.44                                              | 1.11                                               |
| 8/5/13      | 1.06                                              | 1.14                                              | 1.50                                               |
| 8/13/13     | 1.51                                              | 1.50                                              | 0.95                                               |
| 8/19/13     | 0.06                                              | 0.37                                              | 0.21                                               |
| 8/26/13     | 1.10                                              | 1.36                                              | 1.06                                               |
| 9/9/13      | 2.25                                              | 0.60                                              | 0.55                                               |
| 9/17/13     | 4.53                                              | 3.86                                              | 3.36                                               |
| 9/24/13     | 1.02                                              | 0.98                                              | 0.19                                               |
| 9/30/13     | 0.11                                              | 0.15                                              | 0.15                                               |
| Total       | 18.16                                             | 17.60                                             | 14.12 <i>†</i>                                     |
| † Indicates | missing data due to d                             | lamage to the rain gai                            | uge.                                               |

# Appendix D

Cut Slope

Site Visit Dates and Sediment Accumulation

Site Visit Dates of Cut Slope Silt Fences on Pikes Peak, 2013

| Cita ID |     |     |      | Cut  | Slope | Site V | isit Da | ates 20 | 13   |      |      |      |
|---------|-----|-----|------|------|-------|--------|---------|---------|------|------|------|------|
| Site ID | 5/6 | 5/7 | 5/20 | 5/30 | 6/10  | 7/2    | 7/16    | 7/29    | 8/12 | 9/17 | 9/26 | 9/30 |
| 011CS   |     | Χ   | Χ    |      | Χ     | Χ      | Х       | Χ       | Χ    | Χ    |      | Χ    |
| 045CS   | Χ   |     | Χ    |      | Χ     | Χ      | Χ       | Χ       | Χ    | Χ    |      | Χ    |
| 049CS   |     | Χ   | Χ    |      | Χ     | Χ      | Χ       | Χ       | Χ    | Χ    |      | Χ    |
| 059CS   | Χ   |     | Χ    |      | Χ     | Χ      | Χ       | Χ       | Χ    | Χ    |      | Χ    |
| 078CS   | Χ   |     | Χ    |      | Χ     | Χ      | Χ       | Χ       | Χ    | Χ    |      | Χ    |
| 087CS   | Χ   |     | Χ    |      | Χ     | Χ      | Χ       | Χ       | Χ    | Χ    |      | Χ    |
| 090CS   | Χ   |     | Χ    |      | Χ     | Χ      | Χ       | Χ       | Χ    | Χ    |      | Χ    |
| 102CS   | Χ   |     | Χ    |      | Χ     | Χ      | Χ       | Χ       | Χ    | Χ    |      | Χ    |
| 123CS   | Χ   |     | Χ    | Χ    | Χ     | Χ      | Χ       | Χ       | Χ    | Χ    |      | Χ    |
| 141CS   | Χ   |     | Χ    | Χ    | Χ     | Χ      | Χ       | Χ       | Χ    | Χ    | Χ    | Χ    |
| 185CS   | Χ   |     | Χ    |      | Χ     | Χ      | Х       | Χ       | Χ    | Χ    |      | Χ    |
| 192CS   | Χ   |     | Χ    |      | Χ     | Χ      | Χ       | Χ       | Χ    | Χ    |      | Χ    |
| 197CS   | Χ   |     | Χ    |      | Χ     | Χ      | Χ       | Χ       | Χ    | X    |      | Χ    |

## Sediment Accumulation in Cut Slope Silt Fences on Pikes Peak, 2013

| Site ID   | Location               | Date      | Volume<br>(ft <sup>3</sup> ) | Grab<br>Sample |
|-----------|------------------------|-----------|------------------------------|----------------|
| 185CS     | Lower Fence            | 5/6/13    | 0.13                         | Yes            |
| 192CS     | Lower Fence            | 5/6/13    | 1.14                         | Yes            |
| 197CS     | Lower Fence            | 5/6/13    | 1.74                         | Yes†           |
| 197CS     | Upper Fence            | 5/6/13    | 0.13                         | Yes†           |
| 049CS     | Lower Fence            | 5/7/13    | 0.13                         | Yes            |
| 045CS     | Lower Fence            | 5/20/13   | 0.20                         | Yes†           |
| 059CS     | Lower Fence            | 5/20/13   | 0.07                         | Yes            |
| 087CS     | Lower Fence            | 6/10/13   | 0.27                         | Yes            |
| 090CS     | Lower Fence            | 6/10/13   | 0.07                         | Yes†           |
| 123CS     | Upper Fence            | 6/10/13   | 0.53                         | Yes†           |
| 141CS     | Upper Fence            | 6/10/13   | 0.27                         | Yes            |
| 049CS     | Lower Fence            | 7/16/13   | 0.13                         | Yes            |
| 078CS     | Lower Fence            | 7/16/13   | 0.27                         | Yes†           |
| 123CS     | Upper Fence            | 7/16/13   | 0.07                         | Yes            |
| 192CS     | Lower Fence            | 7/29/13   | 1.20                         | Yes†           |
| 197CS     | Lower Fence            | 7/29/13   | 0.13                         | Yes            |
| 197CS     | Upper Fence            | 7/29/13   | 0.13                         | Yes            |
| 141CS     | Upper Fence            | 8/12/13   | 0.07                         | Yes†           |
| 087CS     | Lower Fence            | 9/17/13   | 0.40                         | Yes            |
| 192CS     | Lower Fence            | 9/17/13   | 2.61                         | Yes†           |
| 197CS     | Lower Fence            | 9/17/13   | 1.40                         | Yes†           |
| † Grab sa | mples selected for lab | analyses. |                              |                |

# Appendix E

Fill Slope
Site Visit Dates
and
Sediment Accumulation

## Site Visit Dates of Fill Slope Silt Fences on Pikes Peak, 2013

| C:40 ID |     |     |      | Fill | Slope S | ite Visi | t Dates | 2013 |      |      |      |
|---------|-----|-----|------|------|---------|----------|---------|------|------|------|------|
| Site ID | 5/6 | 5/7 | 5/20 | 6/10 | 6/24    | 7/2      | 7/16    | 7/29 | 8/12 | 9/17 | 9/30 |
| 001FS   | Х   |     | Х    | Х    |         | Χ        | Х       | Х    | Χ    | Х    | Χ    |
| 007FS   | Χ   | Χ   | X    | X    |         | Χ        | Χ       | Χ    | Χ    | Χ    | Χ    |
| 039FS   | Χ   |     | X    | X    |         | Χ        | Χ       | Χ    | Χ    | Χ    | Χ    |
| 043FS   | Χ   |     | X    | X    |         | Χ        | Χ       | Χ    | Χ    | Χ    | Χ    |
| 048FS   | Χ   |     | Χ    | X    |         | Χ        | Χ       | Χ    | Χ    | Χ    | Χ    |
| 052FS   |     | Χ   | X    | X    |         | Χ        | Χ       | Χ    | Χ    | Χ    | Χ    |
| 055FS   | Χ   |     | Χ    | X    |         | Χ        | Χ       | Χ    | Χ    | Χ    | Χ    |
| 074FS   | Χ   |     | Χ    | X    |         | Χ        | Χ       | Χ    | Χ    | Χ    | Χ    |
| 079FS   | Χ   |     | X    | X    | Χ       | Χ        | Χ       | Χ    | Χ    | Χ    | Χ    |
| 083FS   | Χ   |     | X    | X    | Χ       | Χ        | Χ       | Χ    | Χ    | Χ    | Χ    |
| 086FS   | Χ   |     | X    | X    |         | Χ        | Χ       | Χ    | Χ    | Χ    | Χ    |
| 088FS   | Х   |     | X    | X    |         | Χ        | Х       | Χ    | X    | X    | X    |
| 093FS   | Х   |     | X    | Χ    |         | Χ        | X       | Х    | Х    | Х    | Х    |
| 098FS   | Х   |     | Х    | X    |         | Χ        | Х       | Х    | Х    | Х    | X    |
| 101FS   | Х   |     | X    | X    |         | Χ        | Х       | Χ    | X    | X    | X    |
| 103FS   | Х   |     | Х    | X    |         | Χ        | Х       | Χ    | X    | X    | X    |
| 105FS   | Х   |     | Χ    | X    |         | Χ        | Х       | Х    | Χ    | Х    | X    |
| 124FS   | X   |     | Χ    | Χ    |         | Χ        | Х       | Χ    | Χ    | Х    | X    |
| 128FS   | X   |     | Χ    | Χ    |         | Χ        | Х       | Χ    | Χ    | Х    | Χ    |
| 177FS   | Х   | Х   | Χ    | X    |         | Χ        | Х       | Х    | Х    | X    | Χ    |
| 183FS   | Х   |     | Χ    | X    |         | Χ        | Х       | Χ    | Χ    | Χ    | Χ    |
| 186FS   | Х   |     | Χ    | Χ    |         | Χ        | Х       | Х    | Χ    | Х    | X    |
| 187FS   | Х   |     | X    | Χ    |         | Χ        | Х       | Χ    | Χ    | Χ    | Х    |
| 193FS   | Х   |     | Χ    | X    |         | Χ        | Х       | Х    | Х    | X    | Х    |
| 194FS   | Х   |     | Χ    | Χ    |         | Χ        | Х       | Х    | Х    | X    | Х    |
| 198FS   | Х   |     | Χ    | Χ    |         | Χ        | Х       | Х    | Х    | X    | Х    |
| 203FS   | Х   |     | Χ    | Χ    |         | Χ        | Х       | Χ    | Χ    | Χ    | Х    |
| 204FS   | X   |     | Х    | Χ    |         | Χ        | X       | X    | Χ    | X    | Χ    |

## Sediment Accumulation in Fill Slope Silt Fences on Pikes Peak, 2013

| Site ID | Location    | Date    | Volume<br>(ft³) | Grab<br>Sample |
|---------|-------------|---------|-----------------|----------------|
| 039FS   | Upper Fence | 5/6/13  | 2.01            | Yes†           |
| 039FS   | Lower Fence | 5/6/13  | 0.13            | Yes†           |
| 177FS   | Upper Fence | 5/6/13  | 0.20            | Yes            |
| 183FS   | Upper Fence | 5/6/13  | 0.27            | Yes            |
| 186FS   | Upper Fence | 5/6/13  | 0.13            | Yes            |
| 186FS   | Lower Fence | 5/6/13  | 0.13            | Yes            |
| 193FS   | Upper Fence | 5/6/13  | 0.33            | Yes            |
| 198FS   | Upper Fence | 5/6/13  | 0.33            | Yes            |
| 198FS   | Lower Fence | 5/6/13  | 0.07            | Yes            |
| 204FS   | Upper Fence | 5/6/13  | 0.60            | Yes†           |
| 204FS   | Lower Fence | 5/6/13  | 0.27            | Yes†           |
| 052FS   | Lower Fence | 5/7/13  | 0.07            | Yes            |
| 043FS   | Upper Fence | 5/20/13 | 0.13            | Yes†           |
| 088FS   | Lower Fence | 6/10/13 | 0.07            | Yes            |
| 093FS   | Upper Fence | 6/10/13 | 1.00            | Yes            |
| 098FS   | Upper Fence | 6/10/13 | 2.14            | Yes†           |
| 105FS   | Upper Fence | 6/10/13 | 0.13            | Yes†           |
| 105FS   | Lower Fence | 6/10/13 | 0.60            | Yes†           |
| 128FS   | Upper Fence | 6/10/13 | 0.07            | Yes            |
| 083FS   | Lower Fence | 6/24/13 | 0.07            | Yes†           |
| 086FS   | Lower Fence | 7/2/13  | 0.20            | Yes            |
| 093FS   | Upper Fence | 7/2/13  | 0.33            | Yes†           |
| 187FS   | Upper Fence | 7/2/13  | 0.47            | Yes            |
| 001FS   | Upper Fence | 7/16/13 | 0.53            | Yes            |
| 074FS   | Upper Fence | 7/16/13 | 1.40            | Yes            |
| 074FS   | Lower Fence | 7/16/13 | 0.07            | Yes            |
| 183FS   | Upper Fence | 7/16/13 | 0.27            | Yes            |
| 186FS   | Lower Fence | 7/16/13 | 0.07            | Yes            |
| 001FS   | Upper Fence | 7/29/13 | 1.34            | Yes†           |
| 043FS   | Upper Fence | 7/29/13 | 0.47            | Yes            |
| 088FS   | Lower Fence | 7/29/13 | 0.07            | Yes            |
| 093FS   | Upper Fence | 7/29/13 | 0.27            | Yes            |
| 098FS   | Upper Fence | 7/29/13 | 0.80            | Yes            |
| 177FS   | Upper Fence | 7/29/13 | 0.20            | Yes            |
| 203FS   | Upper Fence | 7/29/13 | 1.07            | Yes†           |
| 128FS   | Upper Fence | 8/12/13 | 0.20            | Yes†           |
| 105FS   | Lower Fence | 8/12/13 | 0.47            | Yes            |
| 101FS   | Lower Fence | 8/12/13 | 0.74            | Yes†           |

| Site ID   | Location               | Date      | Volume<br>(ft <sup>3</sup> ) | Grab<br>Sample |
|-----------|------------------------|-----------|------------------------------|----------------|
| 093FS     | Upper Fence            | 8/12/13   | 0.07                         | Yes            |
| 183FS     | Upper Fence            | 8/12/13   | 0.60                         | Yes            |
| 186FS     | Upper Fence            | 8/12/13   | 0.27                         | Yes†           |
| 186FS     | Lower Fence            | 8/12/13   | 0.27                         | Yes†           |
| 039FS     | Upper Fence            | 9/17/13   | 0.34                         | Yes†           |
| 098FS     | Upper Fence            | 9/17/13   | 0.47                         | Yes            |
| 183FS     | Upper Fence            | 9/17/13   | 0.81                         | Yes            |
| 198FS     | Upper Fence            | 9/17/13   | 1.60                         | Yes            |
| 203FS     | Upper Fence            | 9/17/13   | 1.60                         | Yes            |
| 204FS     | Upper Fence            | 9/17/13   | 2.07                         | Yes†           |
| 204FS     | Lower Fence            | 9/17/13   | 0.34                         | Yes†           |
| † Grab sa | mples selected for lab | analyses. |                              | ·              |

## Appendix F

## Cut and Fill Slope

# Particle Size Distribution Summary and Graphs

2012 and 2013

## Summary of Cut Slope Particle Size Distribution from Sieve Analysis of Grab Samples on Pikes Peak, 2012 and 2013

|                                |                     |           | Particl | e Size Disti | ribution–Gı | ab Sample | s 2012 and | I 2013 |
|--------------------------------|---------------------|-----------|---------|--------------|-------------|-----------|------------|--------|
| Site Name                      | ID                  | Date      | D15     | D35          | D50         | D84       | D95        | D100   |
| Pikes Peak Highway - Cut Slope | 011CS - Lower Fence | 7/30/2012 | 0.088   | 0.755        | 1.234       | 4.991     | 12.953     | 19.0   |
| Pikes Peak Highway - Cut Slope | 011CS - Upper Fence | 7/30/2012 | 0.011   | 0.040        | 0.107       | 0.864     | 1.840      | 13.0   |
| Pikes Peak Highway - Cut Slope | 049CS - Upper Fence | 9/4/2012  | 0.017   | 0.122        | 0.512       | 1.917     | 3.680      | 12.0   |
| Pikes Peak Highway - Cut Slope | 059CS - Lower Fence | 5/4/2012  | 0.032   | 0.508        | 1.079       | 3.886     | 10.348     | 18.0   |
| Pikes Peak Highway - Cut Slope | 090CS - Lower Fence | 6/18/2012 | 0.094   | 1.004        | 2.069       | 33.668    | 37.249     | 39.0   |
| Pikes Peak Highway - Cut Slope | 123CS - Upper Fence | 9/4/2012  | 1.284   | 3.089        | 4.333       | 8.561     | 14.088     | 19.0   |
| Pikes Peak Highway - Cut Slope | 141CS - Upper Fence | 8/20/2012 | 1.018   | 2.232        | 3.158       | 6.011     | 7.906      | 15.0   |
| Pikes Peak Highway - Cut Slope | 192CS - Lower Fence | 5/4/2012  | 0.048   | 0.770        | 1.947       | 8.108     | 11.945     | 20.0   |
| Pikes Peak Highway - Cut Slope | 192CS - Upper Fence | 5/4/2012  | 0.036   | 0.588        | 1.550       | 7.132     | 13.704     | 18.0   |
| Pikes Peak Highway - Cut Slope | 045CS - Lower Fence | 5/20/2013 | 2.877   | 11.615       | 15.025      | 25.578    | 30.474     | 33.0   |
| Pikes Peak Highway - Cut Slope | 078CS - Lower Fence | 7/16/2013 | 0.379   | 2.193        | 4.040       | 10.308    | 13.830     | 16.0   |
| Pikes Peak Highway - Cut Slope | 090CS - Lower Fence | 6/10/2013 | 0.016   | 0.113        | 0.477       | 3.533     | 10.382     | 16.0   |
| Pikes Peak Highway - Cut Slope | 123CS - Upper Fence | 6/10/2013 | 1.228   | 2.525        | 3.516       | 7.944     | 14.350     | 19.0   |
| Pikes Peak Highway - Cut Slope | 141CS - Upper Fence | 8/12/2013 | 1.073   | 2.144        | 2.874       | 5.463     | 7.695      | 14.0   |
| Pikes Peak Highway - Cut Slope | 192CS - Lower Fence | 7/29/2013 | 0.025   | 0.286        | 0.977       | 4.674     | 9.755      | 14.0   |
| Pikes Peak Highway - Cut Slope | 192CS - Upper Fence | 9/17/2013 | 0.145   | 1.125        | 2.007       | 4.966     | 8.772      | 15.0   |
| Pikes Peak Highway - Cut Slope | 197CS - Lower Fence | 5/6/2013  | 0.280   | 1.679        | 3.109       | 10.731    | 22.923     | 28.0   |
| Pikes Peak Highway - Cut Slope | 197CS - Lower Fence | 9/17/2013 | 0.037   | 0.587        | 1.301       | 4.741     | 7.800      | 12.0   |

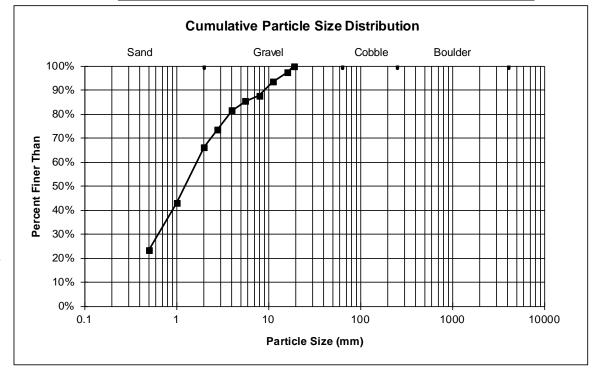
## Summary of Fill Slope Particle Size Distribution from Sieve Analysis of Grab Samples on Pikes Peak, 2012 and 2013

|                                 |                     |           | Particl | e Size Distr | ibution–Gr | ab Sample | s 2012 and | 2013 |
|---------------------------------|---------------------|-----------|---------|--------------|------------|-----------|------------|------|
| Site Name                       | ID                  | Date      | D15     | D35          | D50        | D84       | D95        | D100 |
| Pikes Peak Highway - Fill Slope | 001FS - Upper Fence | 6/4/2012  | 0.020   | 0.186        | 0.633      | 2.671     | 5.413      | 16.0 |
| Pikes Peak Highway - Fill Slope | 001FS - Upper Fence | 9/4/2012  | 0.031   | 0.495        | 1.064      | 3.721     | 6.933      | 20.0 |
| Pikes Peak Highway - Fill Slope | 043FS - Upper Fence | 6/4/2012  | 0.032   | 0.509        | 0.950      | 3.928     | 9.890      | 18.0 |
| Pikes Peak Highway - Fill Slope | 074FS - Upper Fence | 7/16/2012 | 0.104   | 0.909        | 1.505      | 4.128     | 7.791      | 14.0 |
| Pikes Peak Highway - Fill Slope | 079FS - Upper Fence | 5/21/2012 | 1.251   | 5.741        | 11.576     | 22.224    | 22.805     | 23.0 |
| Pikes Peak Highway - Fill Slope | 083FS - Lower Fence | 8/7/2012  | 0.105   | 0.943        | 1.541      | 4.084     | 6.456      | 10.0 |
| Pikes Peak Highway - Fill Slope | 086FS - Lower Fence | 9/4/2012  | 0.540   | 1.291        | 2.023      | 4.675     | 7.277      | 10.0 |
| Pikes Peak Highway - Fill Slope | 088FS - Lower Fence | 8/7/2012  | 0.048   | 0.622        | 1.062      | 3.157     | 5.438      | 9.0  |
| Pikes Peak Highway - Fill Slope | 093FS - Upper Fence | 9/4/2012  | 2.029   | 6.112        | 9.559      | 23.894    | 27.297     | 29.0 |
| Pikes Peak Highway - Fill Slope | 098FS - Upper Fence | 7/16/2012 | 0.847   | 2.536        | 4.088      | 10.905    | 20.217     | 28.0 |
| Pikes Peak Highway - Fill Slope | 101FS - Upper Fence | 6/4/2012  | 0.398   | 1.250        | 2.127      | 6.007     | 10.076     | 18.0 |
| Pikes Peak Highway - Fill Slope | 101FS - Lower Fence | 6/4/2012  | 1.726   | 3.822        | 5.650      | 17.878    | 28.992     | 37.0 |
| Pikes Peak Highway - Fill Slope | 103FS - Upper Fence | 9/4/2012  | 1.602   | 7.843        | 18.801     | 27.708    | 30.592     | 32.0 |
| Pikes Peak Highway - Fill Slope | 124FS - Upper Fence | 7/30/2012 | 1.727   | 4.026        | 5.398      | 12.220    | 22.531     | 25.0 |
| Pikes Peak Highway - Fill Slope | 128FS - Upper Fence | 6/4/2012  | 0.447   | 1.941        | 4.148      | 10.122    | 14.756     | 21.0 |
| Pikes Peak Highway - Fill Slope | 128FS - Lower Fence | 6/4/2012  | 0.889   | 2.192        | 3.254      | 7.855     | 12.433     | 18.0 |
| Pikes Peak Highway - Fill Slope | 177FS - Upper Fence | 5/3/2012  | 0.092   | 1.047        | 2.179      | 12.518    | 23.212     | 26.0 |
| Pikes Peak Highway - Fill Slope | 186FS - Upper Fence | 7/17/2012 | 0.044   | 0.630        | 1.211      | 3.991     | 7.962      | 16.0 |
| Pikes Peak Highway - Fill Slope | 187FS - Upper Fence | 8/20/2012 | 0.032   | 0.508        | 1.156      | 4.166     | 7.209      | 16.0 |
| Pikes Peak Highway - Fill Slope | 193FS - Upper Fence | 5/3/2012  | 0.089   | 0.965        | 1.674      | 4.519     | 7.132      | 11.0 |
| Pikes Peak Highway - Fill Slope | 193FS - Upper Fence | 5/21/2012 | 0.056   | 0.769        | 1.529      | 7.076     | 11.681     | 21.0 |
| Pikes Peak Highway - Fill Slope | 194FS - Upper Fence | 9/4/2012  | 0.121   | 1.092        | 1.960      | 5.640     | 9.855      | 13.0 |
| Pikes Peak Highway - Fill Slope | 204FS - Upper Fence | 6/4/2012  | 0.037   | 0.579        | 1.215      | 4.406     | 7.602      | 17.0 |
| Pikes Peak Highway - Fill Slope | 204FS - Lower Fence | 6/4/2012  | 0.021   | 0.191        | 0.764      | 3.558     | 7.272      | 12.0 |
| Pikes Peak Highway - Fill Slope | 001FS - Upper Fence | 7/29/2013 | 0.054   | 0.742        | 1.432      | 3.929     | 6.268      | 13.0 |
| Pikes Peak Highway - Fill Slope | 039FS - Upper Fence | 5/6/2013  | 0.563   | 1.596        | 2.684      | 8.099     | 14.916     | 19.0 |
| Pikes Peak Highway - Fill Slope | 039FS - Lower Fence | 5/6/2013  | 0.176   | 1.157        | 1.971      | 5.079     | 8.294      | 14.0 |
| Pikes Peak Highway - Fill Slope | 039FS - Upper Fence | 9/17/2013 | 0.104   | 0.928        | 1.663      | 5.274     | 16.738     | 21.0 |
| Pikes Peak Highway - Fill Slope | 043FS - Upper Fence | 5/20/2013 | 0.516   | 1.617        | 3.236      | 22.789    | 28.158     | 31.0 |
| Pikes Peak Highway - Fill Slope | 083FS - Lower Fence | 6/24/2013 | 0.238   | 1.018        | 1.551      | 3.627     | 5.418      | 12.0 |

|                                 |                     |           |       |       | ribution–G | ab Sample | s 2012 and | I 2013 |
|---------------------------------|---------------------|-----------|-------|-------|------------|-----------|------------|--------|
| Site Name                       | ID                  | Date      | D15   | D35   | D50        | D84       | D95        | D100   |
| Pikes Peak Highway - Fill Slope | 093FS - Upper Fence | 7/2/2013  | 1.174 | 4.496 | 11.029     | 33.407    | 39.738     | 43.0   |
| Pikes Peak Highway - Fill Slope | 098FS - Upper Fence | 6/10/2013 | 2.518 | 6.220 | 23.121     | 47.411    | 51.848     | 54.0   |
| Pikes Peak Highway - Fill Slope | 101FS - Lower Fence | 8/12/2013 | 0.532 | 1.022 | 1.557      | 6.534     | 21.165     | 29.0   |
| Pikes Peak Highway - Fill Slope | 105FS - Upper Fence | 6/10/2013 | 2.417 | 8.233 | 12.884     | 23.261    | 28.964     | 32.0   |
| Pikes Peak Highway - Fill Slope | 105FS - Lower Fence | 6/10/2013 | 1.296 | 2.626 | 3.452      | 7.203     | 12.369     | 22.0   |
| Pikes Peak Highway - Fill Slope | 128FS - Upper Fence | 8/12/2013 | 1.778 | 4.092 | 5.771      | 14.049    | 23.240     | 27.0   |
| Pikes Peak Highway - Fill Slope | 186FS - Upper Fence | 8/12/2013 | 0.088 | 0.814 | 1.435      | 6.401     | 25.879     | 33.0   |
| Pikes Peak Highway - Fill Slope | 186FS - Lower Fence | 8/12/2013 | 0.050 | 0.671 | 1.291      | 4.479     | 8.473      | 16.0   |
| Pikes Peak Highway - Fill Slope | 203FS - Upper Fence | 7/29/2013 | 0.054 | 0.698 | 1.313      | 4.534     | 14.334     | 23.0   |
| Pikes Peak Highway - Fill Slope | 204FS - Upper Fence | 5/6/2013  | 0.145 | 1.125 | 2.007      | 4.966     | 8.772      | 13.0   |
| Pikes Peak Highway - Fill Slope | 204FS - Lower Fence | 5/6/2013  | 0.020 | 0.182 | 0.633      | 2.901     | 6.279      | 12.0   |
| Pikes Peak Highway - Fill Slope | 204FS - Upper Fence | 9/17/2013 | 0.061 | 0.768 | 1.401      | 3.652     | 5.334      | 11.0   |
| Pikes Peak Highway - Fill Slope | 204FS - Lower Fence | 9/17/2013 | 0.075 | 1.004 | 1.855      | 4.959     | 7.498      | 12.0   |

| Size Finer | Wt. on     | % of Total    | % Finer |
|------------|------------|---------------|---------|
| Than (mm)  | Sieve      |               | Than    |
| Pan        | 154.50     | 23.3%         |         |
| 0.5        | 129.90     | 19.6%         | 23.3%   |
| 1.0        | 153.80     | 23.2%         | 42.9%   |
| 2.0        | 49.20      | 7.4%          | 66.2%   |
| 2.8        | 52.20      | 7.9%          | 73.6%   |
| 4.0        | 25.30      | 3.8%          | 81.5%   |
| 5.6        | 15.00      | 2.3%          | 85.3%   |
| 8.0        | 39.00      | 5.9%          | 87.6%   |
| 11.2       | 25.00      | 3.8%          | 93.5%   |
| 16.0       | 18.30      | 2.8%          | 97.2%   |
| 19.0       | *          |               | 100.0%  |
| 32.0       |            |               | -       |
| 45.0       |            |               |         |
| 64.0       |            |               |         |
| 90         |            |               |         |
| 128        |            |               |         |
| 181        |            |               |         |
| 256        |            |               |         |
| 362        |            |               |         |
| 512        |            |               |         |
| 1024       |            |               |         |
| 2048       |            |               |         |
| 4096       |            |               |         |
|            |            |               |         |
| Total      | 662.20     |               |         |
| *Magaurad  | alua af th | a largast nad | iala in |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight


**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Cut Slope
ID NUMBER: 011CS Lower Fence

DATE: 7/30/2012
CREW: VonLoh, Willis

Particle Size
Distribution (mm)

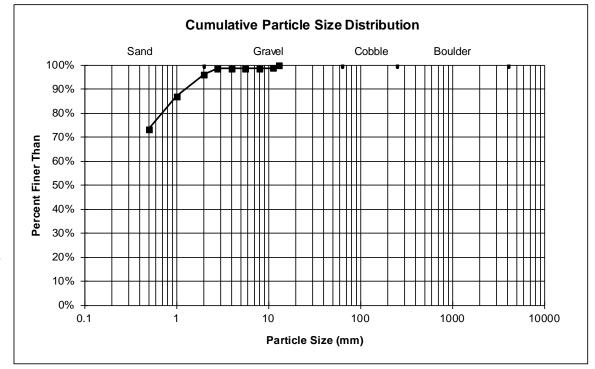
| D15   | D35   | D50   | D84   | D95    | Lpart |
|-------|-------|-------|-------|--------|-------|
| 0.088 | 0.755 | 1.234 | 4.991 | 12.953 | 19.0  |



| Size Finer | Wt. on | % of Total | % Finer |
|------------|--------|------------|---------|
| Than (mm)  | Sieve  |            | Than    |
| Pan        | 625.20 | 73.2%      |         |
| 0.5        | 116.70 | 13.7%      | 73.2%   |
| 1.0        | 78.70  | 9.2%       | 86.9%   |
| 2.0        | 20.20  | 2.4%       | 96.1%   |
| 2.8        | 0.00   | 0.0%       | 98.5%   |
| 4.0        | 0.00   | 0.0%       | 98.5%   |
| 5.6        | 0.00   | 0.0%       | 98.5%   |
| 8.0        | 1.70   | 0.2%       | 98.5%   |
| 11.2       | 11.30  | 1.3%       | 98.7%   |
| 13.0       | *      |            | 100.0%  |
| 22.4       |        |            | -       |
| 32.0       |        |            |         |
| 45.0       |        |            |         |
| 64.0       |        |            |         |
| 90         |        |            |         |
| 128        |        |            |         |
| 181        |        |            |         |
| 256        |        |            |         |
| 362        |        |            |         |
| 512        |        |            |         |
| 1024       |        |            |         |
| 2048       |        |            |         |
| 4096       |        |            |         |
|            |        |            |         |
| Total      | 853.80 | - 1        |         |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation


SITE NAME: Pike's Peak Highway - Cut Slope

ID NUMBER: 011CS Upper Fence

DATE: 7/30/2012 CREW: VonLoh, Willis

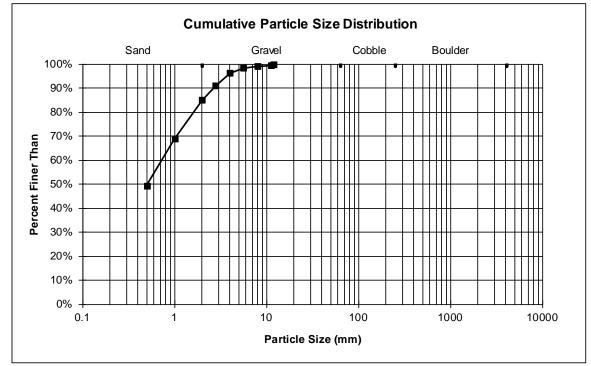
Particle Size Distribution (mm)

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.011 | 0.040 | 0.107 | 0.864 | 1.840 | 13.0  |



| Size Finer        | Wt. on     | % of Total    | % Finer |
|-------------------|------------|---------------|---------|
| Than (mm)         | Sieve      |               | Than    |
| Pan               | 204.60     | 49.3%         |         |
| 0.5               | 80.80      | 19.5%         | 49.3%   |
| 1.0               | 67.20      | 16.2%         | 68.8%   |
| 2.0               | 25.00      | 6.0%          | 85.0%   |
| 2.8               | 21.60      | 5.2%          | 91.0%   |
| 4.0               | 8.60       | 2.1%          | 96.2%   |
| 5.6               | 3.40       | 0.8%          | 98.3%   |
| 8.0               | 1.30       | 0.3%          | 99.1%   |
| 11.2              | 2.40       | 0.6%          | 99.4%   |
| 12.0              | *          |               | 100.0%  |
| 22.4              |            |               | -       |
| 32.0              |            |               |         |
| 45.0              |            |               |         |
| 64.0              |            |               |         |
| 90                |            |               |         |
| 128               |            |               |         |
| 181               |            |               |         |
| 256               |            |               |         |
| 362               |            |               |         |
| 512               |            |               |         |
| 1024              |            |               |         |
| 2048              |            |               |         |
| 4096              |            |               |         |
|                   |            |               |         |
| Total             | 414.90     |               |         |
| *1/1000011504 1/1 | alua of th | a largest ner | iala in |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight


**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Cut Slope

ID NUMBER: 049CS Upper Fence DATE: 9/4/2012

CREW: VonLoh, Willis

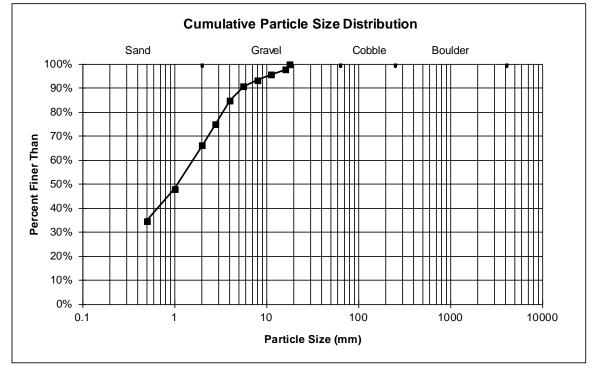
| Particle Size     | D15   | D35   | D50   | D84   | D95   | Lpart |
|-------------------|-------|-------|-------|-------|-------|-------|
| Distribution (mm) | 0.017 | 0.122 | 0.512 | 1.917 | 3.680 | 12.0  |



|                   |            | _             | _       |
|-------------------|------------|---------------|---------|
| Size Finer        | Wt. on     | % of Total    | % Finer |
| Than (mm)         | Sieve      |               | Than    |
| Pan               | 224.30     | 34.7%         |         |
| 0.5               | 86.20      | 13.3%         | 34.7%   |
| 1.0               | 116.10     | 18.0%         | 48.0%   |
| 2.0               | 58.40      | 9.0%          | 66.0%   |
| 2.8               | 63.10      | 9.8%          | 75.0%   |
| 4.0               | 37.20      | 5.8%          | 84.8%   |
| 5.6               | 17.00      | 2.6%          | 90.5%   |
| 8.0               | 15.40      | 2.4%          | 93.2%   |
| 11.2              | 13.00      | 2.0%          | 95.6%   |
| 16.0              | 15.70      | 2.4%          | 97.6%   |
| 18.0              | *          |               | 100.0%  |
| 32.0              |            |               | -       |
| 45.0              |            |               |         |
| 64.0              |            |               |         |
| 90                |            |               |         |
| 128               |            |               |         |
| 181               |            |               |         |
| 256               |            |               |         |
| 362               |            |               |         |
| 512               |            |               |         |
| 1024              |            |               |         |
| 2048              |            |               |         |
| 4096              |            |               |         |
|                   |            |               |         |
| Total             | 646.40     |               |         |
| *1/1000011504 1/1 | alua of th | a largest ner | iala in |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation


SITE NAME: Pike's Peak Highway - Cut Slope

ID NUMBER: 059CS Lower Fence

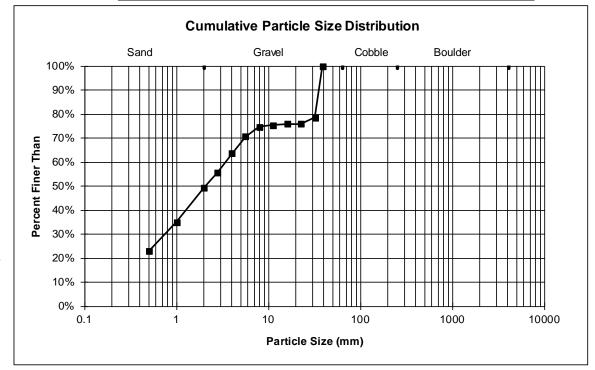
DATE: 5/4/2012 CREW: VonLoh

Particle Size Distribution (mm)

| D15   | D35   | D50   | D84   | D95    | Lpart |
|-------|-------|-------|-------|--------|-------|
| 0.032 | 0.508 | 1.079 | 3.886 | 10.348 | 18.0  |



| Size Finer  | Wt. on     | % of Total    | % Finer  |
|-------------|------------|---------------|----------|
| Than (mm)   | Sieve      |               | Than     |
| Pan         | 193.80     | 22.8%         |          |
| 0.5         | 102.50     | 12.1%         | 22.8%    |
| 1.0         | 122.60     | 14.4%         | 34.9%    |
| 2.0         | 53.00      | 6.2%          | 49.4%    |
| 2.8         | 68.30      | 8.0%          | 55.6%    |
| 4.0         | 59.00      | 7.0%          | 63.7%    |
| 5.6         | 34.80      | 4.1%          | 70.6%    |
| 8.0         | 5.00       | 0.6%          | 74.7%    |
| 11.2        | 4.30       | 0.5%          | 75.3%    |
| 16.0        | 0.00       | 0.0%          | 75.8%    |
| 22.4        | 22.50      | 2.7%          | 75.8%    |
| 32.0        | 182.70     | 21.5%         | 78.5%    |
| 39.0        | *          |               | 100.0%   |
| 64.0        |            |               | -        |
| 90          |            |               |          |
| 128         |            |               |          |
| 181         |            |               |          |
| 256         |            |               |          |
| 362         |            |               |          |
| 512         |            |               |          |
| 1024        |            |               |          |
| 2048        |            |               |          |
| 4096        |            |               |          |
|             |            |               |          |
| Total       | 848.50     |               |          |
| *Magaurad v | alua af th | a largest ner | tiala in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

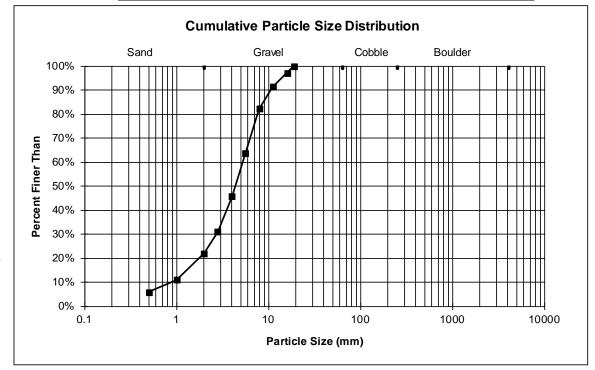
SITE NAME: Pike's Peak Highway - Cut Slope
ID NUMBER: 090CS Lower Fence

DATE: 6/18/2012
CREW: VonLoh, Willis

| D15   | D35   | D50   | D84    | D95    | Lpart |
|-------|-------|-------|--------|--------|-------|
| 0.094 | 1.004 | 2.069 | 33.668 | 37.249 | 39.0  |



| Size Finer | Wt. on | % of Total | % Finer |
|------------|--------|------------|---------|
| Than (mm)  | Sieve  |            | Than    |
| Pan        | 43.00  | 5.8%       |         |
| 0.5        | 37.90  | 5.2%       | 5.8%    |
| 1.0        | 81.70  | 11.1%      | 11.0%   |
| 2.0        | 65.00  | 8.8%       | 22.1%   |
| 2.8        | 108.50 | 14.7%      | 30.9%   |
| 4.0        | 133.50 | 18.1%      | 45.7%   |
| 5.6        | 134.80 | 18.3%      | 63.8%   |
| 8.0        | 67.50  | 9.2%       | 82.2%   |
| 11.2       | 42.00  | 5.7%       | 91.3%   |
| 16.0       | 21.80  | 3.0%       | 97.0%   |
| 19.0       | *      |            | 100.0%  |
| 32.0       |        |            | -       |
| 45.0       |        |            |         |
| 64.0       |        |            |         |
| 90         |        |            |         |
| 128        |        |            |         |
| 181        |        |            |         |
| 256        |        |            |         |
| 362        |        |            |         |
| 512        |        |            |         |
| 1024       |        |            |         |
| 2048       |        |            |         |
| 4096       |        |            |         |
|            |        |            |         |
| Total      | 735.70 | - 1        | tala ta |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

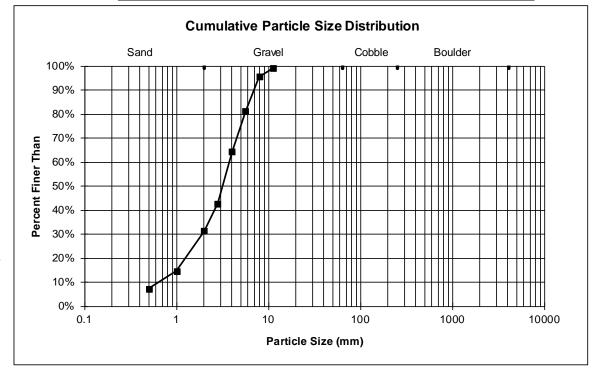
SITE NAME: Pike's Peak Highway - Cut Slope
ID NUMBER: 123CS Upper Fence

DATE: 9/4/2012
CREW: VonLoh, Willis

| D15   | D35   | D50   | D84   | D95    | Lpart |
|-------|-------|-------|-------|--------|-------|
| 1.284 | 3.089 | 4.333 | 8.561 | 14.088 | 19.0  |



|            |        | _          |        |
|------------|--------|------------|--------|
| Size Finer | Wt. on | % of Total |        |
| Than (mm)  | Sieve  |            | Than   |
| Pan        | 43.40  | 7.2%       |        |
| 0.5        | 44.50  | 7.4%       | 7.2%   |
| 1.0        | 100.60 | 16.7%      | 14.6%  |
| 2.0        | 69.20  | 11.5%      | 31.3%  |
| 2.8        | 129.90 | 21.5%      | 42.7%  |
| 4.0        | 101.80 | 16.9%      | 64.3%  |
| 5.6        | 86.30  | 14.3%      | 81.2%  |
| 8.0        | 21.60  | 3.6%       | 95.5%  |
| 11.2       | 5.70   | 0.9%       | 99.1%  |
| 15.0       | *      |            | 100.0% |
| 22.4       |        |            | -      |
| 32.0       |        |            |        |
| 45.0       |        |            |        |
| 64.0       |        |            |        |
| 90         |        |            |        |
| 128        |        |            |        |
| 181        |        |            |        |
| 256        |        |            |        |
| 362        |        |            |        |
| 512        |        |            |        |
| 1024       |        |            |        |
| 2048       |        |            |        |
| 4096       |        |            |        |
|            |        |            |        |
| Total      | 603.00 | - 1        | V-1- : |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

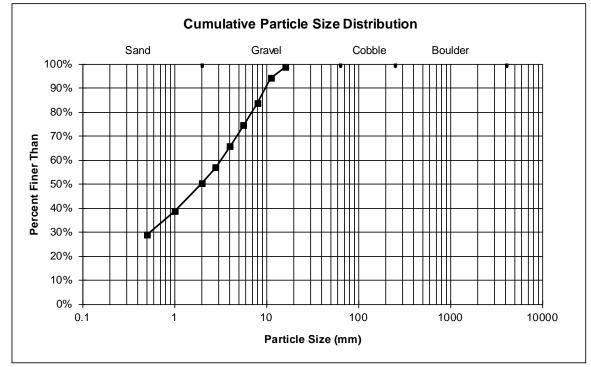
SITE NAME: Pike's Peak Highway - Cut Slope
ID NUMBER: 141CS Upper Fence

DATE: 8/20/2012
CREW: VonLoh, Willis

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 1.018 | 2.232 | 3.158 | 6.011 | 7.906 | 15.0  |



| Size Finer | Wt. on | % of Total | % Finer |
|------------|--------|------------|---------|
| Than (mm)  | Sieve  |            | Than    |
| Pan        | 182.30 | 28.9%      |         |
| 0.5        | 61.50  | 9.8%       | 28.9%   |
| 1.0        | 74.20  | 11.8%      | 38.7%   |
| 2.0        | 41.20  | 6.5%       | 50.5%   |
| 2.8        | 55.40  | 8.8%       | 57.0%   |
| 4.0        | 54.60  | 8.7%       | 65.8%   |
| 5.6        | 57.60  | 9.1%       | 74.4%   |
| 8.0        | 66.80  | 10.6%      | 83.6%   |
| 11.2       | 28.70  | 4.6%       | 94.2%   |
| 16.0       | 8.00   | 1.3%       | 98.7%   |
| 20.0       | *      |            | 100.0%  |
| 32.0       |        |            | -       |
| 45.0       |        |            |         |
| 64.0       |        |            |         |
| 90         |        |            |         |
| 128        |        |            |         |
| 181        |        |            |         |
| 256        |        |            |         |
| 362        |        |            |         |
| 512        |        |            |         |
| 1024       |        |            |         |
| 2048       |        |            |         |
| 4096       |        |            |         |
|            |        |            |         |
| Total      | 630.30 |            |         |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

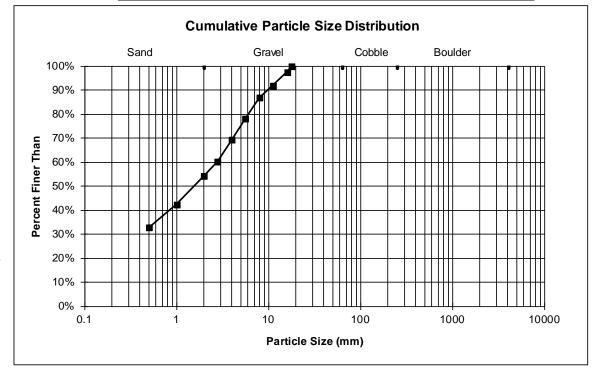
SITE NAME: Pike's Peak Highway - Cut Slope
ID NUMBER: 192CS Lower Fence

DATE: 5/4/2012 CREW: VonLoh

| D15   | D35   | D50   | D84   | D95    | Lpart |
|-------|-------|-------|-------|--------|-------|
| 0.048 | 0.770 | 1.947 | 8.108 | 11.945 | 20.0  |



| Size Finer  | Wt. on  | % of Total | % Finer |
|-------------|---------|------------|---------|
| Than (mm)   | Sieve   |            | Than    |
| Pan         | 134.30  | 32.7%      |         |
| 0.5         | 39.90   | 9.7%       | 32.7%   |
| 1.0         | 49.00   | 11.9%      | 42.4%   |
| 2.0         | 24.20   | 5.9%       | 54.4%   |
| 2.8         | 37.40   | 9.1%       | 60.3%   |
| 4.0         | 36.00   | 8.8%       | 69.4%   |
| 5.6         | 35.30   | 8.6%       | 78.2%   |
| 8.0         | 20.60   | 5.0%       | 86.8%   |
| 11.2        | 23.30   | 5.7%       | 91.8%   |
| 16.0        | 10.40   | 2.5%       | 97.5%   |
| 18.0        | *       |            | 100.0%  |
| 32.0        |         |            | -       |
| 45.0        |         |            |         |
| 64.0        |         |            |         |
| 90          |         |            |         |
| 128         |         |            |         |
| 181         |         |            |         |
| 256         |         |            |         |
| 362         |         |            |         |
| 512         |         |            |         |
| 1024        |         |            |         |
| 2048        |         |            |         |
| 4096        |         |            |         |
|             |         |            |         |
| Total       | 410.40  |            |         |
| *Measured v | -16.41- |            | data ta |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

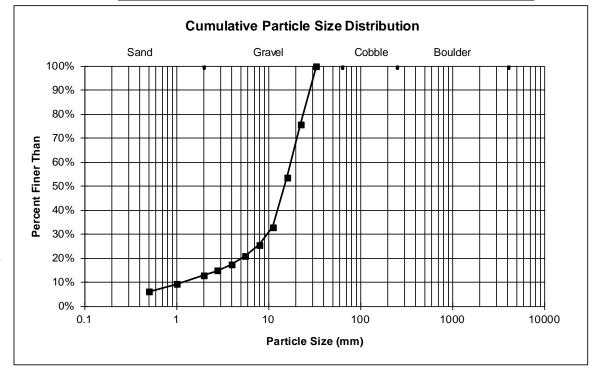
SITE NAME: Pike's Peak Highway - Cut Slope
ID NUMBER: 192CS Upper Fence

DATE: 5/4/2012 CREW: VonLoh

| D15   | D35   | D50   | D84   | D95    | Lpart |
|-------|-------|-------|-------|--------|-------|
| 0.036 | 0.588 | 1.550 | 7.132 | 13.704 | 18.0  |



| Size Finer  | Wt. on    | % of Total | % Finer |
|-------------|-----------|------------|---------|
| Than (mm)   | Sieve     |            | Than    |
| Pan         | 36.00     | 6.0%       |         |
| 0.5         | 18.60     | 3.1%       | 6.0%    |
| 1.0         | 22.00     | 3.7%       | 9.1%    |
| 2.0         | 11.80     | 2.0%       | 12.8%   |
| 2.8         | 16.30     | 2.7%       | 14.8%   |
| 4.0         | 20.50     | 3.4%       | 17.5%   |
| 5.6         | 27.60     | 4.6%       | 21.0%   |
| 8.0         | 43.70     | 7.3%       | 25.6%   |
| 11.2        | 124.20    | 20.8%      | 32.9%   |
| 16.0        | 131.50    | 22.0%      | 53.7%   |
| 22.4        | 145.40    | 24.3%      | 75.7%   |
| 33.0        | *         |            | 100.0%  |
| 45.0        |           |            | -       |
| 64.0        |           |            |         |
| 90          |           |            |         |
| 128         |           |            |         |
| 181         |           |            |         |
| 256         |           |            |         |
| 362         |           |            |         |
| 512         |           |            |         |
| 1024        |           |            |         |
| 2048        |           |            |         |
| 4096        |           |            |         |
|             |           |            |         |
| Total       | 597.60    |            |         |
| *Measured v | - l £ Al- | - I        | dala ba |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Cut Slope
ID NUMBER: 045CS Lower Fence

DATE: 5/20/2013
CREW: Hauser, VonLoh

| D15   | D35    | D50    | D84    | D95    | Lpart |
|-------|--------|--------|--------|--------|-------|
| 2.877 | 11.615 | 15.025 | 25.578 | 30.474 | 33.0  |

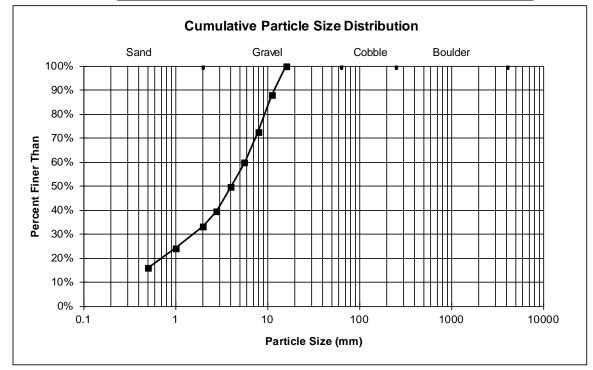


| Size Finer | Wt. on | % of Total |         |
|------------|--------|------------|---------|
| Than (mm)  | Sieve  |            | Than    |
| Pan        | 67.60  | 15.9%      |         |
| 0.5        | 34.80  | 8.2%       | 15.9%   |
| 1.0        | 39.10  | 9.2%       | 24.1%   |
| 2.0        | 26.30  | 6.2%       | 33.3%   |
| 2.8        | 43.40  | 10.2%      | 39.5%   |
| 4.0        | 42.40  | 10.0%      | 49.7%   |
| 5.6        | 54.50  | 12.8%      | 59.7%   |
| 8.0        | 64.80  | 15.3%      | 72.5%   |
| 11.2       | 52.00  | 12.2%      | 87.8%   |
| 16.0       | *      |            | 100.0%  |
| 22.4       |        |            | -       |
| 32.0       |        |            |         |
| 45.0       |        |            |         |
| 64.0       |        |            |         |
| 90         |        |            |         |
| 128        |        |            |         |
| 181        |        |            |         |
| 256        |        |            |         |
| 362        |        |            |         |
| 512        |        |            |         |
| 1024       |        |            |         |
| 2048       |        |            |         |
| 4096       |        |            |         |
|            |        |            |         |
| Total      | 424.90 | - 1        | tala ta |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Cut Slope 1078CS Lower Fence


ID NUMBER: 078CS Lower Fe 7/16/2013

CREW: Hauser, VonLoh

Particle Size D15

Distribution (mm)

| D15   | D35   | D50   | D84    | D95    | Lpart |
|-------|-------|-------|--------|--------|-------|
| 0.379 | 2.193 | 4.040 | 10.308 | 13.830 | 16.0  |



| Size Finer | Wt. on | % of Total | % Finer |
|------------|--------|------------|---------|
| Than (mm)  | Sieve  |            | Than    |
| Pan        | 150.00 | 50.5%      |         |
| 0.5        | 43.10  | 14.5%      | 50.5%   |
| 1.0        | 33.80  | 11.4%      | 65.0%   |
| 2.0        | 13.60  | 4.6%       | 76.4%   |
| 2.8        | 13.90  | 4.7%       | 80.9%   |
| 4.0        | 10.50  | 3.5%       | 85.6%   |
| 5.6        | 9.60   | 3.2%       | 89.2%   |
| 8.0        | 10.00  | 3.4%       | 92.4%   |
| 11.2       | 12.60  | 4.2%       | 95.8%   |
| 16.0       | *      |            | 100.0%  |
| 22.4       |        |            | -       |
| 32.0       |        |            |         |
| 45.0       |        |            |         |
| 64.0       |        |            |         |
| 90         |        |            |         |
| 128        |        |            |         |
| 181        |        |            |         |
| 256        |        |            |         |
| 362        |        |            |         |
| 512        |        |            |         |
| 1024       |        |            |         |
| 2048       |        |            |         |
| 4096       |        |            |         |
|            |        |            |         |
| Total      | 297.10 |            |         |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Cut Slope
ID NUMBER: 090CS Lower Fence

Hauser, VonLoh

ID NUMBER: 090CS Lower Fen 6/10/2013

Particle Size
Distribution (mm)

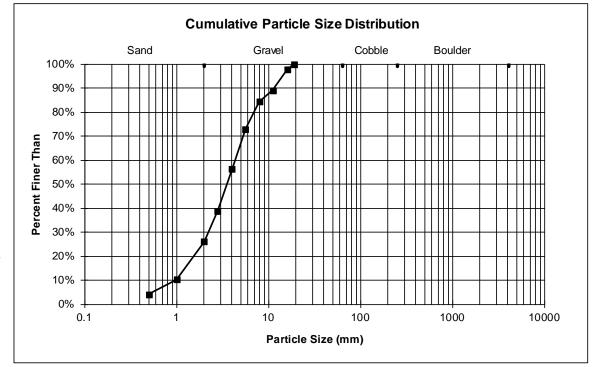
CREW:

| D15   | D35   | D50   | D84   | D95    | Lpart |
|-------|-------|-------|-------|--------|-------|
| 0.016 | 0.113 | 0.477 | 3.533 | 10.382 | 16.0  |



|            |        | _          |         |
|------------|--------|------------|---------|
| Size Finer | Wt. on | % of Total |         |
| Than (mm)  | Sieve  |            | Than    |
| Pan        | 26.90  | 4.1%       |         |
| 0.5        | 40.10  | 6.2%       | 4.1%    |
| 1.0        | 102.80 | 15.8%      | 10.3%   |
| 2.0        | 83.10  | 12.8%      | 26.1%   |
| 2.8        | 112.60 | 17.3%      | 38.9%   |
| 4.0        | 108.10 | 16.6%      | 56.3%   |
| 5.6        | 73.50  | 11.3%      | 72.9%   |
| 8.0        | 30.90  | 4.8%       | 84.2%   |
| 11.2       | 56.30  | 8.7%       | 89.0%   |
| 16.0       | 15.30  | 2.4%       | 97.6%   |
| 19.0       | *      |            | 100.0%  |
| 32.0       |        |            | -       |
| 45.0       |        |            |         |
| 64.0       |        |            |         |
| 90         |        |            |         |
| 128        |        |            |         |
| 181        |        |            |         |
| 256        |        |            |         |
| 362        |        |            |         |
| 512        |        |            |         |
| 1024       |        |            |         |
| 2048       |        |            |         |
| 4096       |        |            |         |
|            |        |            |         |
| Total      | 649.60 | - 1        | tala ta |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight


**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Cut Slope

ID NUMBER: 123CS Upper Fence DATE: 6/10/2013

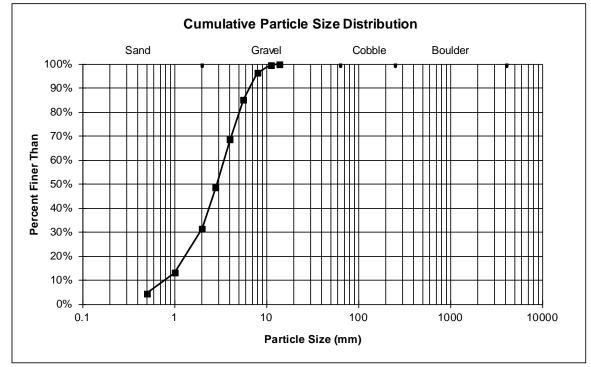
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95    | Lpart |
|-------|-------|-------|-------|--------|-------|
| 1.228 | 2.525 | 3.516 | 7.944 | 14.350 | 19.0  |



|             |            | _             |         |
|-------------|------------|---------------|---------|
| Size Finer  | Wt. on     | % of Total    | % Finer |
| Than (mm)   | Sieve      |               | Than    |
| Pan         | 24.20      | 4.5%          |         |
| 0.5         | 46.60      | 8.7%          | 4.5%    |
| 1.0         | 98.70      | 18.3%         | 13.1%   |
| 2.0         | 91.90      | 17.1%         | 31.5%   |
| 2.8         | 107.10     | 19.9%         | 48.5%   |
| 4.0         | 90.50      | 16.8%         | 68.4%   |
| 5.6         | 59.00      | 11.0%         | 85.2%   |
| 8.0         | 18.60      | 3.5%          | 96.2%   |
| 11.2        | 1.90       | 0.4%          | 99.6%   |
| 14.0        | *          |               | 100.0%  |
| 22.4        |            |               | -       |
| 32.0        |            |               |         |
| 45.0        |            |               |         |
| 64.0        |            |               |         |
| 90          |            |               |         |
| 128         |            |               |         |
| 181         |            |               |         |
| 256         |            |               |         |
| 362         |            |               |         |
| 512         |            |               |         |
| 1024        |            |               |         |
| 2048        |            |               |         |
| 4096        |            |               |         |
|             |            |               |         |
| Total       | 538.50     |               |         |
| *Magaurad v | alua of th | a largest nor | iolo in |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight


**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Cut Slope

ID NUMBER: 141CS Upper Fence DATE: 8/12/2013

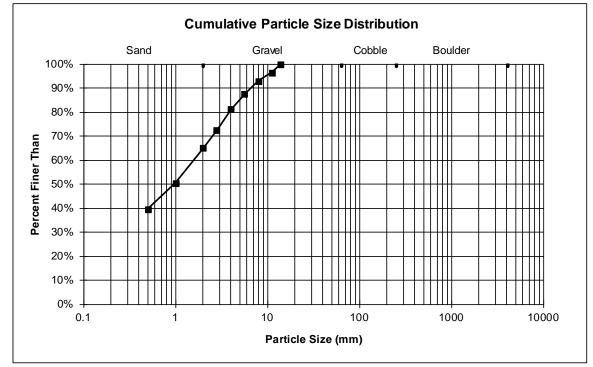
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 1.073 | 2.144 | 2.874 | 5.463 | 7.695 | 14.0  |



| Size Finer  | Wt. on    | % of Total | % Finer |
|-------------|-----------|------------|---------|
| Than (mm)   | Sieve     |            | Than    |
| Pan         | 133.00    | 39.6%      |         |
| 0.5         | 36.30     | 10.8%      | 39.6%   |
| 1.0         | 49.00     | 14.6%      | 50.4%   |
| 2.0         | 25.00     | 7.4%       | 64.9%   |
| 2.8         | 29.30     | 8.7%       | 72.4%   |
| 4.0         | 21.20     | 6.3%       | 81.1%   |
| 5.6         | 18.40     | 5.5%       | 87.4%   |
| 8.0         | 12.20     | 3.6%       | 92.9%   |
| 11.2        | 11.80     | 3.5%       | 96.5%   |
| 14.0        | *         |            | 100.0%  |
| 22.4        |           |            | -       |
| 32.0        |           |            |         |
| 45.0        |           |            |         |
| 64.0        |           |            |         |
| 90          |           |            |         |
| 128         |           |            |         |
| 181         |           |            |         |
| 256         |           |            |         |
| 362         |           |            |         |
| 512         |           |            |         |
| 1024        |           |            |         |
| 2048        |           |            |         |
| 4096        |           |            |         |
|             |           |            |         |
| Total       | 336.20    |            |         |
| *Measured v | - l £ 4l- | - 1        |         |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight


**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Cut Slope

ID NUMBER: 192CS Lower Fence

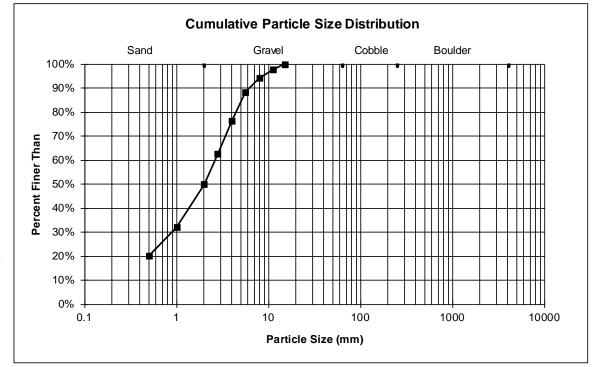
DATE: 7/29/2013 CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.025 | 0.286 | 0.977 | 4.674 | 9.755 | 14.0  |



| Size Finer       | Wt. on      | % of Total    | % Finer  |
|------------------|-------------|---------------|----------|
| Than (mm)        | Sieve       |               | Than     |
| Pan              | 105.10      | 20.1%         |          |
| 0.5              | 61.60       | 11.8%         | 20.1%    |
| 1.0              | 93.50       | 17.9%         | 31.9%    |
| 2.0              | 65.70       | 12.6%         | 49.9%    |
| 2.8              | 72.50       | 13.9%         | 62.5%    |
| 4.0              | 62.10       | 11.9%         | 76.4%    |
| 5.6              | 30.20       | 5.8%          | 88.3%    |
| 8.0              | 18.30       | 3.5%          | 94.0%    |
| 11.2             | 12.80       | 2.5%          | 97.5%    |
| 15.0             | *           |               | 100.0%   |
| 22.4             |             |               | -        |
| 32.0             |             |               |          |
| 45.0             |             |               |          |
| 64.0             |             |               |          |
| 90               |             |               |          |
| 128              |             |               |          |
| 181              |             |               |          |
| 256              |             |               |          |
| 362              |             |               |          |
| 512              |             |               |          |
| 1024             |             |               |          |
| 2048             |             |               |          |
| 4096             |             |               |          |
|                  |             |               |          |
| Total            | 521.80      |               |          |
| *N/000011rod 1/1 | مادیم مفیاه | a largaet nad | tiala in |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight


**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Cut Slope

ID NUMBER: 192CS Upper Fence DATE: 9/17/2013

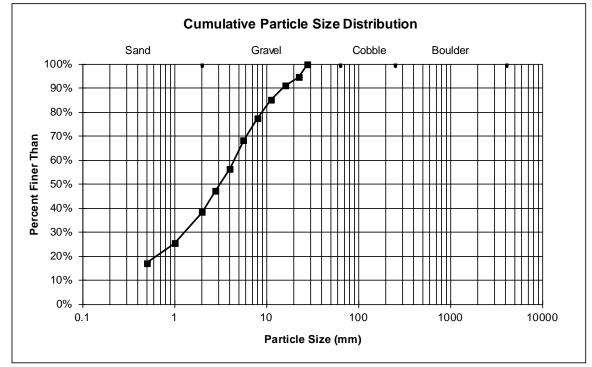
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.145 | 1.125 | 2.007 | 4.966 | 8.772 | 15.0  |



|                |            | _             | _       |
|----------------|------------|---------------|---------|
| Size Finer     | Wt. on     | % of Total    |         |
| Than (mm)      | Sieve      |               | Than    |
| Pan            | 97.10      | 17.0%         |         |
| 0.5            | 47.50      | 8.3%          | 17.0%   |
| 1.0            | 73.50      | 12.9%         | 25.4%   |
| 2.0            | 51.70      | 9.1%          | 38.2%   |
| 2.8            | 52.20      | 9.2%          | 47.3%   |
| 4.0            | 66.20      | 11.6%         | 56.5%   |
| 5.6            | 52.10      | 9.1%          | 68.1%   |
| 8.0            | 44.30      | 7.8%          | 77.2%   |
| 11.2           | 34.20      | 6.0%          | 85.0%   |
| 16.0           | 19.60      | 3.4%          | 91.0%   |
| 22.4           | 31.80      | 5.6%          | 94.4%   |
| 28.0           | *          |               | 100.0%  |
| 45.0           |            |               | -       |
| 64.0           |            |               |         |
| 90             |            |               |         |
| 128            |            |               |         |
| 181            |            |               |         |
| 256            |            |               |         |
| 362            |            |               |         |
| 512            |            |               |         |
| 1024           |            |               |         |
| 2048           |            |               |         |
| 4096           |            |               |         |
|                |            |               |         |
| Total          | 570.20     |               |         |
| *1./1000urod v | alua af th | a largast nar | iala in |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight


**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Cut Slope

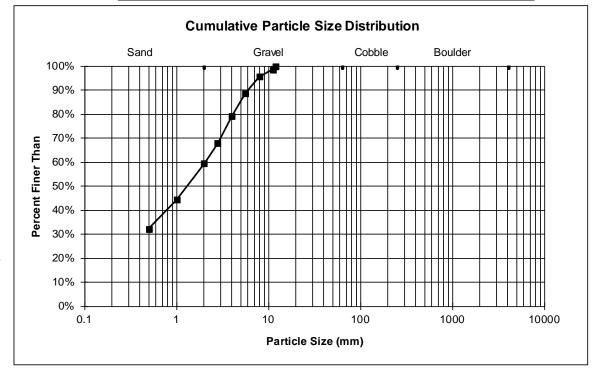
ID NUMBER: 197CS Lower Fence

DATE: 5/6/2013 CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84    | D95    | Lpart |
|-------|-------|-------|--------|--------|-------|
| 0.280 | 1.679 | 3.109 | 10.731 | 22.923 | 28.0  |



| Size Finer | Wt. on | % of Total | % Finer |
|------------|--------|------------|---------|
| Than (mm)  | Sieve  |            | Than    |
| Pan        | 196.80 | 32.2%      |         |
| 0.5        | 73.90  | 12.1%      | 32.2%   |
| 1.0        | 92.20  | 15.1%      | 44.3%   |
| 2.0        | 51.30  | 8.4%       | 59.4%   |
| 2.8        | 70.40  | 11.5%      | 67.7%   |
| 4.0        | 57.40  | 9.4%       | 79.3%   |
| 5.6        | 41.80  | 6.8%       | 88.6%   |
| 8.0        | 18.90  | 3.1%       | 95.5%   |
| 11.2       | 8.70   | 1.4%       | 98.6%   |
| 12.0       | *      |            | 100.0%  |
| 22.4       |        |            | -       |
| 32.0       |        |            |         |
| 45.0       |        |            |         |
| 64.0       |        |            |         |
| 90         |        |            |         |
| 128        |        |            |         |
| 181        |        |            |         |
| 256        |        |            |         |
| 362        |        |            |         |
| 512        |        |            |         |
| 1024       |        |            |         |
| 2048       |        |            |         |
| 4096       |        |            |         |
|            |        |            |         |
| Total      | 611.40 |            |         |


\*Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Cut Slope
ID NUMBER: 197CS Lower Fence

ID NUMBER: 197CS Lower Fer 9/17/2013
CREW: 9/17/2013
Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.037 | 0.587 | 1.301 | 4.741 | 7.800 | 12.0  |

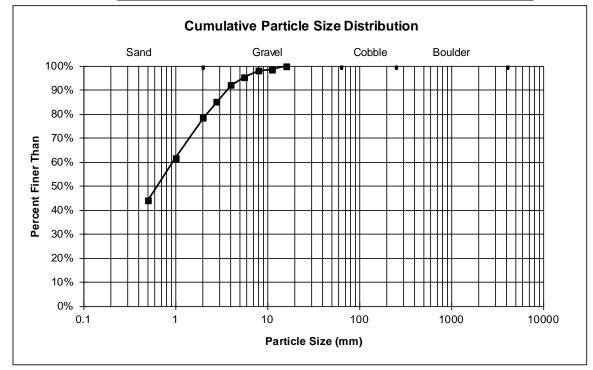


| Size Finer | Wt. on | % of Total | % Finer |
|------------|--------|------------|---------|
| Than (mm)  | Sieve  |            | Than    |
| Pan        | 167.00 | 44.0%      |         |
| 0.5        | 67.00  | 17.6%      | 44.0%   |
| 1.0        | 63.10  | 16.6%      | 61.6%   |
| 2.0        | 25.40  | 6.7%       | 78.2%   |
| 2.8        | 26.80  | 7.1%       | 84.9%   |
| 4.0        | 12.70  | 3.3%       | 92.0%   |
| 5.6        | 10.30  | 2.7%       | 95.3%   |
| 8.0        | 1.70   | 0.4%       | 98.1%   |
| 11.2       | 5.70   | 1.5%       | 98.5%   |
| 16.0       | *      |            | 100.0%  |
| 22.4       |        |            | -       |
| 32.0       |        |            |         |
| 45.0       |        |            |         |
| 64.0       |        |            |         |
| 90         |        |            |         |
| 128        |        |            |         |
| 181        |        |            |         |
| 256        |        |            |         |
| 362        |        |            |         |
| 512        |        |            |         |
| 1024       |        |            |         |
| 2048       |        |            |         |
| 4096       |        |            |         |
|            |        |            |         |
| Total      | 379.70 | - 1        | tala ta |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Fill Slope
ID NUMBER: 001FS Upper Fence


VonLoh, Willis

ID NUMBER: 001FS Upper Fen 6/4/2012

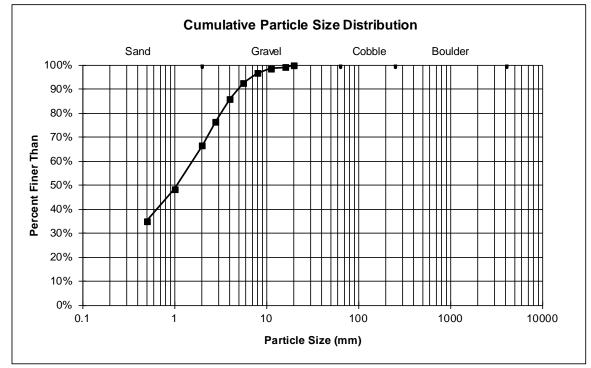
Particle Size
Distribution (mm)

CREW:

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.020 | 0.186 | 0.633 | 2.671 | 5.413 | 16.0  |



| Size Finer  | Wt. on     | % of Total     | % Finer |
|-------------|------------|----------------|---------|
| Than (mm)   | Sieve      |                | Than    |
| Pan         | 260.10     | 35.1%          |         |
| 0.5         | 98.70      | 13.3%          | 35.1%   |
| 1.0         | 133.30     | 18.0%          | 48.4%   |
| 2.0         | 74.00      | 10.0%          | 66.4%   |
| 2.8         | 71.30      | 9.6%           | 76.3%   |
| 4.0         | 49.10      | 6.6%           | 85.9%   |
| 5.6         | 30.10      | 4.1%           | 92.6%   |
| 8.0         | 13.60      | 1.8%           | 96.6%   |
| 11.2        | 3.60       | 0.5%           | 98.5%   |
| 16.0        | 7.80       | 1.1%           | 98.9%   |
| 20.0        | *          |                | 100.0%  |
| 32.0        |            |                | -       |
| 45.0        |            |                |         |
| 64.0        |            |                |         |
| 90          |            |                |         |
| 128         |            |                |         |
| 181         |            |                |         |
| 256         |            |                |         |
| 362         |            |                |         |
| 512         |            |                |         |
| 1024        |            |                |         |
| 2048        |            |                |         |
| 4096        |            |                |         |
|             |            |                |         |
| Total       | 741.60     |                |         |
| *Magaurad v | alua of th | a largest next | iolo in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

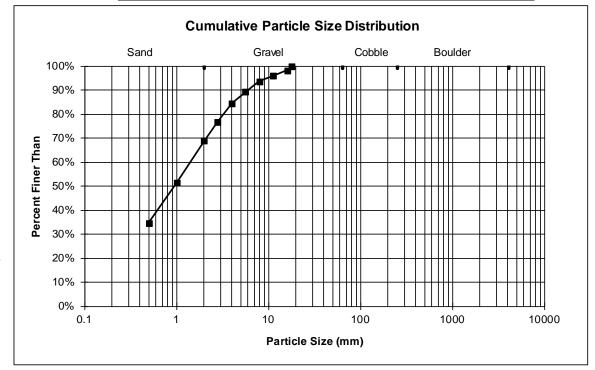
SITE NAME: Pike's Peak Highway - Fill Slope
ID NUMBER: 001FS Upper Fence

DATE: 9/4/2012
CREW: VonLoh, Willis

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.031 | 0.495 | 1.064 | 3.721 | 6.933 | 20.0  |



|                |            | _             | _       |
|----------------|------------|---------------|---------|
| Size Finer     | Wt. on     | % of Total    |         |
| Than (mm)      | Sieve      |               | Than    |
| Pan            | 243.30     | 34.6%         |         |
| 0.5            | 117.00     | 16.6%         | 34.6%   |
| 1.0            | 124.30     | 17.7%         | 51.2%   |
| 2.0            | 55.70      | 7.9%          | 68.9%   |
| 2.8            | 53.20      | 7.6%          | 76.8%   |
| 4.0            | 34.50      | 4.9%          | 84.4%   |
| 5.6            | 30.30      | 4.3%          | 89.3%   |
| 8.0            | 15.60      | 2.2%          | 93.6%   |
| 11.2           | 16.80      | 2.4%          | 95.8%   |
| 16.0           | 12.60      | 1.8%          | 98.2%   |
| 18.0           | *          |               | 100.0%  |
| 32.0           |            |               | -       |
| 45.0           |            |               |         |
| 64.0           |            |               |         |
| 90             |            |               |         |
| 128            |            |               |         |
| 181            |            |               |         |
| 256            |            |               |         |
| 362            |            |               |         |
| 512            |            |               |         |
| 1024           |            |               |         |
| 2048           |            |               |         |
| 4096           |            |               |         |
|                |            |               |         |
| Total          | 703.30     |               |         |
| *1./1000urod v | alua of th | a largast nar | iala in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

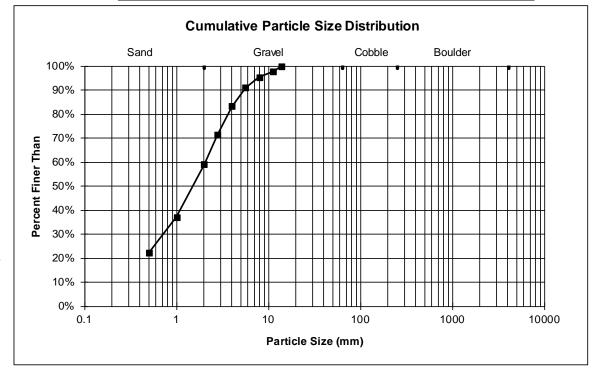
SITE NAME: Pike's Peak Highway - Fill Slope
ID NUMBER: 043FS Upper Fence

DATE: 6/4/2012
CREW: Vonloh, Willis

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.032 | 0.509 | 0.950 | 3.928 | 9.890 | 18.0  |



| Size Finer | Wt. on | % of Total | % Finer |
|------------|--------|------------|---------|
| Than (mm)  | Sieve  |            | Than    |
| Pan        | 204.10 | 22.2%      |         |
| 0.5        | 136.40 | 14.8%      | 22.2%   |
| 1.0        | 202.20 | 22.0%      | 37.0%   |
| 2.0        | 115.20 | 12.5%      | 59.0%   |
| 2.8        | 107.80 | 11.7%      | 71.6%   |
| 4.0        | 70.60  | 7.7%       | 83.3%   |
| 5.6        | 40.10  | 4.4%       | 91.0%   |
| 8.0        | 21.10  | 2.3%       | 95.3%   |
| 11.2       | 21.90  | 2.4%       | 97.6%   |
| 14.0       | *      |            | 100.0%  |
| 22.4       |        |            | -       |
| 32.0       |        |            |         |
| 45.0       |        |            |         |
| 64.0       |        |            |         |
| 90         |        |            |         |
| 128        |        |            |         |
| 181        |        |            |         |
| 256        |        |            |         |
| 362        |        |            |         |
| 512        |        |            |         |
| 1024       |        |            |         |
| 2048       |        |            |         |
| 4096       |        |            |         |
|            |        |            |         |
| Total      | 919.40 | - 1        |         |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

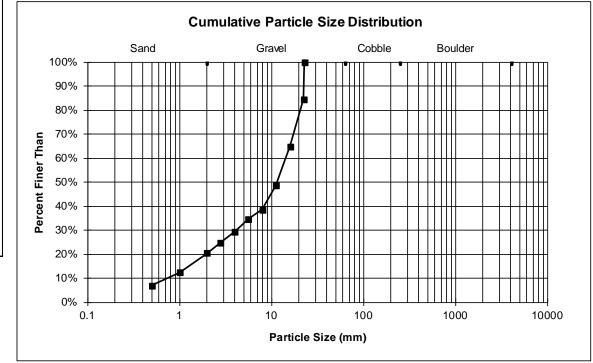
SITE NAME: Pike's Peak Highway - Fill Slope
ID NUMBER: 074FS Upper Fence

DATE: 7/16/2012
CREW: VonLoh, Willis

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.104 | 0.909 | 1.505 | 4.128 | 7.791 | 14.0  |



| Size Finer  | Wt. on    | % of Total | % Finer |
|-------------|-----------|------------|---------|
| Than (mm)   | Sieve     |            | Than    |
| Pan         | 62.20     | 6.9%       |         |
| 0.5         | 48.90     | 5.4%       | 6.9%    |
| 1.0         | 72.80     | 8.1%       | 12.4%   |
| 2.0         | 39.00     | 4.3%       | 20.5%   |
| 2.8         | 41.40     | 4.6%       | 24.8%   |
| 4.0         | 47.50     | 5.3%       | 29.4%   |
| 5.6         | 34.40     | 3.8%       | 34.7%   |
| 8.0         | 89.10     | 9.9%       | 38.6%   |
| 11.2        | 146.20    | 16.3%      | 48.5%   |
| 16.0        | 176.70    | 19.7%      | 64.8%   |
| 22.4        | 139.50    | 15.5%      | 84.5%   |
| 23.0        | *         |            | 100.0%  |
| 45.0        |           |            | -       |
| 64.0        |           |            |         |
| 90          |           |            |         |
| 128         |           |            |         |
| 181         |           |            |         |
| 256         |           |            |         |
| 362         |           |            |         |
| 512         |           |            |         |
| 1024        |           |            |         |
| 2048        |           |            |         |
| 4096        |           |            |         |
|             |           |            |         |
| Total       | 897.70    |            |         |
| *Measured v | - l £ Al- | - 1        | dala ba |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

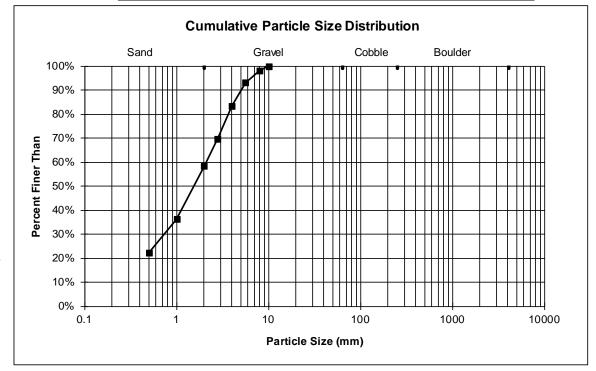
SITE NAME: Pike's Peak Highway - Fill Slope
ID NUMBER: 079FS Upper Fence

DATE: 5/21/2012
CREW: VonLoh, Willis

| D15   | D35   | D50    | D84    | D95    | Lpart |
|-------|-------|--------|--------|--------|-------|
| 1.251 | 5.741 | 11.576 | 22.224 | 22.805 | 23.0  |



| Cina Finan | 10/4   | 0/ of Total | 0/ Eins: |
|------------|--------|-------------|----------|
| Size Finer | Wt. on | % of Total  | % Finer  |
| Than (mm)  | Sieve  | 20.10/      | Than     |
| Pan        | 157.30 | 22.1%       |          |
| 0.5        | 100.10 | 14.1%       | 22.1%    |
| 1.0        | 157.30 | 22.1%       | 36.2%    |
| 2.0        | 81.60  | 11.5%       | 58.3%    |
| 2.8        | 96.90  | 13.6%       | 69.8%    |
| 4.0        | 68.40  | 9.6%        | 83.4%    |
| 5.6        | 35.20  | 4.9%        | 93.0%    |
| 8.0        | 14.40  | 2.0%        | 98.0%    |
| 10.0       | *      |             | 100.0%   |
| 16.0       |        |             | -        |
| 22.4       |        |             |          |
| 32.0       |        |             |          |
| 45.0       |        |             |          |
| 64.0       |        |             |          |
| 90         |        |             |          |
| 128        |        |             |          |
| 181        |        |             |          |
| 256        |        |             |          |
| 362        |        |             |          |
| 512        |        |             |          |
| 1024       |        |             |          |
| 2048       |        |             |          |
| 4096       |        |             |          |
|            |        |             |          |
| Total      | 711.20 |             |          |


\*Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

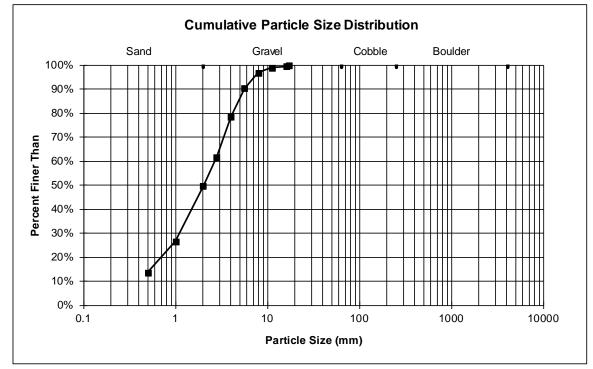
SITE NAME: Pike's Peak Highway - Fill Slope
ID NUMBER: 083FS Lower Fence

DATE: 8/7/2012
CREW: VonLoh, Willis

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.105 | 0.943 | 1.541 | 4.084 | 6.456 | 10.0  |



| -          |        |            |         |
|------------|--------|------------|---------|
| Size Finer | Wt. on | % of Total |         |
| Than (mm)  | Sieve  |            | Than    |
| Pan        | 131.10 | 13.6%      |         |
| 0.5        | 125.10 | 12.9%      | 13.6%   |
| 1.0        | 223.20 | 23.1%      | 26.5%   |
| 2.0        | 117.30 | 12.1%      | 49.6%   |
| 2.8        | 163.10 | 16.9%      | 61.7%   |
| 4.0        | 113.00 | 11.7%      | 78.6%   |
| 5.6        | 62.30  | 6.4%       | 90.3%   |
| 8.0        | 20.80  | 2.2%       | 96.7%   |
| 11.2       | 5.40   | 0.6%       | 98.9%   |
| 16.0       | 5.60   | 0.6%       | 99.4%   |
| 17.0       | *      |            | 100.0%  |
| 32.0       |        |            | -       |
| 45.0       |        |            |         |
| 64.0       |        |            |         |
| 90         |        |            |         |
| 128        |        |            |         |
| 181        |        |            |         |
| 256        |        |            |         |
| 362        |        |            |         |
| 512        |        |            |         |
| 1024       |        |            |         |
| 2048       |        |            |         |
| 4096       |        |            |         |
|            |        |            |         |
| Total      | 966.90 |            | 1-1- 1- |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Fill Slope
ID NUMBER: 086FS Lower Fence

DATE: 9/4/2012
CREW: VonLoh, Willis

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.540 | 1.291 | 2.023 | 4.675 | 7.277 | 10.0  |

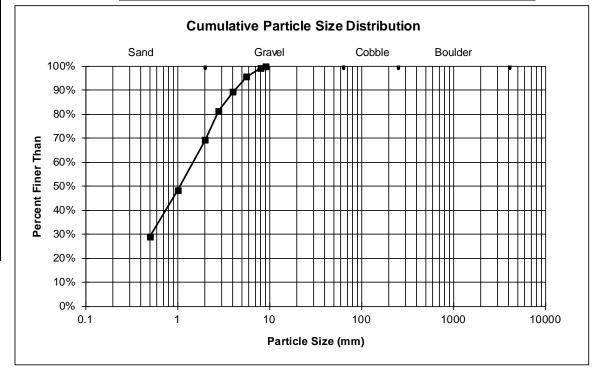


|            |        | _          |         |
|------------|--------|------------|---------|
| Size Finer | Wt. on | % of Total |         |
| Than (mm)  | Sieve  |            | Than    |
| Pan        | 190.30 | 28.9%      |         |
| 0.5        | 126.60 | 19.3%      | 28.9%   |
| 1.0        | 138.00 | 21.0%      | 48.2%   |
| 2.0        | 79.80  | 12.1%      | 69.2%   |
| 2.8        | 52.50  | 8.0%       | 81.3%   |
| 4.0        | 41.10  | 6.3%       | 89.3%   |
| 5.6        | 22.40  | 3.4%       | 95.5%   |
| 8.0        | 6.90   | 1.0%       | 99.0%   |
| 9.0        | *      |            | 100.0%  |
| 16.0       |        |            | -       |
| 22.4       |        |            |         |
| 32.0       |        |            |         |
| 45.0       |        |            |         |
| 64.0       |        |            |         |
| 90         |        |            |         |
| 128        |        |            |         |
| 181        |        |            |         |
| 256        |        |            |         |
| 362        |        |            |         |
| 512        |        |            |         |
| 1024       |        |            |         |
| 2048       |        |            |         |
| 4096       |        |            |         |
|            |        |            |         |
| Total      | 657.60 |            | 1-1- 1- |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Fill Slope
1D NUMBER: 088FS Lower Fence


VonLoh, Willis

ID NUMBER: 088FS Lower Fe

Particle Size Distribution (mm)

CREW:

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.048 | 0.622 | 1.062 | 3.157 | 5.438 | 9.0   |

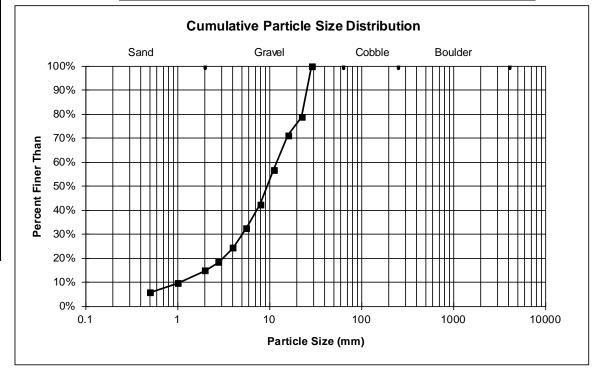


| Size Finer | Wt. on | % of Total | % Finer |
|------------|--------|------------|---------|
| Than (mm)  | Sieve  |            | Than    |
| Pan        | 35.40  | 5.7%       |         |
| 0.5        | 23.50  | 3.8%       | 5.7%    |
| 1.0        | 33.40  | 5.4%       | 9.5%    |
| 2.0        | 21.90  | 3.5%       | 14.8%   |
| 2.8        | 36.40  | 5.9%       | 18.4%   |
| 4.0        | 52.00  | 8.4%       | 24.2%   |
| 5.6        | 61.00  | 9.8%       | 32.6%   |
| 8.0        | 89.20  | 14.4%      | 42.4%   |
| 11.2       | 89.50  | 14.4%      | 56.8%   |
| 16.0       | 46.70  | 7.5%       | 71.2%   |
| 22.4       | 132.60 | 21.3%      | 78.7%   |
| 29.0       | *      |            | 100.0%  |
| 45.0       |        |            | -       |
| 64.0       |        |            |         |
| 90         |        |            |         |
| 128        |        |            |         |
| 181        |        |            |         |
| 256        |        |            |         |
| 362        |        |            |         |
| 512        |        |            |         |
| 1024       |        |            |         |
| 2048       |        |            |         |
| 4096       |        |            |         |
|            |        |            |         |
| Total      | 621.60 |            |         |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Fill Slope


VonLoh, Willis

ID NUMBER: 093FS Upper Fence DATE: 9/4/2012

Particle Size Distribution (mm)

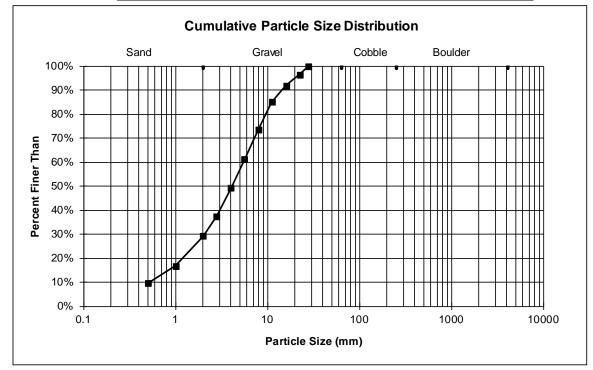
CREW:

| D15   | D35   | D50   | D84    | D95    | Lpart |
|-------|-------|-------|--------|--------|-------|
| 2.029 | 6.112 | 9.559 | 23.894 | 27.297 | 29.0  |



| Size Finer | Wt. on | % of Total |         |
|------------|--------|------------|---------|
| Than (mm)  | Sieve  |            | Than    |
| Pan        | 65.60  | 9.6%       |         |
| 0.5        | 47.90  | 7.0%       | 9.6%    |
| 1.0        | 85.50  | 12.6%      | 16.7%   |
| 2.0        | 55.40  | 8.1%       | 29.3%   |
| 2.8        | 80.50  | 11.8%      | 37.4%   |
| 4.0        | 81.50  | 12.0%      | 49.2%   |
| 5.6        | 82.60  | 12.1%      | 61.2%   |
| 8.0        | 78.70  | 11.6%      | 73.3%   |
| 11.2       | 47.10  | 6.9%       | 84.9%   |
| 16.0       | 30.90  | 4.5%       | 91.8%   |
| 22.4       | 24.60  | 3.6%       | 96.4%   |
| 28.0       | *      |            | 100.0%  |
| 45.0       |        |            | -       |
| 64.0       |        |            |         |
| 90         |        |            |         |
| 128        |        |            |         |
| 181        |        |            |         |
| 256        |        |            |         |
| 362        |        |            |         |
| 512        |        |            |         |
| 1024       |        |            |         |
| 2048       |        |            |         |
| 4096       |        |            |         |
|            |        |            |         |
| Total      | 680.30 | - 1        | tala ta |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight


**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Fill Slope

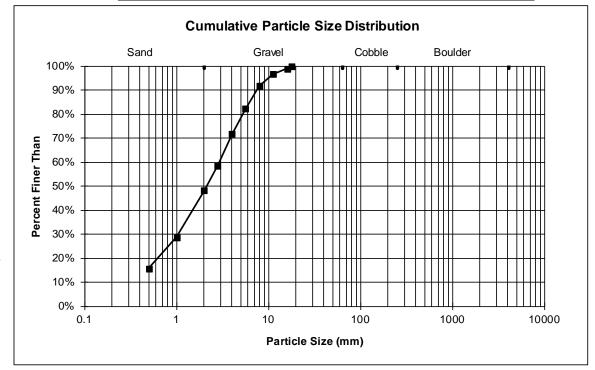
ID NUMBER: 098FS Upper Fence DATE: 7/16/2012

DATE: 7/16/2012 CREW: VonLoh, Willis

| D15   | D35   | D50   | D84    | D95    | Lpart |
|-------|-------|-------|--------|--------|-------|
| 0.847 | 2.536 | 4.088 | 10.905 | 20.217 | 28.0  |



| _          |             |               |          |
|------------|-------------|---------------|----------|
| Size Finer | Wt. on      | % of Total    |          |
| Than (mm)  | Sieve       |               | Than     |
| Pan        | 125.00      | 15.7%         |          |
| 0.5        | 103.50      | 13.0%         | 15.7%    |
| 1.0        | 153.60      | 19.3%         | 28.8%    |
| 2.0        | 81.90       | 10.3%         | 48.1%    |
| 2.8        | 105.30      | 13.3%         | 58.4%    |
| 4.0        | 82.80       | 10.4%         | 71.7%    |
| 5.6        | 76.40       | 9.6%          | 82.1%    |
| 8.0        | 37.90       | 4.8%          | 91.7%    |
| 11.2       | 19.40       | 2.4%          | 96.5%    |
| 16.0       | 8.40        |               | 98.9%    |
| 18.0       | *           |               | 100.0%   |
| 32.0       |             |               | -        |
| 45.0       |             |               |          |
| 64.0       |             |               |          |
| 90         |             |               |          |
| 128        |             |               |          |
| 181        |             |               |          |
| 256        |             |               |          |
| 362        |             |               |          |
| 512        |             |               |          |
| 1024       |             |               |          |
| 2048       |             |               |          |
| 4096       |             |               |          |
|            |             |               |          |
| Total      | 794.20      |               |          |
| *1.4000rod | alua of the | a largast nar | tiala in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

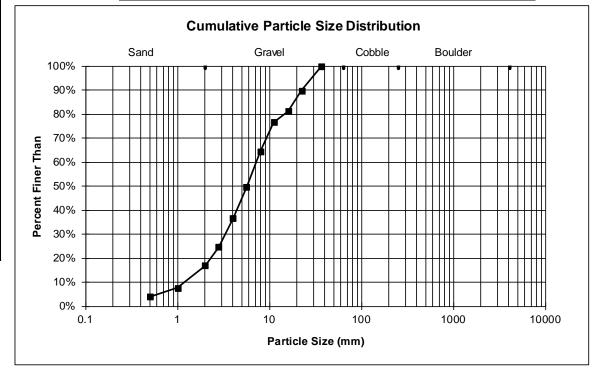
SITE NAME: Pike's Peak Highway - Fill Slope
ID NUMBER: 101FS Upper Fence

DATE: 6/4/2012
CREW: VonLoh, Willis

| D15   | D35   | D50   | D84   | D95    | Lpart |
|-------|-------|-------|-------|--------|-------|
| 0.398 | 1.250 | 2.127 | 6.007 | 10.076 | 18.0  |



| Size Finer | Wt. on | % of Total |        |
|------------|--------|------------|--------|
| Than (mm)  | Sieve  |            | Than   |
| Pan        | 20.80  | 3.9%       |        |
| 0.5        | 19.80  | 3.8%       | 3.9%   |
| 1.0        | 48.80  | 9.3%       | 7.7%   |
| 2.0        | 40.90  | 7.8%       | 17.0%  |
| 2.8        | 62.00  | 11.8%      | 24.7%  |
| 4.0        | 69.20  | 13.1%      | 36.5%  |
| 5.6        | 76.80  | 14.6%      | 49.6%  |
| 8.0        | 64.70  | 12.3%      | 64.2%  |
| 11.2       | 24.70  | 4.7%       | 76.5%  |
| 16.0       | 44.90  | 8.5%       | 81.2%  |
| 22.4       | 54.20  | 10.3%      | 89.7%  |
| 37.0       | *      |            | 100.0% |
| 45.0       |        |            | -      |
| 64.0       |        |            |        |
| 90         |        |            |        |
| 128        |        |            |        |
| 181        |        |            |        |
| 256        |        |            |        |
| 362        |        |            |        |
| 512        |        |            |        |
| 1024       |        |            |        |
| 2048       |        |            |        |
| 4096       |        |            |        |
|            |        |            |        |
| Total      | 526.80 |            |        |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Fill Slope
ID NUMBER: 101FS Lower Fence

DATE: 6/4/2012
CREW: VonLoh, Willis

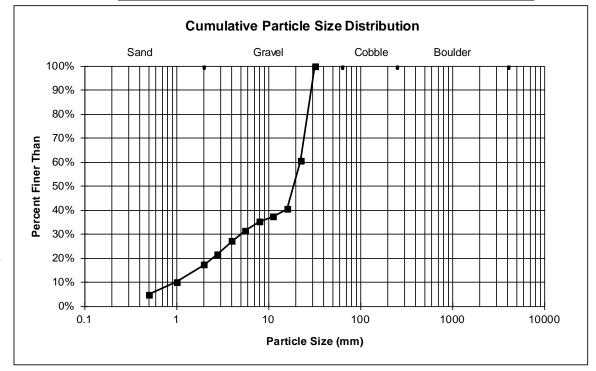
| D15   | D35   | D50   | D84    | D95    | Lpart |
|-------|-------|-------|--------|--------|-------|
| 1.726 | 3.822 | 5.650 | 17.878 | 28.992 | 37.0  |



| Size Finer        | Wt. on     | % of Total    | % Finer |
|-------------------|------------|---------------|---------|
| Than (mm)         | Sieve      |               | Than    |
| Pan               | 48.20      | 4.9%          |         |
| 0.5               | 51.50      | 5.2%          | 4.9%    |
| 1.0               | 72.00      | 7.3%          | 10.1%   |
| 2.0               | 43.80      | 4.4%          | 17.3%   |
| 2.8               | 52.60      | 5.3%          | 21.8%   |
| 4.0               | 44.40      | 4.5%          | 27.1%   |
| 5.6               | 36.30      | 3.7%          | 31.5%   |
| 8.0               | 20.10      | 2.0%          | 35.2%   |
| 11.2              | 31.80      | 3.2%          | 37.2%   |
| 16.0              | 197.50     | 19.9%         | 40.4%   |
| 22.4              | 392.60     | 39.6%         | 60.4%   |
| 32.0              | *          |               | 100.0%  |
| 45.0              |            |               | -       |
| 64.0              |            |               |         |
| 90                |            |               |         |
| 128               |            |               |         |
| 181               |            |               |         |
| 256               |            |               |         |
| 362               |            |               |         |
| 512               |            |               |         |
| 1024              |            |               |         |
| 2048              |            |               |         |
| 4096              |            |               |         |
|                   |            |               |         |
| Total             | 990.80     |               |         |
| *1/1000011504 1/1 | alua af th | a largest ner | iala in |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

Grab Sample of 2012 Sediment Accumulation COMMENTS:


Pike's Peak Highway - Fill Slope SITE NAME: 103FS Upper Fence

ID NUMBER: 9/4/2012 DATE: VonLoh, Willis

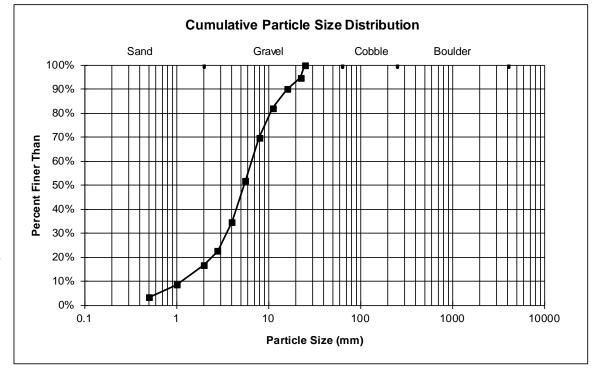
**Particle Size** Distribution (mm)

CREW:

| D15   | D35   | D50    | D84    | D95    | Lpart |
|-------|-------|--------|--------|--------|-------|
| 1.602 | 7.843 | 18.801 | 27.708 | 30.592 | 32.0  |



| Size Finer | Wt. on | % of Total |        |
|------------|--------|------------|--------|
| Than (mm)  | Sieve  |            | Than   |
| Pan        | 31.50  | 3.2%       |        |
| 0.5        | 51.40  | 5.3%       | 3.2%   |
| 1.0        | 80.80  | 8.3%       | 8.5%   |
| 2.0        | 55.80  | 5.7%       | 16.8%  |
| 2.8        | 119.20 | 12.2%      | 22.5%  |
| 4.0        | 168.20 | 17.2%      | 34.7%  |
| 5.6        | 174.60 | 17.9%      | 51.9%  |
| 8.0        | 120.70 | 12.4%      | 69.7%  |
| 11.2       | 76.00  | 7.8%       | 82.1%  |
| 16.0       | 47.30  | 4.8%       | 89.9%  |
| 22.4       | 51.60  | 5.3%       | 94.7%  |
| 25.0       | *      |            | 100.0% |
| 45.0       |        |            | -      |
| 64.0       |        |            |        |
| 90         |        |            |        |
| 128        |        |            |        |
| 181        |        |            |        |
| 256        |        |            |        |
| 362        |        |            |        |
| 512        |        |            |        |
| 1024       |        |            |        |
| 2048       |        |            |        |
| 4096       |        |            |        |
|            |        |            |        |
| Total      | 977.10 |            | V-1- : |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

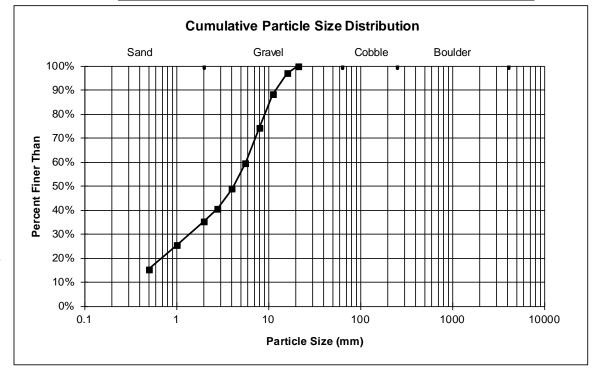
SITE NAME: Pike's Peak Highway - Fill Slope
ID NUMBER: 124FS Upper Fence

DATE: 7/30/2012
CREW: VonLoh, Willis

| D15   | D35   | D50   | D84    | D95    | Lpart |
|-------|-------|-------|--------|--------|-------|
| 1.727 | 4.026 | 5.398 | 12.220 | 22.531 | 25.0  |



| Size Finer  | Wt. on     | % of Total     |         |
|-------------|------------|----------------|---------|
| Than (mm)   | Sieve      |                | Than    |
| Pan         | 126.90     | 15.4%          |         |
| 0.5         | 82.60      | 10.0%          | 15.4%   |
| 1.0         | 83.40      | 10.1%          | 25.3%   |
| 2.0         | 43.50      | 5.3%           | 35.4%   |
| 2.8         | 67.30      | 8.1%           | 40.7%   |
| 4.0         | 89.20      | 10.8%          | 48.8%   |
| 5.6         | 120.20     | 14.5%          | 59.6%   |
| 8.0         | 116.20     | 14.1%          | 74.2%   |
| 11.2        | 72.40      | 8.8%           | 88.2%   |
| 16.0        | 24.90      | 3.0%           | 97.0%   |
| 21.0        | *          |                | 100.0%  |
| 32.0        |            |                | -       |
| 45.0        |            |                |         |
| 64.0        |            |                |         |
| 90          |            |                |         |
| 128         |            |                |         |
| 181         |            |                |         |
| 256         |            |                |         |
| 362         |            |                |         |
| 512         |            |                |         |
| 1024        |            |                |         |
| 2048        |            |                |         |
| 4096        |            |                |         |
|             |            |                |         |
| Total       | 826.60     |                |         |
| *Magaurad v | alua af th | a largest next | iolo in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Fill Slope
ID NUMBER: 128FS Upper Fence

DATE: 6/4/2012
CREW: VonLoh, Willis

| D15   | D35   | D50   | D84    | D95    | Lpart |
|-------|-------|-------|--------|--------|-------|
| 0.447 | 1.941 | 4.148 | 10.122 | 14.756 | 21.0  |



| Size Finer    | Wt. on       | % of Total    | % Finer  |
|---------------|--------------|---------------|----------|
| Than (mm)     | Sieve        |               | Than     |
| Pan           | 69.20        | 8.4%          |          |
| 0.5           | 64.80        | 7.9%          | 8.4%     |
| 1.0           | 128.30       | 15.7%         | 16.3%    |
| 2.0           | 90.50        | 11.0%         | 32.0%    |
| 2.8           | 135.60       | 16.5%         | 43.0%    |
| 4.0           | 115.70       | 14.1%         | 59.6%    |
| 5.6           | 89.10        | 10.9%         | 73.7%    |
| 8.0           | 73.90        | 9.0%          | 84.6%    |
| 11.2          | 40.00        | 4.9%          | 93.6%    |
| 16.0          | 12.70        | 1.5%          | 98.5%    |
| 18.0          | *            |               | 100.0%   |
| 32.0          |              |               | -        |
| 45.0          |              |               |          |
| 64.0          |              |               |          |
| 90            |              |               |          |
| 128           |              |               |          |
| 181           |              |               |          |
| 256           |              |               |          |
| 362           |              |               |          |
| 512           |              |               |          |
| 1024          |              |               |          |
| 2048          |              |               |          |
| 4096          |              |               |          |
|               |              |               |          |
| Total         | 819.80       |               |          |
| *1/1000011504 | value of the | a largast nar | tiala in |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Fill Slope
ID NUMBER: 128FS Lower Fence

DATE: 6/4/2012
CREW: VonLoh, Willis

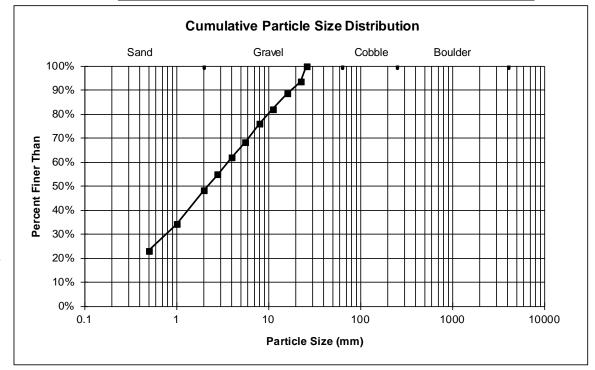
| D15   | D35   | D50   | D84   | D95    | Lpart |
|-------|-------|-------|-------|--------|-------|
| 0.889 | 2.192 | 3.254 | 7.855 | 12.433 | 18.0  |



| Size Finer  | Wt. on     | % of Total     | % Finer |
|-------------|------------|----------------|---------|
| Than (mm)   | Sieve      |                | Than    |
| Pan         | 123.00     | 23.0%          |         |
| 0.5         | 58.90      | 11.0%          | 23.0%   |
| 1.0         | 76.30      | 14.3%          | 34.1%   |
| 2.0         | 34.90      | 6.5%           | 48.3%   |
| 2.8         | 38.10      | 7.1%           | 54.9%   |
| 4.0         | 33.60      | 6.3%           | 62.0%   |
| 5.6         | 40.20      | 7.5%           | 68.3%   |
| 8.0         | 33.00      | 6.2%           | 75.8%   |
| 11.2        | 34.40      | 6.4%           | 82.0%   |
| 16.0        | 26.70      | 5.0%           | 88.4%   |
| 22.4        | 35.10      | 6.6%           | 93.4%   |
| 26.0        | *          |                | 100.0%  |
| 45.0        |            |                | -       |
| 64.0        |            |                |         |
| 90          |            |                |         |
| 128         |            |                |         |
| 181         |            |                |         |
| 256         |            |                |         |
| 362         |            |                |         |
| 512         |            |                |         |
| 1024        |            |                |         |
| 2048        |            |                |         |
| 4096        |            |                |         |
|             |            |                |         |
| Total       | 534.20     |                |         |
| *Measured v | alua of th | a largest next | iolo in |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

Grab Sample of 2012 Sediment Accumulation COMMENTS:


Pike's Peak Highway - Cut Slope SITE NAME: 177FS Upper Fence ID NUMBER:

5/3/2012 DATE: VonLoh

**Particle Size** Distribution (mm)

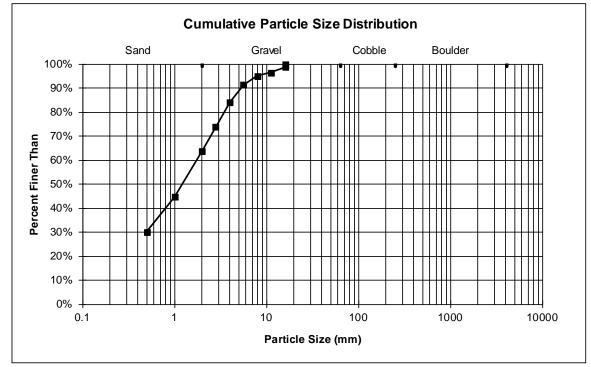
CREW:

| D15   | D35   | D50   | D84    | D95    | Lpart |
|-------|-------|-------|--------|--------|-------|
| 0.092 | 1.047 | 2.179 | 12.518 | 23.212 | 26.0  |



| Size Finer       | Wt. on     | % of Total    | % Finer  |
|------------------|------------|---------------|----------|
| Than (mm)        | Sieve      |               | Than     |
| Pan              | 229.60     | 30.1%         |          |
| 0.5              | 111.00     | 14.6%         | 30.1%    |
| 1.0              | 145.60     | 19.1%         | 44.7%    |
| 2.0              | 76.30      | 10.0%         | 63.8%    |
| 2.8              | 77.90      | 10.2%         | 73.8%    |
| 4.0              | 54.60      | 7.2%          | 84.1%    |
| 5.6              | 29.10      | 3.8%          | 91.2%    |
| 8.0              | 9.90       | 1.3%          | 95.1%    |
| 11.2             | 18.10      | 2.4%          | 96.4%    |
| 16.0             | 9.70       | 1.3%          | 98.7%    |
| 16.0             | *          |               | 100.0%   |
| 32.0             |            |               | -        |
| 45.0             |            |               |          |
| 64.0             |            |               |          |
| 90               |            |               |          |
| 128              |            |               |          |
| 181              |            |               |          |
| 256              |            |               |          |
| 362              |            |               |          |
| 512              |            |               |          |
| 1024             |            |               |          |
| 2048             |            |               |          |
| 4096             |            |               |          |
|                  |            |               |          |
| Total            | 761.80     |               |          |
| *N/000011rod 1/4 | alua af th | a largast par | tiala in |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight


**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Fill Slope

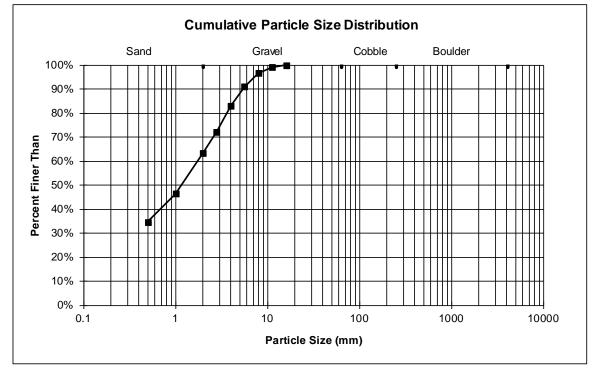
ID NUMBER: 186FS Upper Fence DATE: 7/17/2012

CREW: VonLoh, Willis

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.044 | 0.630 | 1.211 | 3.991 | 7.962 | 16.0  |



|                |            | _             | _       |
|----------------|------------|---------------|---------|
| Size Finer     | Wt. on     | % of Total    | % Finer |
| Than (mm)      | Sieve      |               | Than    |
| Pan            | 395.70     | 34.7%         |         |
| 0.5            | 133.70     | 11.7%         | 34.7%   |
| 1.0            | 193.30     | 17.0%         | 46.4%   |
| 2.0            | 99.70      | 8.7%          | 63.4%   |
| 2.8            | 124.00     | 10.9%         | 72.2%   |
| 4.0            | 91.10      | 8.0%          | 83.0%   |
| 5.6            | 64.00      | 5.6%          | 91.0%   |
| 8.0            | 27.40      | 2.4%          | 96.6%   |
| 11.2           | 10.90      | 1.0%          | 99.0%   |
| 16.0           | *          |               | 100.0%  |
| 22.4           |            |               | -       |
| 32.0           |            |               |         |
| 45.0           |            |               |         |
| 64.0           |            |               |         |
| 90             |            |               |         |
| 128            |            |               |         |
| 181            |            |               |         |
| 256            |            |               |         |
| 362            |            |               |         |
| 512            |            |               |         |
| 1024           |            |               |         |
| 2048           |            |               |         |
| 4096           |            |               |         |
|                |            |               |         |
| Total          | 1139.80    |               |         |
| *1./1000urod v | alua of th | a largast nar | iala in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

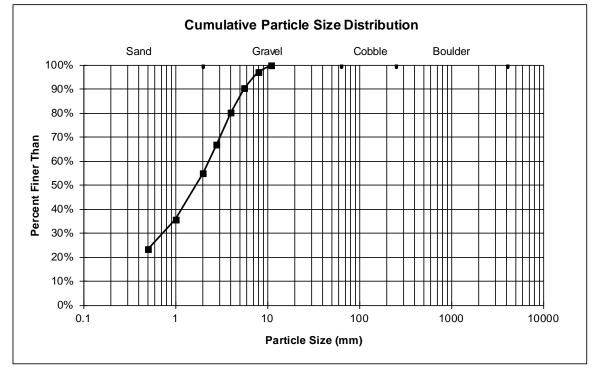
SITE NAME: Pike's Peak Highway - Fill Slope
ID NUMBER: 187FS Upper Fence

DATE: 8/20/2012
CREW: VonLoh, Willis

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.032 | 0.508 | 1.156 | 4.166 | 7.209 | 16.0  |



|            |         | _          |        |
|------------|---------|------------|--------|
| Size Finer | Wt. on  | % of Total |        |
| Than (mm)  | Sieve   |            | Than   |
| Pan        | 243.70  | 23.3%      |        |
| 0.5        | 129.50  | 12.4%      | 23.3%  |
| 1.0        | 202.50  | 19.3%      | 35.6%  |
| 2.0        | 125.90  | 12.0%      | 55.0%  |
| 2.8        | 139.70  | 13.3%      | 67.0%  |
| 4.0        | 106.50  | 10.2%      | 80.3%  |
| 5.6        | 69.80   | 6.7%       | 90.5%  |
| 8.0        | 29.90   | 2.9%       | 97.1%  |
| 11.0       | *       |            | 100.0% |
| 16.0       |         |            | -      |
| 22.4       |         |            |        |
| 32.0       |         |            |        |
| 45.0       |         |            |        |
| 64.0       |         |            |        |
| 90         |         |            |        |
| 128        |         |            |        |
| 181        |         |            |        |
| 256        |         |            |        |
| 362        |         |            |        |
| 512        |         |            |        |
| 1024       |         |            |        |
| 2048       |         |            |        |
| 4096       |         |            |        |
|            |         |            |        |
| Total      | 1047.50 |            | V-1    |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

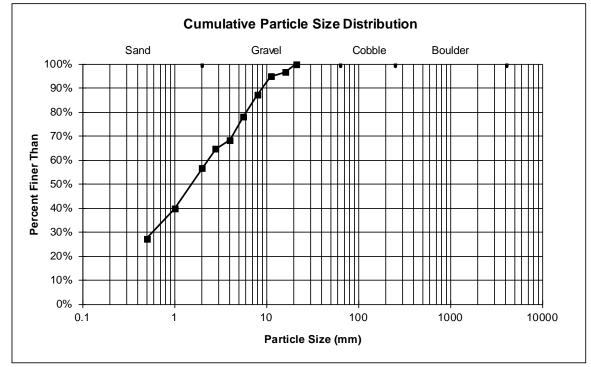
SITE NAME: Pike's Peak Highway - Fill Slope
ID NUMBER: 193FS Upper Fence

DATE: 5/3/2012 CREW: VonLoh

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.089 | 0.965 | 1.674 | 4.519 | 7.132 | 11.0  |



| Size Finer  | Wt. on | % of Total | % Finer |
|-------------|--------|------------|---------|
| Than (mm)   | Sieve  |            | Than    |
| Pan         | 223.50 | 27.3%      |         |
| 0.5         | 101.60 | 12.4%      | 27.3%   |
| 1.0         | 137.70 | 16.8%      | 39.7%   |
| 2.0         | 67.30  | 8.2%       | 56.5%   |
| 2.8         | 30.20  | 3.7%       | 64.7%   |
| 4.0         | 79.90  | 9.8%       | 68.4%   |
| 5.6         | 72.70  | 8.9%       | 78.2%   |
| 8.0         | 63.30  | 7.7%       | 87.1%   |
| 11.2        | 14.90  | 1.8%       | 94.8%   |
| 16.0        | 27.80  | 3.4%       | 96.6%   |
| 21.0        | *      |            | 100.0%  |
| 32.0        |        |            | -       |
| 45.0        |        |            |         |
| 64.0        |        |            |         |
| 90          |        |            |         |
| 128         |        |            |         |
| 181         |        |            |         |
| 256         |        |            |         |
| 362         |        |            |         |
| 512         |        |            |         |
| 1024        |        |            |         |
| 2048        |        |            |         |
| 4096        |        |            |         |
|             |        |            |         |
| Total       | 818.90 |            |         |
| *Measured v | -1 41- |            | data ta |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Fill Slope
ID NUMBER: 193FS Upper Fence

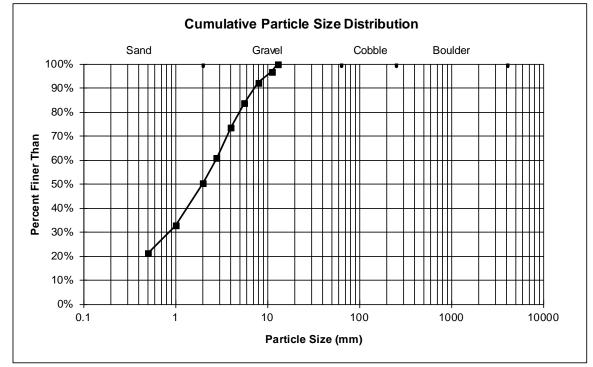
DATE: 5/21/2012
CREW: VonLoh, Willis

| D15   | D35   | D50   | D84   | D95    | Lpart |
|-------|-------|-------|-------|--------|-------|
| 0.056 | 0.769 | 1.529 | 7.076 | 11.681 | 21.0  |



| Cina Finan | 10/4   | 0/ at Tat-1 | 0/ Eins: |
|------------|--------|-------------|----------|
| Size Finer | Wt. on | % of Total  | % Finer  |
| Than (mm)  | Sieve  | 0.1.00/     | Than     |
| Pan        | 153.60 | 21.2%       |          |
| 0.5        | 83.70  | 11.5%       | 21.2%    |
| 1.0        | 129.00 | 17.8%       | 32.7%    |
| 2.0        | 74.10  | 10.2%       | 50.5%    |
| 2.8        | 93.00  | 12.8%       | 60.7%    |
| 4.0        | 74.40  | 10.3%       | 73.6%    |
| 5.6        | 60.00  | 8.3%        | 83.8%    |
| 8.0        | 33.80  | 4.7%        | 92.1%    |
| 11.2       | 23.40  | 3.2%        | 96.8%    |
| 13.0       | *      |             | 100.0%   |
| 22.4       |        |             | -        |
| 32.0       |        |             |          |
| 45.0       |        |             |          |
| 64.0       |        |             |          |
| 90         |        |             |          |
| 128        |        |             |          |
| 181        |        |             |          |
| 256        |        |             |          |
| 362        |        |             |          |
| 512        |        |             |          |
| 1024       |        |             |          |
| 2048       |        |             |          |
| 4096       |        |             |          |
|            |        |             |          |
| Total      | 725.00 |             |          |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight


**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Fill Slope

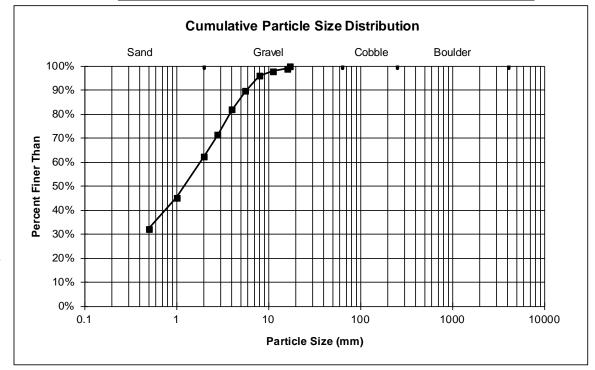
ID NUMBER: 194FS Upper Fence DATE: 9/4/2012

CREW: VonLoh, Willis

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.121 | 1.092 | 1.960 | 5.640 | 9.855 | 13.0  |



| Size Finer  | Wt. on     | % of Total     | % Finer |
|-------------|------------|----------------|---------|
| Than (mm)   | Sieve      |                | Than    |
| Pan         | 206.90     | 32.2%          |         |
| 0.5         | 83.00      | 12.9%          | 32.2%   |
| 1.0         | 109.80     | 17.1%          | 45.2%   |
| 2.0         | 57.40      | 8.9%           | 62.3%   |
| 2.8         | 67.60      | 10.5%          | 71.2%   |
| 4.0         | 49.60      | 7.7%           | 81.8%   |
| 5.6         | 41.10      | 6.4%           | 89.5%   |
| 8.0         | 12.40      | 1.9%           | 95.9%   |
| 11.2        | 7.00       | 1.1%           | 97.8%   |
| 16.0        | 6.80       | 1.1%           | 98.9%   |
| 17.0        | *          |                | 100.0%  |
| 32.0        |            |                | -       |
| 45.0        |            |                |         |
| 64.0        |            |                |         |
| 90          |            |                |         |
| 128         |            |                |         |
| 181         |            |                |         |
| 256         |            |                |         |
| 362         |            |                |         |
| 512         |            |                |         |
| 1024        |            |                |         |
| 2048        |            |                |         |
| 4096        |            |                |         |
|             |            |                |         |
| Total       | 641.60     |                |         |
| *Measured v | alua of th | a largest part | iolo in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

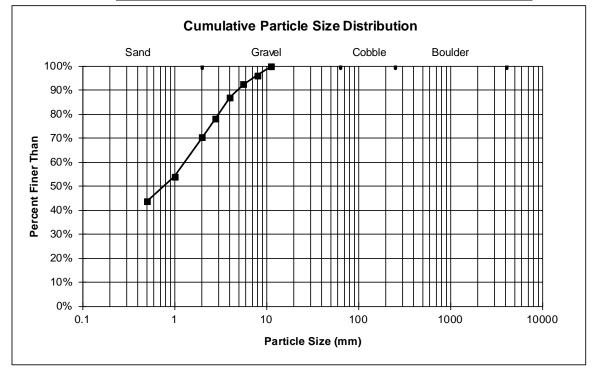
SITE NAME: Pike's Peak Highway - Fill Slope
ID NUMBER: 204FS Upper Fence

DATE: 6/4/2012
CREW: VonLoh, Willis

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.037 | 0.579 | 1.215 | 4.406 | 7.602 | 17.0  |



| Size Finer                              | Wt. on     | % of Total    | % Finer  |
|-----------------------------------------|------------|---------------|----------|
| Than (mm)                               | Sieve      |               | Than     |
| Pan                                     | 291.00     | 43.7%         |          |
| 0.5                                     | 69.10      | 10.4%         | 43.7%    |
| 1.0                                     | 108.00     | 16.2%         | 54.0%    |
| 2.0                                     | 52.60      | 7.9%          | 70.2%    |
| 2.8                                     | 58.40      | 8.8%          | 78.1%    |
| 4.0                                     | 36.30      | 5.4%          | 86.9%    |
| 5.6                                     | 24.40      | 3.7%          | 92.3%    |
| 8.0                                     | 24.90      | 3.7%          | 96.0%    |
| 11.2                                    | 1.90       | 0.3%          | 99.7%    |
| 12.0                                    | *          |               | 100.0%   |
| 22.4                                    |            |               | -        |
| 32.0                                    |            |               |          |
| 45.0                                    |            |               |          |
| 64.0                                    |            |               |          |
| 90                                      |            |               |          |
| 128                                     |            |               |          |
| 181                                     |            |               |          |
| 256                                     |            |               |          |
| 362                                     |            |               |          |
| 512                                     |            |               |          |
| 1024                                    |            |               |          |
| 2048                                    |            |               |          |
| 4096                                    |            |               |          |
|                                         |            |               |          |
| Total                                   | 666.60     |               |          |
| *1.100000000000000000000000000000000000 | alua of th | a largast par | tiala in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

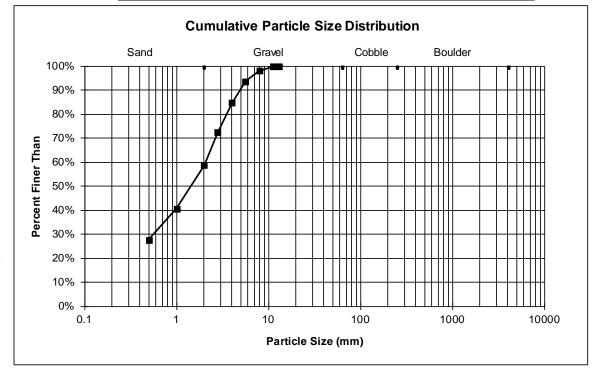
SITE NAME: Pike's Peak Highway - Fill Slope
ID NUMBER: 204FS Lower Fence

DATE: 6/4/2012
CREW: VonLoh, Willis

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.021 | 0.191 | 0.764 | 3.558 | 7.272 | 12.0  |



| Size Finer  | Wt. on     | % of Total    | % Finer |
|-------------|------------|---------------|---------|
| Than (mm)   | Sieve      |               | Than    |
| Pan         | 162.10     | 27.6%         |         |
| 0.5         | 75.80      | 12.9%         | 27.6%   |
| 1.0         | 106.70     | 18.2%         | 40.6%   |
| 2.0         | 79.30      | 13.5%         | 58.8%   |
| 2.8         | 72.30      | 12.3%         | 72.3%   |
| 4.0         | 52.60      | 9.0%          | 84.6%   |
| 5.6         | 26.20      | 4.5%          | 93.6%   |
| 8.0         | 10.10      | 1.7%          | 98.1%   |
| 11.2        | 1.30       | 0.2%          | 99.8%   |
| 13.0        | *          |               | 100.0%  |
| 22.4        |            |               | -       |
| 32.0        |            |               |         |
| 45.0        |            |               |         |
| 64.0        |            |               |         |
| 90          |            |               |         |
| 128         |            |               |         |
| 181         |            |               |         |
| 256         |            |               |         |
| 362         |            |               |         |
| 512         |            |               |         |
| 1024        |            |               |         |
| 2048        |            |               |         |
| 4096        |            |               |         |
|             |            |               |         |
| Total       | 586.40     |               |         |
| *Magaurad v | alua of th | a largest nor | iolo in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

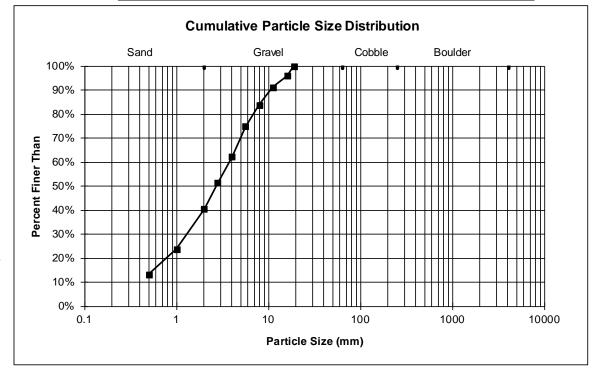
SITE NAME: Pike's Peak Highway -Fill Slope
1D NUMBER: 001FS Upper Fence

DATE: 7/29/2013
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.054 | 0.742 | 1.432 | 3.929 | 6.268 | 13.0  |



| Size Finer     | Wt. on     | % of Total    | % Finer |
|----------------|------------|---------------|---------|
| Than (mm)      | Sieve      |               | Than    |
| Pan            | 80.80      | 13.2%         |         |
| 0.5            | 64.40      | 10.5%         | 13.2%   |
| 1.0            | 102.30     | 16.7%         | 23.7%   |
| 2.0            | 67.00      | 10.9%         | 40.4%   |
| 2.8            | 66.50      | 10.9%         | 51.4%   |
| 4.0            | 76.60      | 12.5%         | 62.2%   |
| 5.6            | 54.90      | 9.0%          | 74.8%   |
| 8.0            | 45.70      | 7.5%          | 83.7%   |
| 11.2           | 29.00      | 4.7%          | 91.2%   |
| 16.0           | 24.90      | 4.1%          | 95.9%   |
| 19.0           | *          |               | 100.0%  |
| 32.0           |            |               | -       |
| 45.0           |            |               |         |
| 64.0           |            |               |         |
| 90             |            |               |         |
| 128            |            |               |         |
| 181            |            |               |         |
| 256            |            |               |         |
| 362            |            |               |         |
| 512            |            |               |         |
| 1024           |            |               |         |
| 2048           |            |               |         |
| 4096           |            |               |         |
|                |            |               |         |
| Total          | 612.10     |               |         |
| *1./1000urod v | alua of th | a largast nar | iala in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Fill Slope
ID NUMBER: 039FS Upper Fence

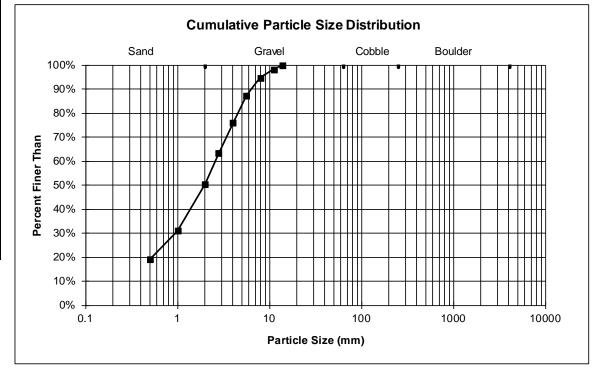
ID NUMBER: 039FS Upper Fer 5/6/2013
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95    | Lpart |
|-------|-------|-------|-------|--------|-------|
| 0.563 | 1.596 | 2.684 | 8.099 | 14.916 | 19.0  |



| Size Finer  | Wt. on     | % of Total     | % Finer |
|-------------|------------|----------------|---------|
| Than (mm)   | Sieve      |                | Than    |
| Pan         | 112.20     | 19.1%          |         |
| 0.5         | 69.10      | 11.8%          | 19.1%   |
| 1.0         | 114.50     | 19.5%          | 30.9%   |
| 2.0         | 75.00      | 12.8%          | 50.4%   |
| 2.8         | 74.50      | 12.7%          | 63.2%   |
| 4.0         | 67.10      | 11.4%          | 75.9%   |
| 5.6         | 42.80      | 7.3%           | 87.3%   |
| 8.0         | 21.10      | 3.6%           | 94.6%   |
| 11.2        | 10.50      | 1.8%           | 98.2%   |
| 14.0        | *          |                | 100.0%  |
| 22.4        |            |                | -       |
| 32.0        |            |                |         |
| 45.0        |            |                |         |
| 64.0        |            |                |         |
| 90          |            |                |         |
| 128         |            |                |         |
| 181         |            |                |         |
| 256         |            |                |         |
| 362         |            |                |         |
| 512         |            |                |         |
| 1024        |            |                |         |
| 2048        |            |                |         |
| 4096        |            |                |         |
|             |            |                |         |
| Total       | 586.80     |                |         |
| *Measured v | alua of th | a largest part | iolo in |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight


**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Fill Slope

ID NUMBER: 039FS Lower Fence DATE: 5/6/2013

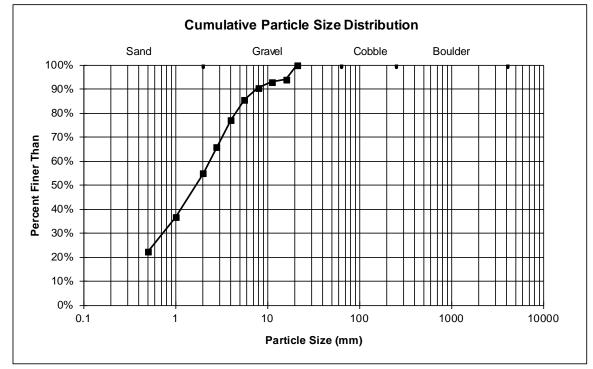
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.176 | 1.157 | 1.971 | 5.079 | 8.294 | 14.0  |



| Size Finer  | Wt. on     | % of Total    | % Finer |
|-------------|------------|---------------|---------|
| Than (mm)   | Sieve      |               | Than    |
| Pan         | 110.10     | 22.1%         |         |
| 0.5         | 71.60      | 14.4%         | 22.1%   |
| 1.0         | 91.20      | 18.3%         | 36.5%   |
| 2.0         | 53.70      | 10.8%         | 54.9%   |
| 2.8         | 56.70      | 11.4%         | 65.7%   |
| 4.0         | 41.80      | 8.4%          | 77.1%   |
| 5.6         | 24.30      | 4.9%          | 85.5%   |
| 8.0         | 12.40      | 2.5%          | 90.4%   |
| 11.2        | 5.60       | 1.1%          | 92.9%   |
| 16.0        | 29.80      | 6.0%          | 94.0%   |
| 21.0        | *          |               | 100.0%  |
| 32.0        |            |               | -       |
| 45.0        |            |               |         |
| 64.0        |            |               |         |
| 90          |            |               |         |
| 128         |            |               |         |
| 181         |            |               |         |
| 256         |            |               |         |
| 362         |            |               |         |
| 512         |            |               |         |
| 1024        |            |               |         |
| 2048        |            |               |         |
| 4096        |            |               |         |
|             |            |               |         |
| Total       | 497.20     |               |         |
| *Magaurad v | alua of th | a largest ner | iolo in |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight


**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Fill Slope

ID NUMBER: 039FS Upper fence

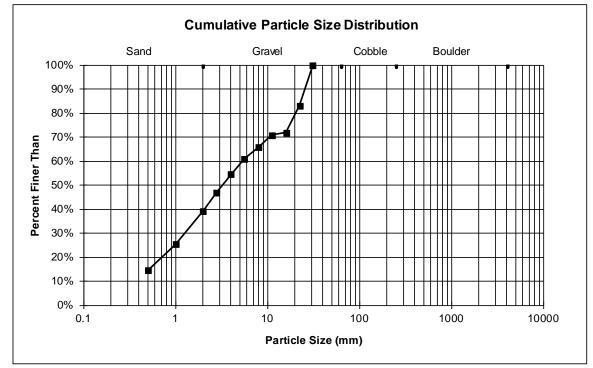
DATE: 9/17/2013 CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95    | Lpart |
|-------|-------|-------|-------|--------|-------|
| 0.104 | 0.928 | 1.663 | 5.274 | 16.738 | 21.0  |



| -          |        |            |        |
|------------|--------|------------|--------|
| Size Finer | Wt. on | % of Total |        |
| Than (mm)  | Sieve  |            | Than   |
| Pan        | 89.30  | 14.5%      |        |
| 0.5        | 66.70  | 10.8%      | 14.5%  |
| 1.0        | 85.80  | 13.9%      | 25.3%  |
| 2.0        | 47.00  | 7.6%       | 39.3%  |
| 2.8        | 46.80  | 7.6%       | 46.9%  |
| 4.0        | 40.20  | 6.5%       | 54.5%  |
| 5.6        | 28.90  | 4.7%       | 61.0%  |
| 8.0        | 30.80  | 5.0%       | 65.7%  |
| 11.2       | 7.10   | 1.2%       | 70.7%  |
| 16.0       | 69.00  | 11.2%      | 71.9%  |
| 22.4       | 104.00 | 16.9%      | 83.1%  |
| 31.0       | *      |            | 100.0% |
| 45.0       |        |            | -      |
| 64.0       |        |            |        |
| 90         |        |            |        |
| 128        |        |            |        |
| 181        |        |            |        |
| 256        |        |            |        |
| 362        |        |            |        |
| 512        |        |            |        |
| 1024       |        |            |        |
| 2048       |        |            |        |
| 4096       |        |            |        |
|            |        |            |        |
| Total      | 615.60 |            |        |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight


**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Fill Slope

ID NUMBER: 043FS Upper Fence

DATE: 5/20/2013 CREW: Hauser, VonLoh

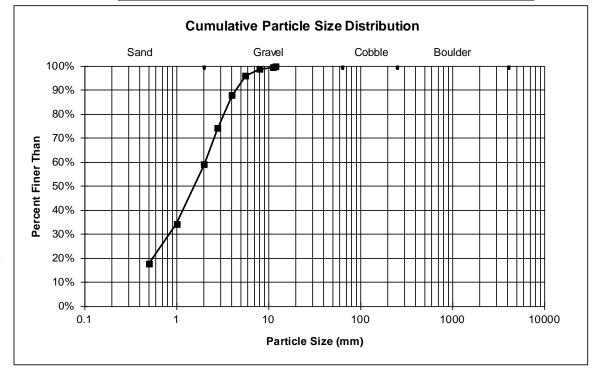
| D15   | D35   | D50   | D84    | D95    | Lpart |
|-------|-------|-------|--------|--------|-------|
| 0.516 | 1.617 | 3.236 | 22.789 | 28.158 | 31.0  |



| Size Finer  | Wt. on     | % of Total     | % Finer |
|-------------|------------|----------------|---------|
| Than (mm)   | Sieve      |                | Than    |
| Pan         | 62.70      | 17.7%          |         |
| 0.5         | 58.90      | 16.6%          | 17.7%   |
| 1.0         | 87.50      | 24.7%          | 34.4%   |
| 2.0         | 53.30      | 15.1%          | 59.1%   |
| 2.8         | 48.20      | 13.6%          | 74.1%   |
| 4.0         | 28.50      | 8.1%           | 87.7%   |
| 5.6         | 10.50      | 3.0%           | 95.8%   |
| 8.0         | 2.40       | 0.7%           | 98.8%   |
| 11.2        | 2.00       | 0.6%           | 99.4%   |
| 12.0        | *          |                | 100.0%  |
| 22.4        |            |                | -       |
| 32.0        |            |                |         |
| 45.0        |            |                |         |
| 64.0        |            |                |         |
| 90          |            |                |         |
| 128         |            |                |         |
| 181         |            |                |         |
| 256         |            |                |         |
| 362         |            |                |         |
| 512         |            |                |         |
| 1024        |            |                |         |
| 2048        |            |                |         |
| 4096        |            |                |         |
|             |            |                |         |
| Total       | 354.00     |                |         |
| *Measured v | alua of th | a largest part | iolo in |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

Grab Sample of 2013 Sediment Accumulation COMMENTS:


Pike's Peak Highway - Fill Slope SITE NAME: 083FS Lower Fence

ID NUMBER: 6/24/2013 DATE: Hauser, VonLoh

**Particle Size** Distribution (mm)

CREW:

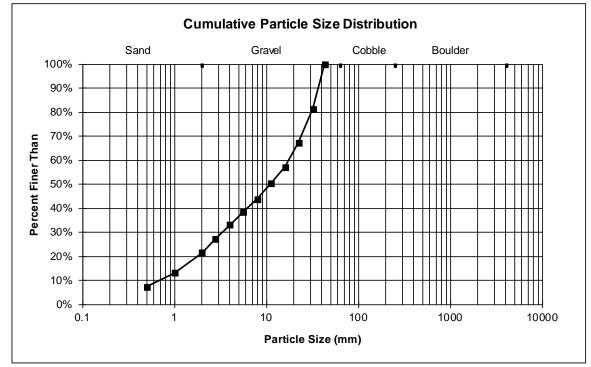
| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.238 | 1.018 | 1.551 | 3.627 | 5.418 | 12.0  |



| Size Finer | Wt. on       | % of Total | % Finer |
|------------|--------------|------------|---------|
| Than (mm)  | Sieve        |            | Than    |
| Pan        | 53.60        | 7.2%       |         |
| 0.5        | 43.00        | 5.8%       | 7.2%    |
| 1.0        | 61.90        | 8.4%       | 13.1%   |
| 2.0        | 43.50        | 5.9%       | 21.4%   |
| 2.8        | 43.10        | 5.8%       | 27.3%   |
| 4.0        | 39.60        | 5.4%       | 33.1%   |
| 5.6        | 39.20        | 5.3%       | 38.5%   |
| 8.0        | 48.10        | 6.5%       | 43.8%   |
| 11.2       | 51.00        | 6.9%       | 50.3%   |
| 16.0       | 74.80        | 10.1%      | 57.2%   |
| 22.4       | 103.30       | 14.0%      | 67.3%   |
| 32.0       | 138.50       | 18.7%      | 81.3%   |
| 43.0       | *            |            | 100.0%  |
| 64.0       |              |            | -       |
| 90         |              |            |         |
| 128        |              |            |         |
| 181        |              |            |         |
| 256        |              |            |         |
| 362        |              |            |         |
| 512        |              |            |         |
| 1024       |              |            |         |
| 2048       |              |            |         |
| 4096       |              |            |         |
|            |              |            |         |
| Total      | 739.60       |            |         |
| *1.4       | ملد کے مدالہ |            | iala ia |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2013 Sediment Accumulation


SITE NAME: Pike's Peak Highway - Fill Slope

ID NUMBER: 093FS Upper Fence DATE: 7/2/2013

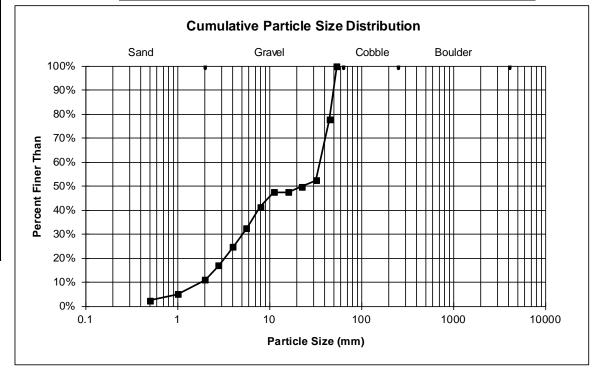
CREW: Hauser, VonLoh

| Particle Size     |
|-------------------|
| Distribution (mm) |

| D15   | D35   | D50    | D84    | D95    | Lpart |
|-------|-------|--------|--------|--------|-------|
| 1.174 | 4.496 | 11.029 | 33.407 | 39.738 | 43.0  |



| Size Finer  | Wt. on   | % of Total | % Finer |
|-------------|----------|------------|---------|
| Than (mm)   | Sieve    |            | Than    |
| Pan         | 17.70    | 2.4%       |         |
| 0.5         | 18.40    | 2.5%       | 2.4%    |
| 1.0         | 44.40    | 6.0%       | 4.9%    |
| 2.0         | 43.30    | 5.9%       | 11.0%   |
| 2.8         | 57.00    | 7.8%       | 16.9%   |
| 4.0         | 57.10    | 7.8%       | 24.6%   |
| 5.6         | 64.90    | 8.8%       | 32.4%   |
| 8.0         | 46.10    | 6.3%       | 41.2%   |
| 11.2        | 0.00     | 0.0%       | 47.5%   |
| 16.0        | 16.50    | 2.2%       | 47.5%   |
| 22.4        | 19.70    | 2.7%       | 49.8%   |
| 32.0        | 184.60   | 25.1%      | 52.4%   |
| 45.0        | 164.60   | 22.4%      | 77.6%   |
| 54.0        | *        |            | 100.0%  |
| 90          |          |            | -       |
| 128         |          |            |         |
| 181         |          |            |         |
| 256         |          |            |         |
| 362         |          |            |         |
| 512         |          |            |         |
| 1024        |          |            |         |
| 2048        |          |            |         |
| 4096        |          |            |         |
|             |          |            |         |
| Total       | 734.30   |            |         |
| *Measured v | -1 6.41- |            | 0.1 - 1 |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Fill Slope
ID NUMBER: 098FS Upper Fence

DATE: 6/10/2013
CREW: Hauser, VonLoh

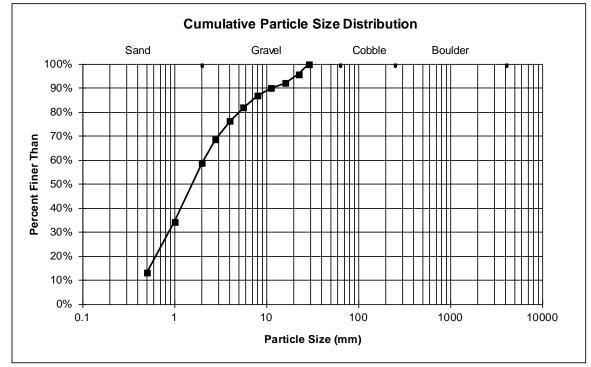
| D15   | D35   | D50    | D84    | D95    | Lpart |
|-------|-------|--------|--------|--------|-------|
| 2.518 | 6.220 | 23.121 | 47.411 | 51.848 | 54.0  |



| Size Finer  | Wt. on     | % of Total    | % Finer |
|-------------|------------|---------------|---------|
| Than (mm)   | Sieve      |               | Than    |
| Pan         | 86.10      | 13.1%         |         |
| 0.5         | 139.00     | 21.1%         | 13.1%   |
| 1.0         | 162.40     | 24.7%         | 34.2%   |
| 2.0         | 63.70      | 9.7%          | 58.9%   |
| 2.8         | 50.00      | 7.6%          | 68.6%   |
| 4.0         | 37.00      | 5.6%          | 76.2%   |
| 5.6         | 32.80      | 5.0%          | 81.8%   |
| 8.0         | 20.40      | 3.1%          | 86.8%   |
| 11.2        | 13.20      | 2.0%          | 89.9%   |
| 16.0        | 24.20      | 3.7%          | 91.9%   |
| 22.4        | 28.80      | 4.4%          | 95.6%   |
| 29.0        | *          |               | 100.0%  |
| 45.0        |            |               | -       |
| 64.0        |            |               |         |
| 90          |            |               |         |
| 128         |            |               |         |
| 181         |            |               |         |
| 256         |            |               |         |
| 362         |            |               |         |
| 512         |            |               |         |
| 1024        |            |               |         |
| 2048        |            |               |         |
| 4096        |            |               |         |
|             |            |               |         |
| Total       | 657.60     |               |         |
| *Measured v | alua of th | a largest par | iolo in |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2013 Sediment Accumulation


SITE NAME: Pike's Peak Highway - Fill Slope

ID NUMBER: 101FS Lower Fence DATE: 8/12/2013

CREW: Hauser, VonLoh

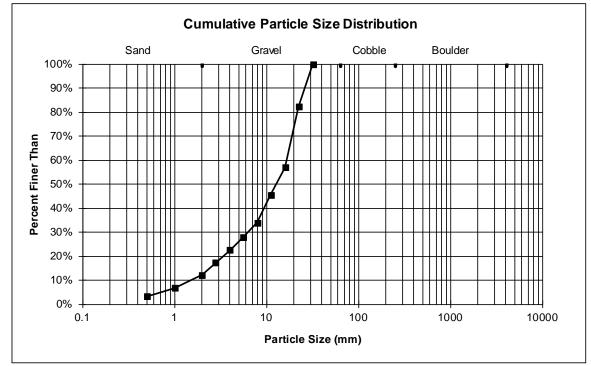
Particle Size D15
Distribution (mm) 0.532

| D15   | D35   | D50   | D84   | D95    | Lpart |
|-------|-------|-------|-------|--------|-------|
| 0.532 | 1.022 | 1.557 | 6.534 | 21.165 | 29.0  |



| Size Finer  | Wt. on     | % of Total    |         |
|-------------|------------|---------------|---------|
| Than (mm)   | Sieve      |               | Than    |
| Pan         | 18.50      | 3.3%          |         |
| 0.5         | 19.50      | 3.4%          | 3.3%    |
| 1.0         | 30.90      | 5.5%          | 6.7%    |
| 2.0         | 28.60      | 5.0%          | 12.2%   |
| 2.8         | 30.30      | 5.3%          | 17.2%   |
| 4.0         | 30.50      | 5.4%          | 22.6%   |
| 5.6         | 34.50      | 6.1%          | 27.9%   |
| 8.0         | 65.10      | 11.5%         | 34.0%   |
| 11.2        | 64.80      | 11.4%         | 45.5%   |
| 16.0        | 142.60     | 25.2%         | 56.9%   |
| 22.4        | 101.40     | 17.9%         | 82.1%   |
| 32.0        | *          |               | 100.0%  |
| 45.0        |            |               | -       |
| 64.0        |            |               |         |
| 90          |            |               |         |
| 128         |            |               |         |
| 181         |            |               |         |
| 256         |            |               |         |
| 362         |            |               |         |
| 512         |            |               |         |
| 1024        |            |               |         |
| 2048        |            |               |         |
| 4096        |            |               |         |
|             |            |               |         |
| Total       | 566.70     |               |         |
| *Magaurad v | alua of th | a largest nor | iolo in |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight


**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Fill Slope

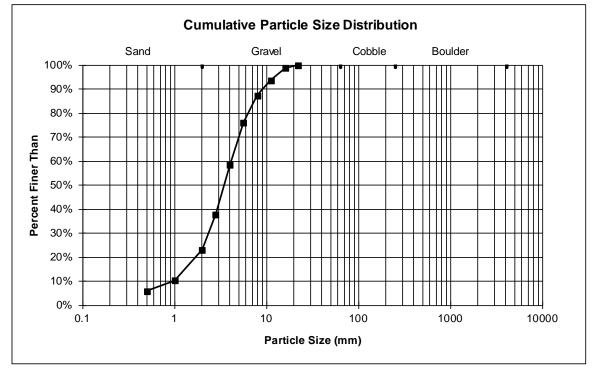
ID NUMBER: 105FS Upper Fence DATE: 6/10/2013

CREW: Hauser, VonLoh

| Particle Size     | D15   | D35   | D50    | D84    | D95    | Lpart |
|-------------------|-------|-------|--------|--------|--------|-------|
| Distribution (mm) | 2.417 | 8.233 | 12.884 | 23.261 | 28.964 | 32.0  |



| Size Finer  | Wt. on     | % of Total     | % Finer |
|-------------|------------|----------------|---------|
| Than (mm)   | Sieve      |                | Than    |
| Pan         | 32.90      | 5.8%           |         |
| 0.5         | 24.70      | 4.4%           | 5.8%    |
| 1.0         | 72.40      | 12.8%          | 10.2%   |
| 2.0         | 83.50      | 14.8%          | 23.0%   |
| 2.8         | 117.10     | 20.7%          | 37.8%   |
| 4.0         | 98.40      | 17.4%          | 58.6%   |
| 5.6         | 64.00      | 11.3%          | 76.0%   |
| 8.0         | 35.20      | 6.2%           | 87.3%   |
| 11.2        | 29.00      | 5.1%           | 93.6%   |
| 16.0        | 7.30       | 1.3%           | 98.7%   |
| 22.0        | *          |                | 100.0%  |
| 32.0        |            |                | -       |
| 45.0        |            |                |         |
| 64.0        |            |                |         |
| 90          |            |                |         |
| 128         |            |                |         |
| 181         |            |                |         |
| 256         |            |                |         |
| 362         |            |                |         |
| 512         |            |                |         |
| 1024        |            |                |         |
| 2048        |            |                |         |
| 4096        |            |                |         |
|             |            |                |         |
| Total       | 564.50     |                |         |
| *Measured v | alua of th | a largest part | iolo in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

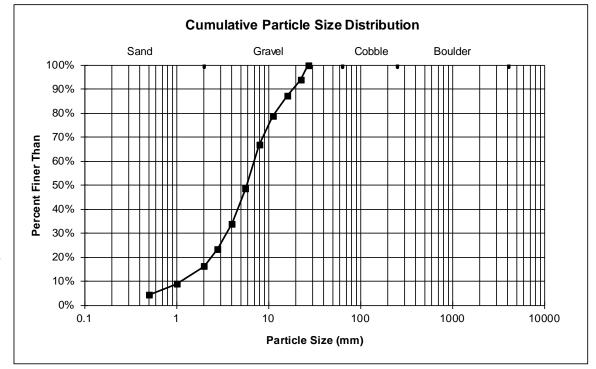
SITE NAME: Pike's Peak Highway -Fill Slope
ID NUMBER: 105FS Lower Fence

DATE: 6/10/2013
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95    | Lpart |
|-------|-------|-------|-------|--------|-------|
| 1.296 | 2.626 | 3.452 | 7.203 | 12.369 | 22.0  |



| Size Finer | Wt. on | % of Total |        |
|------------|--------|------------|--------|
| Than (mm)  | Sieve  |            | Than   |
| Pan        | 22.00  | 4.3%       |        |
| 0.5        | 23.30  | 4.5%       | 4.3%   |
| 1.0        | 38.00  | 7.4%       | 8.8%   |
| 2.0        | 36.60  | 7.1%       | 16.3%  |
| 2.8        | 54.40  | 10.6%      | 23.4%  |
| 4.0        | 74.00  | 14.4%      | 34.0%  |
| 5.6        | 93.30  | 18.2%      | 48.5%  |
| 8.0        | 61.60  | 12.0%      | 66.7%  |
| 11.2       | 42.70  | 8.3%       | 78.7%  |
| 16.0       | 34.50  | 6.7%       | 87.0%  |
| 22.4       | 31.90  | 6.2%       | 93.8%  |
| 27.0       | *      |            | 100.0% |
| 45.0       |        |            | -      |
| 64.0       |        |            |        |
| 90         |        |            |        |
| 128        |        |            |        |
| 181        |        |            |        |
| 256        |        |            |        |
| 362        |        |            |        |
| 512        |        |            |        |
| 1024       |        |            |        |
| 2048       |        |            |        |
| 4096       |        |            |        |
|            |        |            |        |
| Total      | 512.30 |            |        |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Fill Slope
ID NUMBER: 128FS Upper Fence

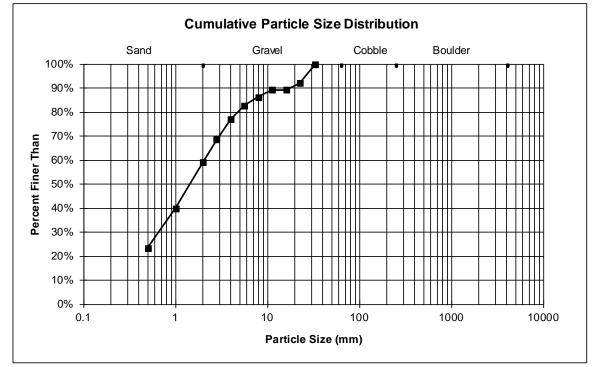
DATE: 8/12/2013
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84    | D95    | Lpart |
|-------|-------|-------|--------|--------|-------|
| 1.778 | 4.092 | 5.771 | 14.049 | 23.240 | 27.0  |



| Size Finer  | Wt. on     | % of Total     | % Finer |
|-------------|------------|----------------|---------|
| Than (mm)   | Sieve      |                | Than    |
| Pan         | 142.40     | 23.4%          |         |
| 0.5         | 101.10     | 16.6%          | 23.4%   |
| 1.0         | 117.80     | 19.3%          | 39.9%   |
| 2.0         | 56.00      | 9.2%           | 59.2%   |
| 2.8         | 52.70      | 8.6%           | 68.4%   |
| 4.0         | 34.40      | 5.6%           | 77.1%   |
| 5.6         | 20.90      | 3.4%           | 82.7%   |
| 8.0         | 18.20      | 3.0%           | 86.1%   |
| 11.2        | 0.00       | 0.0%           | 89.1%   |
| 16.0        | 17.70      | 2.9%           | 89.1%   |
| 22.4        | 48.60      | 8.0%           | 92.0%   |
| 33.0        | *          |                | 100.0%  |
| 45.0        |            |                | -       |
| 64.0        |            |                |         |
| 90          |            |                |         |
| 128         |            |                |         |
| 181         |            |                |         |
| 256         |            |                |         |
| 362         |            |                |         |
| 512         |            |                |         |
| 1024        |            |                |         |
| 2048        |            |                |         |
| 4096        |            |                |         |
|             |            |                |         |
| Total       | 609.80     |                |         |
| *Magaurad v | alua af th | a largest next | iolo in |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight


**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Fill Slope

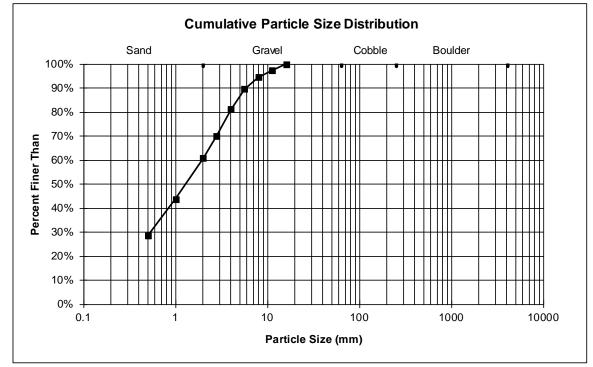
ID NUMBER: 186FS Upper fence DATE: 8/12/2013

CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95    | Lpart |
|-------|-------|-------|-------|--------|-------|
| 0.088 | 0.814 | 1.435 | 6.401 | 25.879 | 33.0  |



| Size Finer  | Wt. on     | % of Total     | % Finer |
|-------------|------------|----------------|---------|
| Than (mm)   | Sieve      |                | Than    |
| Pan         | 121.80     | 28.6%          |         |
| 0.5         | 64.60      | 15.2%          | 28.6%   |
| 1.0         | 72.80      | 17.1%          | 43.7%   |
| 2.0         | 39.40      | 9.2%           | 60.8%   |
| 2.8         | 47.60      | 11.2%          | 70.0%   |
| 4.0         | 35.60      | 8.3%           | 81.2%   |
| 5.6         | 21.30      | 5.0%           | 89.5%   |
| 8.0         | 11.60      | 2.7%           | 94.5%   |
| 11.2        | 11.70      | 2.7%           | 97.3%   |
| 16.0        | *          |                | 100.0%  |
| 22.4        |            |                | -       |
| 32.0        |            |                |         |
| 45.0        |            |                |         |
| 64.0        |            |                |         |
| 90          |            |                |         |
| 128         |            |                |         |
| 181         |            |                |         |
| 256         |            |                |         |
| 362         |            |                |         |
| 512         |            |                |         |
| 1024        |            |                |         |
| 2048        |            |                |         |
| 4096        |            |                |         |
|             |            |                |         |
| Total       | 426.40     |                |         |
| *Measured v | alua of th | a largest part | iolo in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Fill Slope
ID NUMBER: 186FS Lower Fence

DATE: 8/12/2013
CREW: Hauser, VonLoh

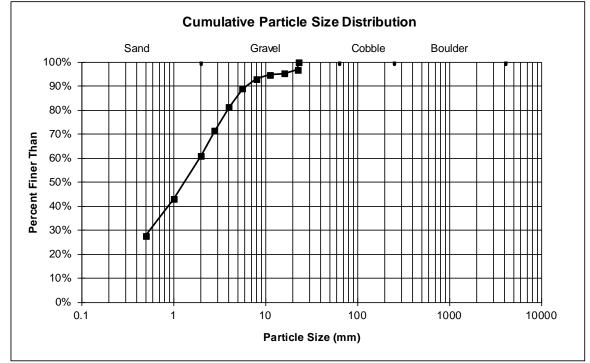
| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.050 | 0.671 | 1.291 | 4.479 | 8.473 | 16.0  |



| Size Finer | Wt. on      | % of Total    |         |
|------------|-------------|---------------|---------|
| Than (mm)  | Sieve       |               | Than    |
| Pan        | 178.90      | 27.7%         |         |
| 0.5        | 98.10       | 15.2%         | 27.7%   |
| 1.0        | 117.30      | 18.2%         | 42.9%   |
| 2.0        | 66.90       | 10.4%         | 61.0%   |
| 2.8        | 63.20       | 9.8%          | 71.4%   |
| 4.0        | 49.40       | 7.6%          | 81.2%   |
| 5.6        | 26.00       | 4.0%          | 88.8%   |
| 8.0        | 11.60       | 1.8%          | 92.8%   |
| 11.2       | 3.60        | 0.6%          | 94.6%   |
| 16.0       | 10.70       | 1.7%          | 95.2%   |
| 22.4       | 20.50       | 3.2%          | 96.8%   |
| 23.0       | *           |               | 100.0%  |
| 45.0       |             |               | -       |
| 64.0       |             |               |         |
| 90         |             |               |         |
| 128        |             |               |         |
| 181        |             |               |         |
| 256        |             |               |         |
| 362        |             |               |         |
| 512        |             |               |         |
| 1024       |             |               |         |
| 2048       |             |               |         |
| 4096       |             |               |         |
|            |             |               |         |
| Total      | 646.20      |               |         |
| *1.4000rod | ماديم مفياه | a largast nad | iala in |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

Grab Sample of 2013 Sediment Accumulation COMMENTS:


Pike's Peak Highway - Fill Slope SITE NAME: 203FS Upper Fence

ID NUMBER: 7/29/2013 DATE:

Hauser, VonLoh CREW:

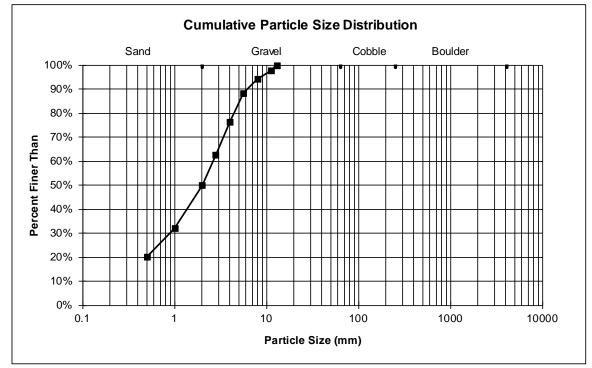
| Particle Size     |  |
|-------------------|--|
| Distribution (mm) |  |

| D15   | D35   | D50   | D84   | D95    | Lpart |
|-------|-------|-------|-------|--------|-------|
| 0.054 | 0.698 | 1.313 | 4.534 | 14.334 | 23.0  |



| Size Finer        | Wt. on     | % of Total    | % Finer |
|-------------------|------------|---------------|---------|
| Than (mm)         | Sieve      |               | Than    |
| Pan               | 105.10     | 20.1%         |         |
| 0.5               | 61.60      | 11.8%         | 20.1%   |
| 1.0               | 93.50      | 17.9%         | 31.9%   |
| 2.0               | 65.70      | 12.6%         | 49.9%   |
| 2.8               | 72.50      | 13.9%         | 62.5%   |
| 4.0               | 62.10      | 11.9%         | 76.4%   |
| 5.6               | 30.20      | 5.8%          | 88.3%   |
| 8.0               | 18.30      | 3.5%          | 94.0%   |
| 11.2              | 12.80      | 2.5%          | 97.5%   |
| 13.0              | *          |               | 100.0%  |
| 22.4              |            |               | -       |
| 32.0              |            |               |         |
| 45.0              |            |               |         |
| 64.0              |            |               |         |
| 90                |            |               |         |
| 128               |            |               |         |
| 181               |            |               |         |
| 256               |            |               |         |
| 362               |            |               |         |
| 512               |            |               |         |
| 1024              |            |               |         |
| 2048              |            |               |         |
| 4096              |            |               |         |
|                   |            |               |         |
| Total             | 521.80     |               |         |
| *1/1000011504 1/1 | alua of th | a largast par |         |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight


**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Fill Slope

ID NUMBER: 204FS Upper Fence DATE: 5/6/2013

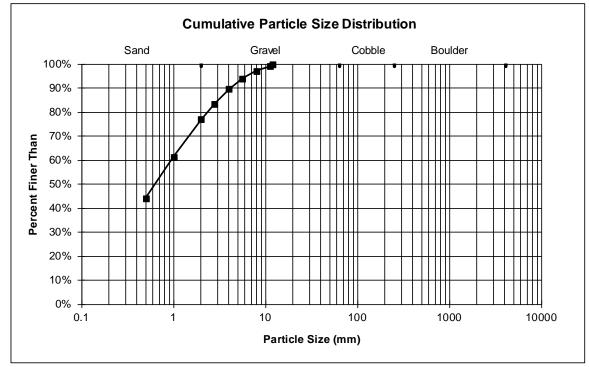
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.145 | 1.125 | 2.007 | 4.966 | 8.772 | 13.0  |



| -          |        |            |         |
|------------|--------|------------|---------|
| Size Finer | Wt. on | % of Total |         |
| Than (mm)  | Sieve  |            | Than    |
| Pan        | 228.90 | 44.2%      |         |
| 0.5        | 88.40  | 17.1%      | 44.2%   |
| 1.0        | 81.40  | 15.7%      | 61.3%   |
| 2.0        | 33.20  | 6.4%       | 77.0%   |
| 2.8        | 31.60  | 6.1%       | 83.4%   |
| 4.0        | 23.40  | 4.5%       | 89.5%   |
| 5.6        | 15.90  | 3.1%       | 94.0%   |
| 8.0        | 10.10  | 2.0%       | 97.1%   |
| 11.2       | 5.00   | 1.0%       | 99.0%   |
| 12.0       | *      |            | 100.0%  |
| 22.4       |        |            | -       |
| 32.0       |        |            |         |
| 45.0       |        |            |         |
| 64.0       |        |            |         |
| 90         |        |            |         |
| 128        |        |            |         |
| 181        |        |            |         |
| 256        |        |            |         |
| 362        |        |            |         |
| 512        |        |            |         |
| 1024       |        |            |         |
| 2048       |        |            |         |
| 4096       |        |            |         |
|            |        |            |         |
| Total      | 517.90 |            | 1-1- 1- |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight


**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Fill Slope

ID NUMBER: 204FS Lower Fence DATE: 5/6/2013

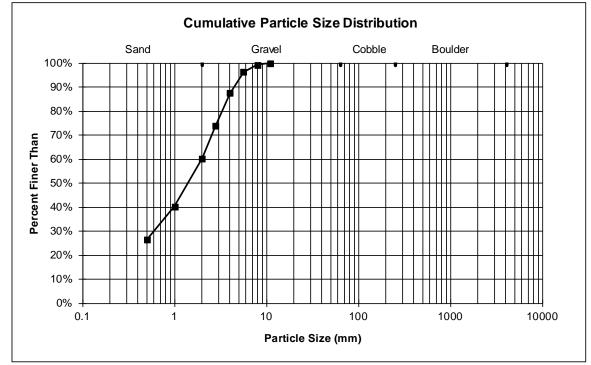
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.020 | 0.182 | 0.633 | 2.901 | 6.279 | 12.0  |



|            |        | _          |         |
|------------|--------|------------|---------|
| Size Finer | Wt. on | % of Total |         |
| Than (mm)  | Sieve  |            | Than    |
| Pan        | 117.30 | 26.4%      |         |
| 0.5        | 61.50  | 13.9%      | 26.4%   |
| 1.0        | 88.70  | 20.0%      | 40.3%   |
| 2.0        | 61.00  | 13.7%      | 60.3%   |
| 2.8        | 59.60  | 13.4%      | 74.0%   |
| 4.0        | 39.30  | 8.9%       | 87.4%   |
| 5.6        | 12.80  | 2.9%       | 96.3%   |
| 8.0        | 3.70   | 0.8%       | 99.2%   |
| 11.0       | *      |            | 100.0%  |
| 16.0       |        |            | -       |
| 22.4       |        |            |         |
| 32.0       |        |            |         |
| 45.0       |        |            |         |
| 64.0       |        |            |         |
| 90         |        |            |         |
| 128        |        |            |         |
| 181        |        |            |         |
| 256        |        |            |         |
| 362        |        |            |         |
| 512        |        |            |         |
| 1024       |        |            |         |
| 2048       |        |            |         |
| 4096       |        |            |         |
|            |        |            |         |
| Total      | 443.90 | - 1        | into in |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight


**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Fill Slope

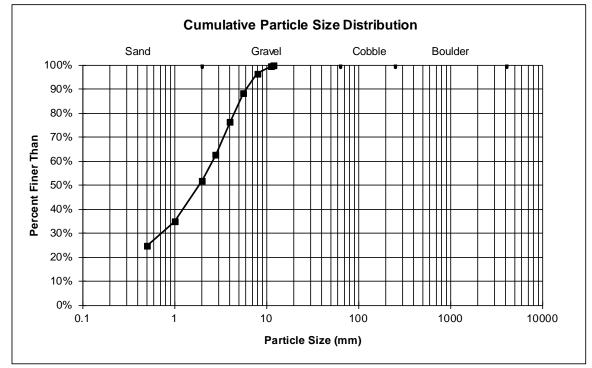
ID NUMBER: 204FS Upper Fence DATE: 9/17/2013

CREW: Hauser, VonLoh

| Particle Size     | D15   | D35   | D50   | D84   | D95   | Lpart |
|-------------------|-------|-------|-------|-------|-------|-------|
| Distribution (mm) | 0.061 | 0.768 | 1.401 | 3.652 | 5.334 | 11.0  |



| Size Finer  | Wt. on     | % of Total     | % Finer |
|-------------|------------|----------------|---------|
| Than (mm)   | Sieve      |                | Than    |
| Pan         | 107.30     | 24.6%          |         |
| 0.5         | 44.90      | 10.3%          | 24.6%   |
| 1.0         | 73.80      | 16.9%          | 34.9%   |
| 2.0         | 46.60      | 10.7%          | 51.8%   |
| 2.8         | 59.80      | 13.7%          | 62.5%   |
| 4.0         | 53.00      | 12.2%          | 76.2%   |
| 5.6         | 35.20      | 8.1%           | 88.4%   |
| 8.0         | 13.10      | 3.0%           | 96.5%   |
| 11.2        | 2.30       | 0.5%           | 99.5%   |
| 12.0        | *          |                | 100.0%  |
| 22.4        |            |                | -       |
| 32.0        |            |                |         |
| 45.0        |            |                |         |
| 64.0        |            |                |         |
| 90          |            |                |         |
| 128         |            |                |         |
| 181         |            |                |         |
| 256         |            |                |         |
| 362         |            |                |         |
| 512         |            |                |         |
| 1024        |            |                |         |
| 2048        |            |                |         |
| 4096        |            |                |         |
|             |            |                |         |
| Total       | 436.00     |                |         |
| *Measured v | aluo of th | a largest part | iolo in |

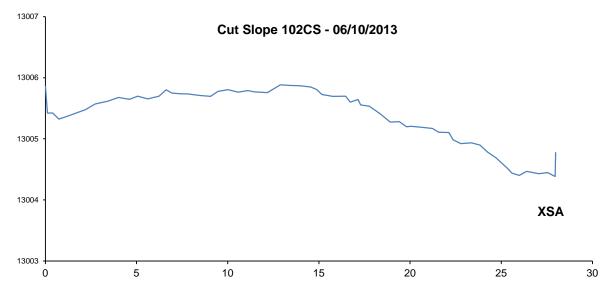

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

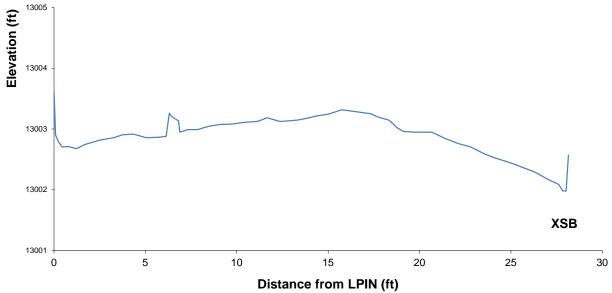
**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

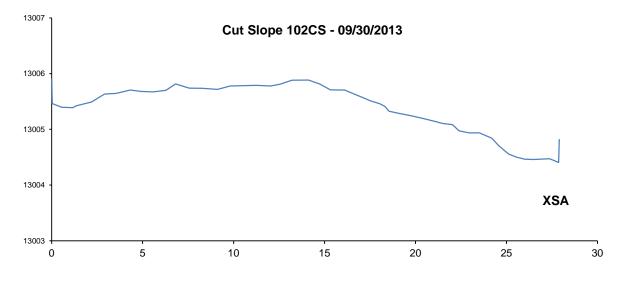
SITE NAME: Pike's Peak Highway - Fill Slope
ID NUMBER: 204FS Lower Fence

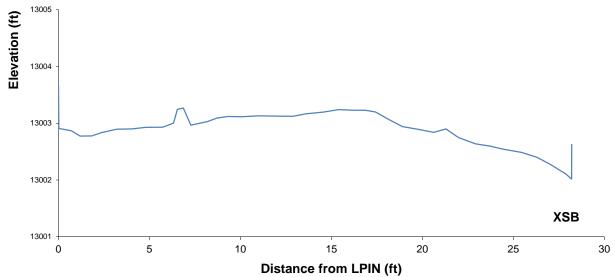
DATE: 9/17/2013
CREW: Hauser, VonLoh

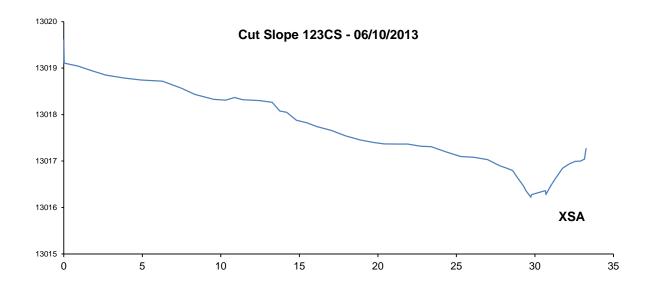
| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.075 | 1.004 | 1.855 | 4.959 | 7.498 | 12.0  |

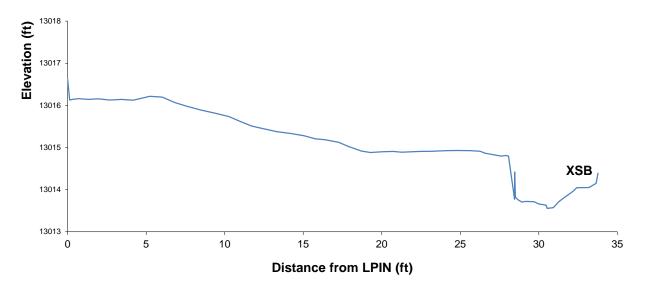


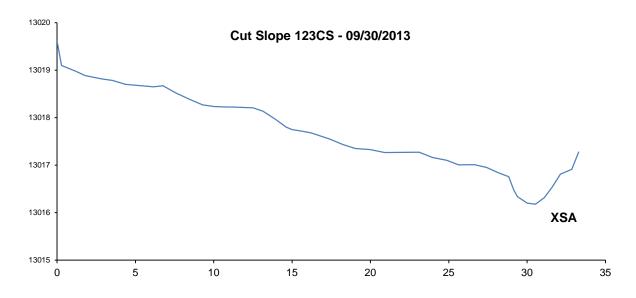


# Appendix G

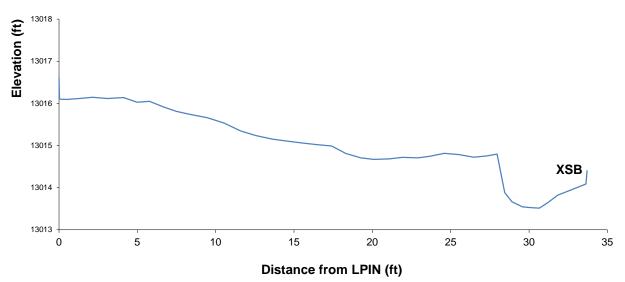

Cut Slope

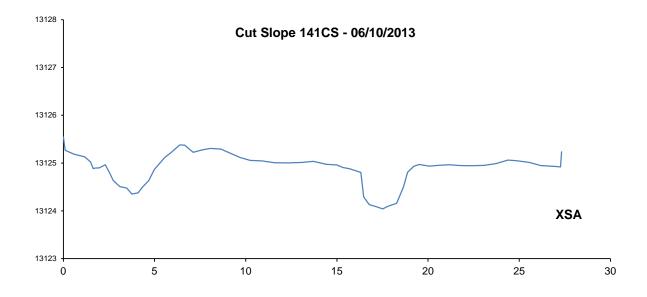

**Cross Section Graphs** 

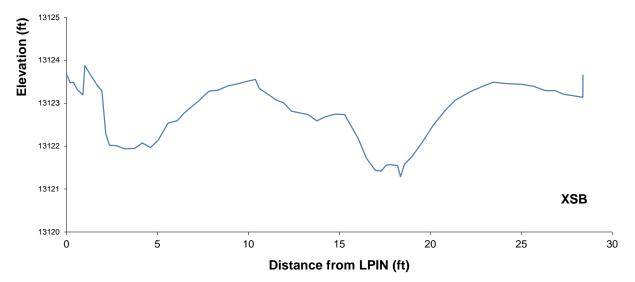

2013

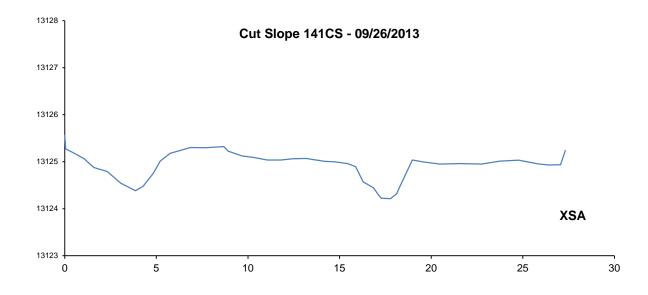


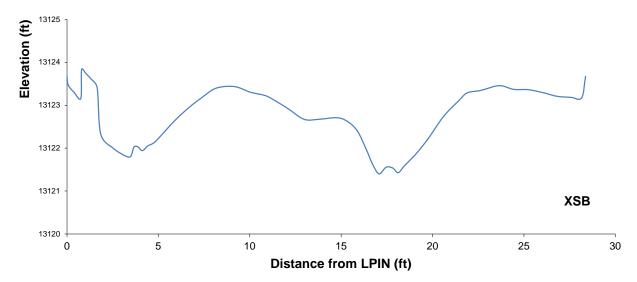



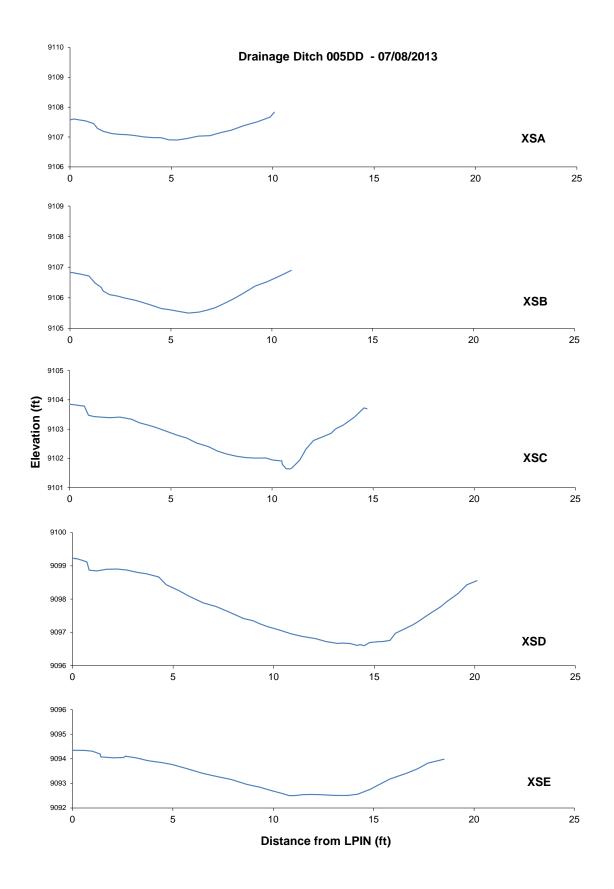



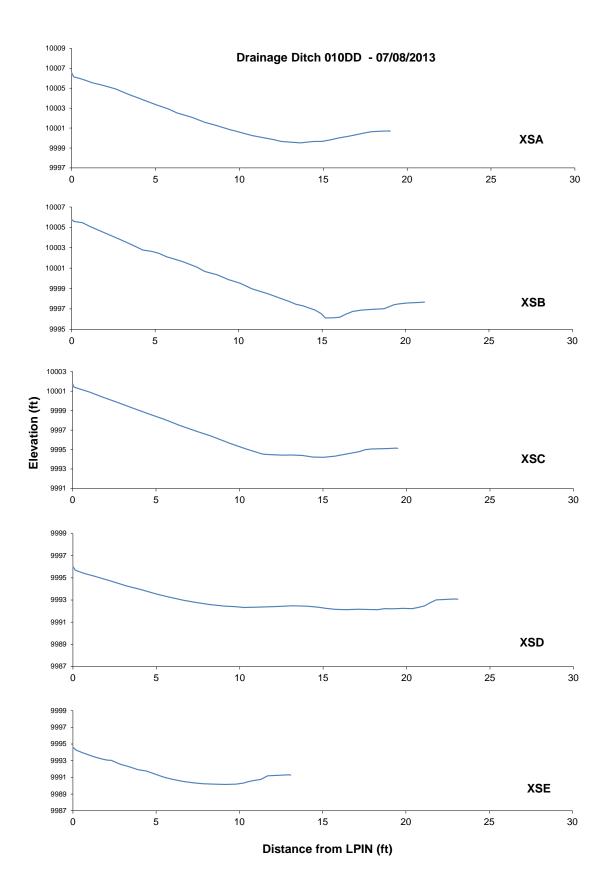


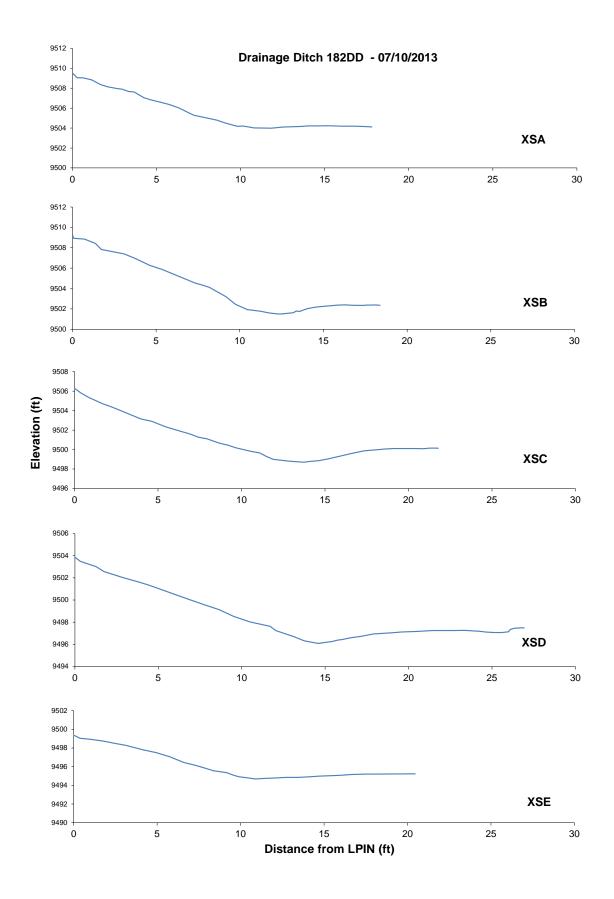


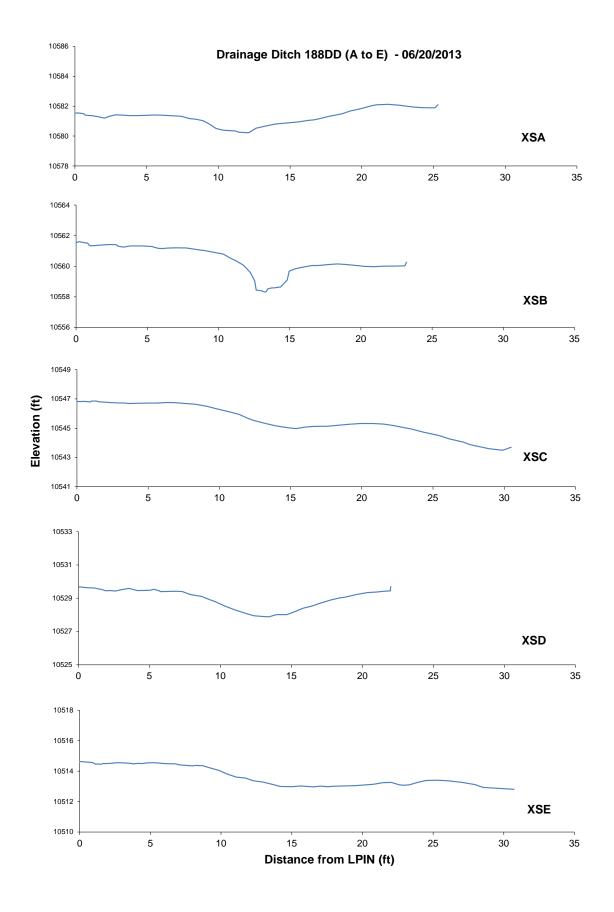


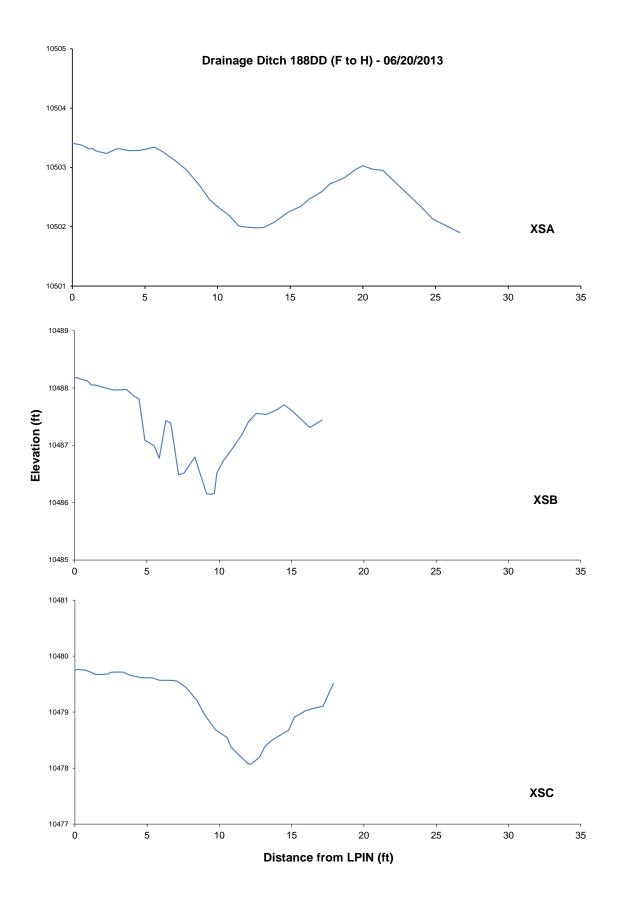


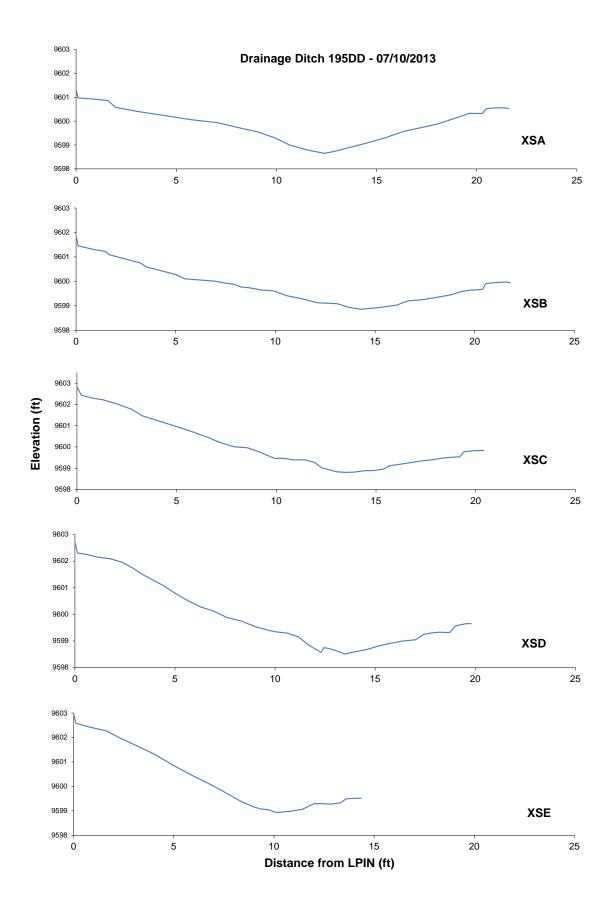



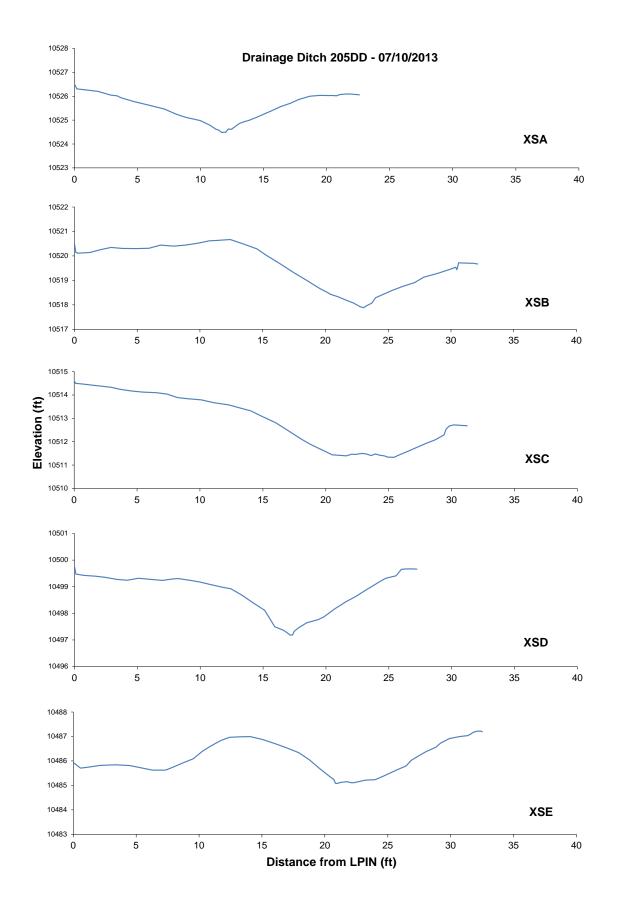


# Appendix H


Drainage Ditch


**Cross Section Graphs** 


2013



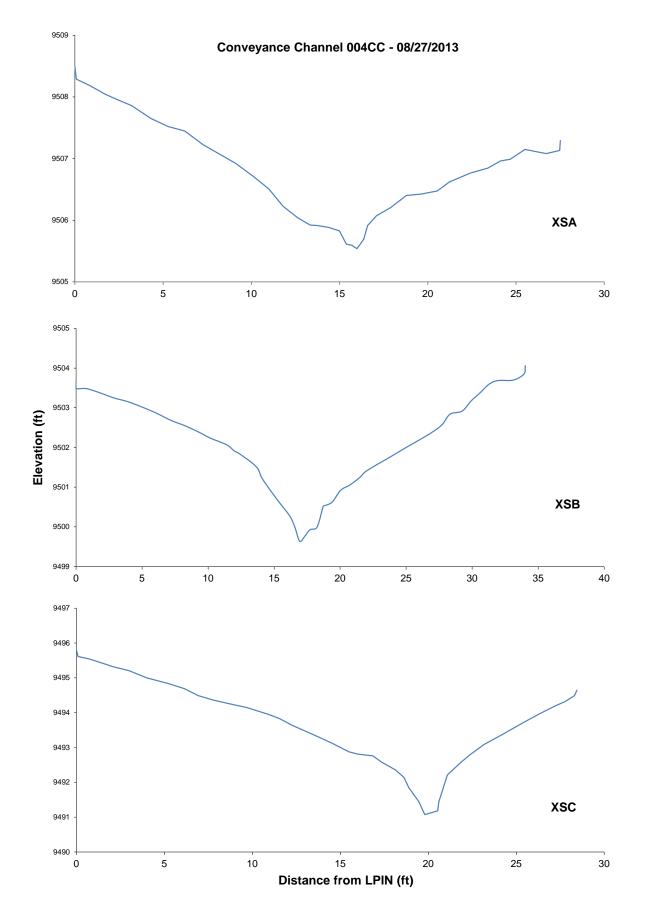



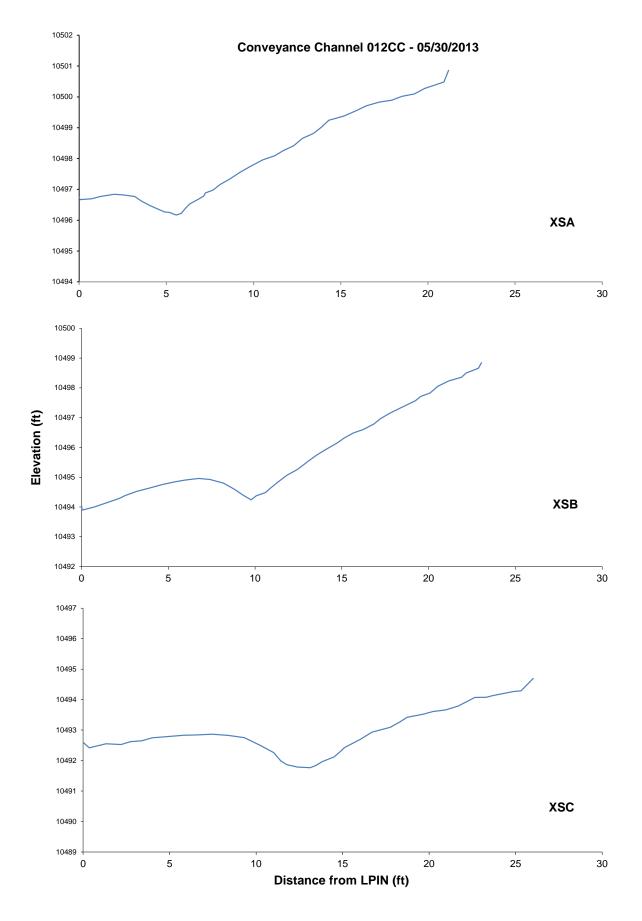


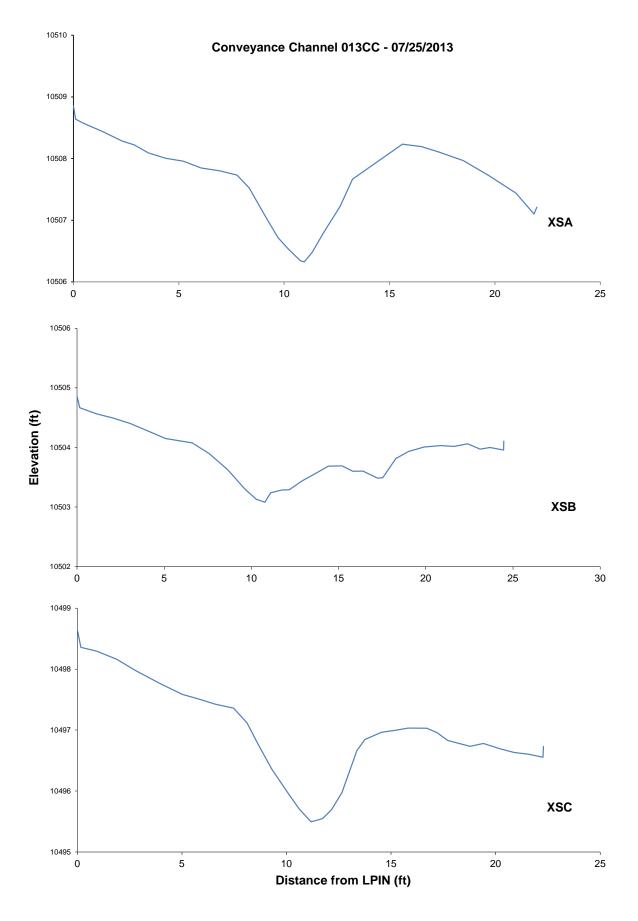


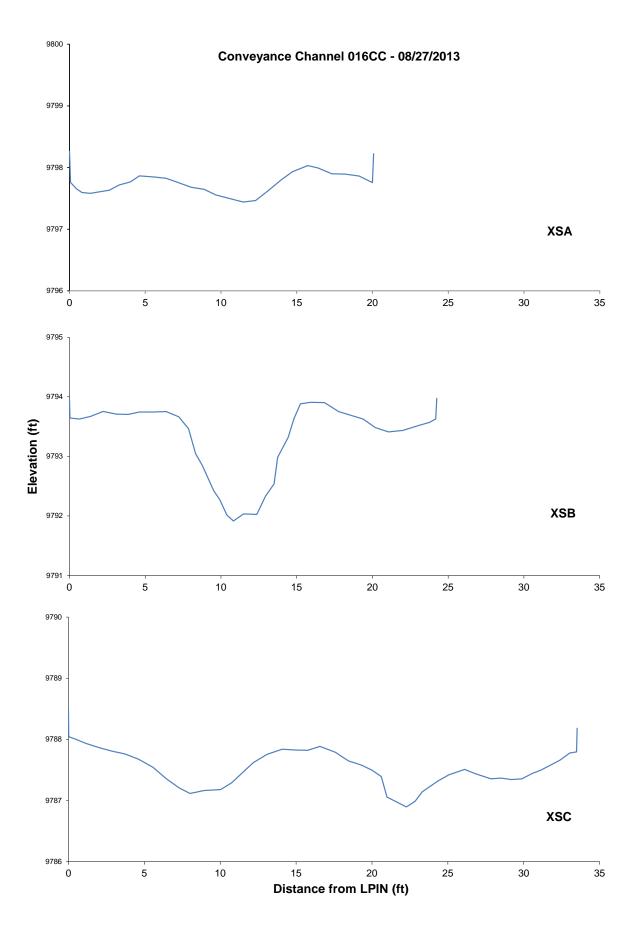


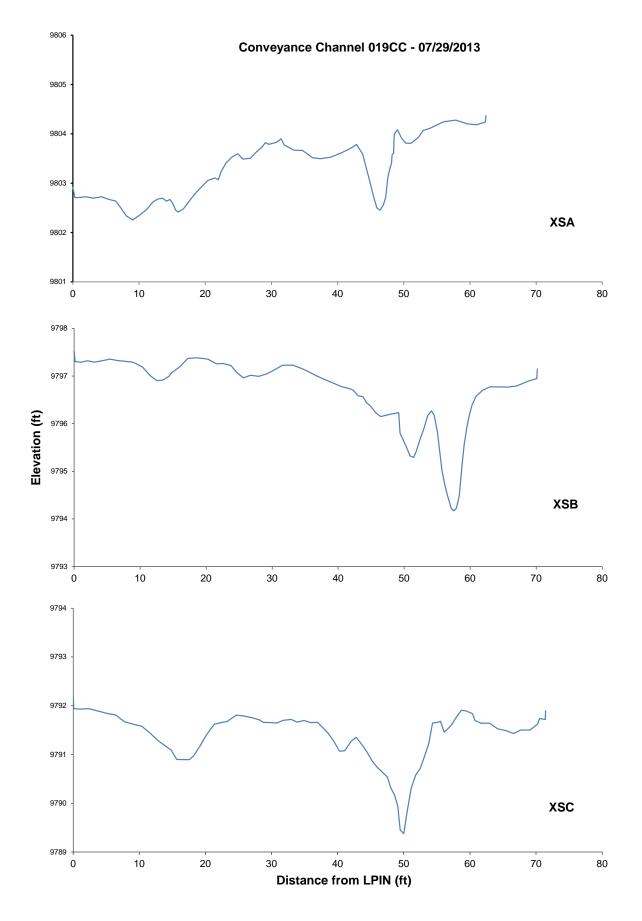


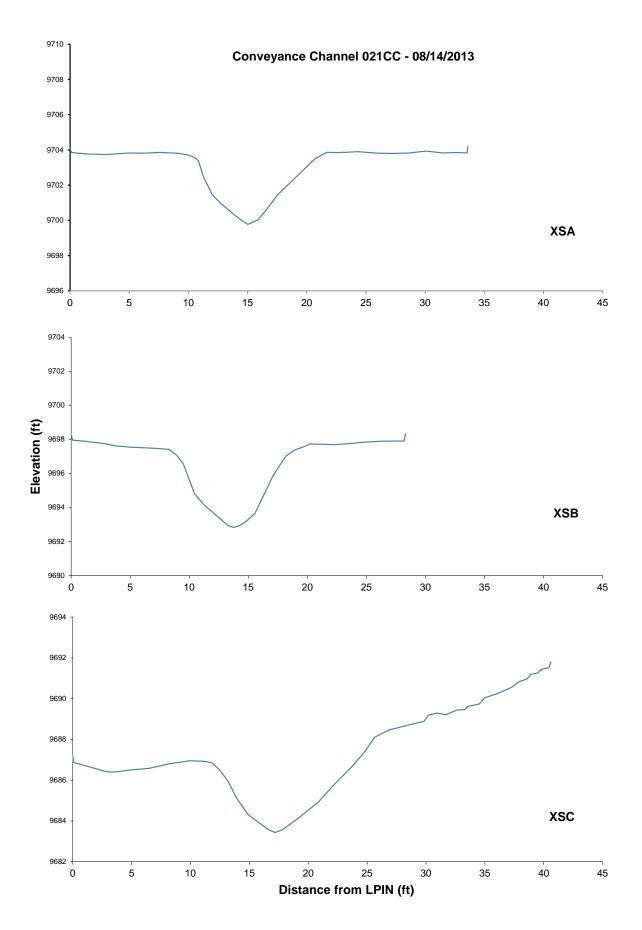



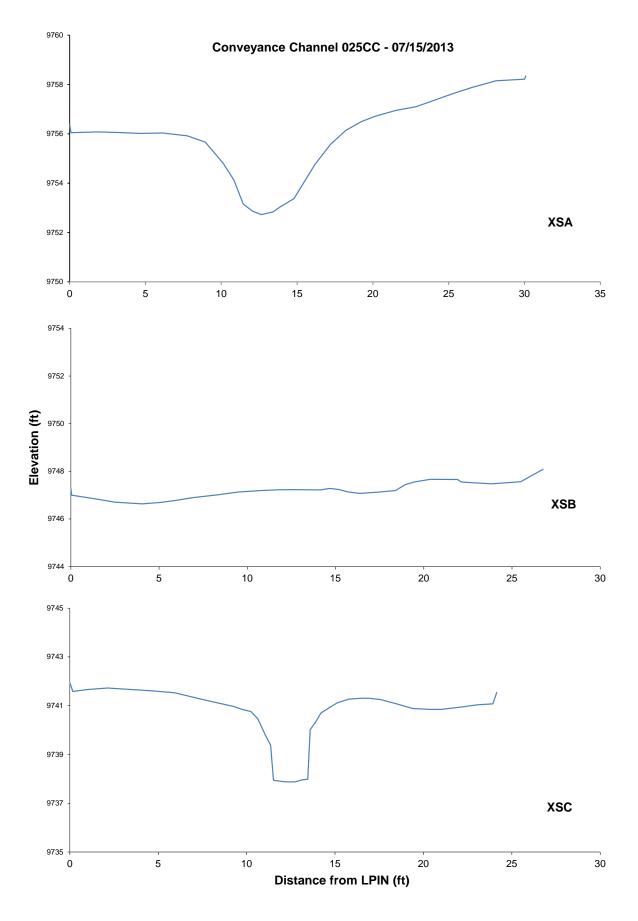


## Appendix I

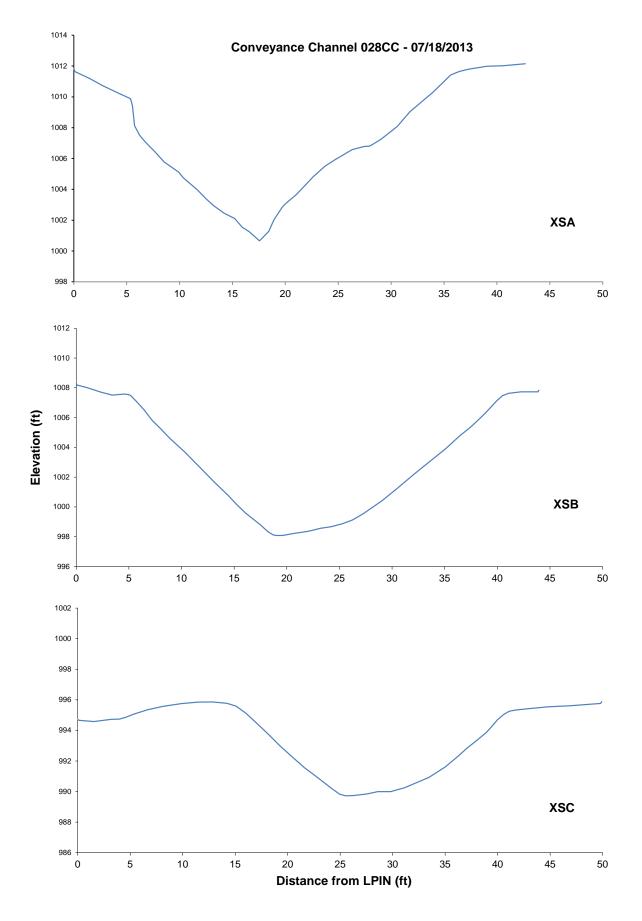

**Conveyance Channel** 

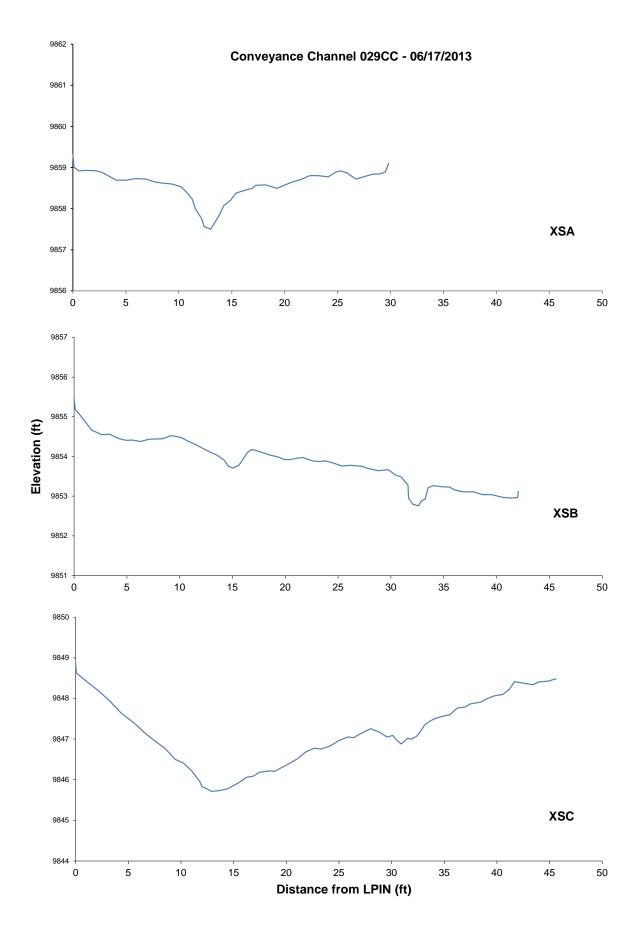

**Cross Section Graphs** 

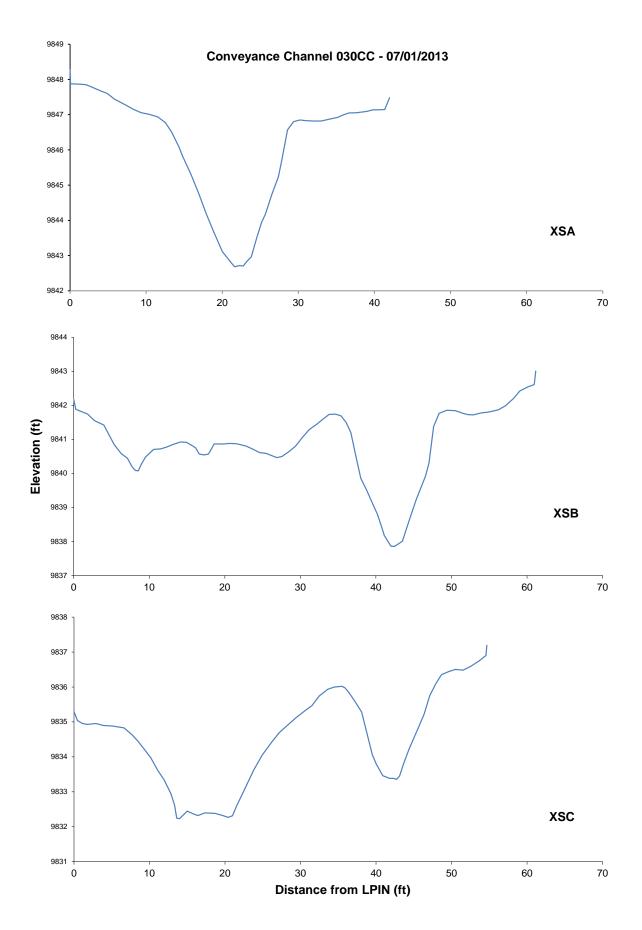

2013

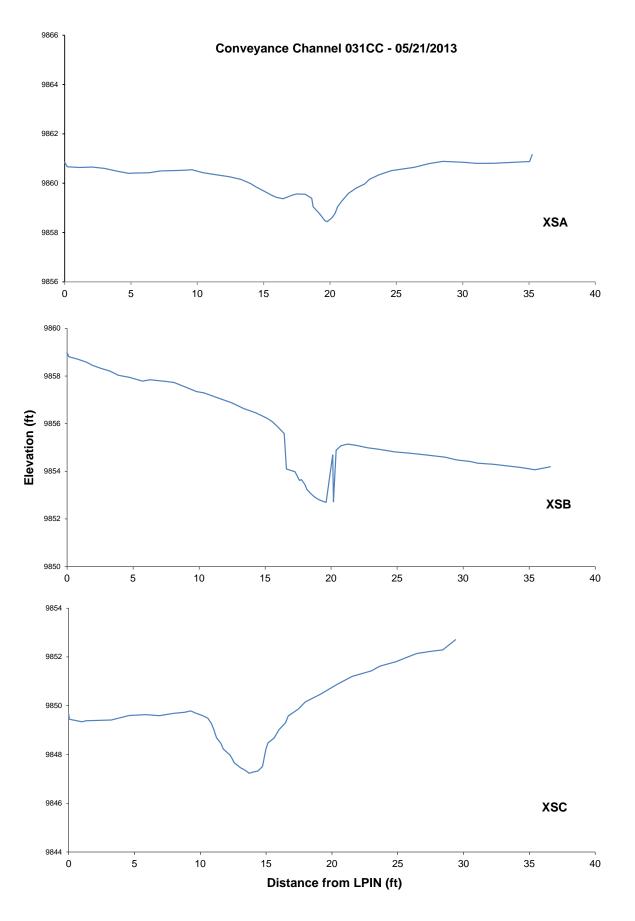


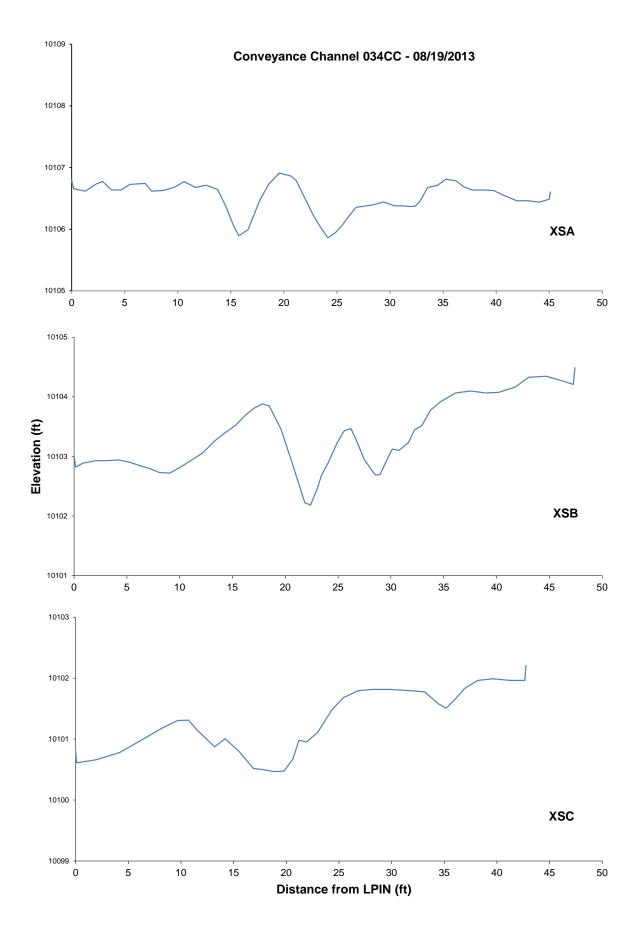



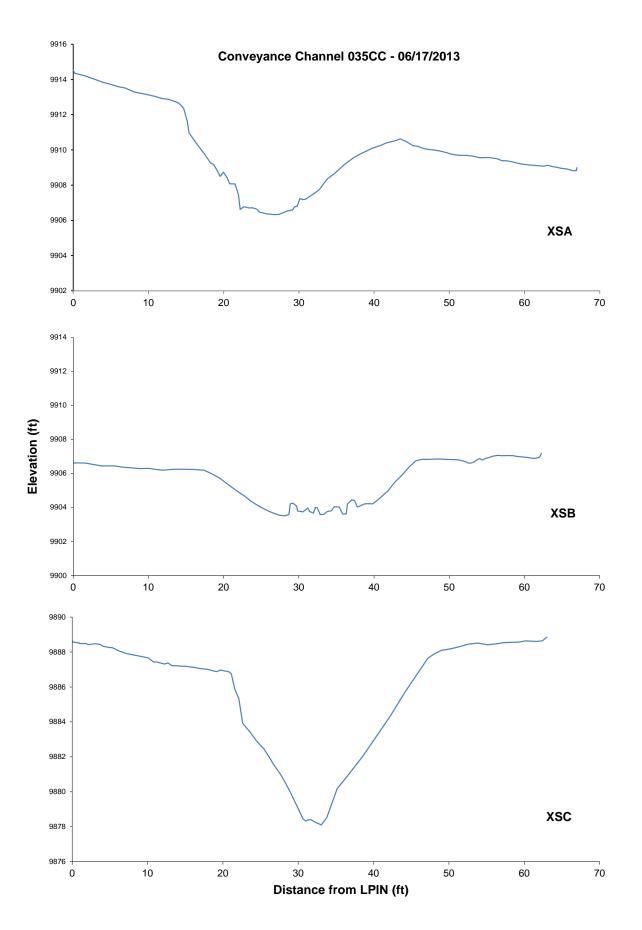



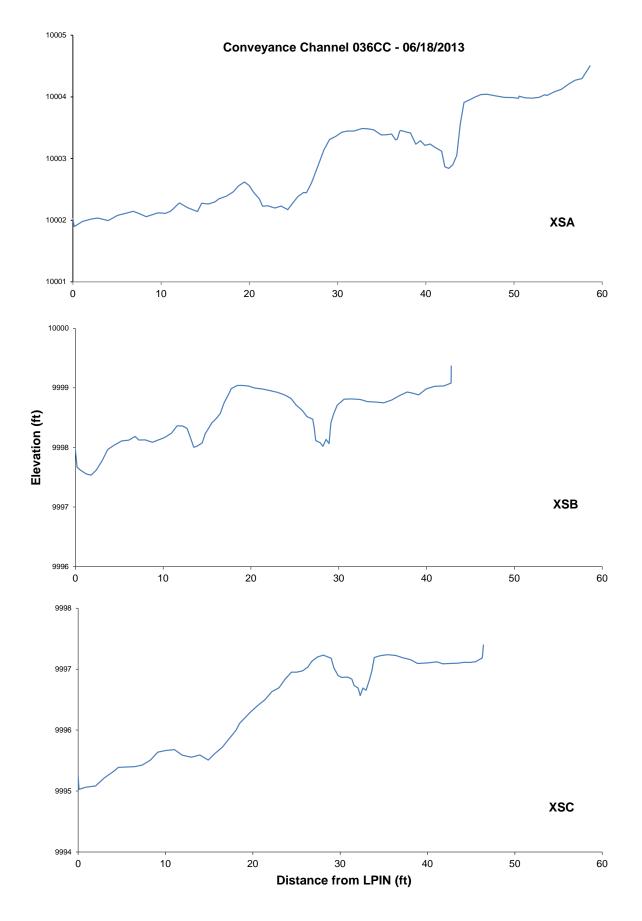



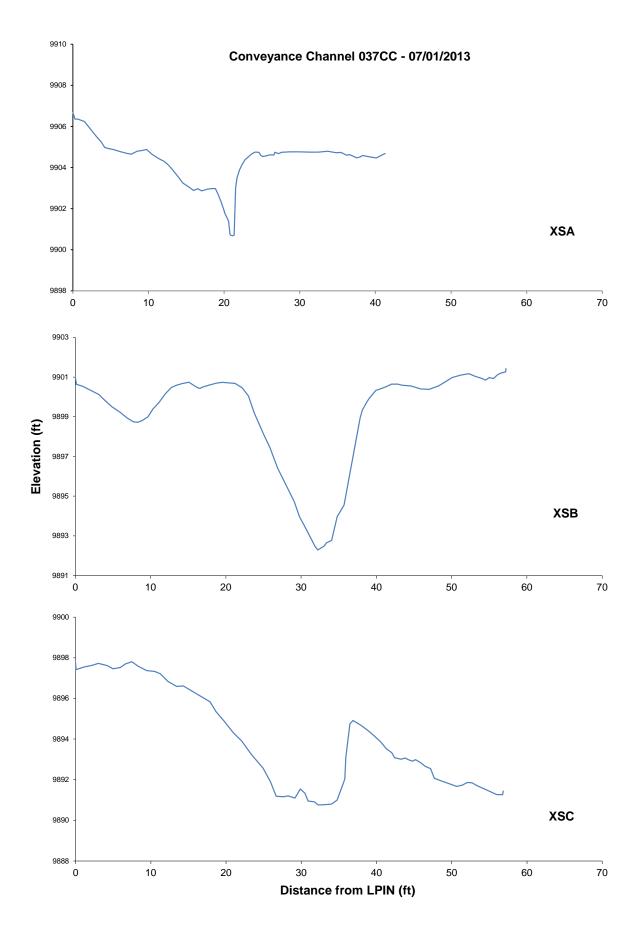



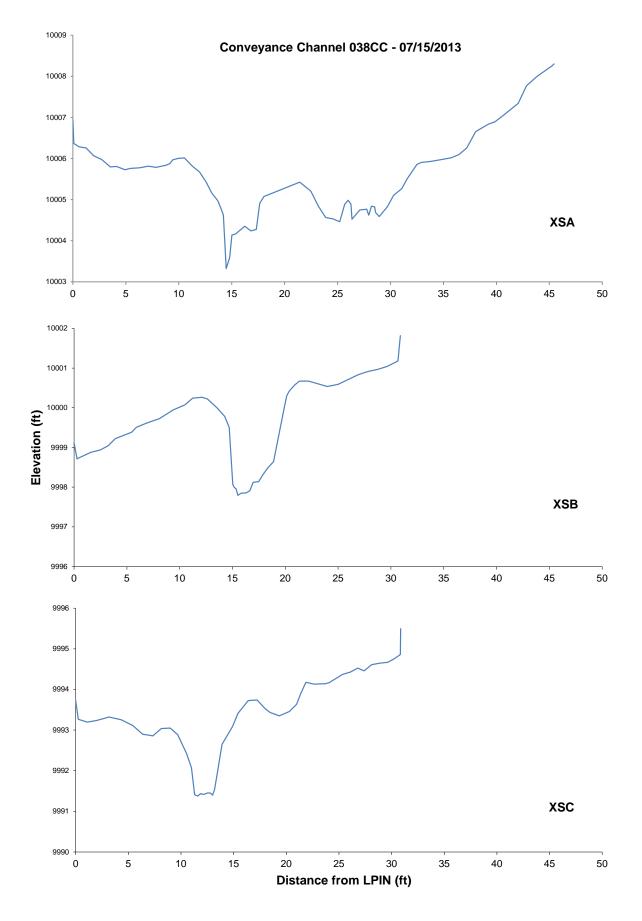



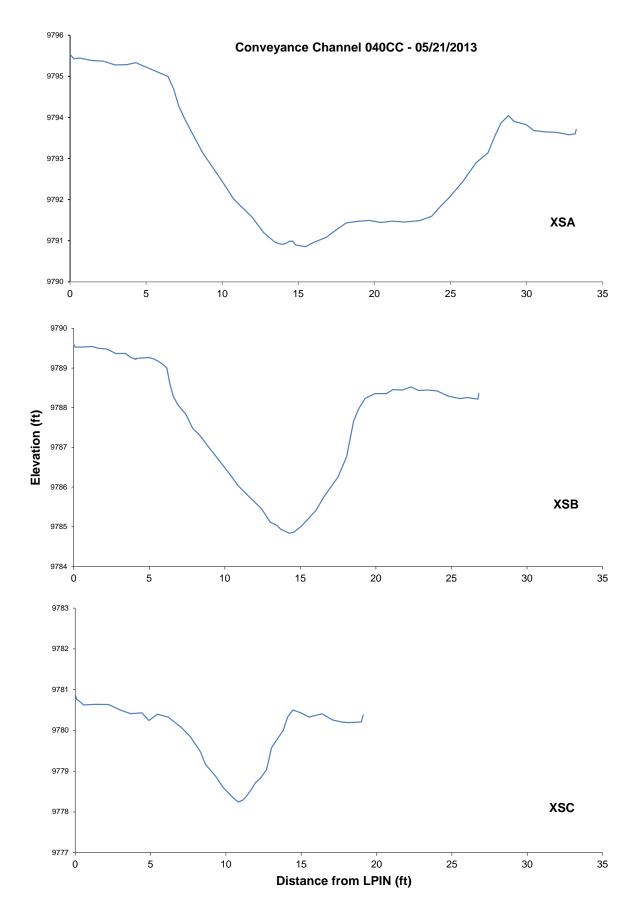



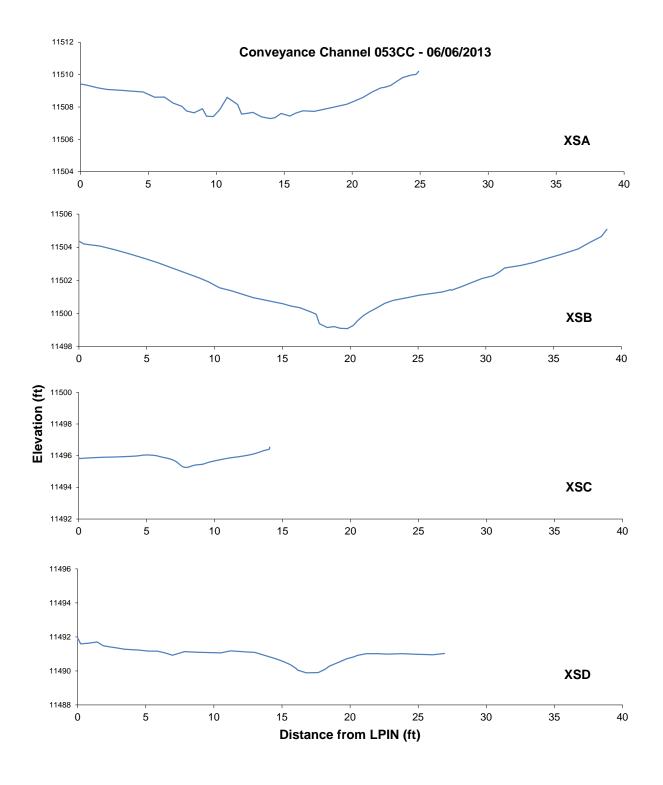



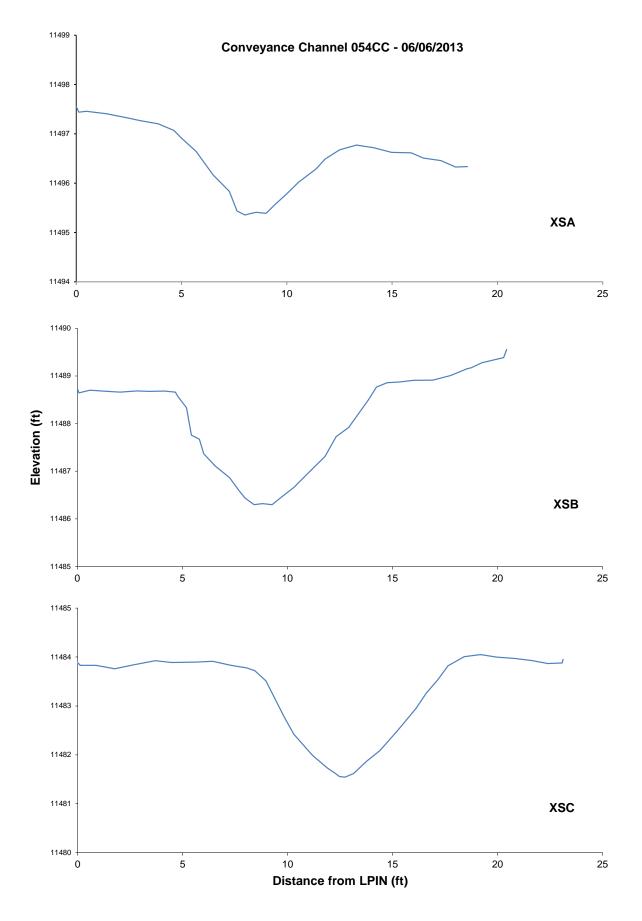



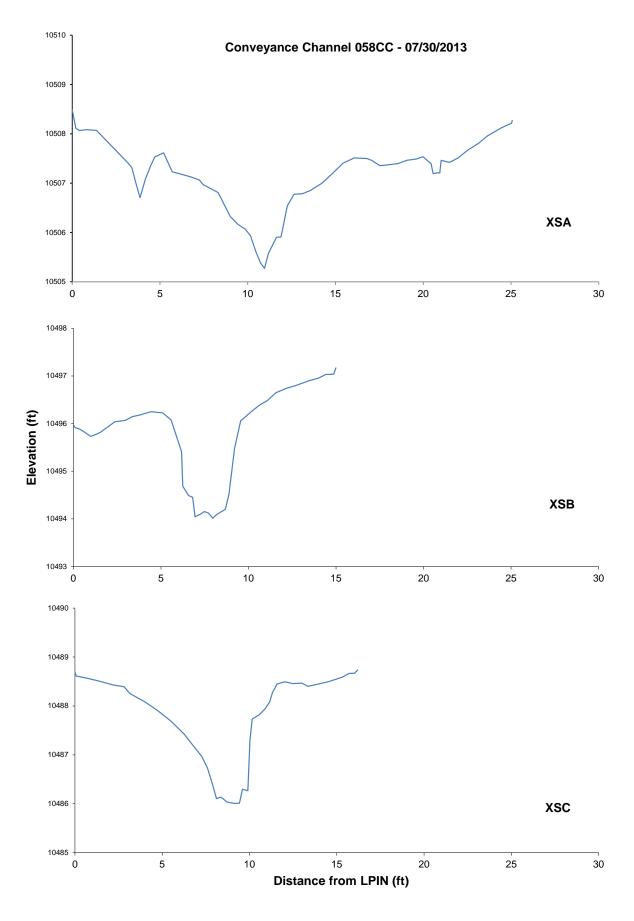



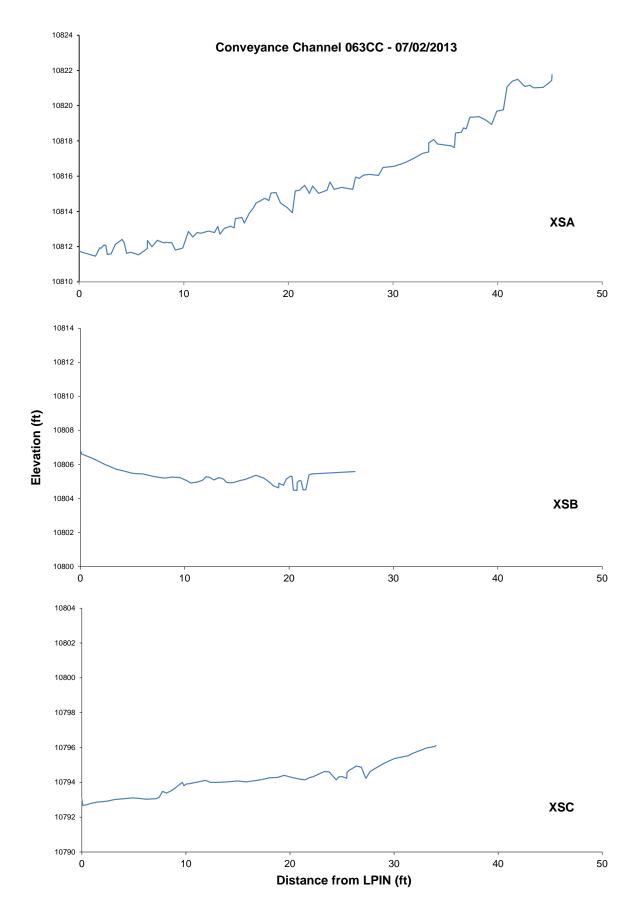



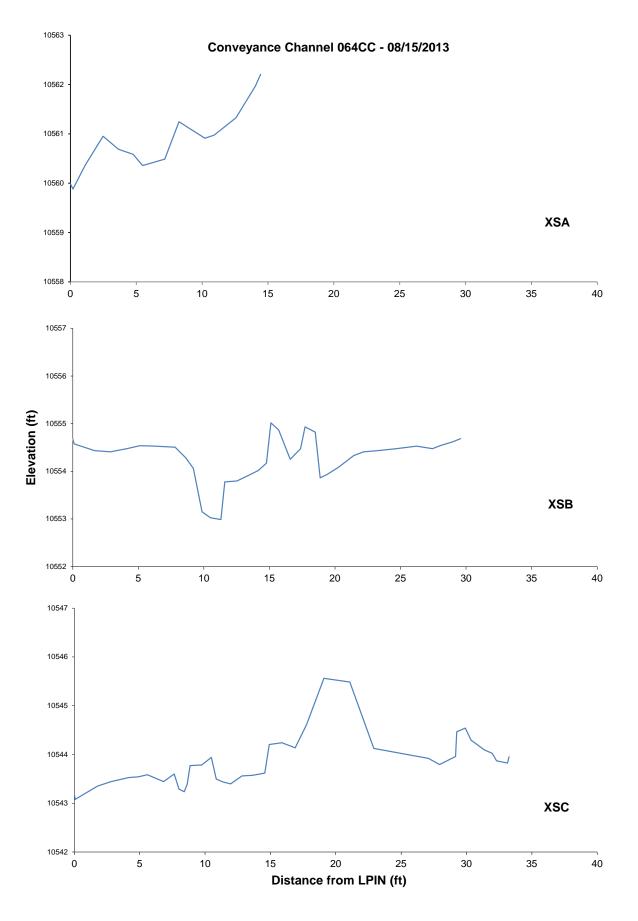



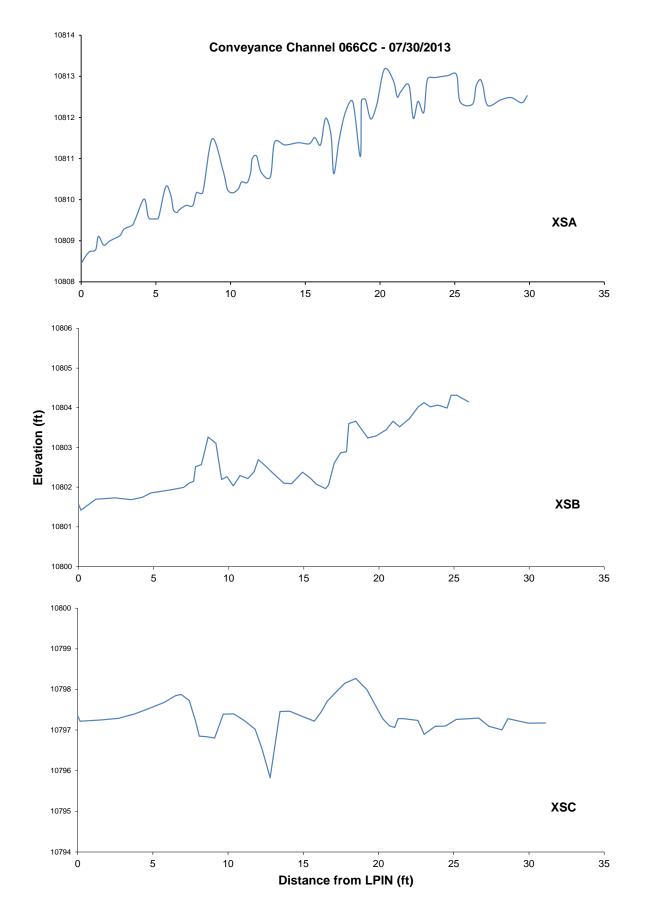



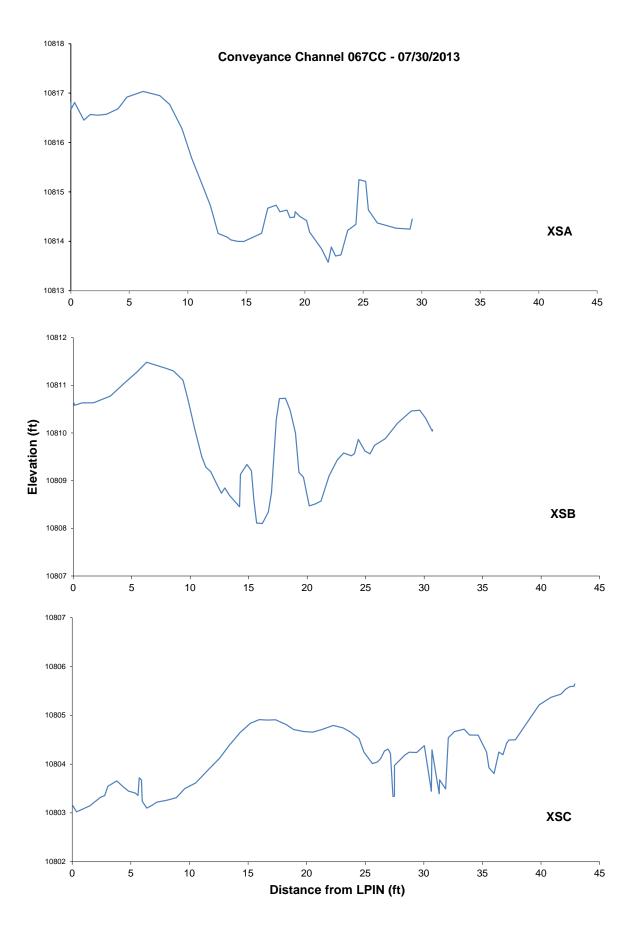



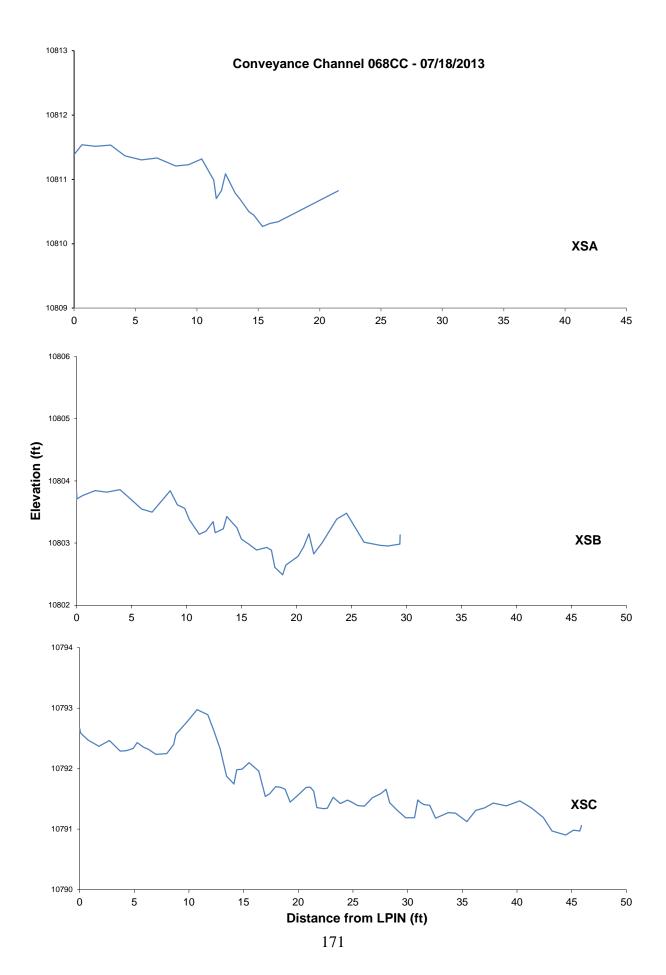



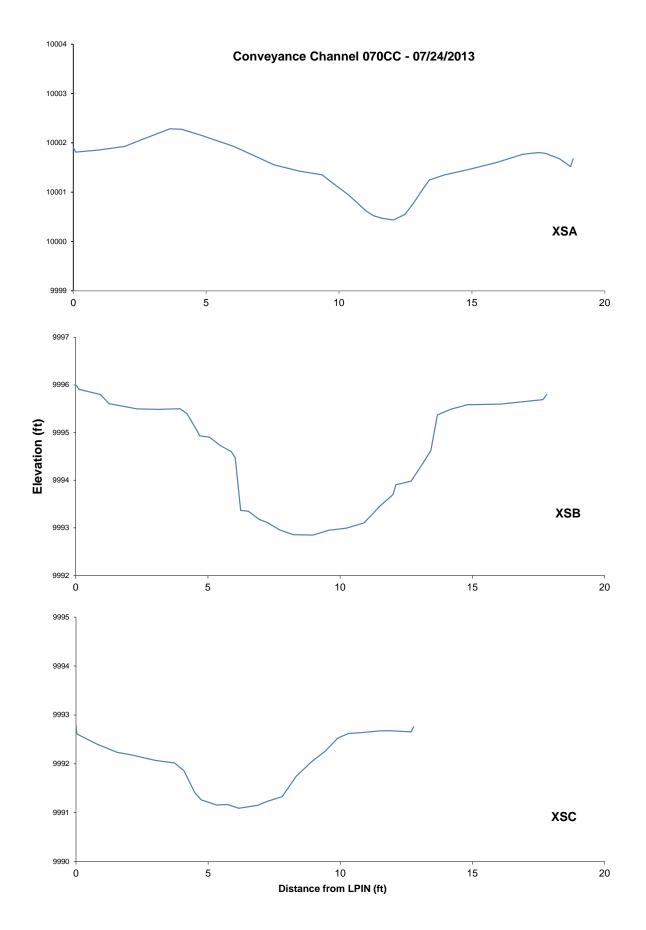


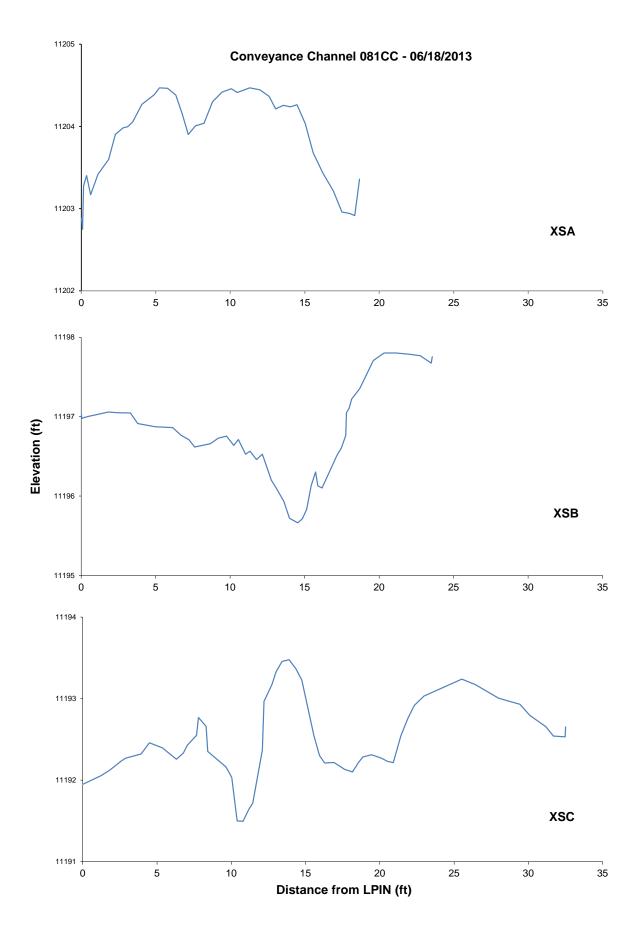



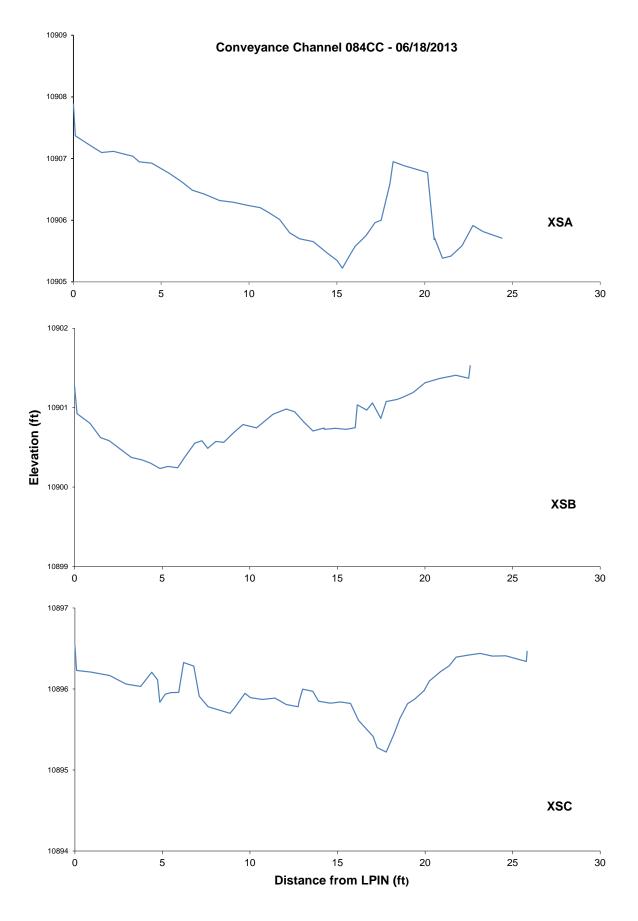



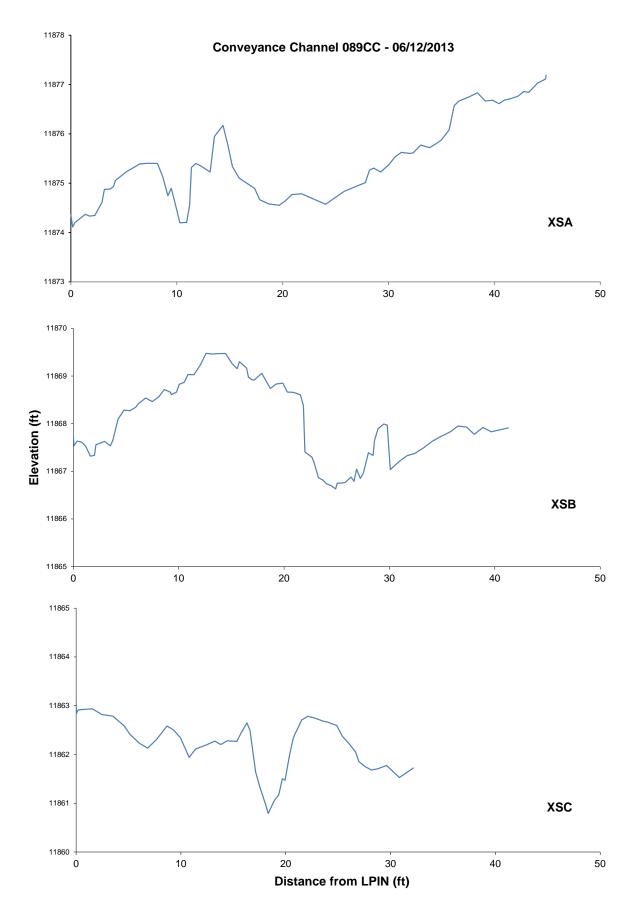



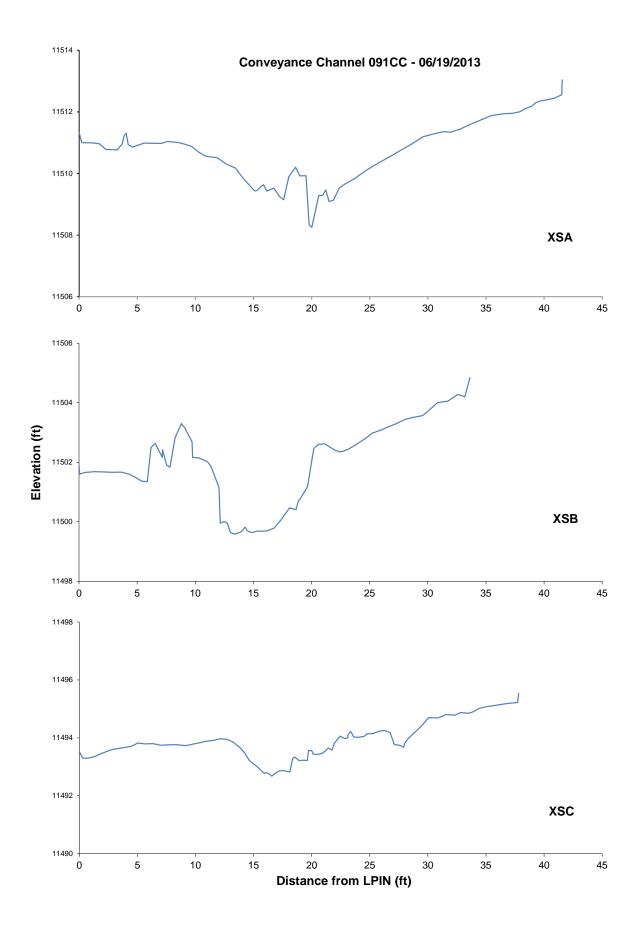


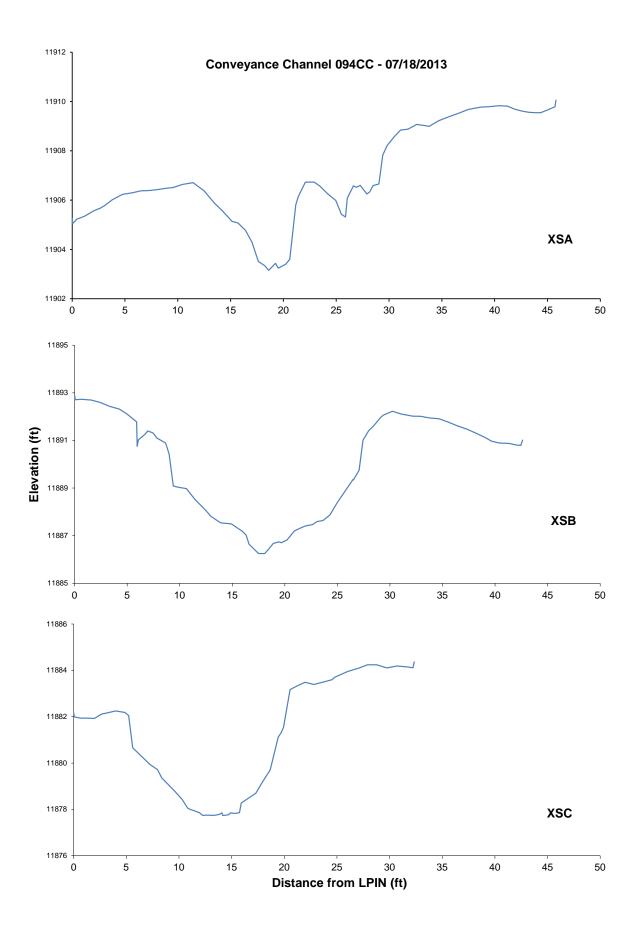



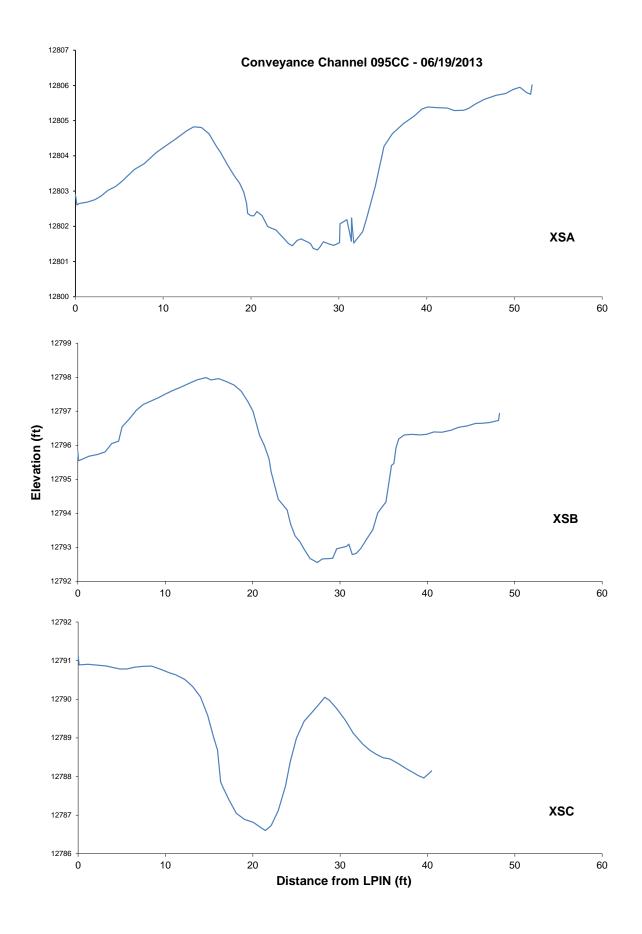



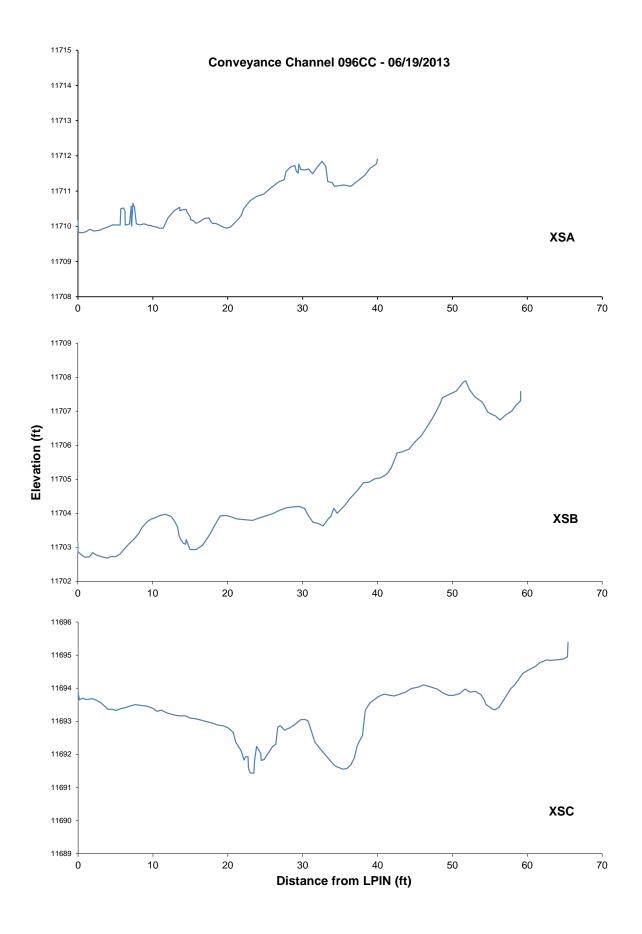



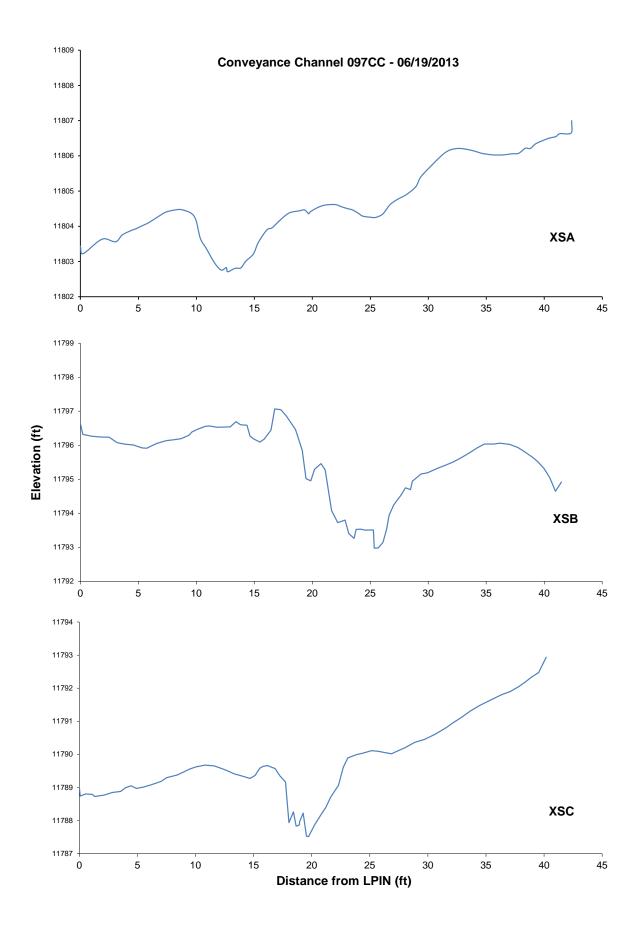



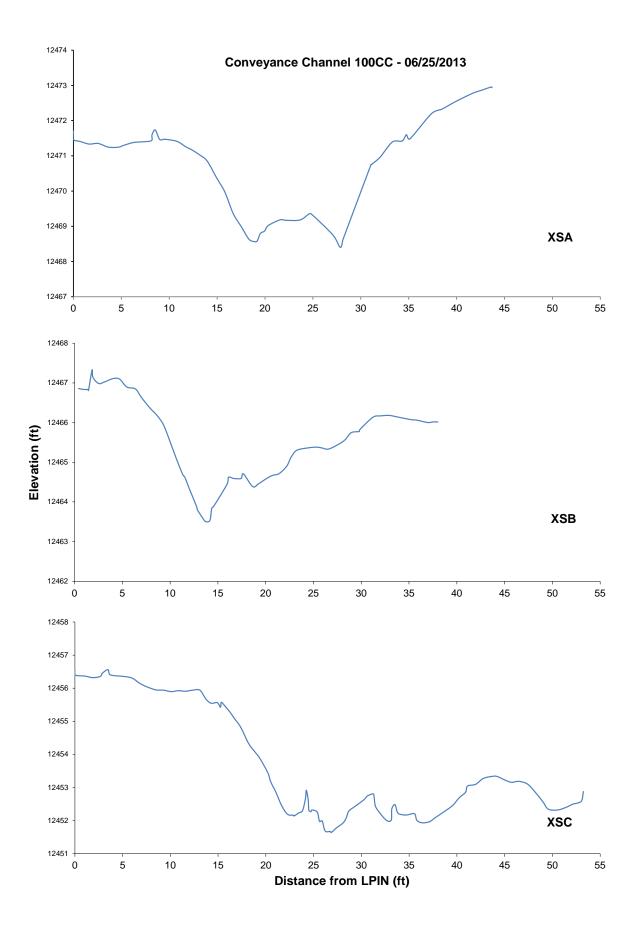



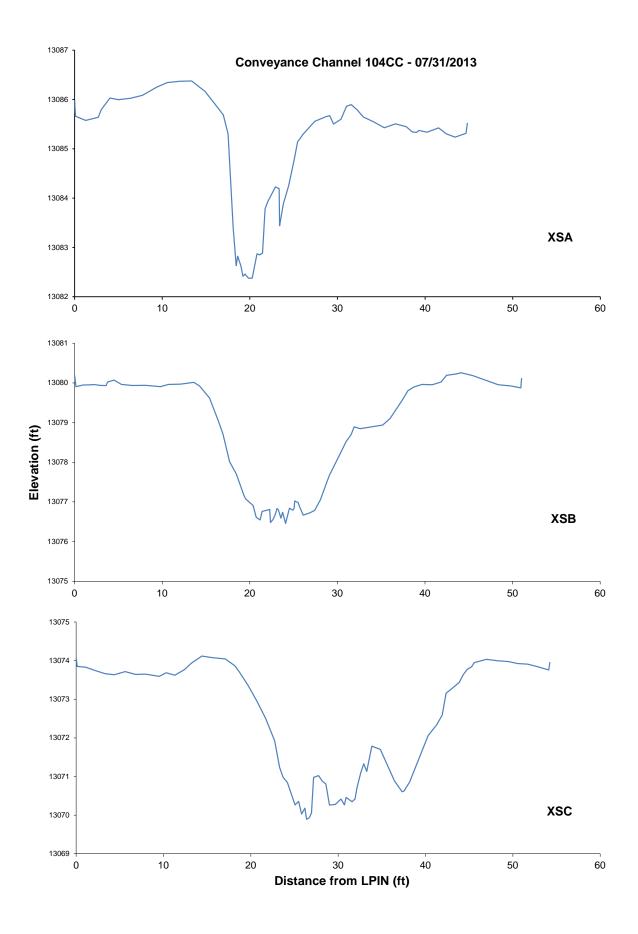



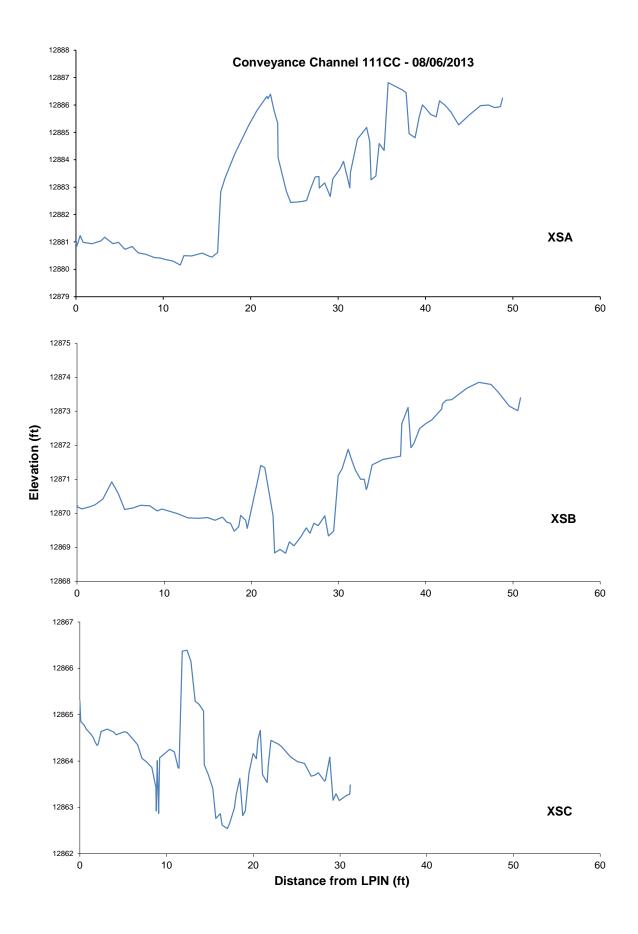



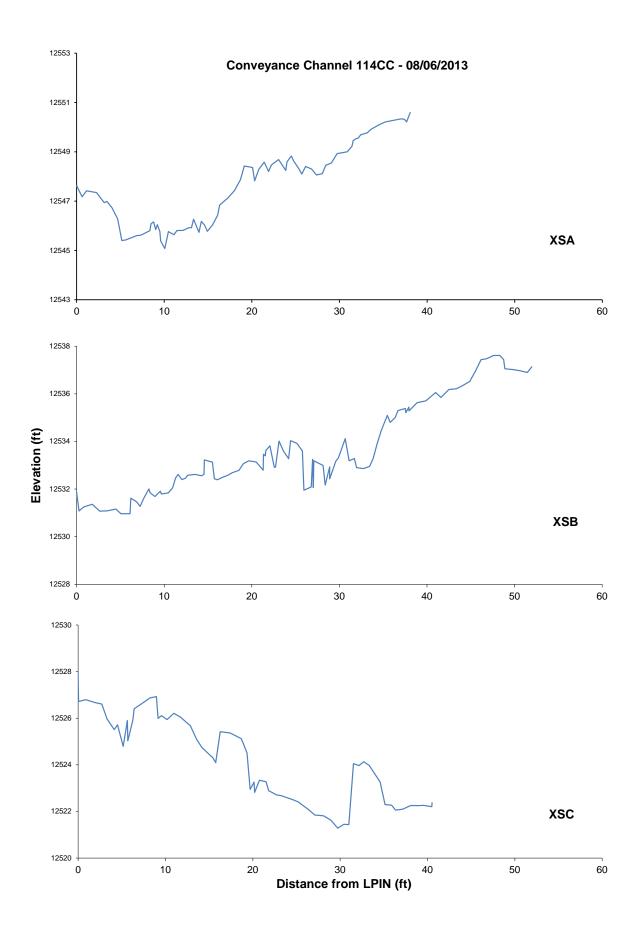



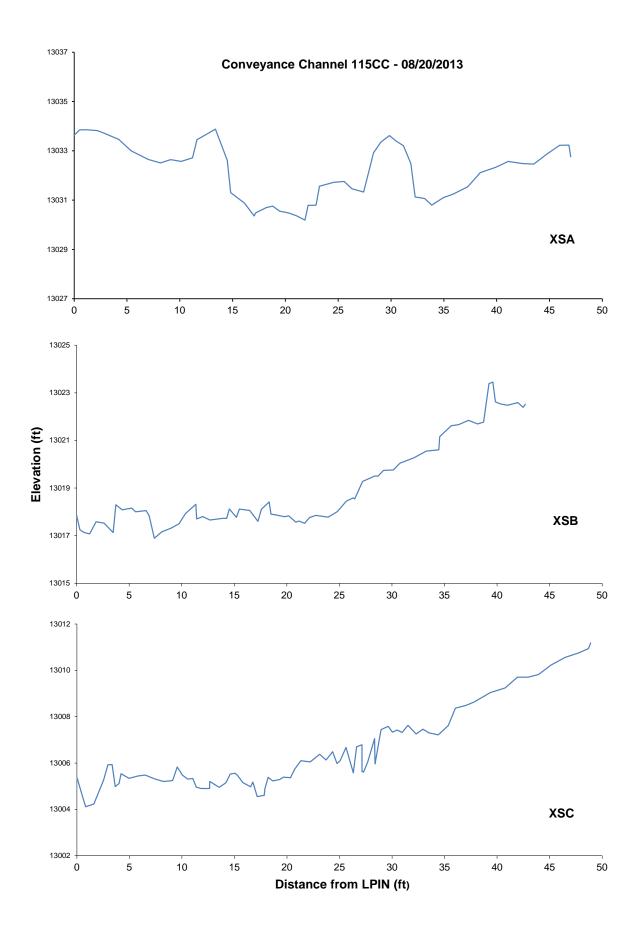



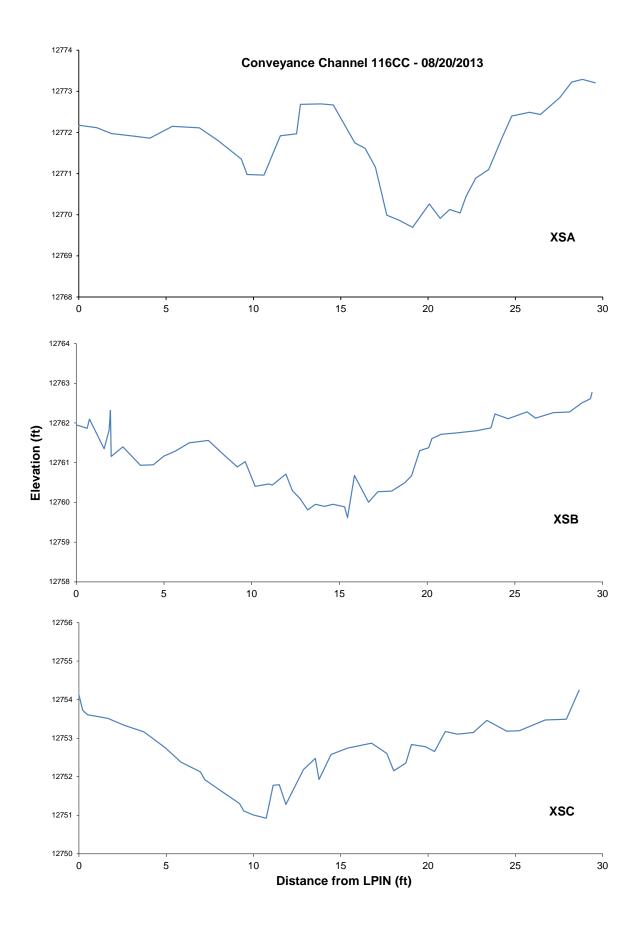



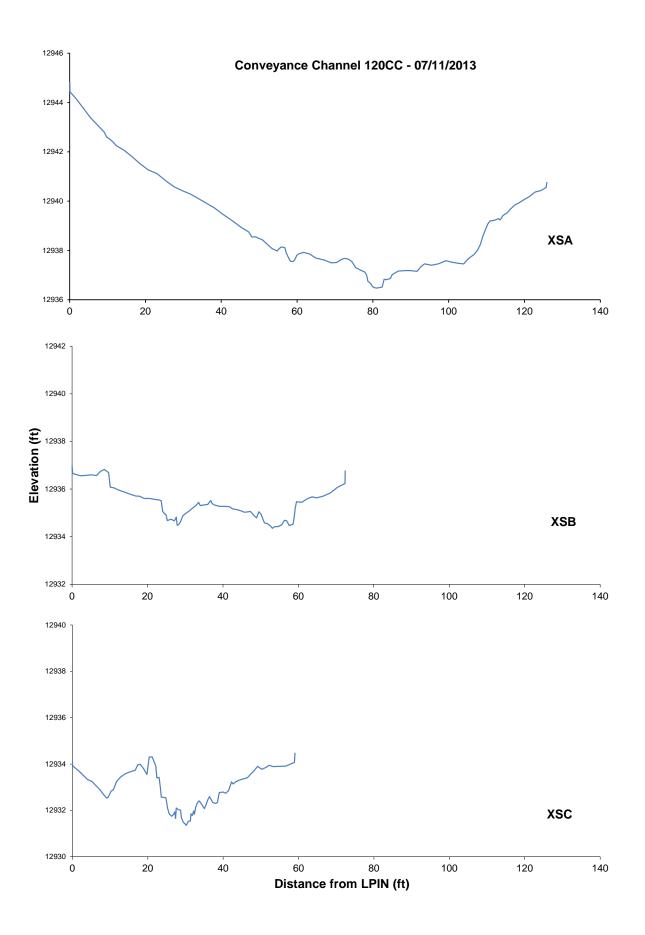



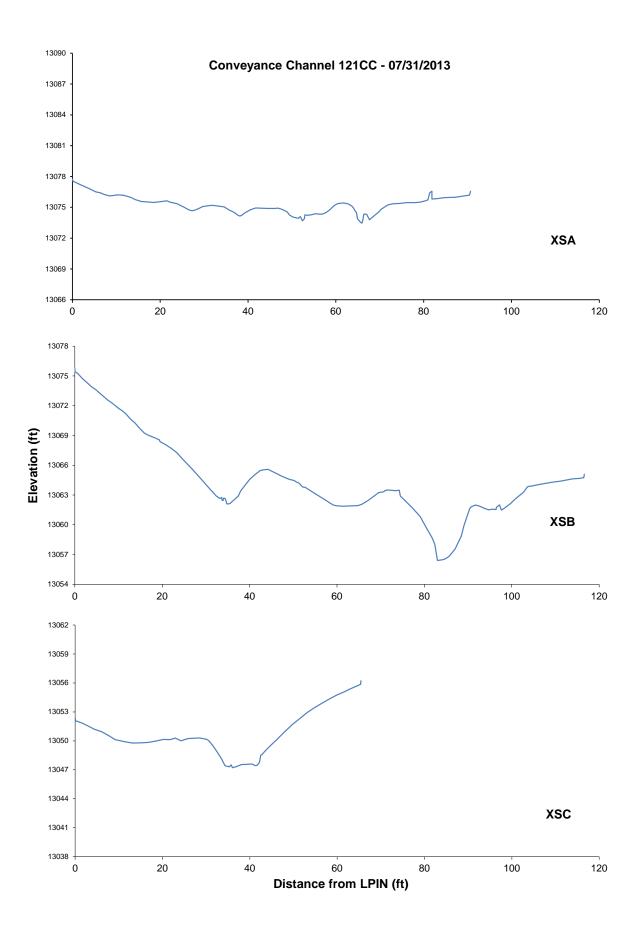



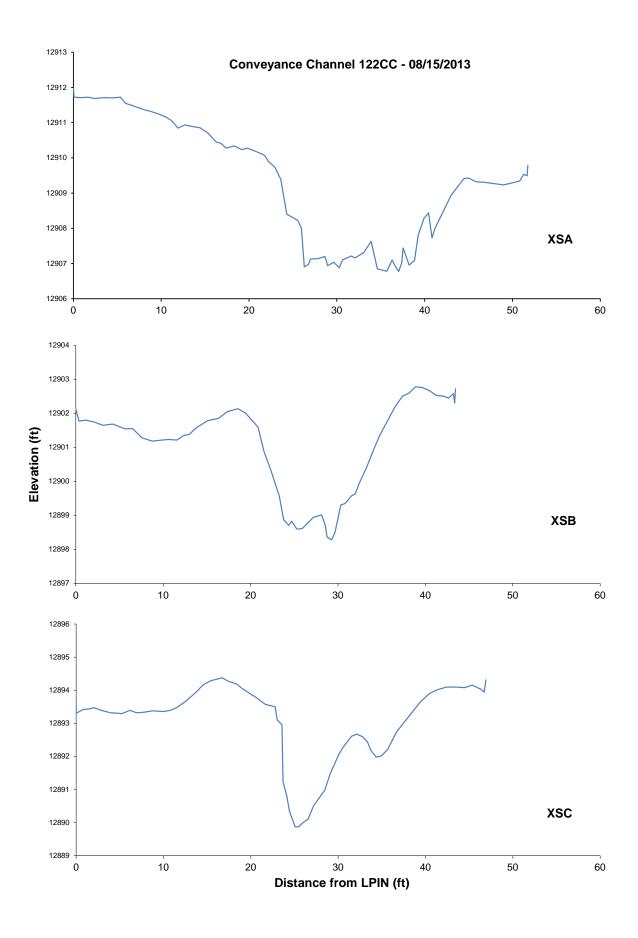



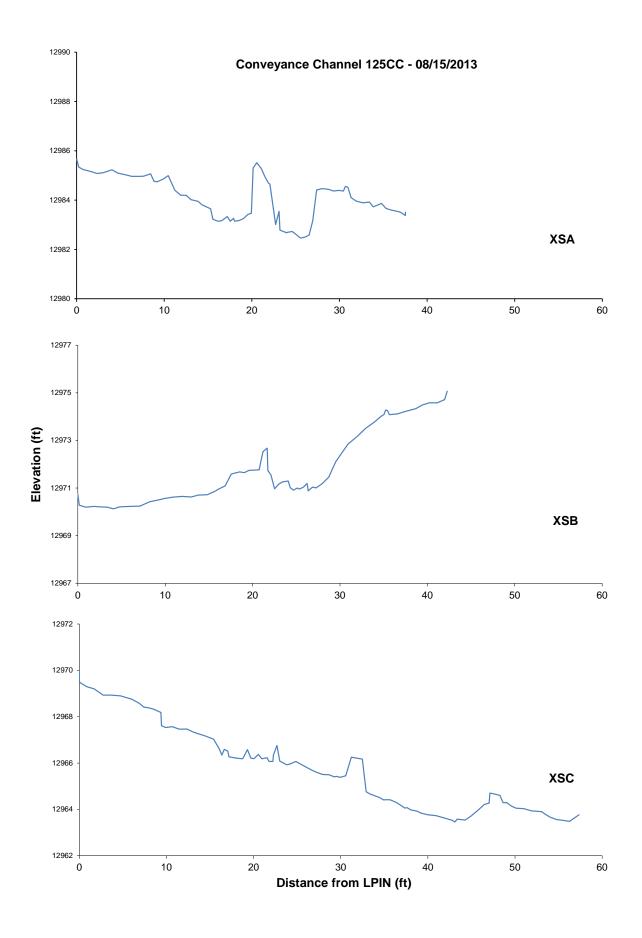



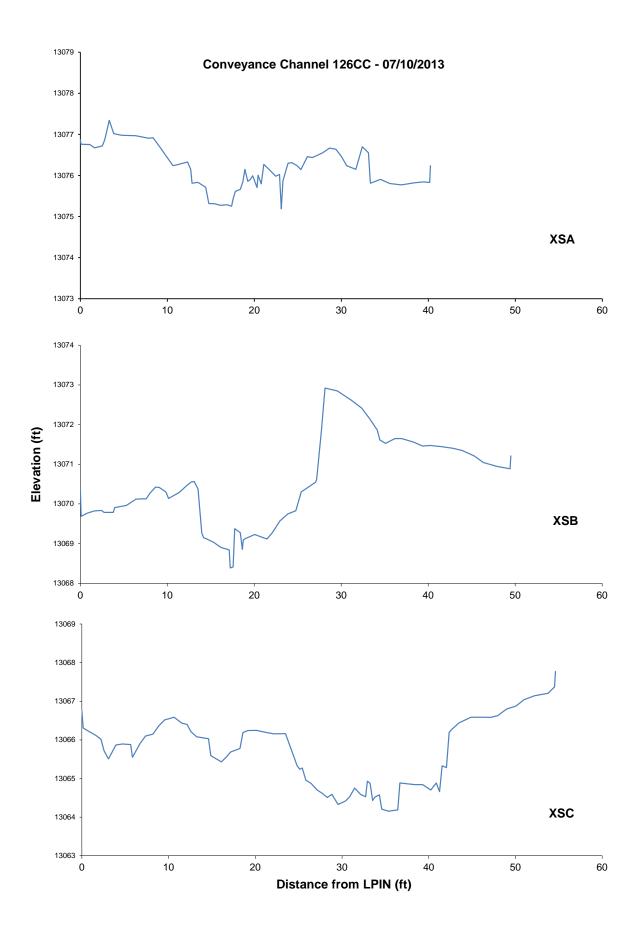



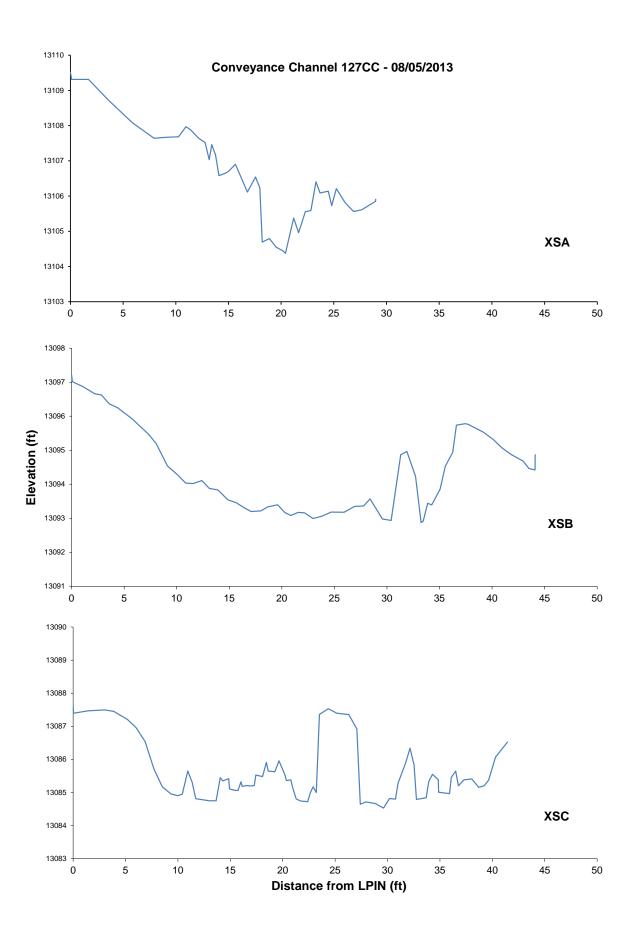



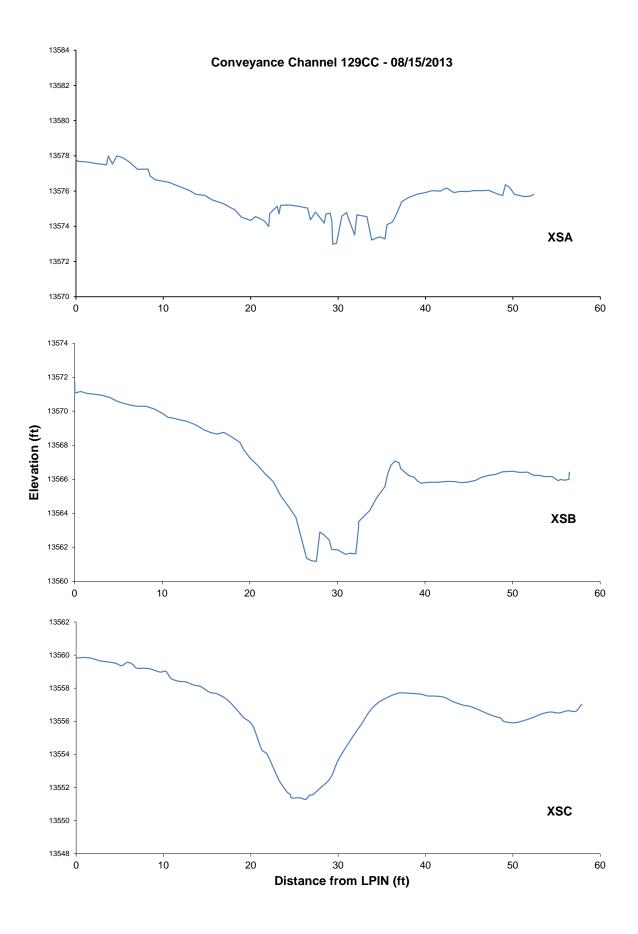



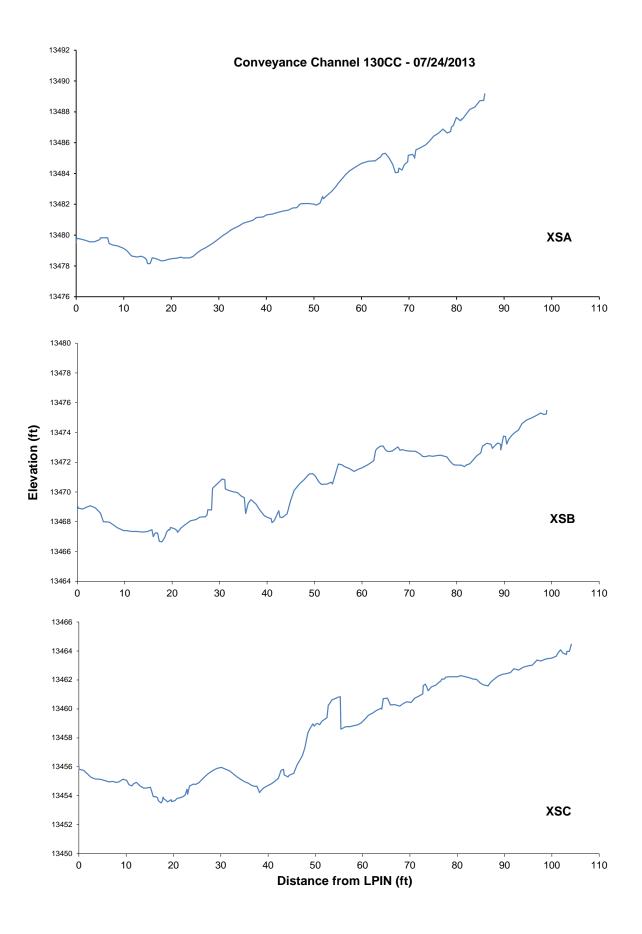



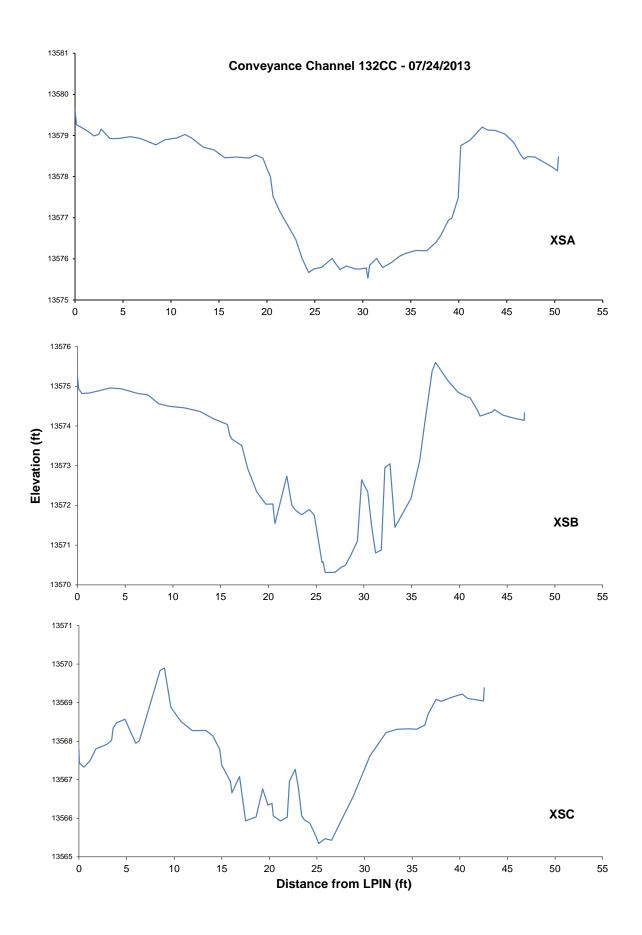



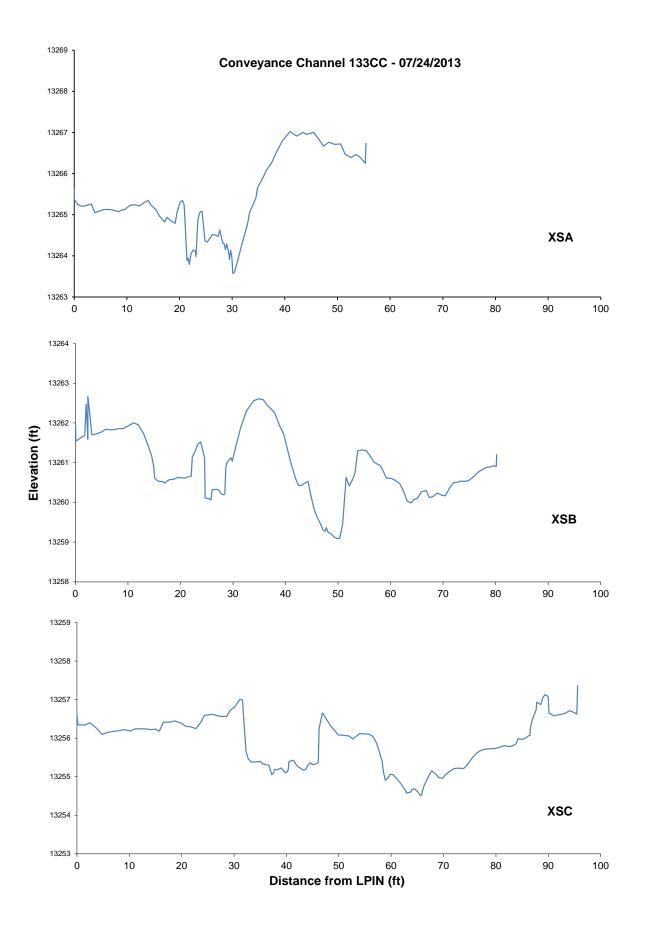



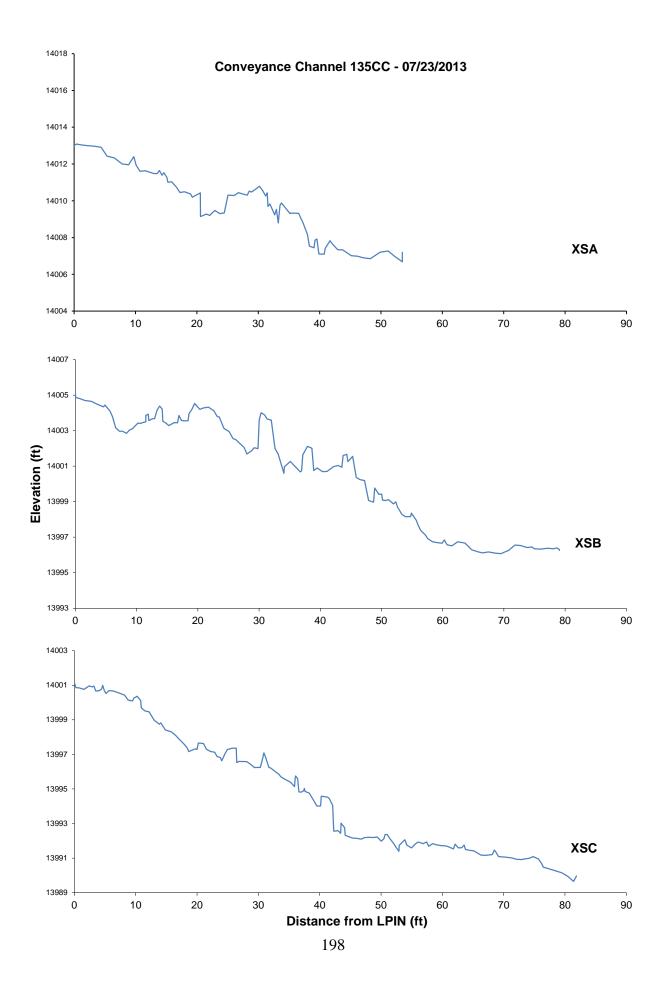



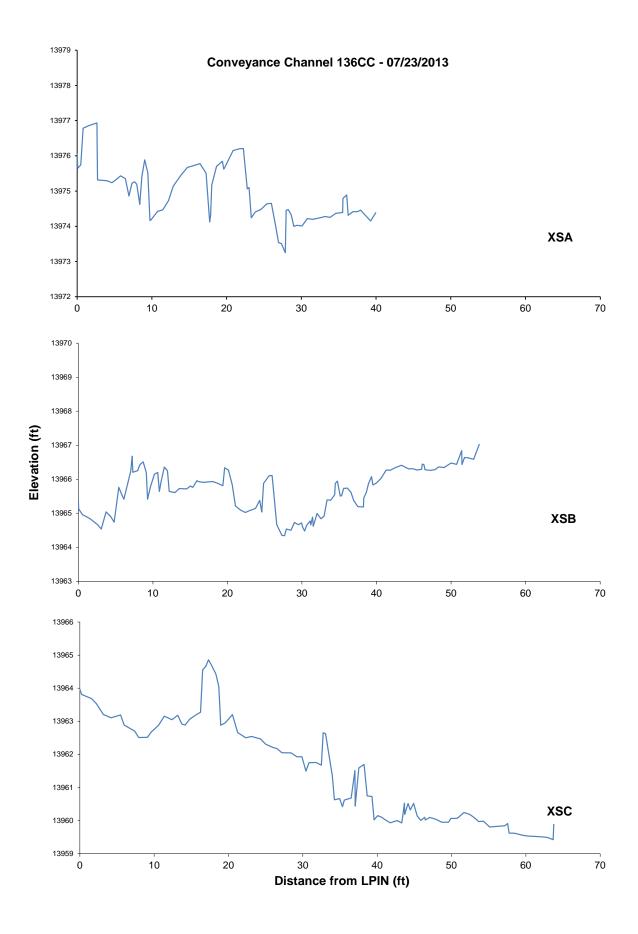



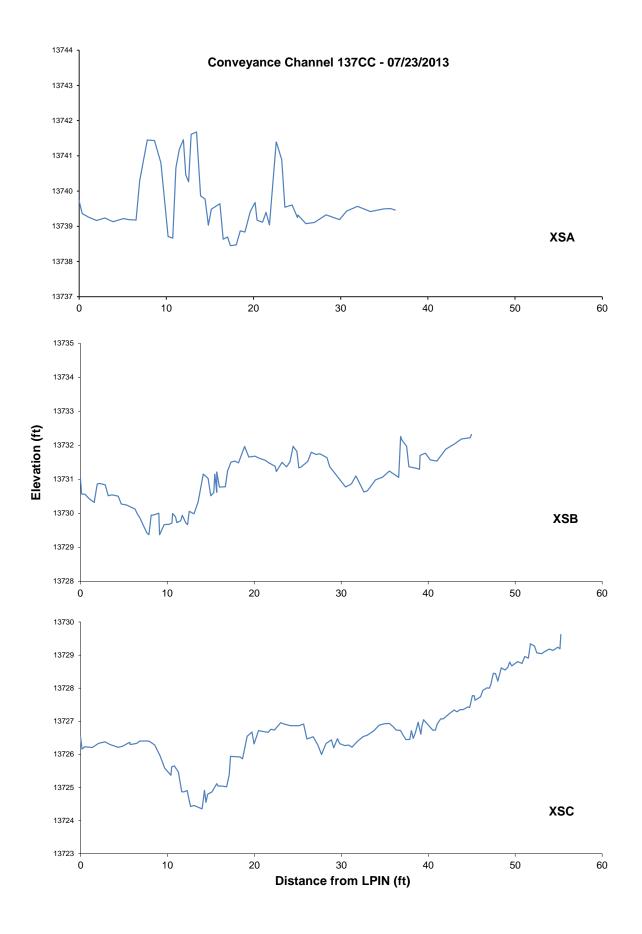



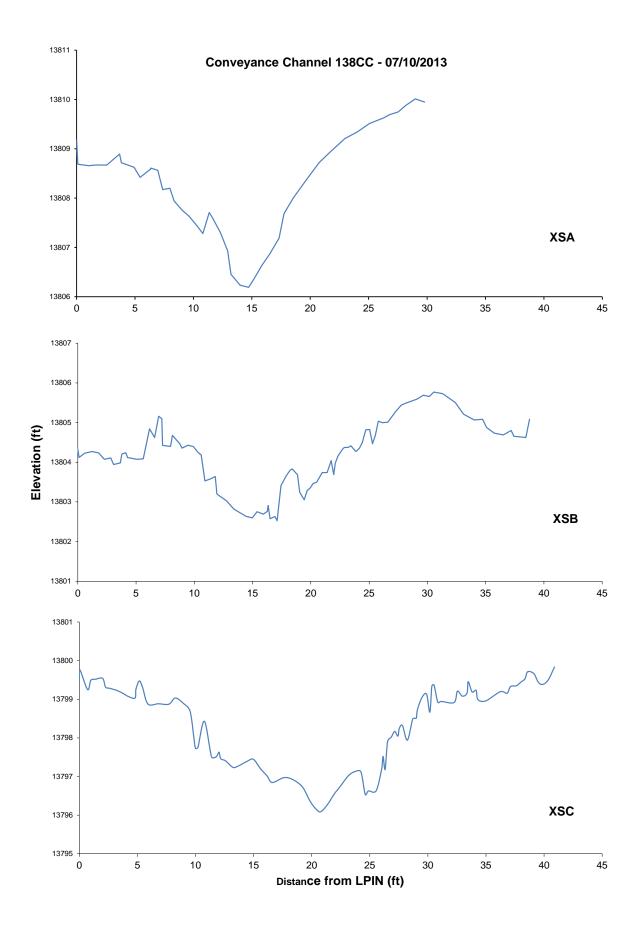



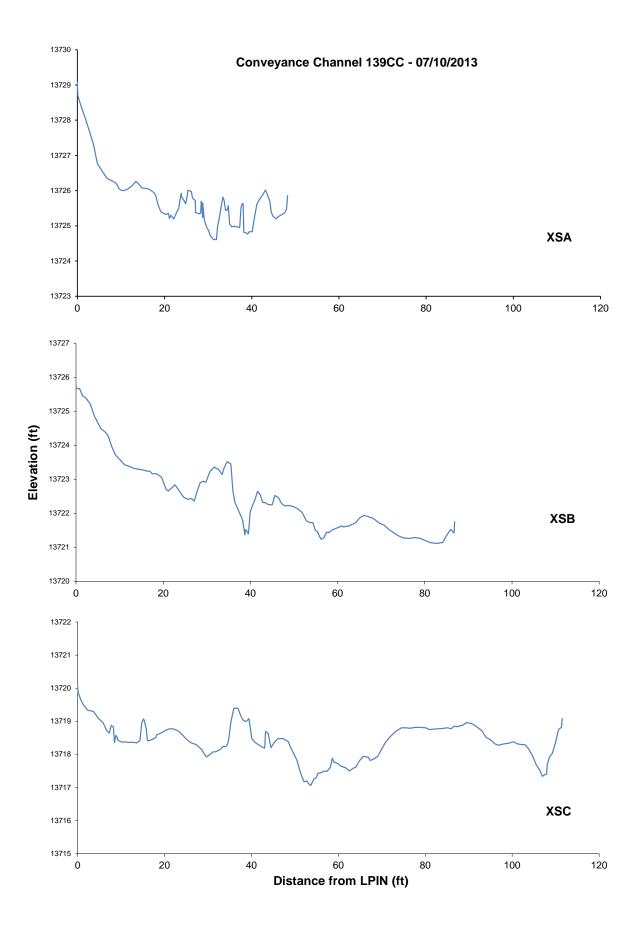



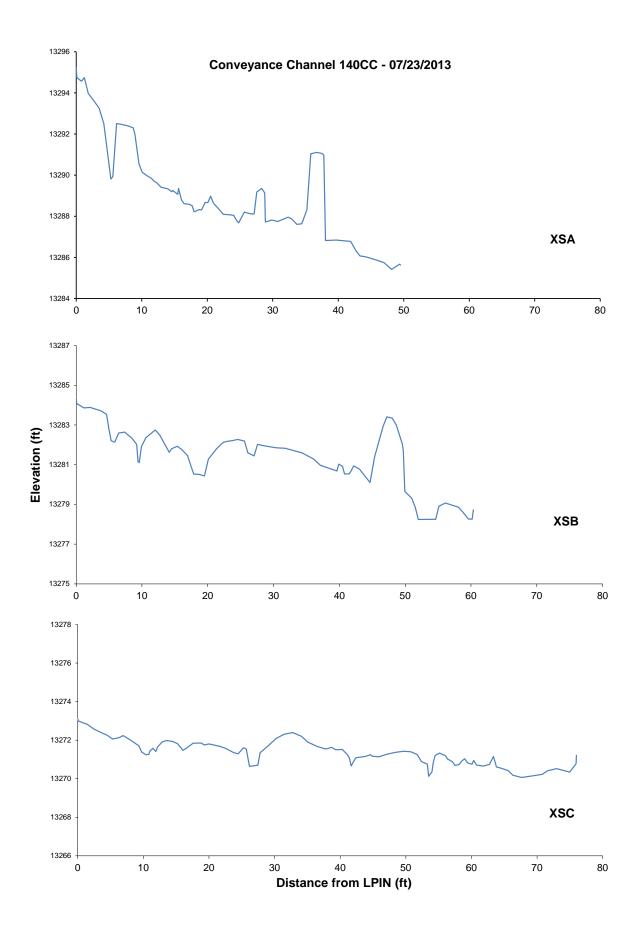



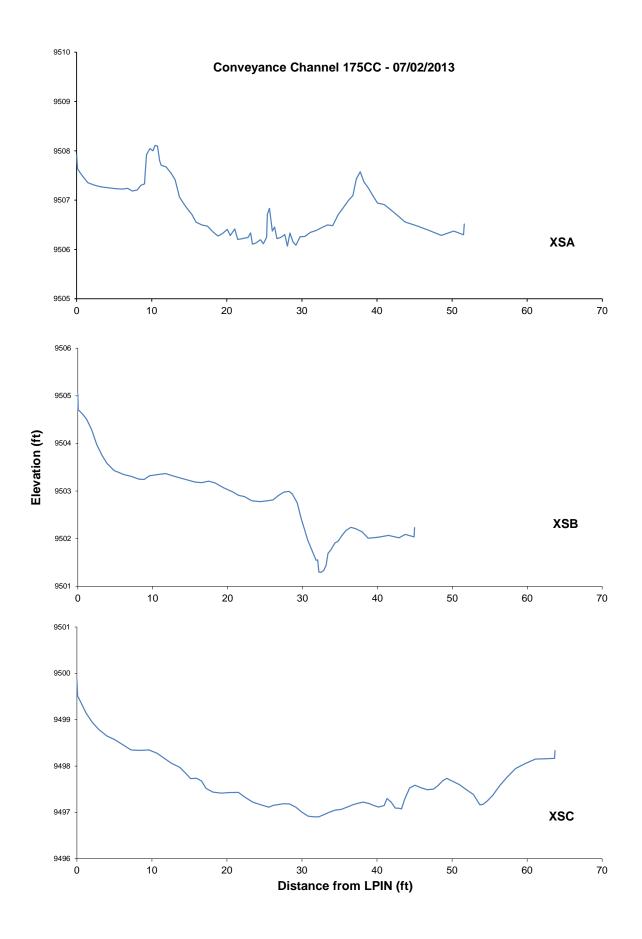



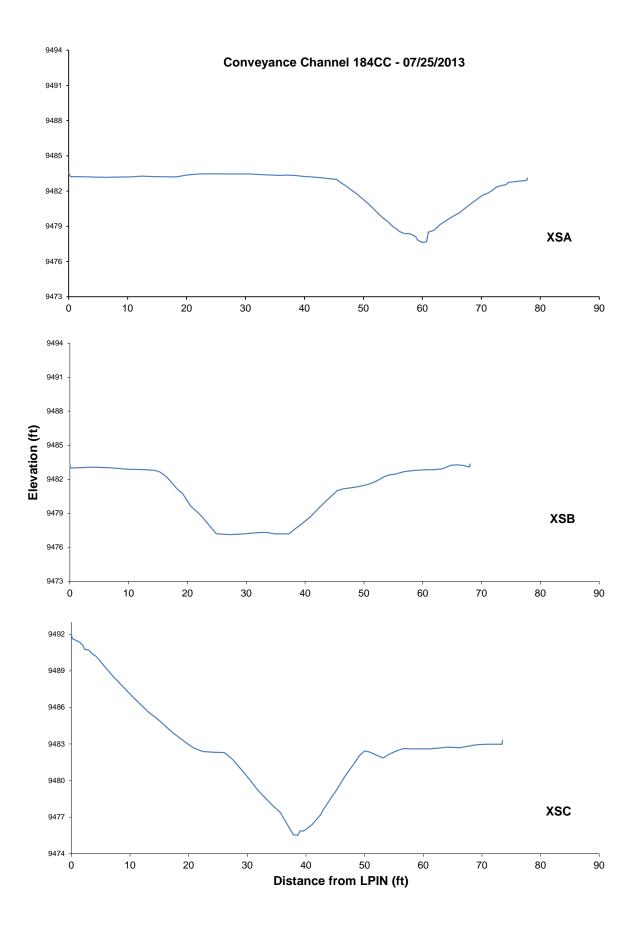



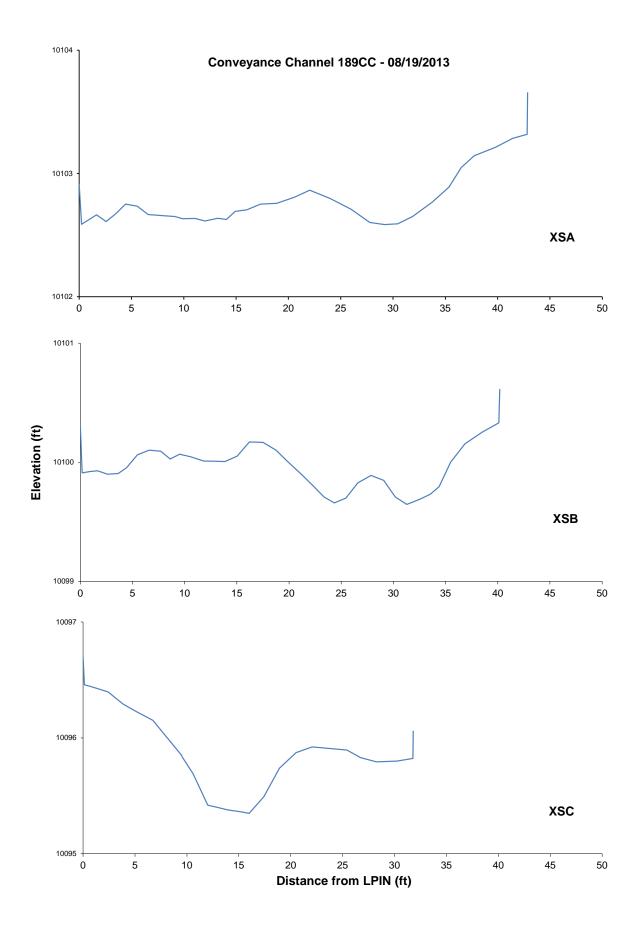



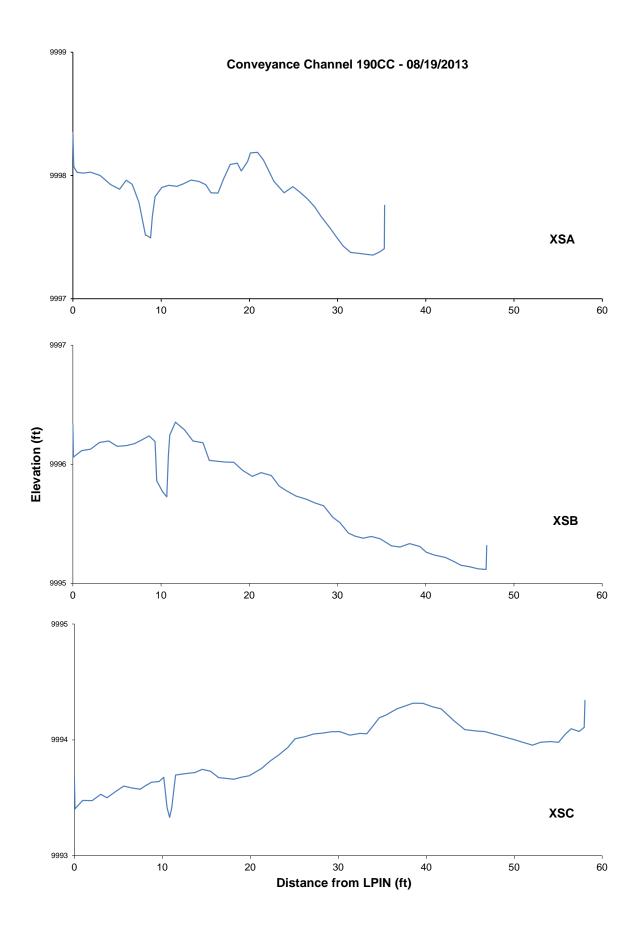



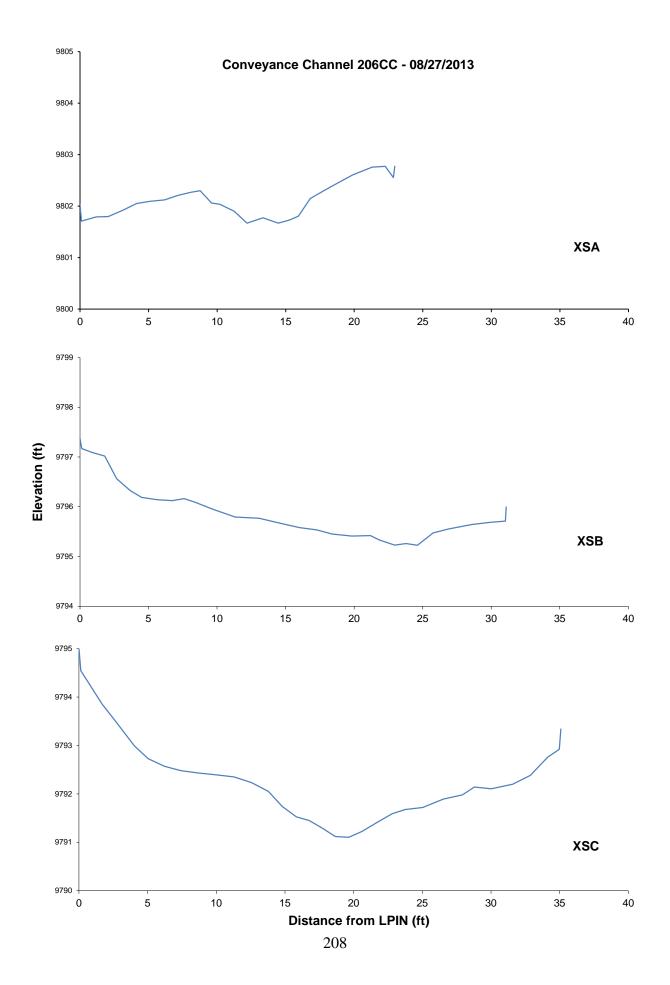



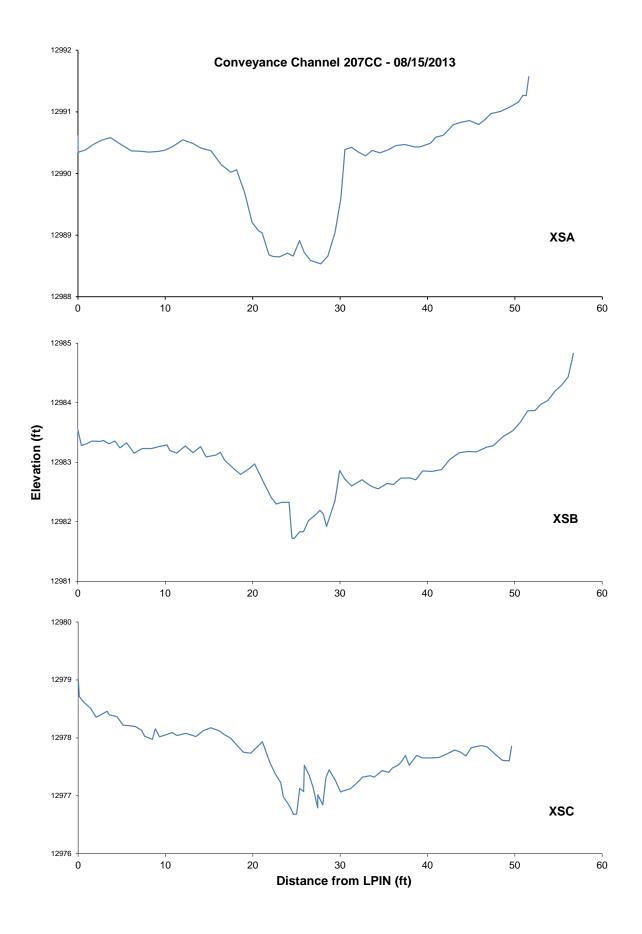



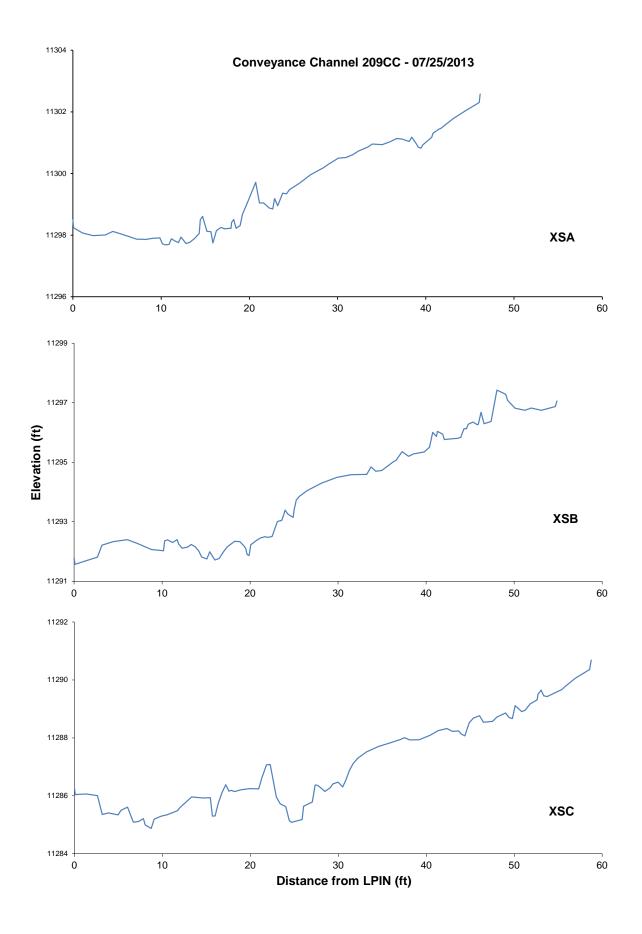



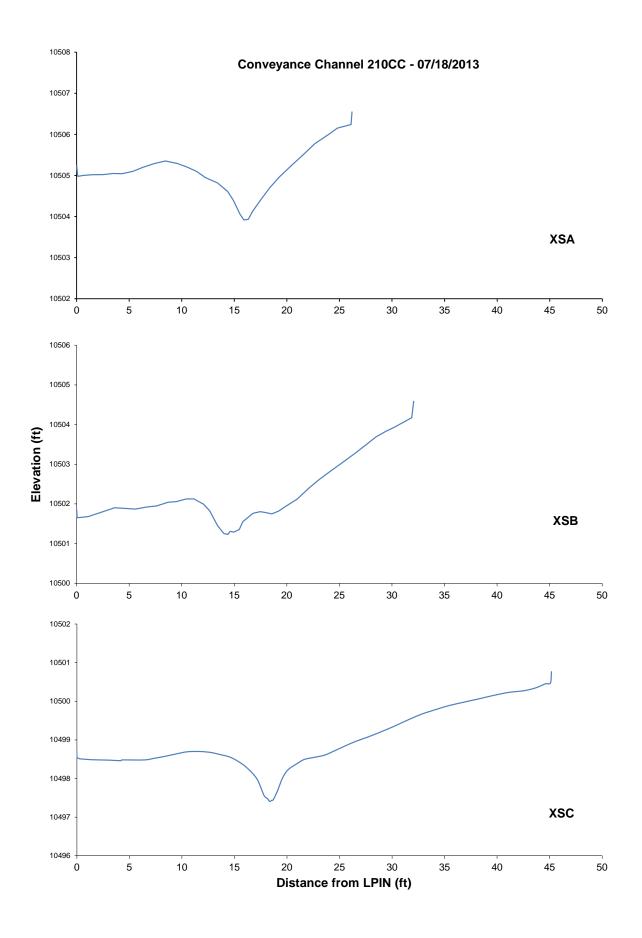



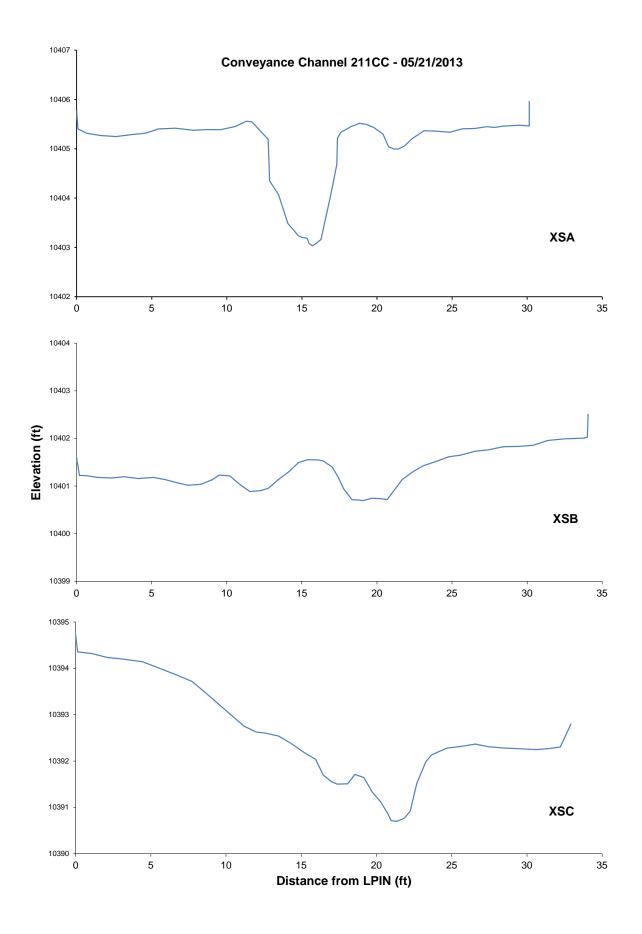



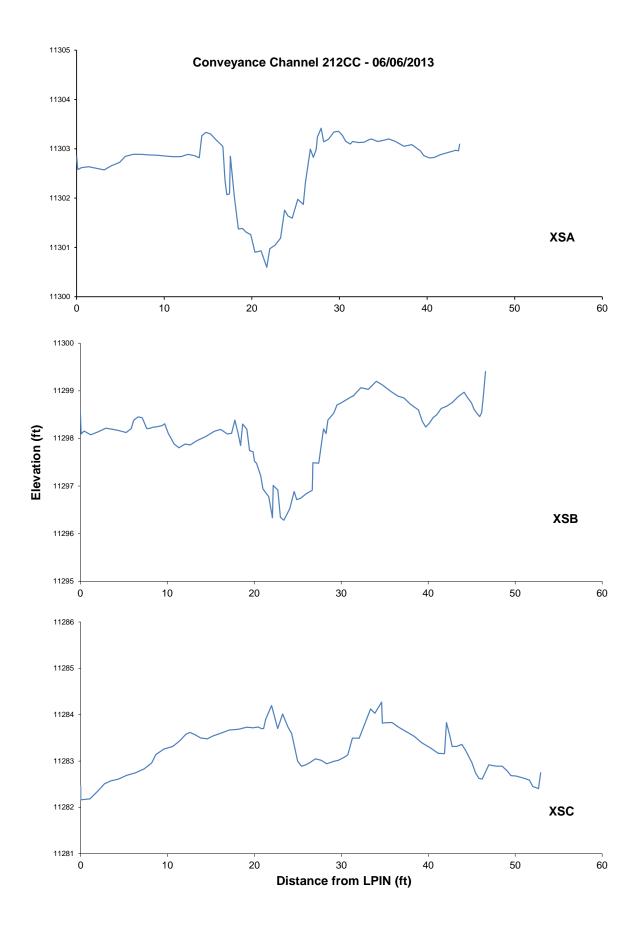



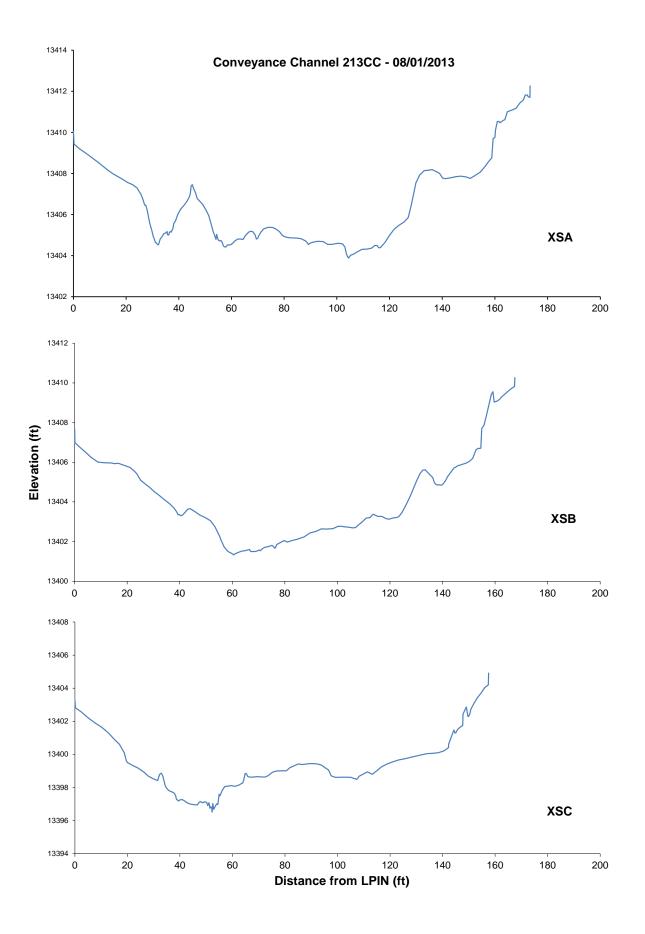


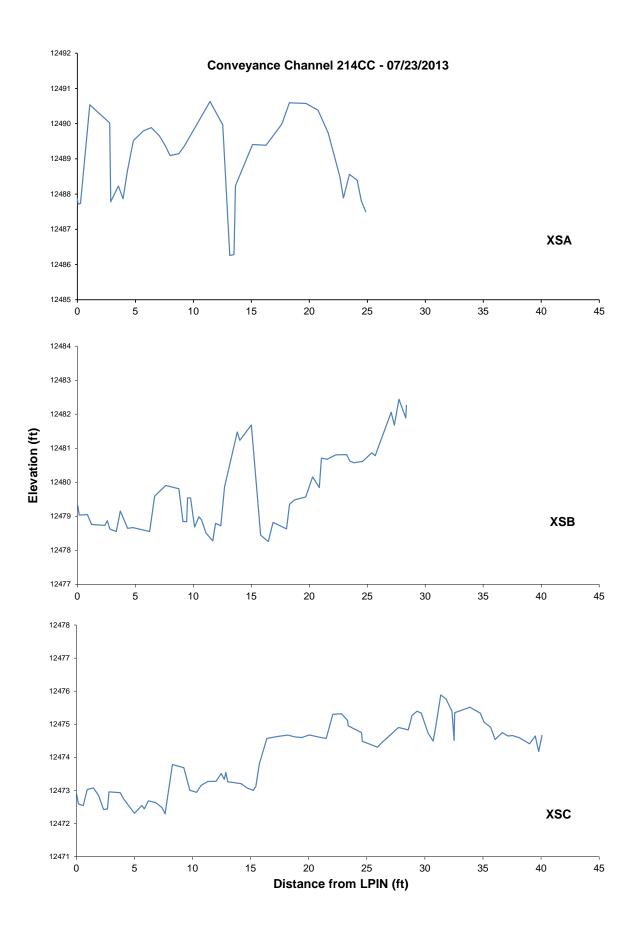



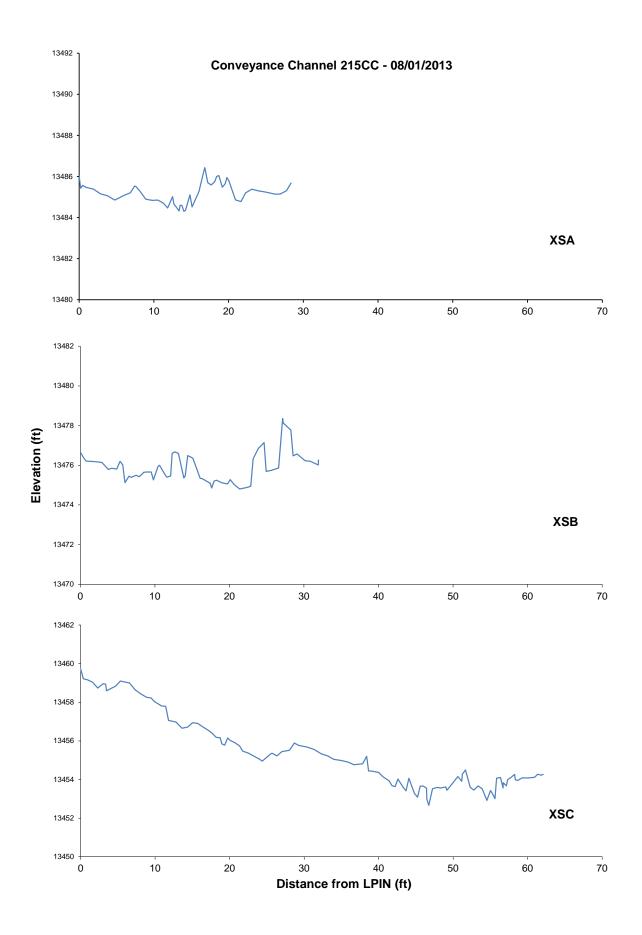



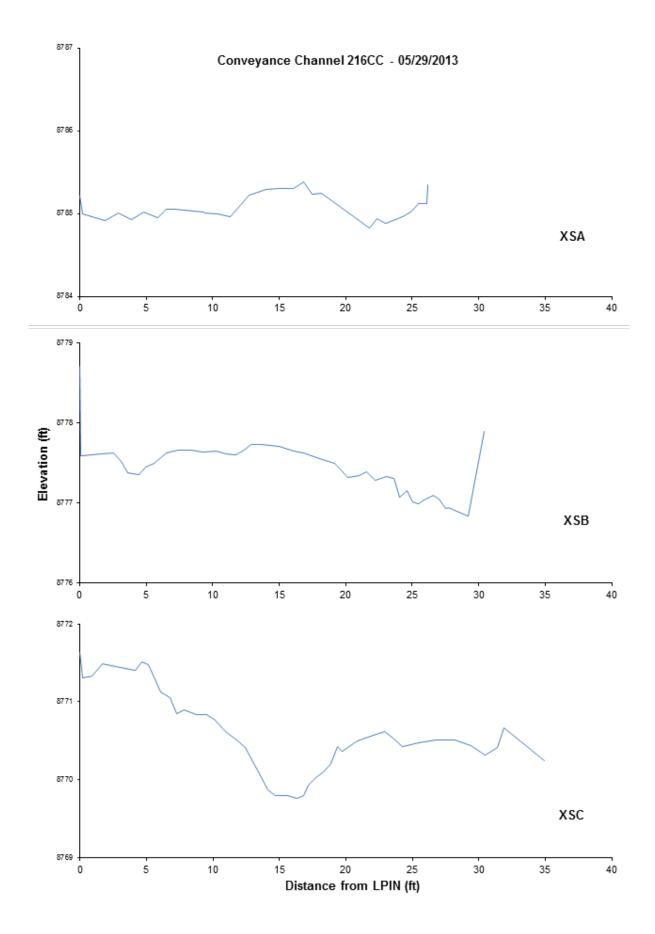



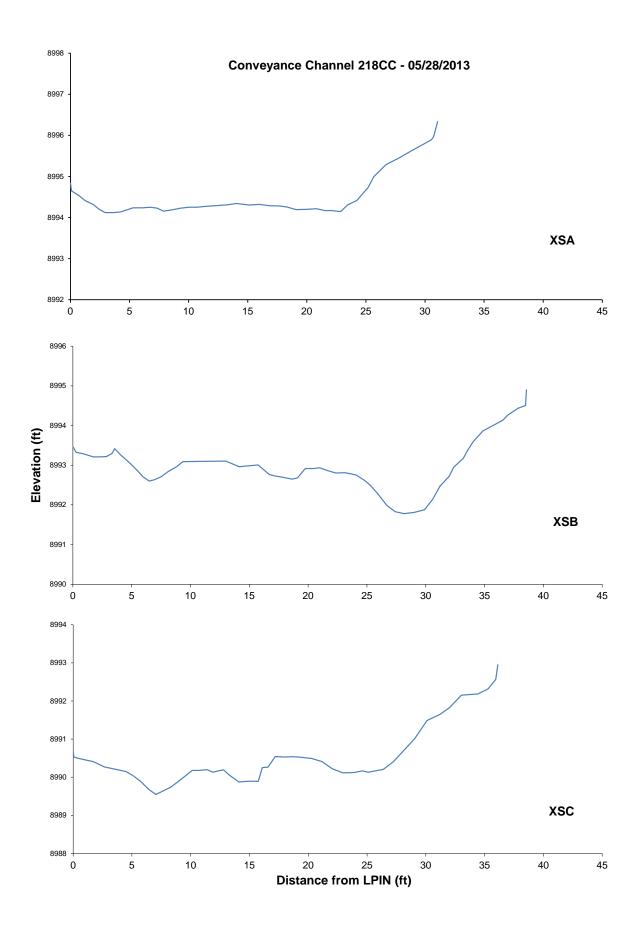



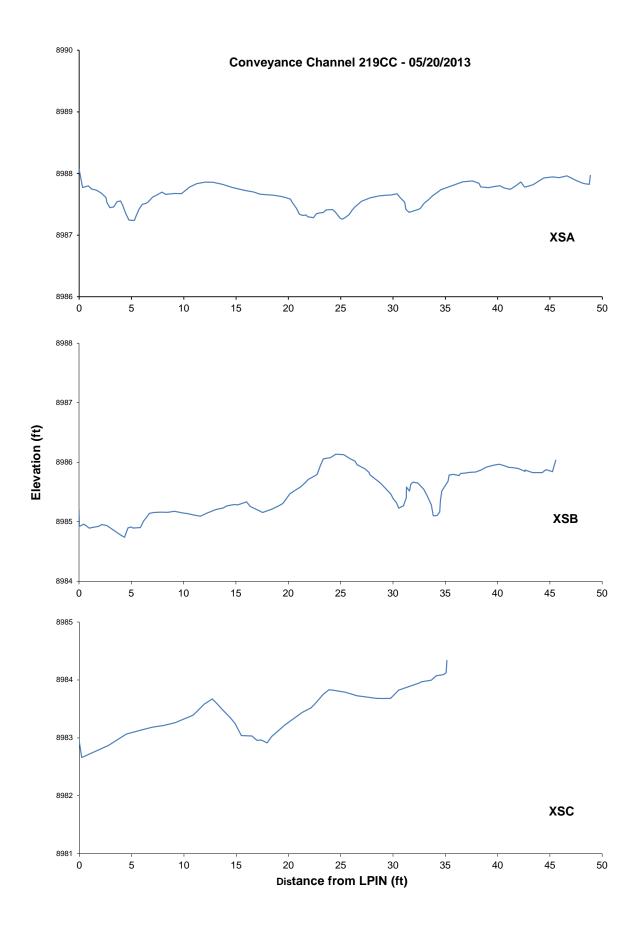



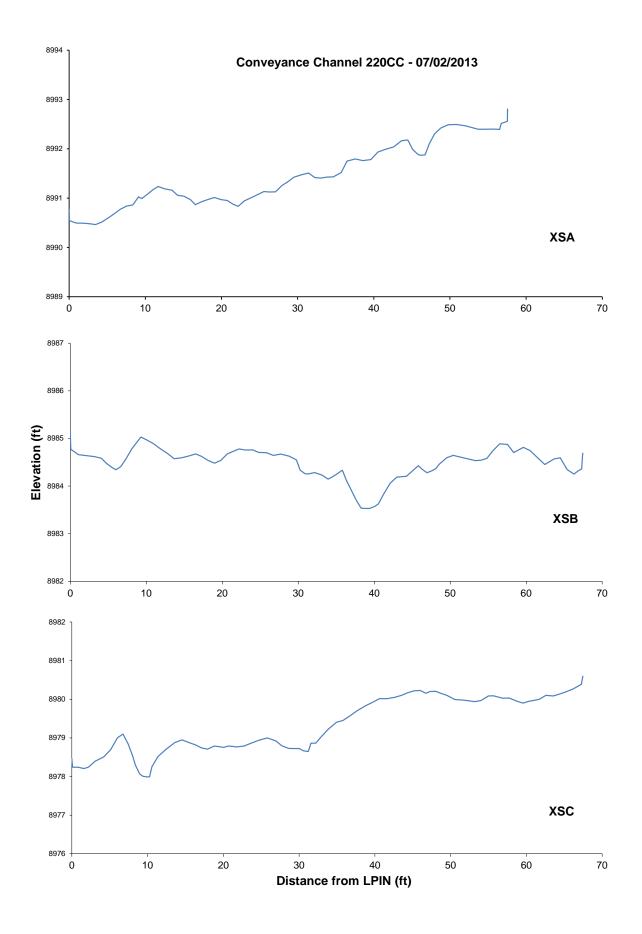



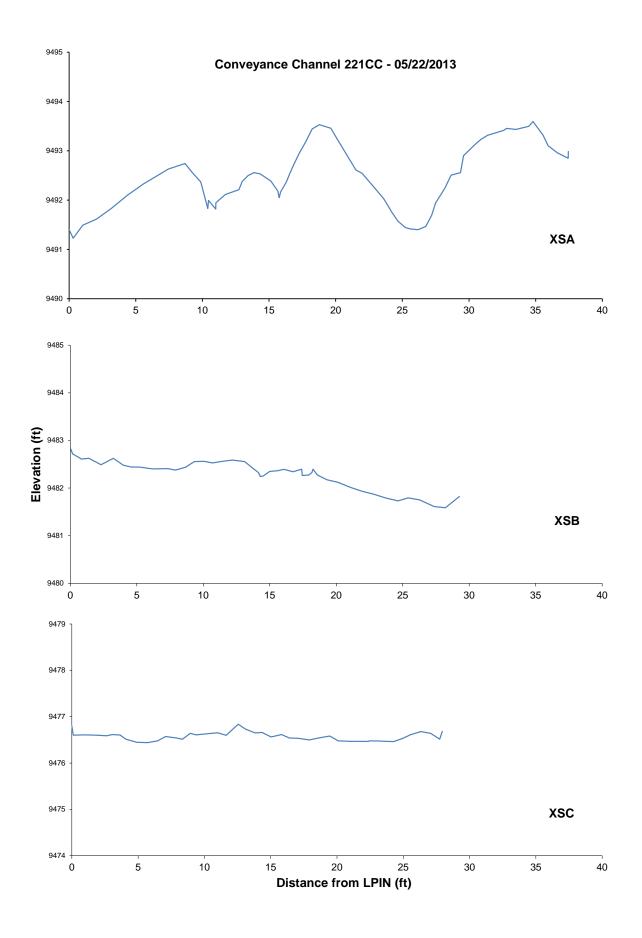



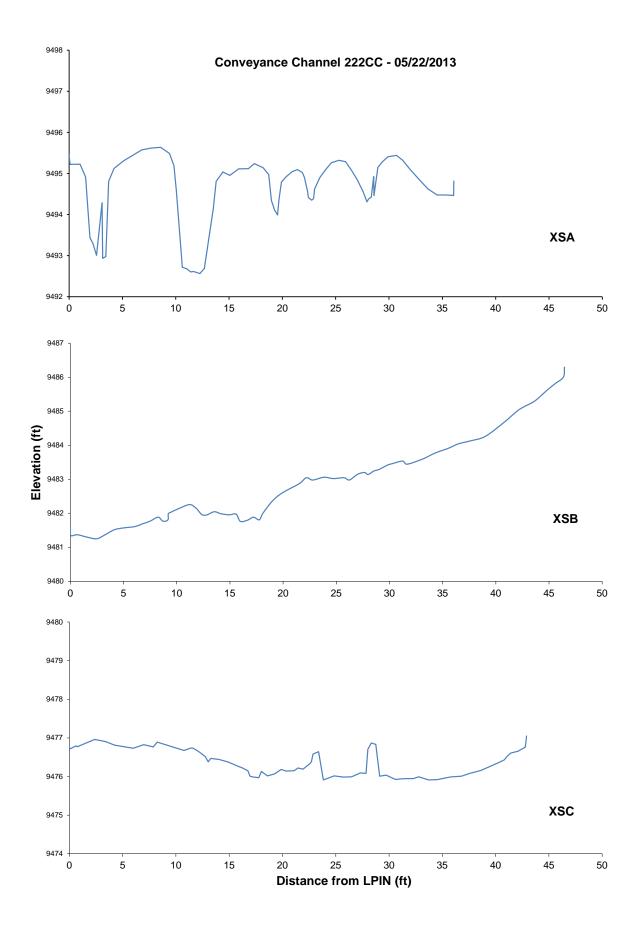


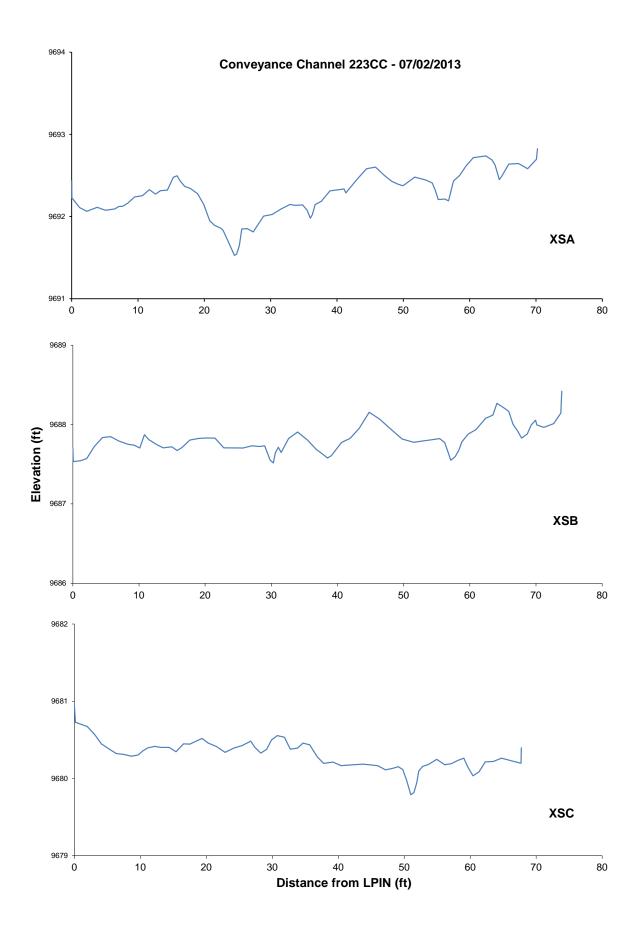



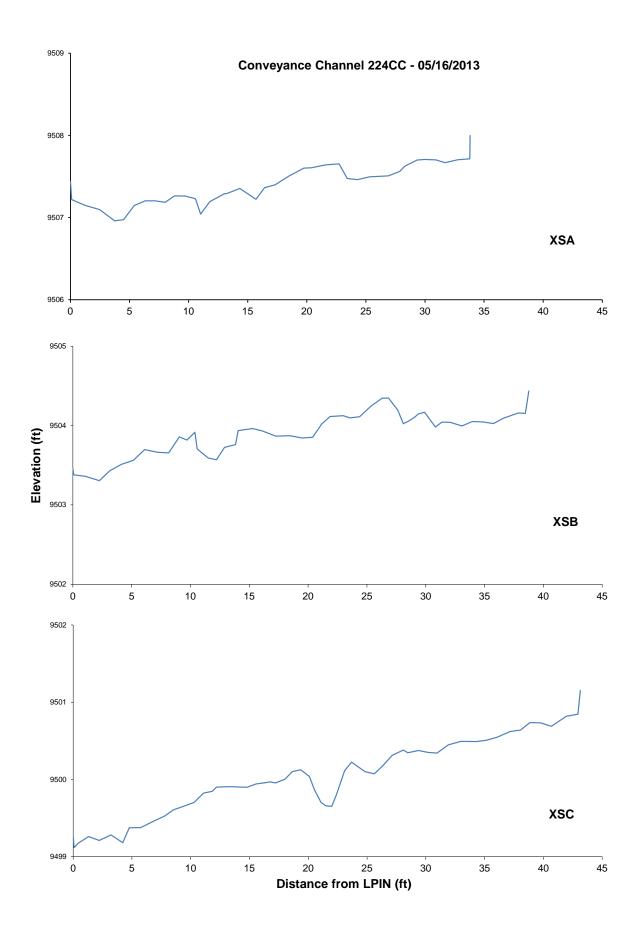



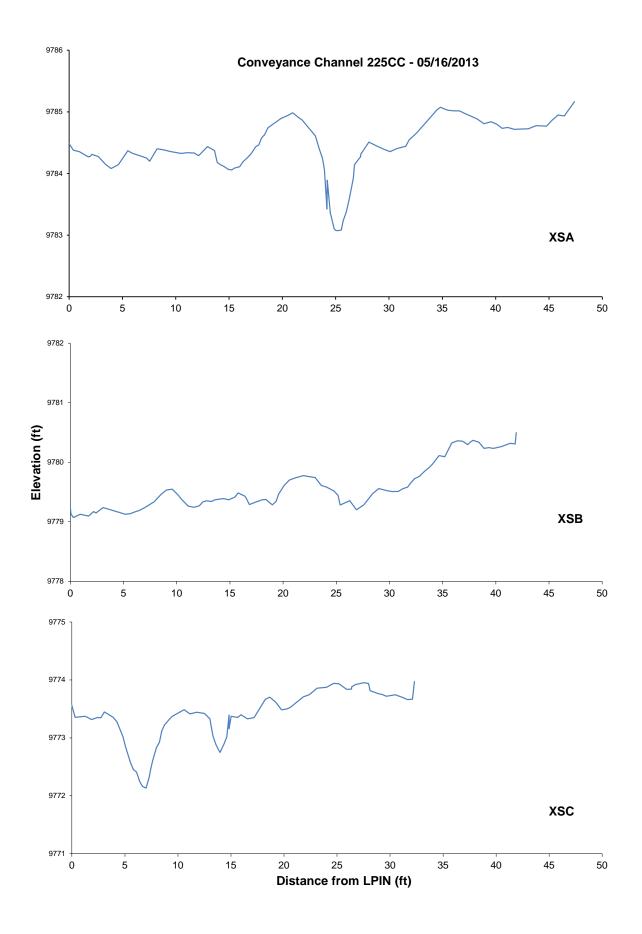



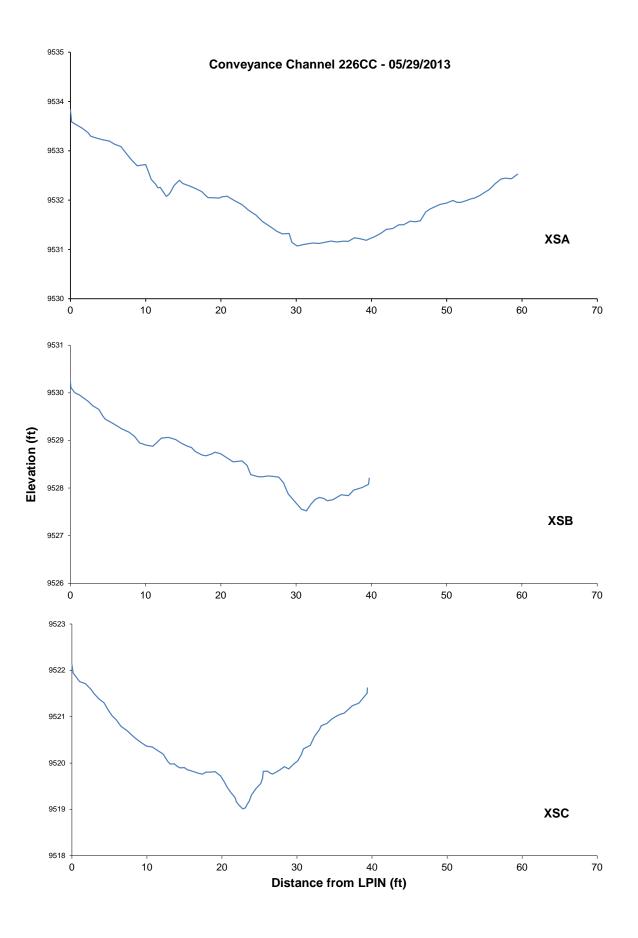



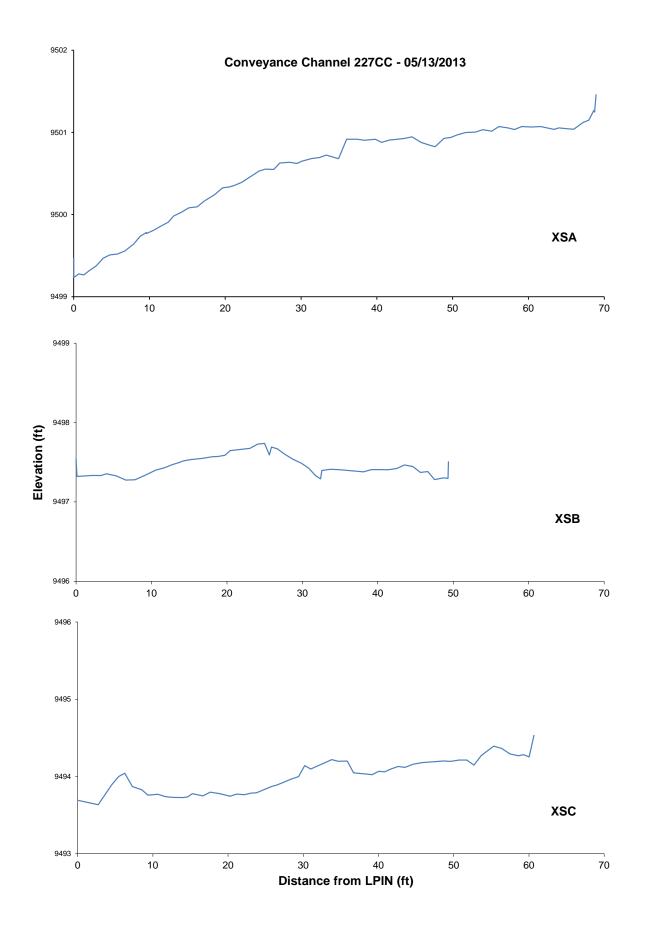



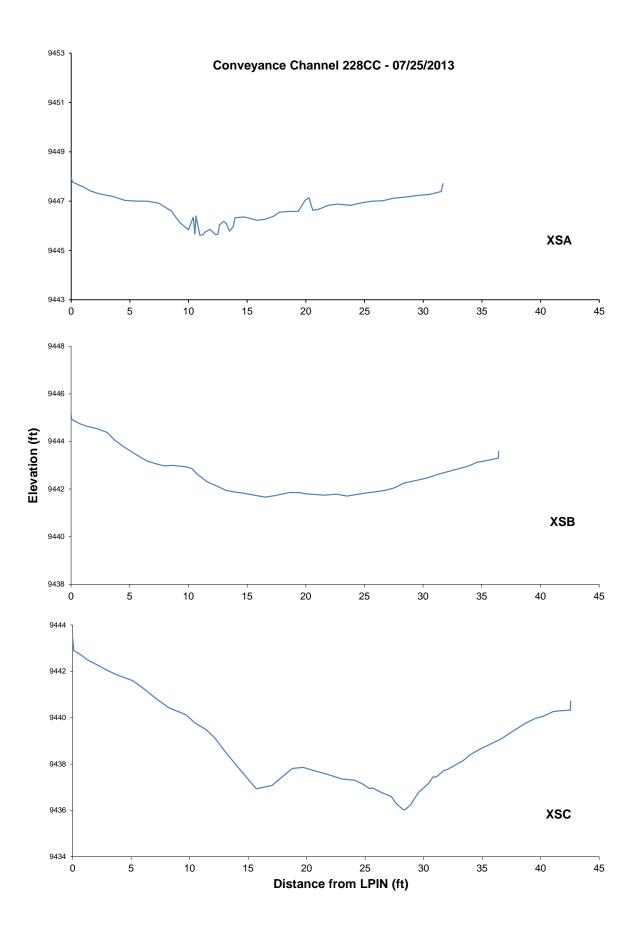



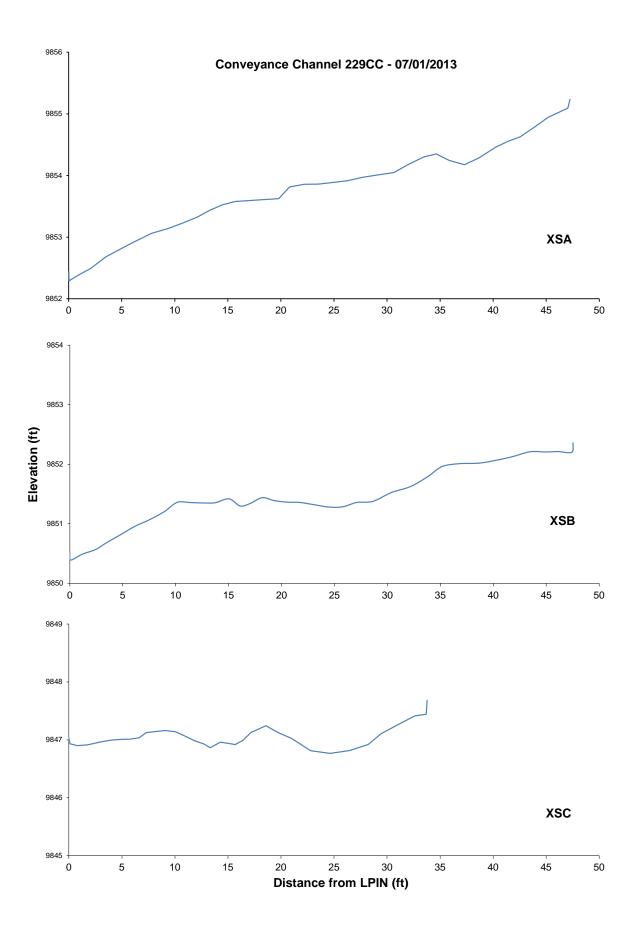



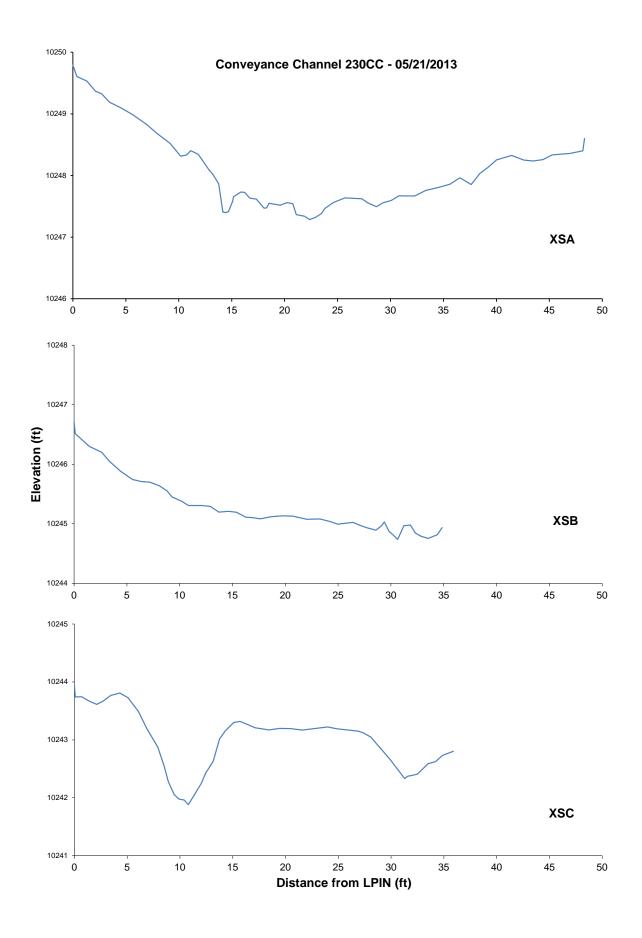



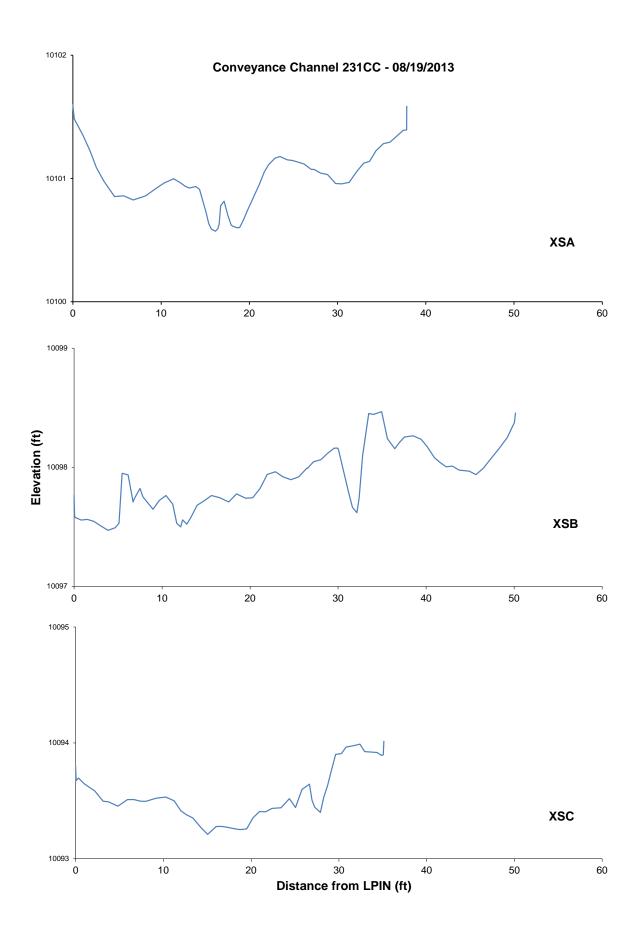



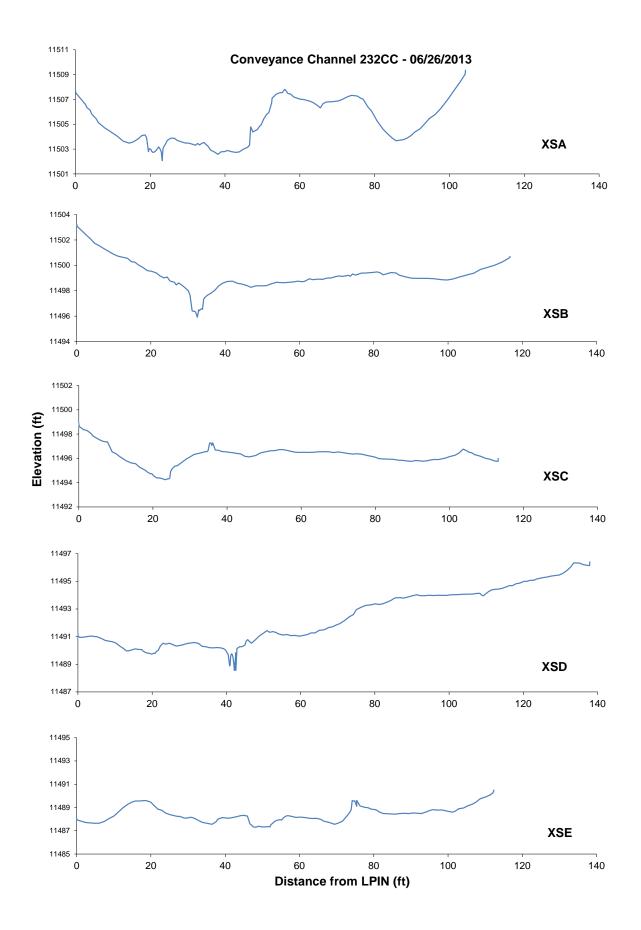



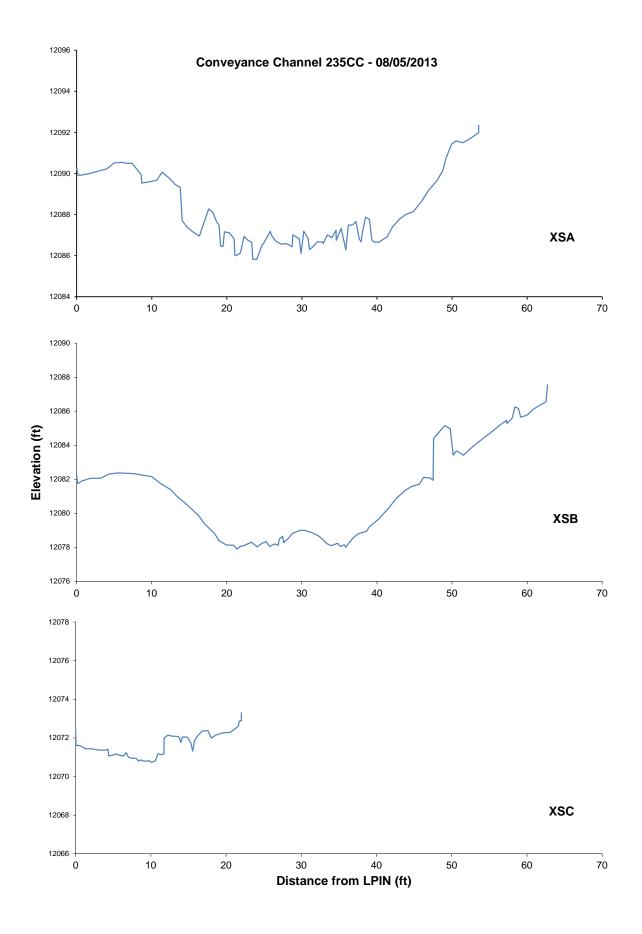



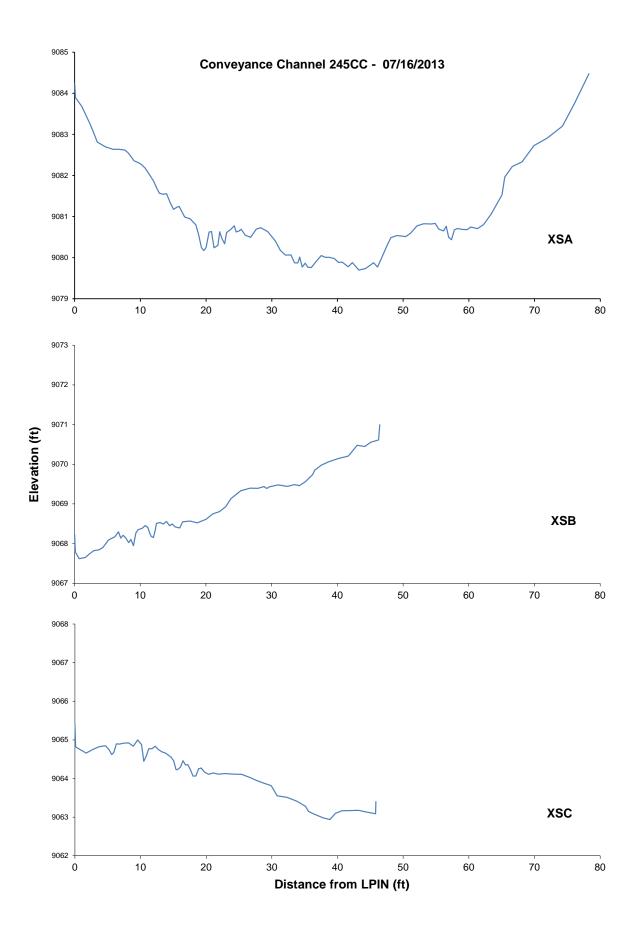



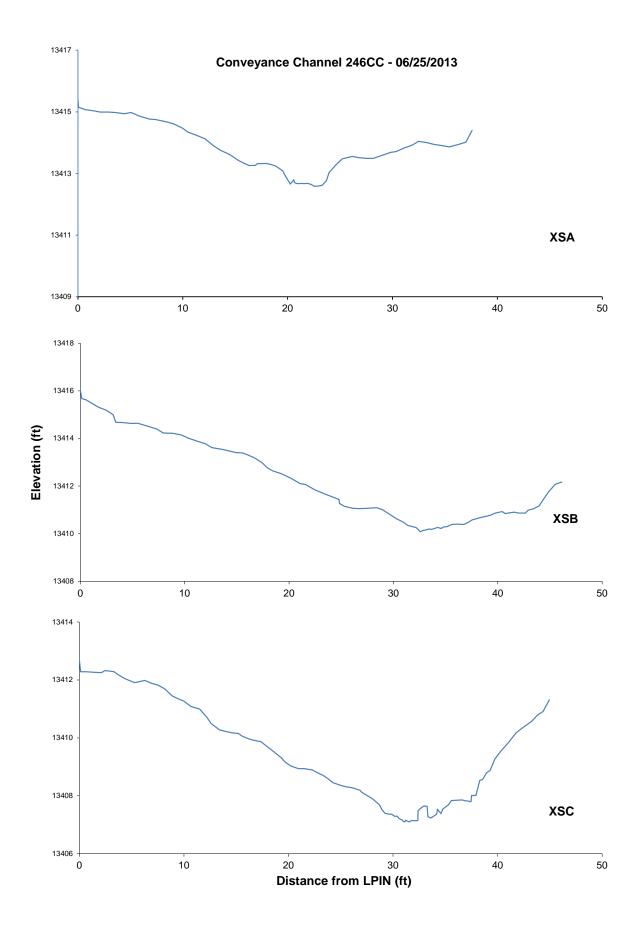



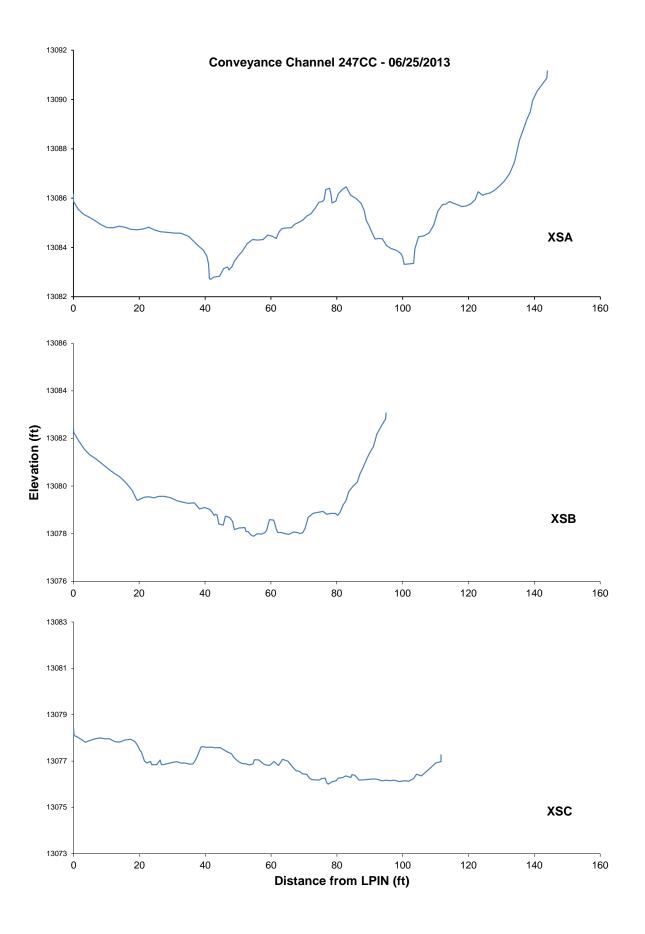



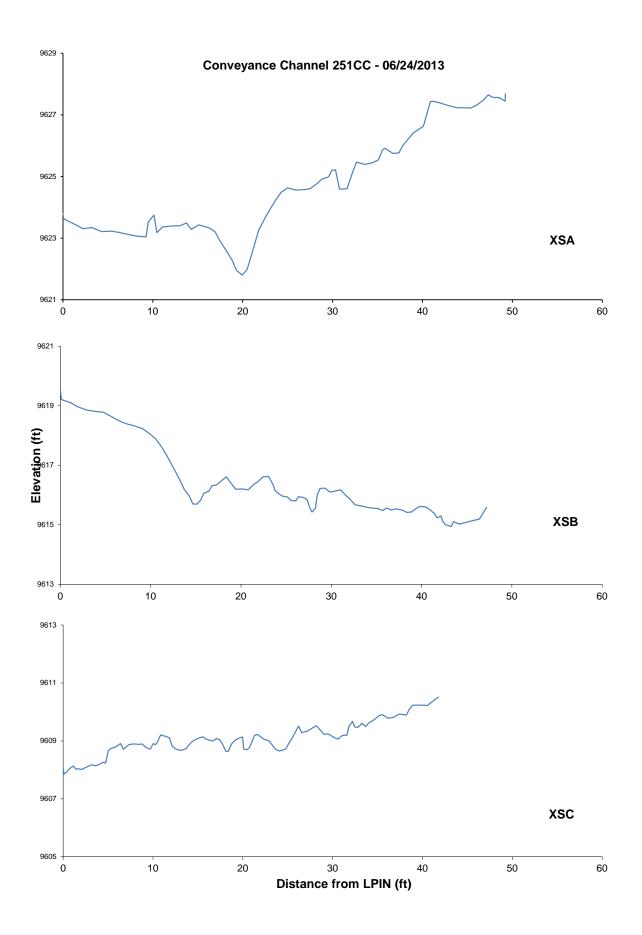



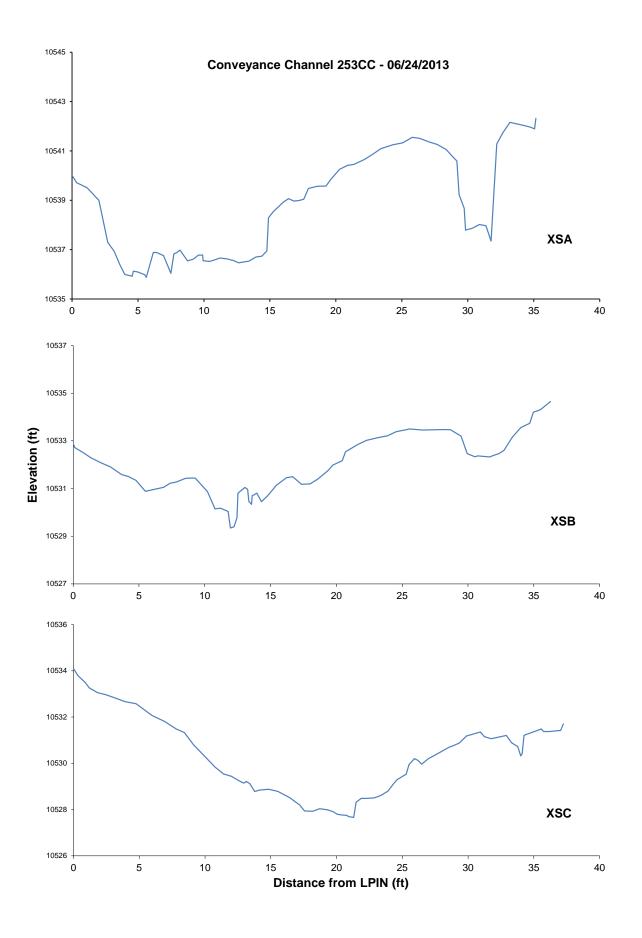



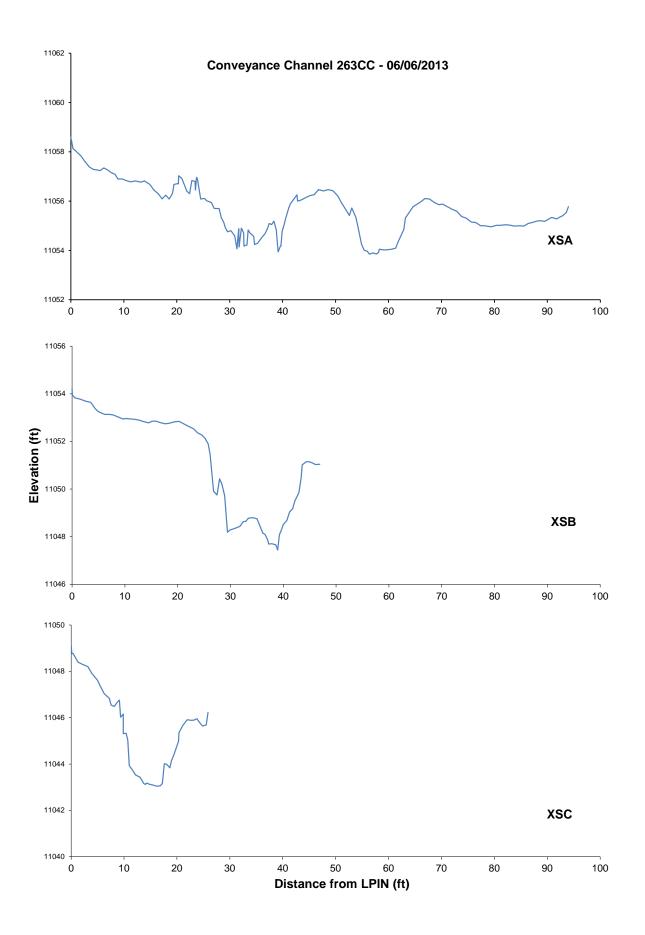



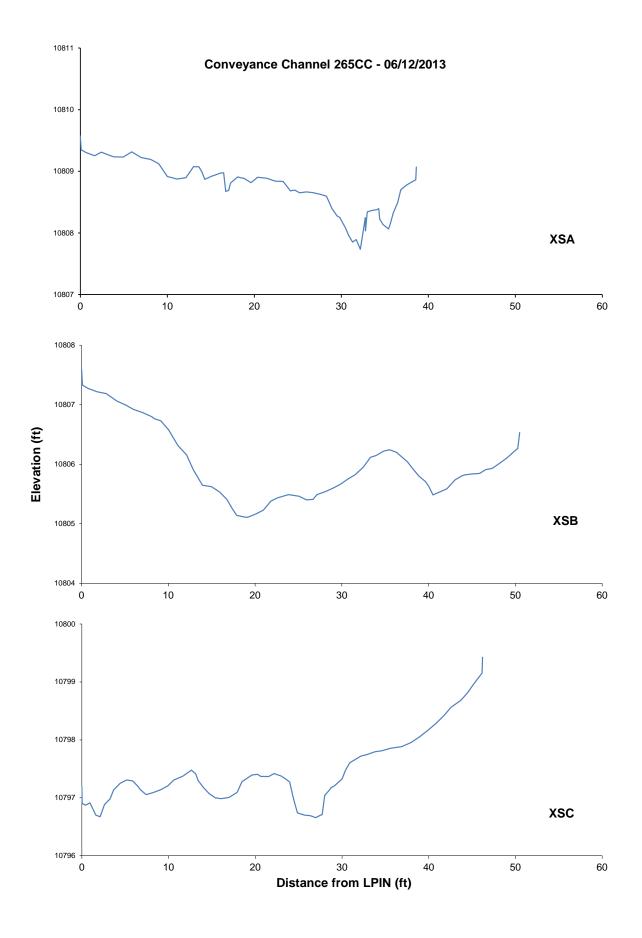













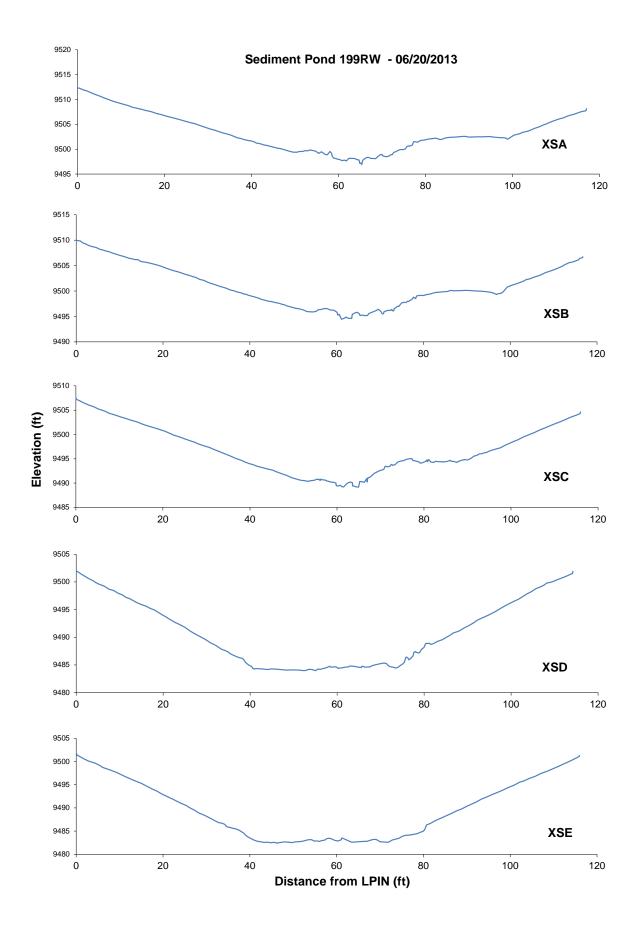

## Appendix J

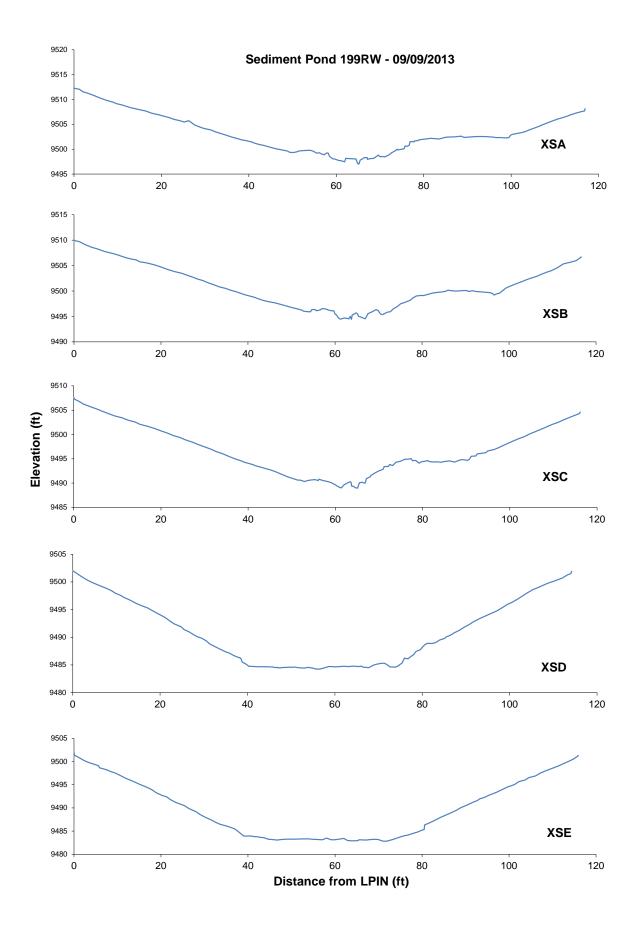
## Rock Weir and Sediment Pond

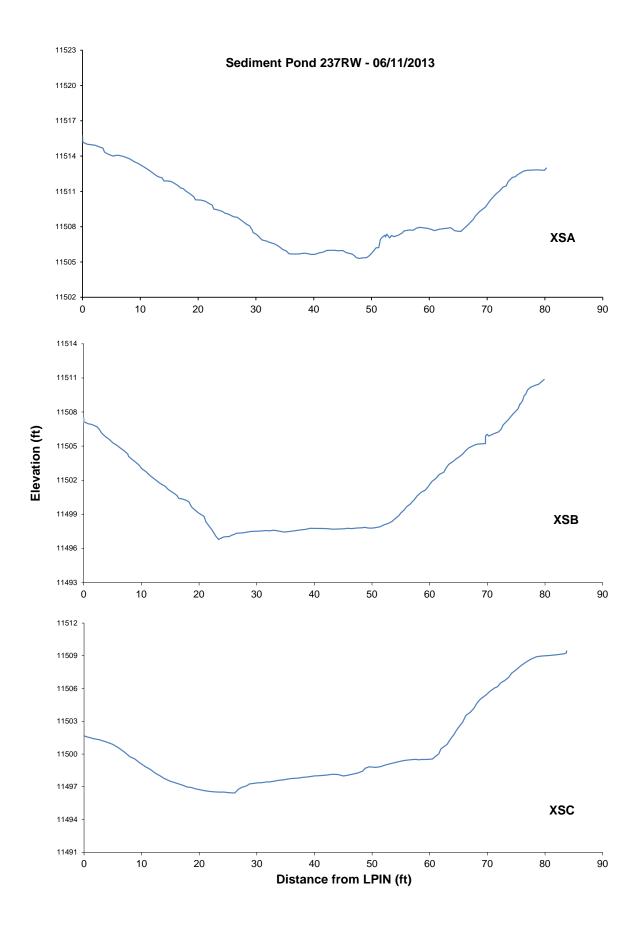
Site Visit Dates
Sediment Accumulation
and
Cross Section Graphs

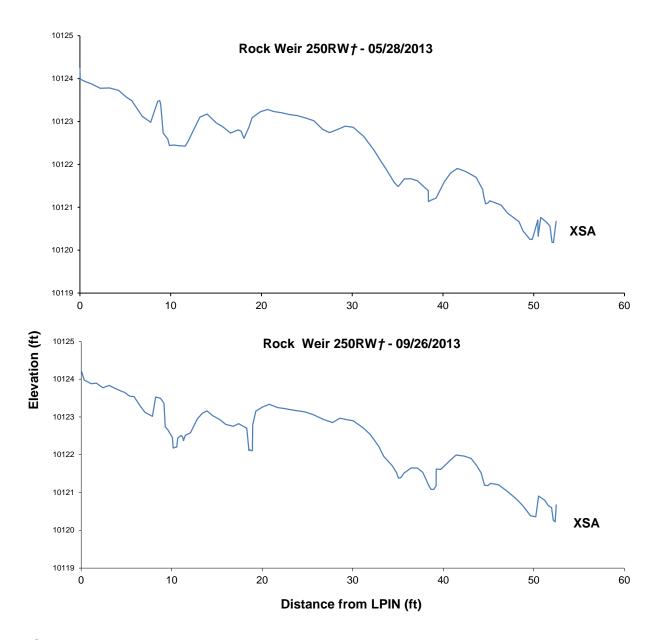
2013

## Site Visit Dates of Rock Weir Silt Fences on Pikes Peak, 2013

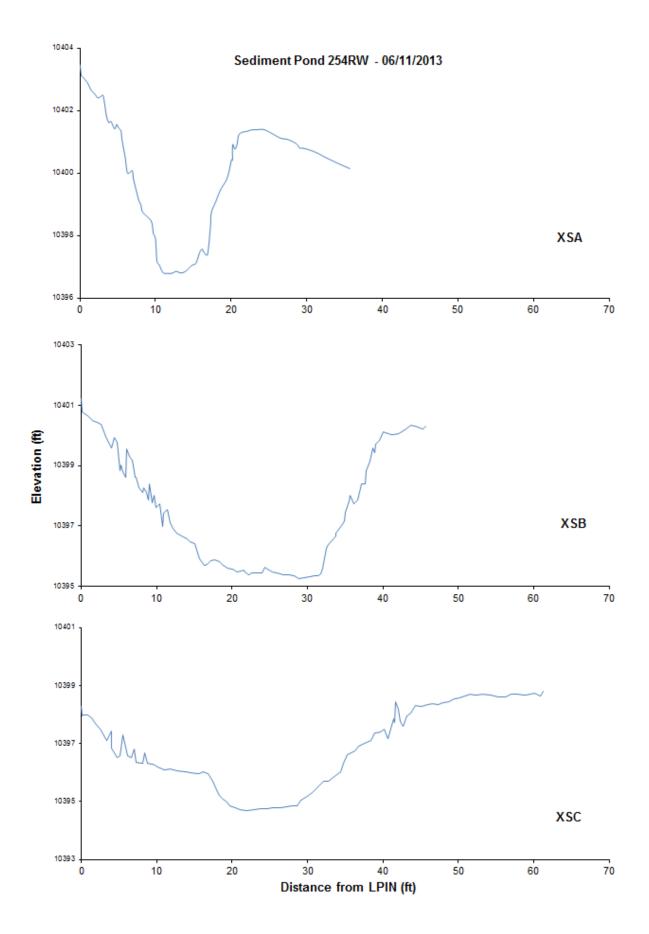

| Site ID |     | Site Visit Dates of Rock Weir Silt Fences on Pikes Peak, 2013 |      |      |      |      |      |      |      |     |      |      |     |      |      |      |      |      |      |
|---------|-----|---------------------------------------------------------------|------|------|------|------|------|------|------|-----|------|------|-----|------|------|------|------|------|------|
|         | 5/6 | 5/13                                                          | 5/14 | 5/15 | 5/16 | 5/20 | 5/22 | 5/28 | 5/29 | 6/3 | 6/10 | 6/25 | 7/2 | 7/16 | 7/29 | 8/12 | 9/17 | 9/18 | 9/30 |
| 002RW   | Χ   |                                                               |      |      |      | Χ    |      | Χ    |      |     | Χ    |      | Χ   | Χ    | Χ    | Х    | Χ    |      | Х    |
| 003RW   | Χ   |                                                               |      |      |      | Χ    |      | Χ    |      |     | Χ    |      | Χ   | Χ    | Χ    | Χ    | Χ    |      | Χ    |
| 006RW   | Χ   |                                                               |      | Χ    |      | Χ    |      |      |      |     | Χ    |      | Χ   | Χ    | Χ    | Χ    | Χ    |      | Χ    |
| 008RW   | Χ   |                                                               |      |      |      | Χ    | Χ    |      |      |     | Χ    |      | Χ   | Χ    | Χ    | Χ    | Χ    |      | Χ    |
| 009RA   | Χ   |                                                               | Χ    |      |      | Χ    |      |      |      |     | Χ    |      | Χ   | Χ    | Χ    | Χ    | Χ    |      | Χ    |
| 161RW   | Χ   | Χ                                                             |      |      |      | Χ    |      |      |      |     | Χ    |      | Χ   | Χ    | Χ    | Χ    | Χ    |      | Χ    |
| 162RW   |     |                                                               |      |      | Χ    |      |      |      |      |     | Χ    |      | Χ   | Χ    | Χ    | Χ    |      |      |      |
| 176RW   | Χ   |                                                               |      | Χ    |      | Χ    |      |      |      |     | Χ    |      | Χ   | Χ    | Χ    | Χ    | Χ    | Χ    | Χ    |
| 178RW   | Χ   |                                                               |      | Χ    |      | Χ    |      |      |      |     | Χ    |      | Χ   | Χ    | Χ    | Χ    |      |      |      |
| 179RW   | Χ   |                                                               |      | Χ    |      | Χ    |      |      |      |     | Χ    |      | Χ   | Χ    | Χ    | Χ    |      |      |      |
| 180RW   | Χ   |                                                               |      |      |      | Χ    |      |      |      | Χ   | Χ    |      | Χ   | Χ    | Χ    | Χ    |      |      |      |
| 181RW   | Χ   |                                                               |      |      |      | Χ    |      |      |      |     | Χ    | Χ    | Χ   | Χ    | Χ    | Χ    |      |      |      |
| 200RW   | Χ   |                                                               |      |      |      | Χ    |      |      | Χ    |     | Χ    |      | Χ   | Χ    | Χ    | Χ    | Χ    |      | Χ    |
| 201RW   | Χ   |                                                               |      |      |      | Х    |      |      | X    |     | Χ    |      | Χ   | Χ    | Χ    | X    | Χ    |      | Х    |
| 202RW   | Χ   |                                                               |      |      |      |      | Χ    |      |      |     | Χ    |      | Χ   | Χ    | Χ    | X    | Χ    | Χ    | Χ    |

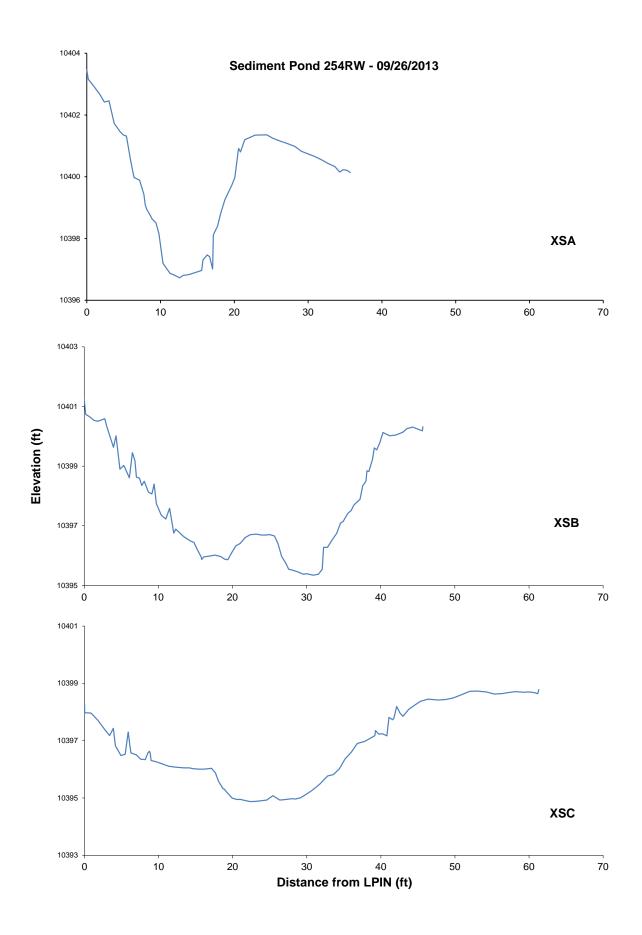

Sediment Accumulation in Rock Weir Silt Fences on Pikes Peak, 2013

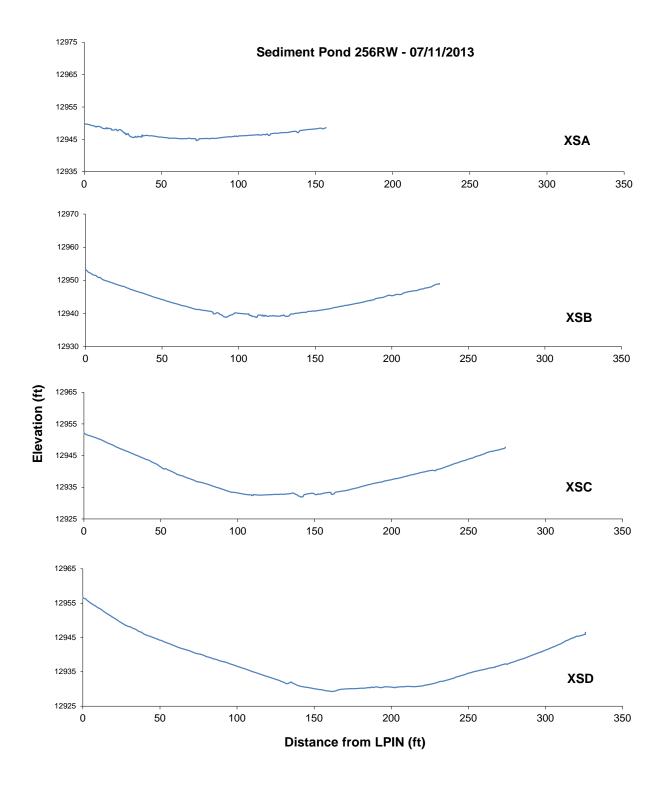

| Site ID                                   | Location   | Date    | Volume<br>(ft <sup>3</sup> ) | Grab<br>Sample |  |  |  |
|-------------------------------------------|------------|---------|------------------------------|----------------|--|--|--|
| 180RW                                     | Silt Fence | 5/6/13  | 0.13                         | Yes            |  |  |  |
| 161RW                                     | Silt Fence | 5/6/13  | 0.07                         | Yes†           |  |  |  |
| 181RW                                     | Silt Fence | 5/20/13 | 0.20                         | Yes            |  |  |  |
| 180RW                                     | Silt Fence | 5/20/13 | 0.13                         | Yes            |  |  |  |
| 162RW Silt Fence 7/16/13 0.07 Yes         |            |         |                              |                |  |  |  |
| 181RW                                     | Silt Fence | 7/16/13 | 0.47                         | Yes†           |  |  |  |
| 181RW                                     | Silt Fence | 8/12/13 | 0.13                         | Yes            |  |  |  |
| † Grab samples selected for lab analysis. |            |         |                              |                |  |  |  |

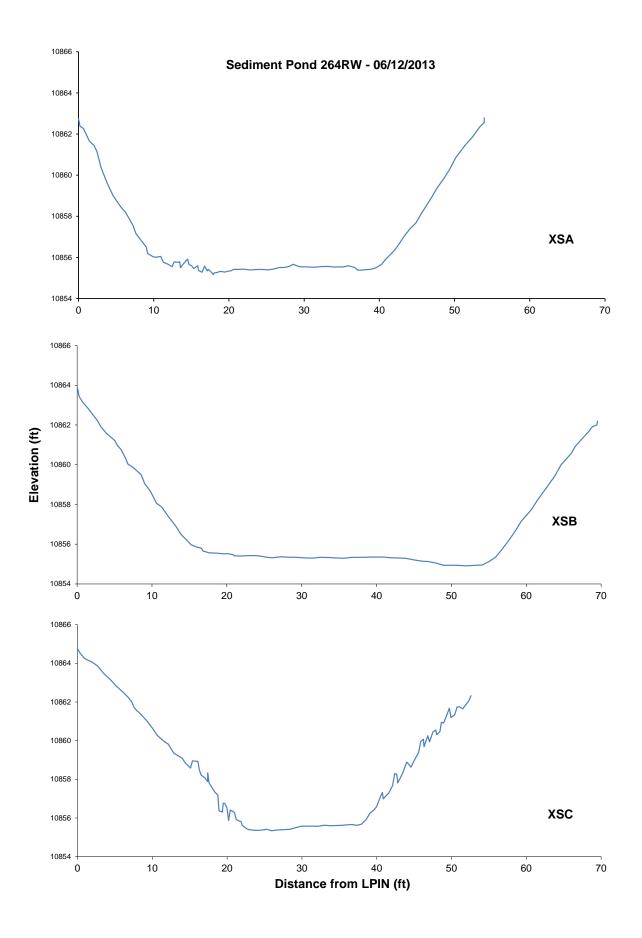

**Rock Weir Sediment Accumulation Values on Pikes Peak, 2013** 

|         |                 | Sur     | vey1                         | Survey 2 |                              |                             |                                        |  |  |  |
|---------|-----------------|---------|------------------------------|----------|------------------------------|-----------------------------|----------------------------------------|--|--|--|
| Site ID | Area (sq<br>ft) | Date    | Average<br>Elevation<br>(ft) | Date     | Average<br>Elevation<br>(ft) | Elevation<br>Change<br>(ft) | Volume<br>Change<br>(ft <sup>3</sup> ) |  |  |  |
| 002RW   | 1679            | 5/28/13 | 8998.10                      |          |                              | ` ,                         | ` '                                    |  |  |  |
| 003RW   | 521             | 5/28/13 | 8992.40                      |          |                              |                             |                                        |  |  |  |
| 006RW   | 798             | 5/15/13 | 8997.15                      |          |                              |                             |                                        |  |  |  |
| 008RW   | 1044            | 5/22/13 | 9499.06                      |          |                              |                             |                                        |  |  |  |
| 009RA   | 905             | 5/14/13 | 9695.90                      |          |                              |                             |                                        |  |  |  |
| 152RW   | 817             | 5/16/13 | 9791.95                      |          |                              |                             |                                        |  |  |  |
| 153RW   | 1568            | 5/14/13 | 9523.39                      |          |                              |                             |                                        |  |  |  |
| 161RW   | 263             | 5/13/13 | 9504.89                      |          |                              |                             |                                        |  |  |  |
| 162RW   | 130             | 5/16/13 | 9512.15                      |          |                              |                             |                                        |  |  |  |
| 176RW   | 372             | 5/15/13 | 10193.88                     | 9/18/13  | 10193.84                     | -0.04                       | -14.35                                 |  |  |  |
| 178RW   | 377             | 5/15/13 | 10202.36                     |          |                              |                             |                                        |  |  |  |
| 179RW   | 792             | 5/15/13 | 10214.67                     |          |                              |                             |                                        |  |  |  |
| 181RW   | 1299            | 6/25/13 | 10252.94                     |          |                              |                             |                                        |  |  |  |
| 200RW   | 412             | 5/29/13 | 9194.57                      | 9/17/13  | 9194.71                      | 0.14                        | 56.56                                  |  |  |  |
| 201RW   | 183             | 5/29/13 | 9588.58                      |          |                              |                             |                                        |  |  |  |
| 202RW   | 179             | 5/22/13 | 9690.61                      | 9/18/13  | 9690.20                      | -0.41                       | -73.73                                 |  |  |  |
| 233RW   | 359             | 6/12/13 | 11902.43                     |          |                              |                             |                                        |  |  |  |
| 241RW   | 1015            | 8/6/13  | 12551.61                     |          |                              |                             |                                        |  |  |  |
| 250RW   | 598             | 5/28/13 | 10117.27                     | 9/26/13  | 10117.38                     | 0.11                        | 63.10                                  |  |  |  |




† Cross section placed on cut slope above rock weir









### Appendix K

### Rock Weir and Sediment Pond

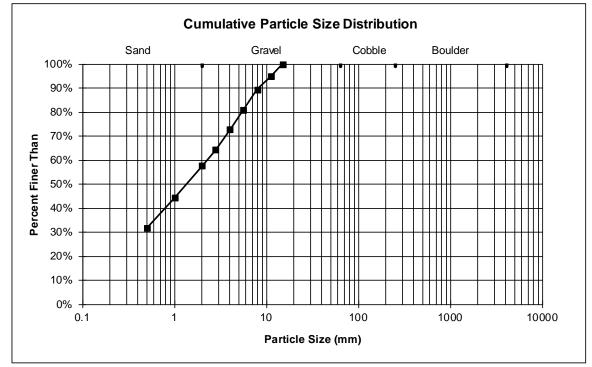
## Particle Size Distribution Summary and Graphs

2012 and 2013

## Summary of Rock Weir and Silt Fence Particle Size Distribution from Sieve Analysis of Grab Samples on Pikes Peak, 2012 and 2013

|                                |                    |           | Particl | e Size Disti | ribution–Gı | ab Sample | s 2012 and | I 2013 |
|--------------------------------|--------------------|-----------|---------|--------------|-------------|-----------|------------|--------|
| Site Name                      | ID                 | Date      | D15     | D35          | D50         | D84       | D95        | D100   |
| Pikes Peak Highway - Rock Weir | 008RW - Silt Fence | 8/20/2012 | 0.039   | 0.602        | 1.342       | 6.375     | 11.279     | 15.0   |
| Pikes Peak Highway - Rock Weir | 176RW - Silt Fence | 8/20/2012 | 0.017   | 0.116        | 0.499       | 1.635     | 3.596      | 14.0   |
| Pikes Peak Highway - Rock Weir | 199RW - Rock Weir  | 9/13/2012 | 0.084   | 1.043        | 2.046       | 5.524     | 9.087      | 15.0   |
| Pikes Peak Highway - Rock Weir | 202RW - Rock Weir  | 6/11/2012 | 0.082   | 0.804        | 1.376       | 3.873     | 6.965      | 21.0   |
| Pikes Peak Highway - Rock Weir | 237RW - Rock Weir  | 5/23/2012 | 0.048   | 0.722        | 1.462       | 4.335     | 8.802      | 12.0   |
| Pikes Peak Highway - Rock Weir | 252RW - Rock Weir  | 5/23/2012 | 0.067   | 0.653        | 1.003       | 3.106     | 5.277      | 14.0   |
| Pikes Peak Highway - Rock Weir | 256RW - Rock Weir  | 7/3/2012  | 0.029   | 0.408        | 0.938       | 4.363     | 7.322      | 21.0   |
| Pikes Peak Highway - Rock Weir | 161RW - Silt Fence | 5/6/2013  | 0.069   | 0.748        | 1.422       | 6.235     | 14.674     | 22.0   |
| Pikes Peak Highway - Rock Weir | 161RW - Rock Weir  | 5/13/2013 | 0.119   | 1.008        | 1.856       | 5.346     | 9.687      | 16.0   |
| Pikes Peak Highway - Rock Weir | 181RW - Silt Fence | 7/16/2013 | 0.139   | 1.388        | 2.463       | 5.339     | 9.120      | 15.0   |
| Pikes Peak Highway - Rock Weir | 241RW - Rock Weir  | 8/6/2013  | 0.691   | 2.142        | 4.035       | 33.142    | 39.003     | 42.0   |
| Pikes Peak Highway - Rock Weir | 254RW - Rock Weir  | 9/26/2013 | 0.035   | 0.532        | 0.883       | 3.027     | 7.264      | 22.0   |
| Pikes Peak Highway - Rock Weir | 264RW - Rock Weir  | 6/12/2013 | 0.015   | 0.085        | 0.320       | 2.257     | 4.224      | 10.0   |

| Size Finer  | Wt. on     | % of Total    | % Finer  |
|-------------|------------|---------------|----------|
| Than (mm)   | Sieve      |               | Than     |
| Pan         | 207.70     | 31.6%         |          |
| 0.5         | 83.80      | 12.7%         | 31.6%    |
| 1.0         | 87.90      | 13.4%         | 44.3%    |
| 2.0         | 43.40      | 6.6%          | 57.7%    |
| 2.8         | 55.70      | 8.5%          | 64.3%    |
| 4.0         | 53.70      | 8.2%          | 72.8%    |
| 5.6         | 55.80      | 8.5%          | 80.9%    |
| 8.0         | 36.00      | 5.5%          | 89.4%    |
| 11.2        | 33.70      | 5.1%          | 94.9%    |
| 15.0        | *          |               | 100.0%   |
| 22.4        |            |               | -        |
| 32.0        |            |               |          |
| 45.0        |            |               |          |
| 64.0        |            |               |          |
| 90          |            |               |          |
| 128         |            |               |          |
| 181         |            |               |          |
| 256         |            |               |          |
| 362         |            |               |          |
| 512         |            |               |          |
| 1024        |            |               |          |
| 2048        |            |               |          |
| 4096        |            |               |          |
|             |            |               |          |
| Total       | 657.70     |               |          |
| *Magaurad w | alua af th | a largest nor | tiala in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Rock Weir

ID NUMBER: 008RW Silt fence
DATE: 8/20/2012
CREW: VonLoh, Willis

| D15   | D35   | D50   | D84   | D95    | Lpart |
|-------|-------|-------|-------|--------|-------|
| 0.039 | 0.602 | 1.342 | 6.375 | 11.279 | 15.0  |



|            |        | _          |         |
|------------|--------|------------|---------|
| Size Finer | Wt. on | % of Total |         |
| Than (mm)  | Sieve  |            | Than    |
| Pan        | 265.40 | 50.0%      |         |
| 0.5        | 108.00 | 20.4%      | 50.0%   |
| 1.0        | 102.00 | 19.2%      | 70.4%   |
| 2.0        | 16.60  | 3.1%       | 89.6%   |
| 2.8        | 17.20  | 3.2%       | 92.7%   |
| 4.0        | 10.00  | 1.9%       | 96.0%   |
| 5.6        | 7.60   | 1.4%       | 97.9%   |
| 8.0        | 1.70   | 0.3%       | 99.3%   |
| 11.2       | 2.10   | 0.4%       | 99.6%   |
| 14.0       | *      |            | 100.0%  |
| 22.4       |        |            | -       |
| 32.0       |        |            |         |
| 45.0       |        |            |         |
| 64.0       |        |            |         |
| 90         |        |            |         |
| 128        |        |            |         |
| 181        |        |            |         |
| 256        |        |            |         |
| 362        |        |            |         |
| 512        |        |            |         |
| 1024       |        |            |         |
| 2048       |        |            |         |
| 4096       |        |            |         |
|            |        |            |         |
| Total      | 530.60 | - 1        | tala ta |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Rock Weir

ID NUMBER: 176RW Silt Fence
DATE: 8/20/2012

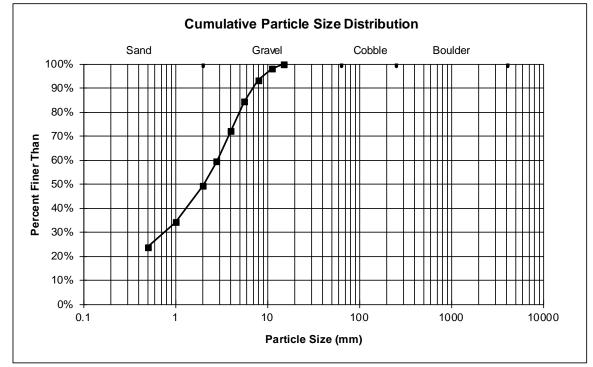
CREW: VonLoh, Willis

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.017 | 0.116 | 0.499 | 1.635 | 3.596 | 14.0  |



| Size Finer       | Wt. on | % of Total    |          |
|------------------|--------|---------------|----------|
| Than (mm)        | Sieve  |               | Than     |
| Pan              | 200.80 | 23.7%         |          |
| 0.5              | 87.80  | 10.4%         | 23.7%    |
| 1.0              | 129.30 | 15.3%         | 34.1%    |
| 2.0              | 84.50  | 10.0%         | 49.3%    |
| 2.8              | 109.20 | 12.9%         | 59.3%    |
| 4.0              | 104.20 | 12.3%         | 72.2%    |
| 5.6              | 73.50  | 8.7%          | 84.5%    |
| 8.0              | 40.80  | 4.8%          | 93.2%    |
| 11.2             | 17.00  | 2.0%          | 98.0%    |
| 15.0             | *      |               | 100.0%   |
| 22.4             |        |               | -        |
| 32.0             |        |               |          |
| 45.0             |        |               |          |
| 64.0             |        |               |          |
| 90               |        |               |          |
| 128              |        |               |          |
| 181              |        |               |          |
| 256              |        |               |          |
| 362              |        |               |          |
| 512              |        |               |          |
| 1024             |        |               |          |
| 2048             |        |               |          |
| 4096             |        |               |          |
|                  |        |               |          |
| Total            | 847.10 |               |          |
| *N/00001100d 1/1 |        | a largage par | tiala in |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight


**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Sediment Pond

ID NUMBER: 199RW Weir Sample DATE: 9/13/2012

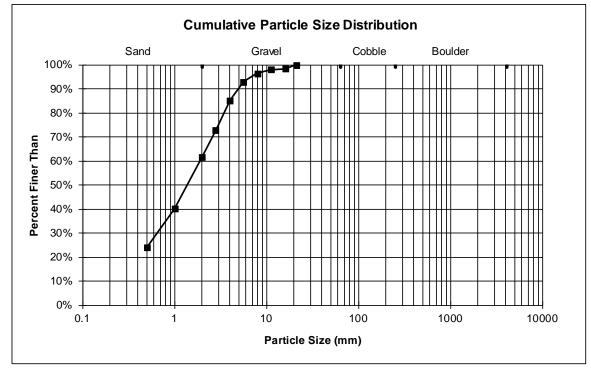
DATE: 9/13/2012
CREW: VonLoh, Willis

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.084 | 1.043 | 2.046 | 5.524 | 9.087 | 15.0  |



| Size Finer | Wt. on | % of Total |         |
|------------|--------|------------|---------|
| Than (mm)  | Sieve  |            | Than    |
| Pan        | 193.70 | 23.9%      |         |
| 0.5        | 130.60 | 16.1%      | 23.9%   |
| 1.0        | 174.40 | 21.5%      | 40.1%   |
| 2.0        | 89.90  | 11.1%      | 61.6%   |
| 2.8        | 100.30 | 12.4%      | 72.7%   |
| 4.0        | 62.50  | 7.7%       | 85.1%   |
| 5.6        | 28.50  | 3.5%       | 92.8%   |
| 8.0        | 13.40  | 1.7%       | 96.4%   |
| 11.2       | 2.50   | 0.3%       | 98.0%   |
| 16.0       | 13.50  | 1.7%       | 98.3%   |
| 21.0       | *      |            | 100.0%  |
| 32.0       |        |            | -       |
| 45.0       |        |            |         |
| 64.0       |        |            |         |
| 90         |        |            |         |
| 128        |        |            |         |
| 181        |        |            |         |
| 256        |        |            |         |
| 362        |        |            |         |
| 512        |        |            |         |
| 1024       |        |            |         |
| 2048       |        |            |         |
| 4096       |        |            |         |
|            |        |            |         |
| Total      | 809.30 |            |         |
| *1.4       | -14.   | _          | ما ماما |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight


**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Rock Weir

ID NUMBER: 202RW Weir Sample

DATE: 6/11/2012 CREW: VonLoh, Willis

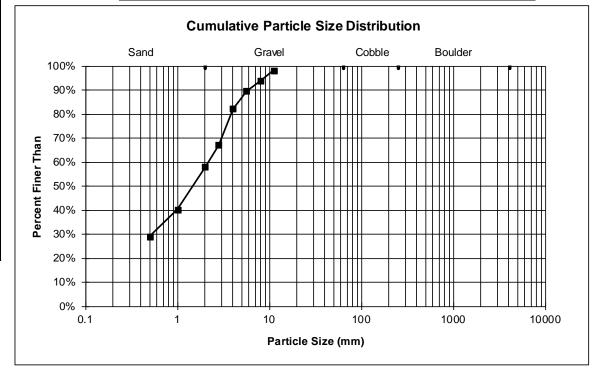
| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.082 | 0.804 | 1.376 | 3.873 | 6.965 | 21.0  |



| -          |        |            |         |
|------------|--------|------------|---------|
| Size Finer | Wt. on | % of Total |         |
| Than (mm)  | Sieve  |            | Than    |
| Pan        | 218.10 | 29.1%      |         |
| 0.5        | 84.20  | 11.2%      | 29.1%   |
| 1.0        | 133.20 | 17.7%      | 40.3%   |
| 2.0        | 68.50  | 9.1%       | 58.0%   |
| 2.8        | 113.30 | 15.1%      | 67.1%   |
| 4.0        | 55.20  | 7.4%       | 82.2%   |
| 5.6        | 31.20  | 4.2%       | 89.6%   |
| 8.0        | 33.00  | 4.4%       | 93.8%   |
| 11.2       | 13.90  | 1.9%       | 98.1%   |
| 12.0       | *      |            | 100.0%  |
| 22.4       |        |            | -       |
| 32.0       |        |            |         |
| 45.0       |        |            |         |
| 64.0       |        |            |         |
| 90         |        |            |         |
| 128        |        |            |         |
| 181        |        |            |         |
| 256        |        |            |         |
| 362        |        |            |         |
| 512        |        |            |         |
| 1024       |        |            |         |
| 2048       |        |            |         |
| 4096       |        |            |         |
|            |        |            |         |
| Total      | 750.60 |            | 1-1- 1- |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

Grab Sample of 2012 Sediment Accumulation COMMENTS:


Pike's Peak Highway - Rock Weir SITE NAME:

237RW Weir Sample ID NUMBER: DATE: 5/23/2012 VonLoh, Willis

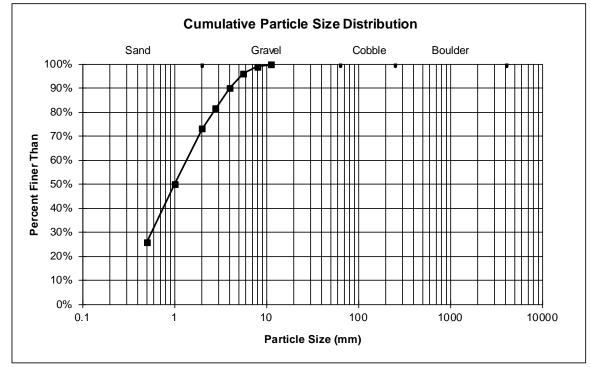
**Particle Size** Distribution (mm)

CREW:

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.048 | 0.722 | 1.462 | 4.335 | 8.802 | 12.0  |



| -          |        |            |        |
|------------|--------|------------|--------|
| Size Finer | Wt. on | % of Total |        |
| Than (mm)  | Sieve  |            | Than   |
| Pan        | 224.60 | 25.7%      |        |
| 0.5        | 212.10 | 24.2%      | 25.7%  |
| 1.0        | 202.50 | 23.1%      | 49.9%  |
| 2.0        | 74.20  | 8.5%       | 73.0%  |
| 2.8        | 74.80  | 8.5%       | 81.5%  |
| 4.0        | 52.50  | 6.0%       | 90.1%  |
| 5.6        | 24.00  | 2.7%       | 96.1%  |
| 8.0        | 8.30   | 0.9%       | 98.8%  |
| 11.2       | 2.20   | 0.3%       | 99.7%  |
| 14.0       | *      |            | 100.0% |
| 22.4       |        |            | -      |
| 32.0       |        |            |        |
| 45.0       |        |            |        |
| 64.0       |        |            |        |
| 90         |        |            |        |
| 128        |        |            |        |
| 181        |        |            |        |
| 256        |        |            |        |
| 362        |        |            |        |
| 512        |        |            |        |
| 1024       |        |            |        |
| 2048       |        |            |        |
| 4096       |        |            |        |
|            |        |            |        |
| Total      | 875.20 |            |        |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Rock Weir ID NUMBER: 252RW Weir Sample

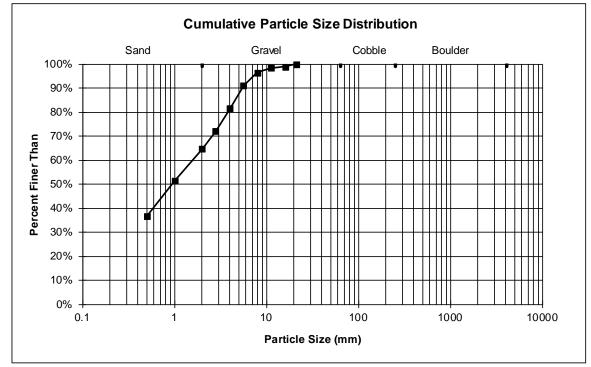
ID NUMBER: 252RW Weir Sa
DATE: 5/23/2012
CREW: VonLoh, Willis

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.067 | 0.653 | 1.003 | 3.106 | 5.277 | 14.0  |



|                |            | _             | _       |
|----------------|------------|---------------|---------|
| Size Finer     | Wt. on     | % of Total    | % Finer |
| Than (mm)      | Sieve      |               | Than    |
| Pan            | 313.60     | 36.5%         |         |
| 0.5            | 127.40     | 14.8%         | 36.5%   |
| 1.0            | 113.70     | 13.2%         | 51.4%   |
| 2.0            | 64.10      | 7.5%          | 64.6%   |
| 2.8            | 81.30      | 9.5%          | 72.1%   |
| 4.0            | 81.10      | 9.4%          | 81.6%   |
| 5.6            | 45.60      | 5.3%          | 91.0%   |
| 8.0            | 16.60      | 1.9%          | 96.3%   |
| 11.2           | 4.60       | 0.5%          | 98.3%   |
| 16.0           | 10.40      | 1.2%          | 98.8%   |
| 21.0           | *          |               | 100.0%  |
| 32.0           |            |               | -       |
| 45.0           |            |               |         |
| 64.0           |            |               |         |
| 90             |            |               |         |
| 128            |            |               |         |
| 181            |            |               |         |
| 256            |            |               |         |
| 362            |            |               |         |
| 512            |            |               |         |
| 1024           |            |               |         |
| 2048           |            |               |         |
| 4096           |            |               |         |
|                |            |               |         |
| Total          | 858.40     |               |         |
| *1./1000urod v | alua af th | a largast par | iala in |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight


**COMMENTS:** Grab Sample of 2012 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Rock Weir

ID NUMBER: 256RW Weir Sample DATE: 7/3/2012

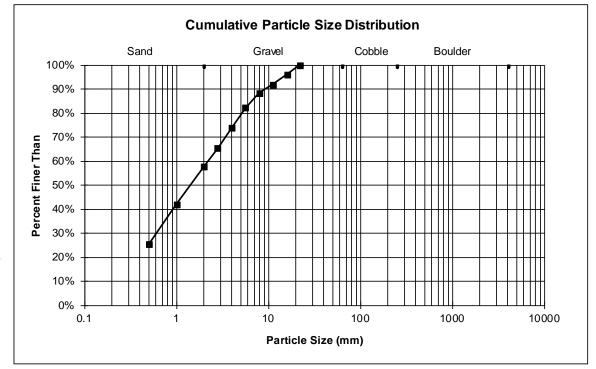
CREW: VonLoh, Willis

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.029 | 0.408 | 0.938 | 4.363 | 7.322 | 21.0  |



| -          |        |            |         |
|------------|--------|------------|---------|
| Size Finer | Wt. on | % of Total |         |
| Than (mm)  | Sieve  |            | Than    |
| Pan        | 172.50 | 25.3%      |         |
| 0.5        | 114.10 | 16.7%      | 25.3%   |
| 1.0        | 107.60 | 15.8%      | 42.0%   |
| 2.0        | 51.30  | 7.5%       | 57.8%   |
| 2.8        | 59.20  | 8.7%       | 65.3%   |
| 4.0        | 55.90  | 8.2%       | 74.0%   |
| 5.6        | 41.90  | 6.1%       | 82.2%   |
| 8.0        | 24.80  | 3.6%       | 88.3%   |
| 11.2       | 27.70  | 4.1%       | 91.9%   |
| 16.0       | 27.40  | 4.0%       | 96.0%   |
| 22.0       | *      |            | 100.0%  |
| 32.0       |        |            | -       |
| 45.0       |        |            |         |
| 64.0       |        |            |         |
| 90         |        |            |         |
| 128        |        |            |         |
| 181        |        |            |         |
| 256        |        |            |         |
| 362        |        |            |         |
| 512        |        |            |         |
| 1024       |        |            |         |
| 2048       |        |            |         |
| 4096       |        |            |         |
|            |        |            |         |
| Total      | 682.40 |            | 1-1- 1- |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight


**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Rock Weir

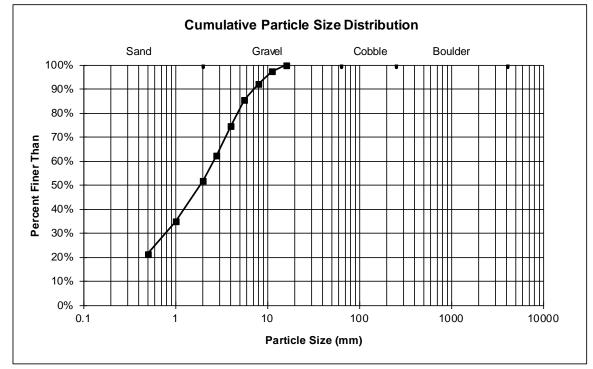
ID NUMBER: 161RW Silt Fence DATE: 5/6/2013

CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95    | Lpart |
|-------|-------|-------|-------|--------|-------|
| 0.069 | 0.748 | 1.422 | 6.235 | 14.674 | 22.0  |



| -          |        |            |        |
|------------|--------|------------|--------|
| Size Finer | Wt. on | % of Total |        |
| Than (mm)  | Sieve  |            | Than   |
| Pan        | 135.30 | 21.3%      |        |
| 0.5        | 85.80  | 13.5%      | 21.3%  |
| 1.0        | 108.20 | 17.0%      | 34.8%  |
| 2.0        | 67.00  | 10.5%      | 51.8%  |
| 2.8        | 78.20  | 12.3%      | 62.4%  |
| 4.0        | 68.50  | 10.8%      | 74.7%  |
| 5.6        | 41.50  | 6.5%       | 85.5%  |
| 8.0        | 33.30  | 5.2%       | 92.0%  |
| 11.2       | 17.40  | 2.7%       | 97.3%  |
| 16.0       | *      |            | 100.0% |
| 22.4       |        |            | -      |
| 32.0       |        |            |        |
| 45.0       |        |            |        |
| 64.0       |        |            |        |
| 90         |        |            |        |
| 128        |        |            |        |
| 181        |        |            |        |
| 256        |        |            |        |
| 362        |        |            |        |
| 512        |        |            |        |
| 1024       |        |            |        |
| 2048       |        |            |        |
| 4096       |        |            |        |
|            |        |            |        |
| Total      | 635.20 |            |        |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Rock Weir

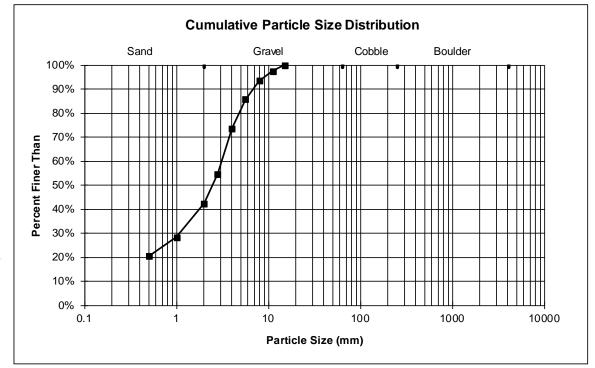
ID NUMBER: 161RW Weir
DATE: 5/13/2013
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.119 | 1.008 | 1.856 | 5.346 | 9.687 | 16.0  |



| -          |        |            |         |
|------------|--------|------------|---------|
| Size Finer | Wt. on | % of Total |         |
| Than (mm)  | Sieve  |            | Than    |
| Pan        | 123.50 | 20.4%      |         |
| 0.5        | 48.70  | 8.0%       | 20.4%   |
| 1.0        | 84.30  | 13.9%      | 28.4%   |
| 2.0        | 75.10  | 12.4%      | 42.3%   |
| 2.8        | 114.30 | 18.9%      | 54.7%   |
| 4.0        | 73.50  | 12.1%      | 73.6%   |
| 5.6        | 46.90  | 7.7%       | 85.7%   |
| 8.0        | 23.90  | 3.9%       | 93.5%   |
| 11.2       | 15.70  | 2.6%       | 97.4%   |
| 15.0       | *      |            | 100.0%  |
| 22.4       |        |            | -       |
| 32.0       |        |            |         |
| 45.0       |        |            |         |
| 64.0       |        |            |         |
| 90         |        |            |         |
| 128        |        |            |         |
| 181        |        |            |         |
| 256        |        |            |         |
| 362        |        |            |         |
| 512        |        |            |         |
| 1024       |        |            |         |
| 2048       |        |            |         |
| 4096       |        |            |         |
|            |        |            |         |
| Total      | 605.90 |            | 1-1- 1- |

<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight


**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Rock Weir

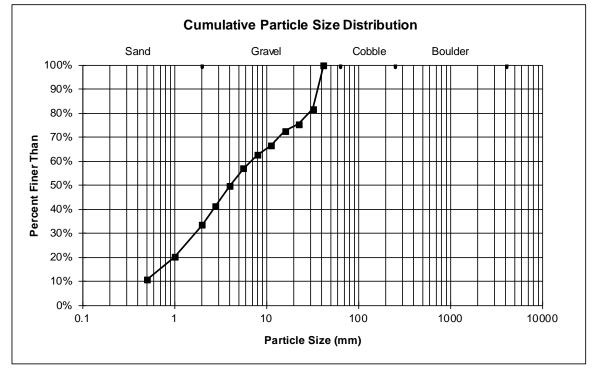
ID NUMBER: 181RW Silt Fence

DATE: 7/16/2013
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.139 | 1.388 | 2.463 | 5.339 | 9.120 | 15.0  |



|            | <del></del> |            |         |
|------------|-------------|------------|---------|
| Size Finer | Wt. on      | % of Total |         |
| Than (mm)  | Sieve       |            | Than    |
| Pan        | 72.60       | 10.6%      |         |
| 0.5        | 64.40       | 9.4%       | 10.6%   |
| 1.0        | 91.30       | 13.3%      | 20.0%   |
| 2.0        | 54.80       | 8.0%       | 33.4%   |
| 2.8        | 57.80       | 8.4%       | 41.4%   |
| 4.0        | 48.10       | 7.0%       | 49.8%   |
| 5.6        | 39.40       | 5.8%       | 56.8%   |
| 8.0        | 25.90       | 3.8%       | 62.6%   |
| 11.2       | 42.50       | 6.2%       | 66.4%   |
| 16.0       | 19.30       | 2.8%       | 72.6%   |
| 22.4       | 42.50       | 6.2%       | 75.4%   |
| 32.0       | 125.70      | 18.4%      | 81.6%   |
| 42.0       | *           |            | 100.0%  |
| 64.0       |             |            | -       |
| 90         |             |            |         |
| 128        |             |            |         |
| 181        |             |            |         |
| 256        |             |            |         |
| 362        |             |            |         |
| 512        |             |            |         |
| 1024       |             |            |         |
| 2048       |             |            |         |
| 4096       |             |            |         |
|            |             |            |         |
| Total      | 684.30      |            | 1-1- 1- |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

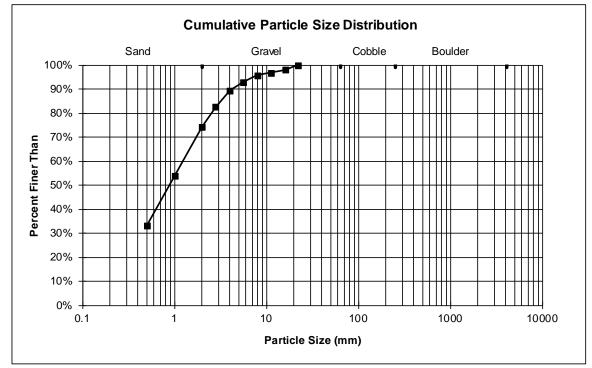
SITE NAME: Pike's Peak Highway - Rock Weir

ID NUMBER: 241RW Weir
DATE: 8/6/2013
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84    | D95    | Lpart |
|-------|-------|-------|--------|--------|-------|
| 0.691 | 2.142 | 4.035 | 33.142 | 39.003 | 42.0  |



| Size Finer  | Wt. on     | % of Total     | % Finer |
|-------------|------------|----------------|---------|
| Than (mm)   | Sieve      |                | Than    |
| Pan         | 204.10     | 33.2%          |         |
| 0.5         | 126.40     | 20.5%          | 33.2%   |
| 1.0         | 127.30     | 20.7%          | 53.7%   |
| 2.0         | 50.00      | 8.1%           | 74.4%   |
| 2.8         | 42.50      | 6.9%           | 82.5%   |
| 4.0         | 21.90      | 3.6%           | 89.4%   |
| 5.6         | 17.30      | 2.8%           | 92.9%   |
| 8.0         | 5.90       | 1.0%           | 95.8%   |
| 11.2        | 7.80       | 1.3%           | 96.7%   |
| 16.0        | 12.40      | 2.0%           | 98.0%   |
| 22.0        | *          |                | 100.0%  |
| 32.0        |            |                | -       |
| 45.0        |            |                |         |
| 64.0        |            |                |         |
| 90          |            |                |         |
| 128         |            |                |         |
| 181         |            |                |         |
| 256         |            |                |         |
| 362         |            |                |         |
| 512         |            |                |         |
| 1024        |            |                |         |
| 2048        |            |                |         |
| 4096        |            |                |         |
|             |            |                |         |
| Total       | 615.60     |                |         |
| *Measured v | alua of th | a largest part | iolo in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

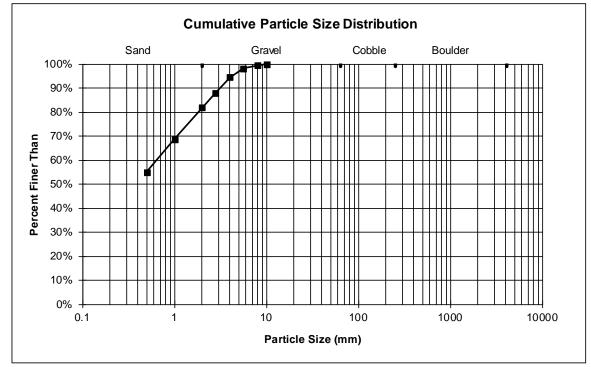
SITE NAME: Pike's Peak Highway - Rock Weir

ID NUMBER: 254RW Weir DATE: 9/26/2013
CREW: VonLoh

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.035 | 0.532 | 0.883 | 3.027 | 7.264 | 22.0  |



|             |            | _             |         |
|-------------|------------|---------------|---------|
| Size Finer  | Wt. on     | % of Total    | % Finer |
| Than (mm)   | Sieve      |               | Than    |
| Pan         | 360.60     | 55.1%         |         |
| 0.5         | 89.70      | 13.7%         | 55.1%   |
| 1.0         | 85.40      | 13.0%         | 68.7%   |
| 2.0         | 40.40      | 6.2%          | 81.8%   |
| 2.8         | 42.20      | 6.4%          | 88.0%   |
| 4.0         | 24.40      | 3.7%          | 94.4%   |
| 5.6         | 8.40       | 1.3%          | 98.1%   |
| 8.0         | 3.90       | 0.6%          | 99.4%   |
| 10.0        | *          |               | 100.0%  |
| 16.0        |            |               | -       |
| 22.4        |            |               |         |
| 32.0        |            |               |         |
| 45.0        |            |               |         |
| 64.0        |            |               |         |
| 90          |            |               |         |
| 128         |            |               |         |
| 181         |            |               |         |
| 256         |            |               |         |
| 362         |            |               |         |
| 512         |            |               |         |
| 1024        |            |               |         |
| 2048        |            |               |         |
| 4096        |            |               |         |
|             |            |               |         |
| Total       | 655.00     |               |         |
| *Magaurad v | alua of th | a largest nor | iolo in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Grab Sample of 2013 Sediment Accumulation

SITE NAME: Pike's Peak Highway - Sediment Pond

ID NUMBER: 264RW Weir
DATE: 6/12/2013
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.015 | 0.085 | 0.320 | 2.257 | 4.224 | 10.0  |

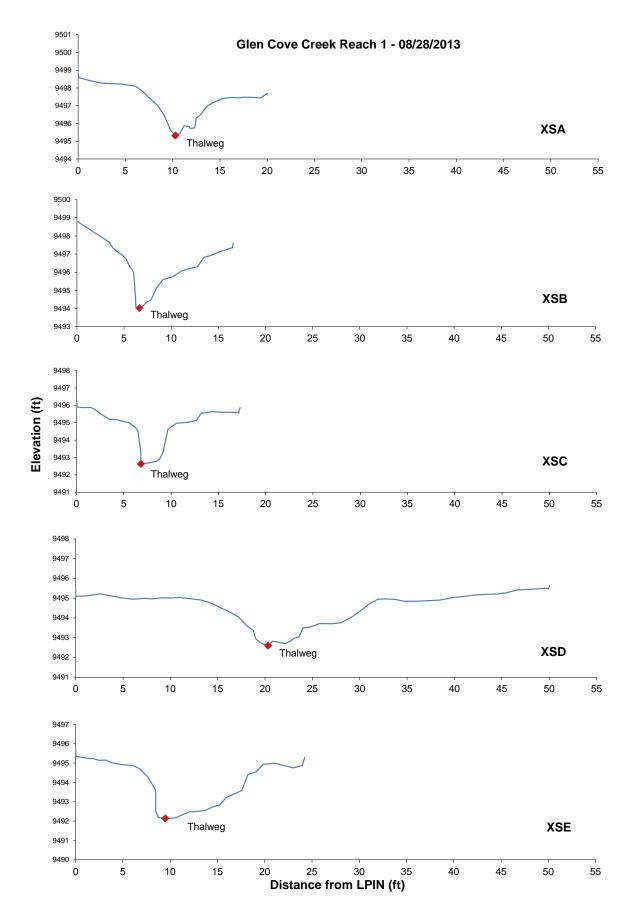


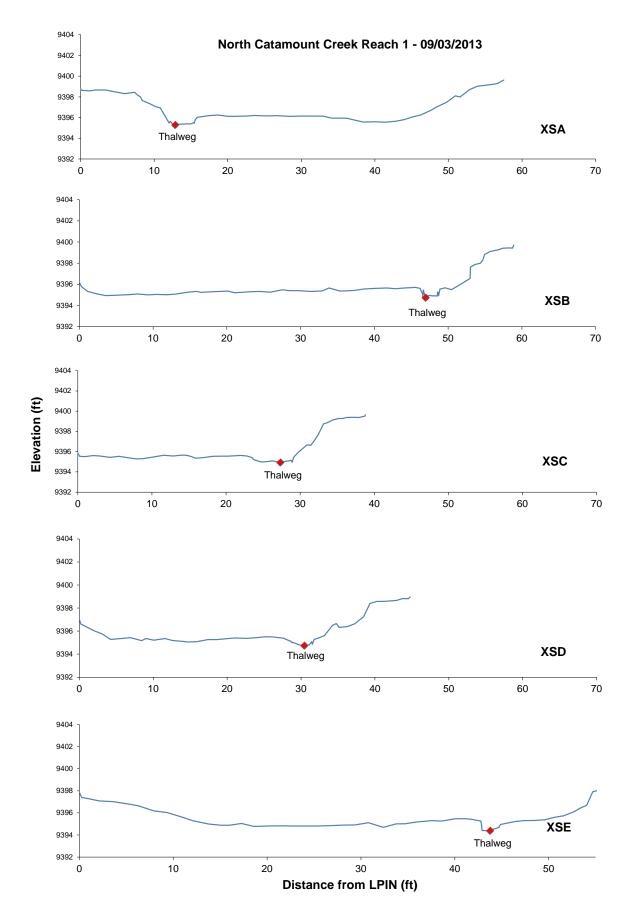
## Appendix L

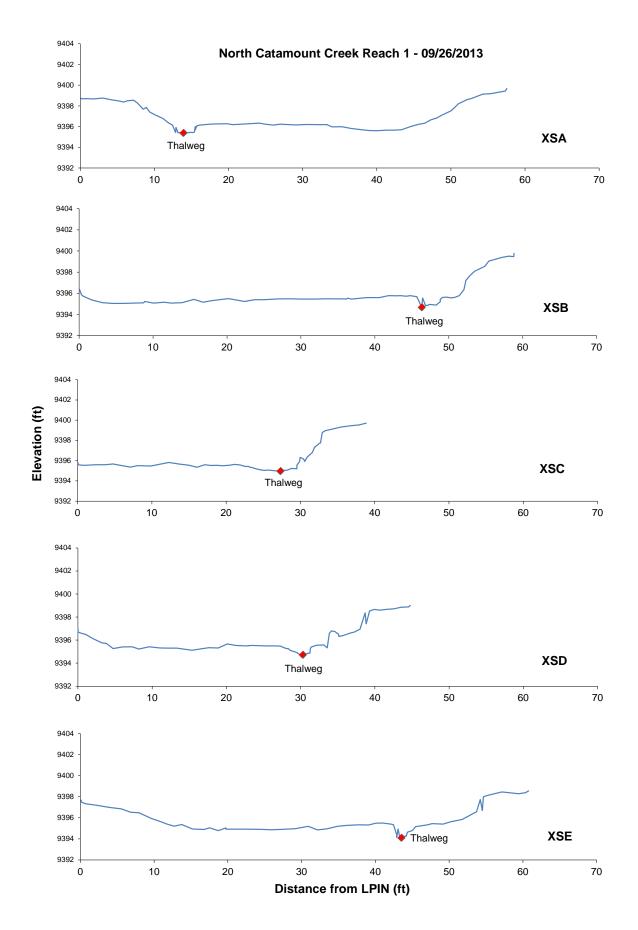
# Sediment Pond Suspended Sediment Data

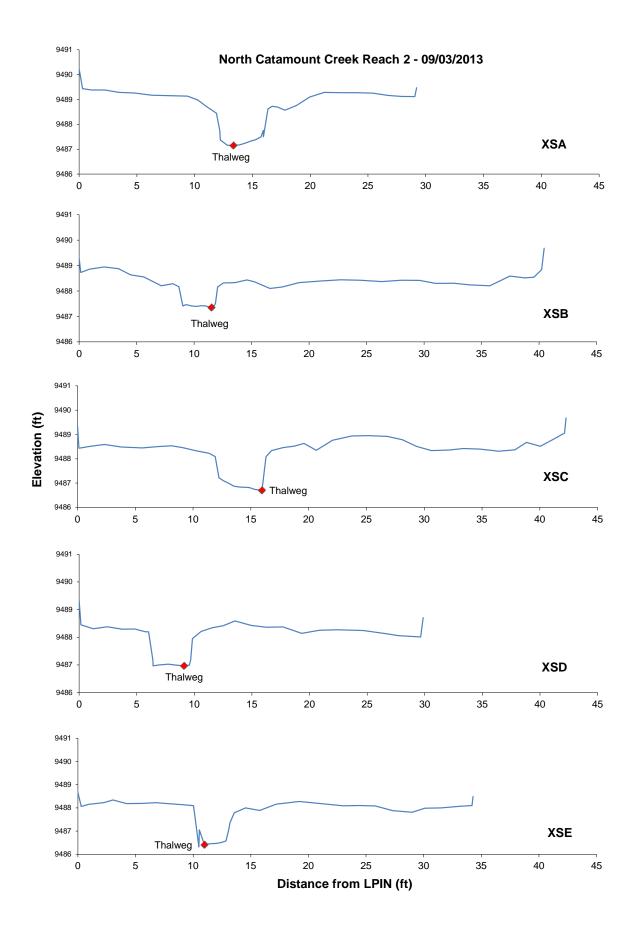
2013

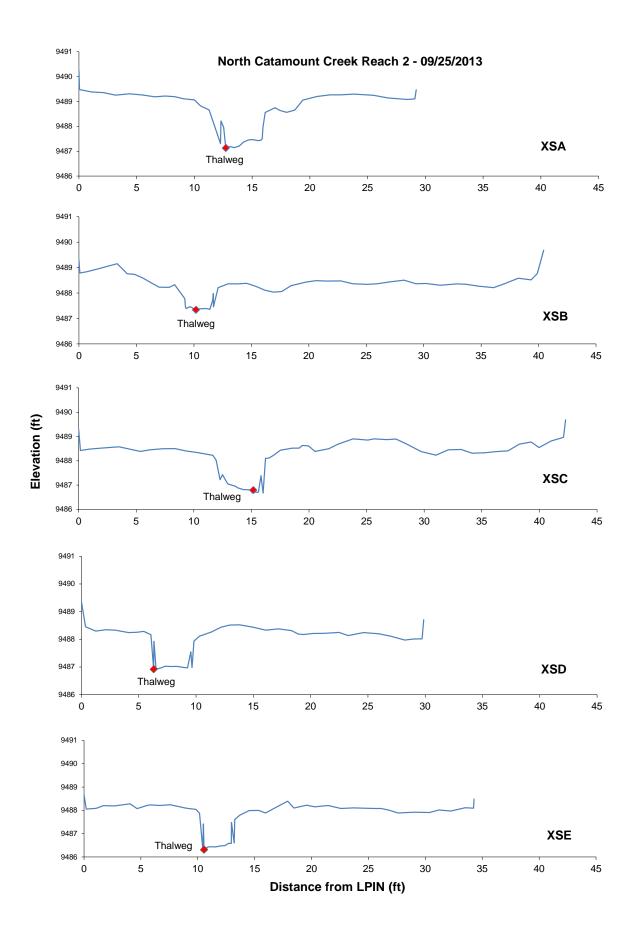
## Summary of Sediment Pond Suspended Sediment Analysis of Grab Samples on Pikes Peak, 2013

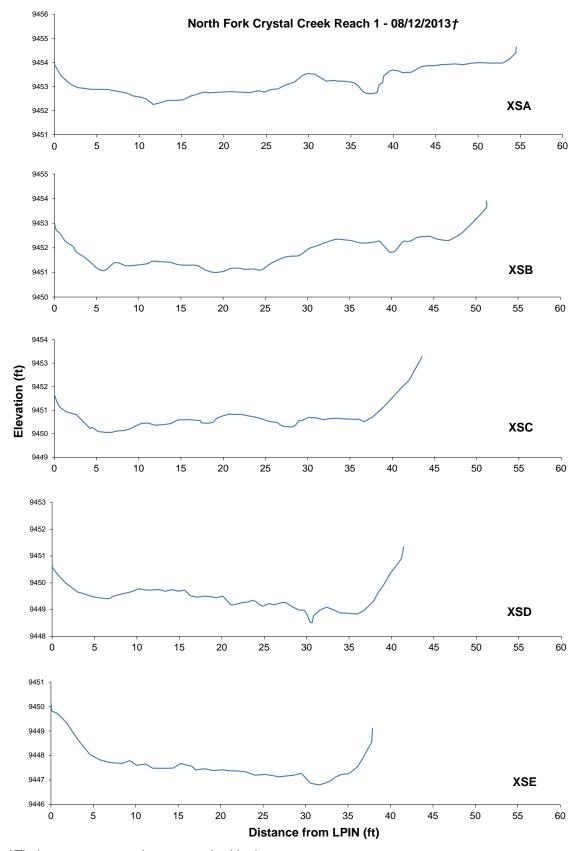

|                                            | _ Volume of              |                  | Dried                | Sediment             |
|--------------------------------------------|--------------------------|------------------|----------------------|----------------------|
| Site ID                                    | Date                     | Sample (L)       | Sediment             | Sample               |
|                                            | 7/2/22/2                 |                  | Weight (mg)          | Total (mg/L)         |
| 199RW Entrance Culvert                     | 5/8/2013                 | 0.99             | 40.00                | 40.40                |
| 199RW Above Sed Pond<br>199RW Exit Culvert | 5/8/2013                 | 1.04             | 35.00                | 33.70                |
| 199RW Exit Culvert                         | <b>5/8/2013</b> 7/1/2013 | <b>1.00</b> 0.98 | <b>0.70</b><br>78.70 | <b>0.70</b><br>80.30 |
| 199RW Above Sed Pond                       | 7/1/2013                 | 0.90             | 113.40               | 126.00               |
| 199RW Exit Culvert                         | 7/1/2013                 | 0.96             | 5.40                 | 5.60                 |
| 199RW Entrance Culvert                     | 7/10/2013                | 1.05             | 30.80                | 29.33                |
| 199RW Above Sed Pond                       | 7/10/2013                | 1.05             | 31.70                | 30.19                |
| 199RW Exit Culvert                         | 7/10/2013                | 0.97             | 15.40                | 15.87                |
| 199RW Entrance Culvert                     | 7/15/2013                | 1.00             | 19.60                | 19.60                |
| 199RW Above Sed Pond                       | 7/15/2013                | 1.04             | 26.60                | 25.57                |
| 199RW Exit Culvert                         | 7/15/2013                | 1.00             | 25.10                | 25.10                |
| 199RW Entrance Culvert                     | 7/29/2013                | 1.10             | 124.60               | 113.27               |
| 199RW Above Sed Pond                       | 7/29/2013                | 1.15             | 101.30               | 88.08                |
| 199RW Exit Culvert                         | 7/29/2013                | 0.96             | 5.80                 | 6.04                 |
| 199RW Entrance Culvert                     | 8/12/2013                | 1.06             | 185.60               | 175.09               |
| 199RW Above Sed Pond                       | 8/12/2013                | 1.00             | 200.50               | 200.50               |
| 199RW Exit Culvert                         | 8/12/2013                | 0.97             | 10.30                | 10.61                |
| 199RW Entrance Culvert                     | 9/11/2013                | 0.99             | 37.80                | 38.18                |
| 199RW Above Sed Pond                       | 9/11/2013                | 0.99             | 23.80                | 24.04                |
| 199RW Exit Culvert                         | 9/11/2013                | 1.01             | 36.00                | 35.64                |
| 199RW Entrance Culvert                     | 9/23/2013                | 1.04             | 2.80                 | 2.69                 |
| 199RW Above Sed Pond                       | 9/23/2013                | 1.02             | 10.70                | 10.49                |
| 199RW Exit Culvert                         | 9/23/2013                | 0.98             | 7.10                 | 7.24                 |
| 237RW Entrance Culvert                     | 7/1/2013                 | 1.01             | 249.50               | 247.00               |
| 237RW Exit Culvert                         | 7/1/2013                 | 1.00             | 8.20                 | 8.20                 |
| 237RW Entrance Culvert                     | 7/15/2013                | 0.96             | 62.00                | 64.58                |
| 237RW Exit Culvert                         | 7/15/2013                | 0.96             | 10.70                | 11.14                |
| 237RW Entrance Culvert                     | 8/5/2013                 | 1.00             | 420.60               | 420.60               |
| 237RW Exit Culvert                         | 8/5/2013                 | 1.05             | 8.60                 | 8.19                 |
| 237RW Entrance Culvert                     | 9/11/2013                | 1.00             | 21.80                | 21.80                |
| 237RW Exit Culvert                         | 9/11/2013                | 1.01             | 13.00                | 12.87                |
| 262RW Entrance Culvert                     | 7/1/2013                 | 1.05             | 597.60               | 569.10               |
| 262RW Above Sed Pond                       | 7/1/2013                 | 0.97             | 501.30               | 516.80               |
| 262RW Exit Culvert                         | 7/1/2013                 | 1.00             | 93.50                | 93.50                |
| 262RW Entrance Culvert                     | 7/15/2013                | 1.03             | 11.10                | 10.77                |
| 262RW Above Sed Pond                       | 7/15/2013                | 1.00             | 18.30                | 18.30                |
| 262RW Exit Culvert                         | 7/15/2013                | 0.98             | 63.50                | 64.79                |
| 262RW Entrance Culvert                     | 8/5/2013                 | 1.00             | 81.10                | 81.10                |
| 262RW Above Sed Pond                       | 8/5/2013                 | 1.05             | 68.50                | 65.23                |
| 262RW Exit Culvert                         | 8/5/2013                 | 1.05             | 23.60                | 22.47                |
| 262RW Entrance Culvert                     | 9/11/2013                | 0.97             | 20.20                | 20.82                |
| 262RW Above Sed Pond                       | 9/11/2013                | 1.00             | 23.90                | 23.90                |
| 262RW Exit Culvert                         | 9/11/2013                | 1.02             | 30.60                | 30.00                |
| ZUZINV LAIL GUIVEIL                        | 3/11/2013                | 1.02             | 30.00                | 30.00                |


## Appendix M

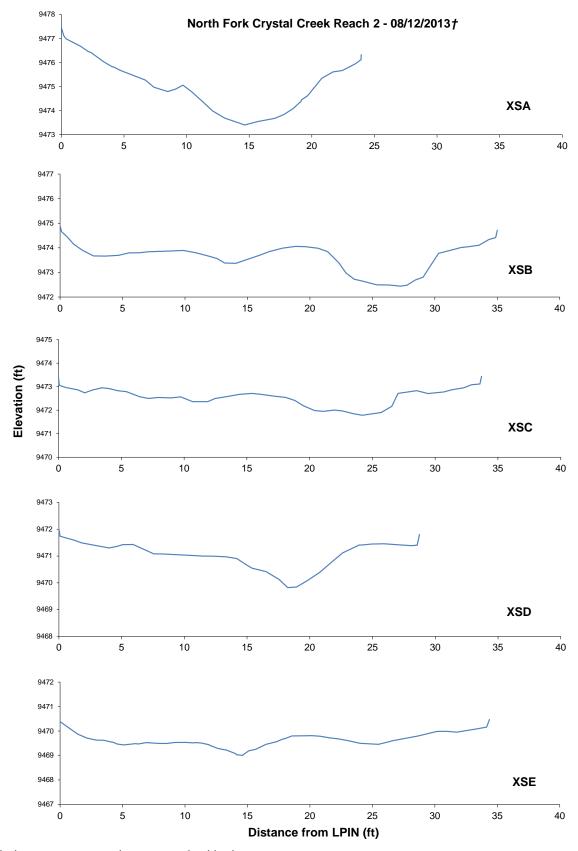

Stream Channel


**Cross Section Graphs** 

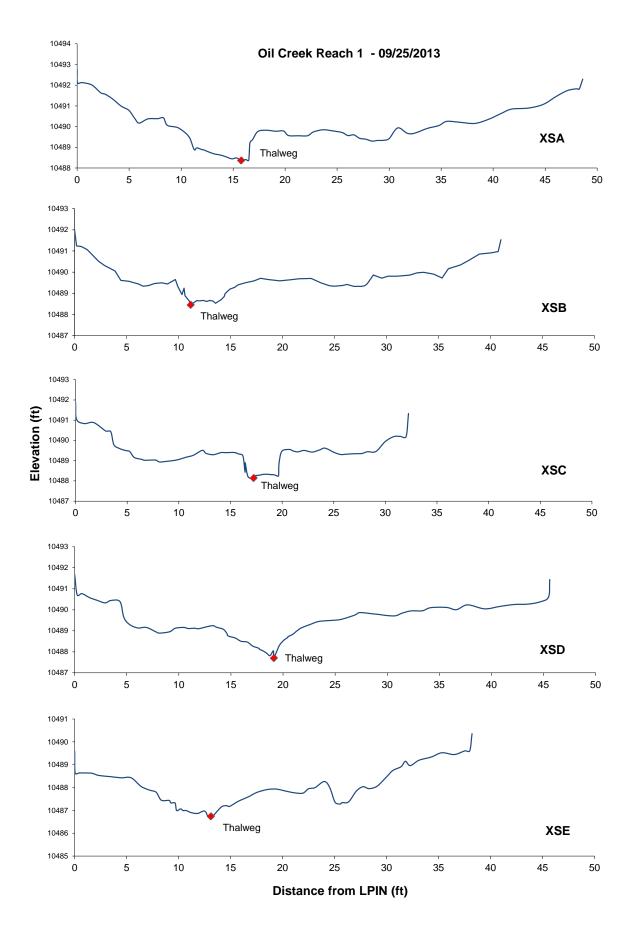

2013

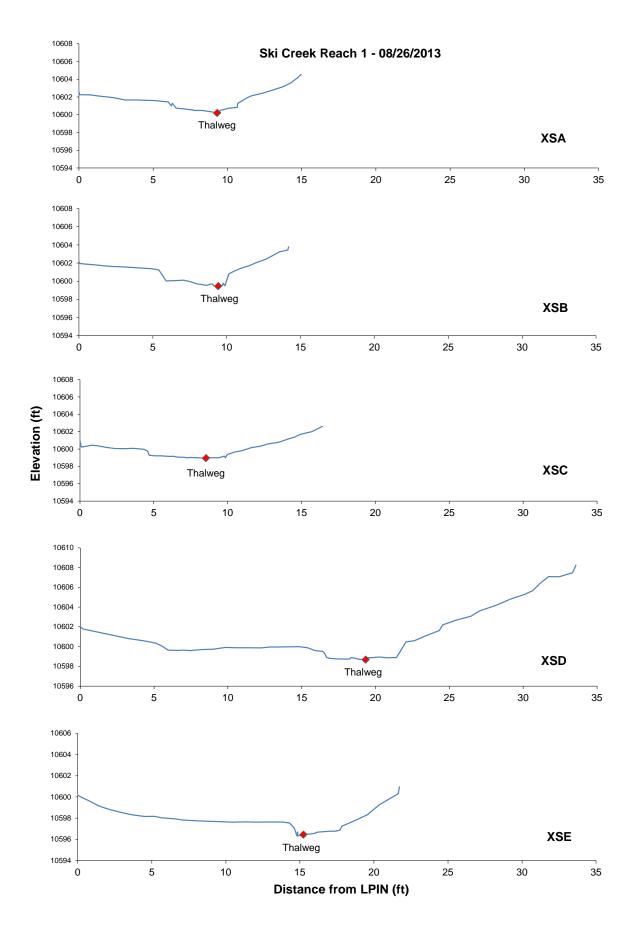


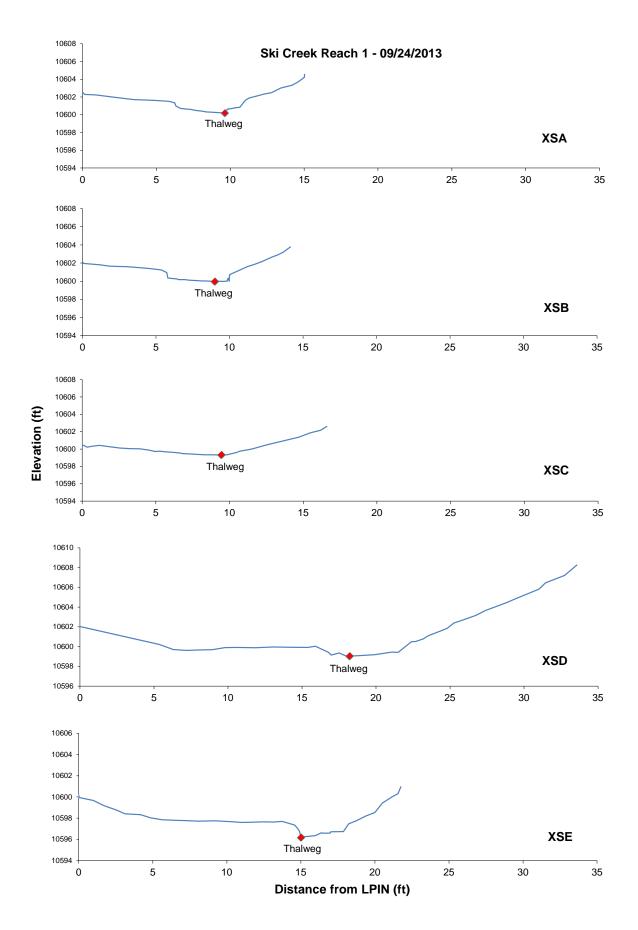


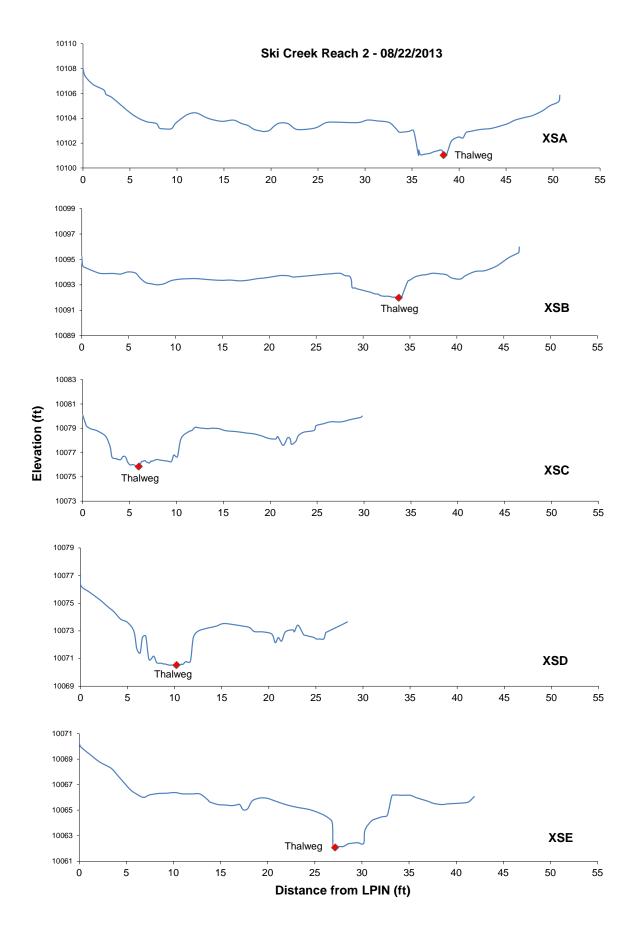



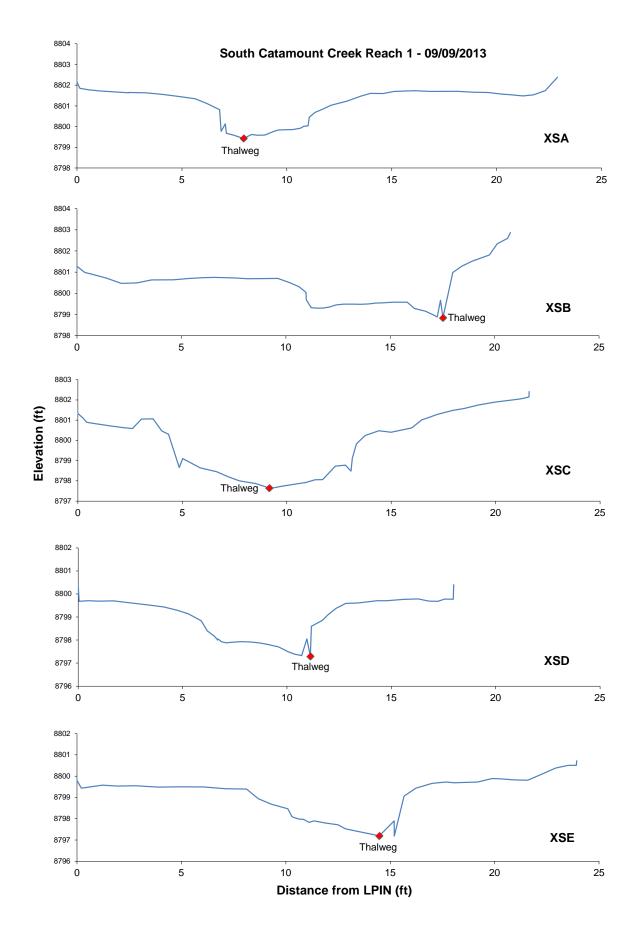


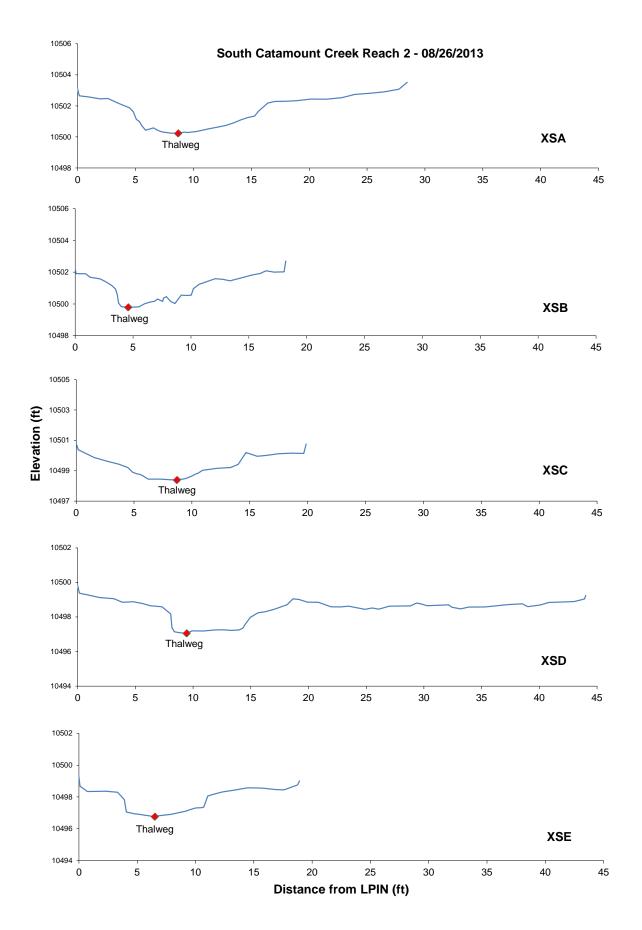



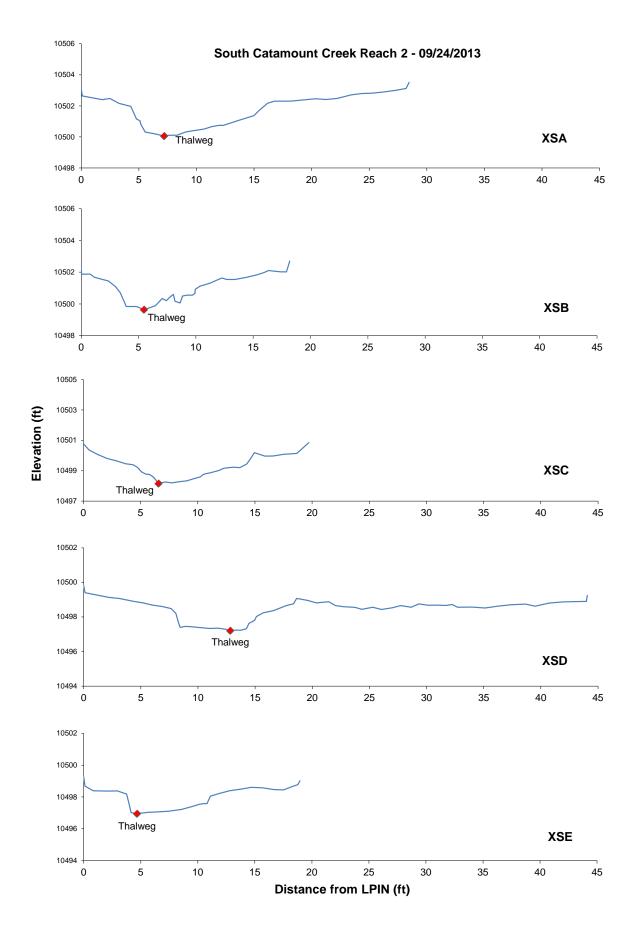



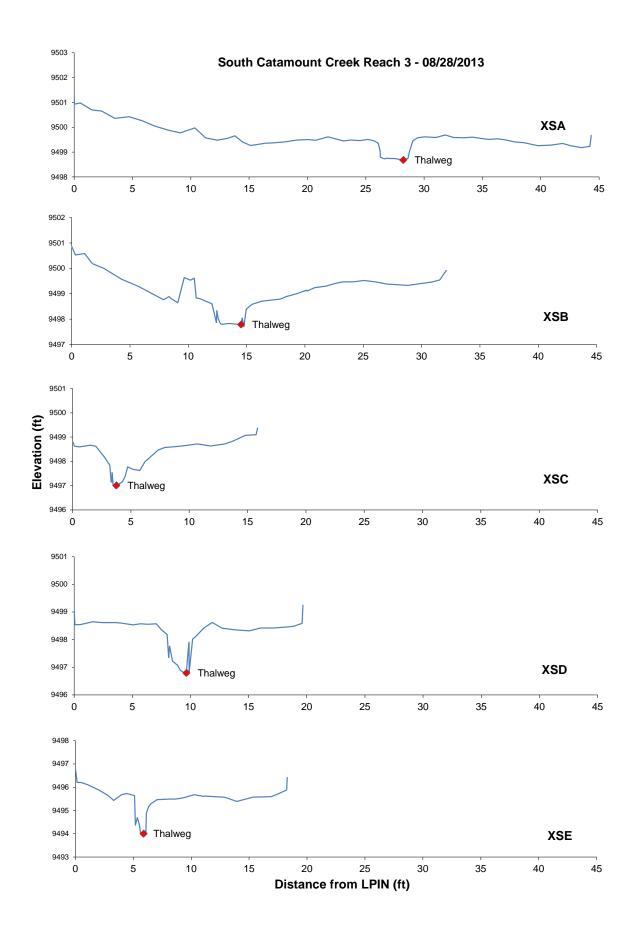


†Thalweg not surveyed as stream bed is dry.





†Thalweg not surveyed as stream bed is dry.









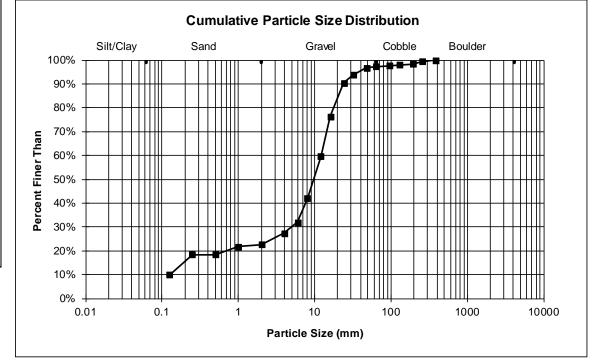





## Appendix N

# Stream Pebble Count Particle Size Distribution Graphs

2013


| Particle Size | # in Size | % of  | % Finer |
|---------------|-----------|-------|---------|
| (mm)          | Class     | Total | Than    |
| <0.062        | 30        | 10.0% |         |
| 0.062 - 0.125 | 0         | 0.0%  | 10%     |
| 0.125 - 0.25  | 25        | 8.3%  | 18%     |
| 0.255         | 0         | 0.0%  | 18%     |
| 0.5 - 1.0     | 10        | 3.3%  | 22%     |
| 1 - 2         | 3         | 1.0%  | 23%     |
| 2 - 4         | 14        | 4.7%  | 27%     |
| 4 - 6         | 14        | 4.7%  | 32%     |
| 6 - 8         | 30        | 10.0% | 42%     |
| 8 - 12        | 53        | 17.7% | 60%     |
| 12 - 16       | 50        | 16.7% | 76%     |
| 16 - 24       | 42        | 14.0% | 90%     |
| 24 - 32       | 10        | 3.3%  | 94%     |
| 32 - 48       | 9         | 3.0%  | 97%     |
| 48 - 64       | 2         | 0.7%  | 97%     |
| 64 - 96       | 1         | 0.3%  | 98%     |
| 96 - 128      | 1         | 0.3%  | 98%     |
| 128 - 192     | 1         | 0.3%  | 98%     |
| 192 - 256     | 3         | 1.0%  | 99%     |
| 256 - 384     | 2         | 0.7%  | 100%    |
| 384 - 512     |           |       |         |
| 512 - 1024    |           |       |         |
| 1024 - 2048   |           |       |         |
| 2044 - 4096   |           |       |         |
|               |           |       |         |
| Total         | 300.00    |       |         |

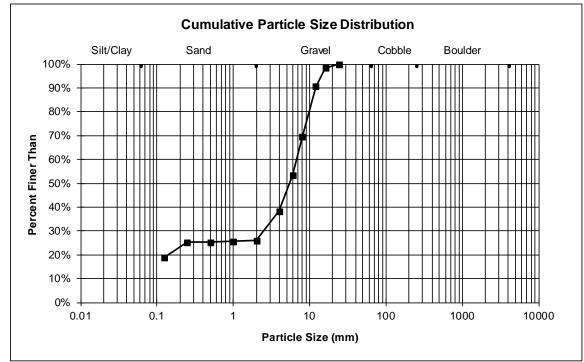
**COMMENTS:** Reach established upstream from confluence with South Catamount Creek because of the transbasin diversion installed in Ski Creek

STREAM NAME: Pikes Peak Highway - Glen Cove Creek Reach 1

ID NUMBER: GLEN1
DATE: 8/28/2013
CREW: Hauser, VonLoh

| Particle Size     | D15   | D35   | D50   | D84    | D95    | Lpart |
|-------------------|-------|-------|-------|--------|--------|-------|
| Distribution (mm) | 0.189 | 6.541 | 9.612 | 19.978 | 38.319 | 302.0 |




| Particle Size | # in Size | % of  | % Finer |
|---------------|-----------|-------|---------|
| (mm)          | Class     | Total | Than    |
| < 0.062       | 57        | 19.0% |         |
| 0.062 - 0.125 | 0         | 0.0%  | 19%     |
| 0.125 - 0.25  | 19        | 6.3%  | 25%     |
| 0.255         | 0         | 0.0%  | 25%     |
| 0.5 - 1.0     | 1         | 0.3%  | 26%     |
| 1 - 2         | 1         | 0.3%  | 26%     |
| 2 - 4         | 37        | 12.3% | 38%     |
| 4 - 6         | 45        | 15.0% | 53%     |
| 6 - 8         | 49        | 16.3% | 70%     |
| 8 - 12        | 63        | 21.0% | 91%     |
| 12 - 16       | 23        | 7.7%  | 98%     |
| 16 - 24       | 5         | 1.7%  | 100%    |
| 24 - 32       |           |       |         |
| 32 - 48       |           |       |         |
| 48 - 64       |           |       |         |
| 64 - 96       |           |       |         |
| 96 - 128      |           |       |         |
| 128 - 192     |           |       |         |
| 192 - 256     |           |       |         |
| 256 - 384     |           |       |         |
| 384 - 512     |           |       |         |
| 512 - 1024    |           |       |         |
| 1024 - 2048   |           |       |         |
| 2044 - 4096   |           |       |         |
|               |           |       |         |
| Total         | 300.00    |       |         |

**COMMENTS:** ERO Study Site

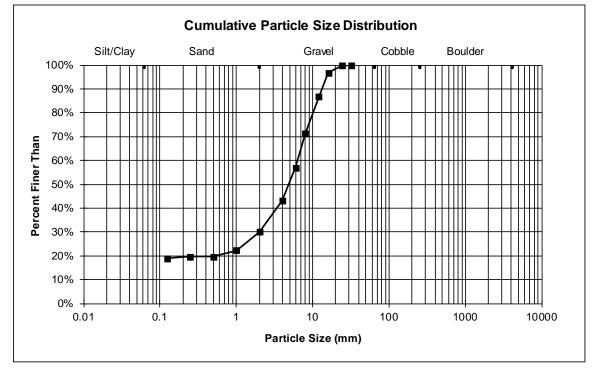
STREAM NAME: Pikes Peak Highway - North Catamount Creek Reach 1

ID NUMBER: NCAT1
DATE: 9/3/2013
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84    | D95    | Lpart |
|-------|-------|-------|--------|--------|-------|
| 0.108 | 3.317 | 5.483 | 10.551 | 14.119 | 21.0  |



| Particle Size | # in Size | % of  | % Finer |
|---------------|-----------|-------|---------|
| (mm)          | Class     | Total | Than    |
| < 0.062       | 57        | 19.0% |         |
| 0.062 - 0.125 | 0         | 0.0%  | 19%     |
| 0.125 - 0.25  | 2         | 0.7%  | 20%     |
| 0.255         | 0         | 0.0%  | 20%     |
| 0.5 - 1.0     | 8         | 2.7%  | 22%     |
| 1 - 2         | 23        | 7.7%  | 30%     |
| 2 - 4         | 39        | 13.0% | 43%     |
| 4 - 6         | 42        | 14.0% | 57%     |
| 6 - 8         | 43        | 14.3% | 71%     |
| 8 - 12        | 46        | 15.3% | 87%     |
| 12 - 16       | 30        | 10.0% | 97%     |
| 16 - 24       | 9         | 3.0%  | 100%    |
| 24 - 32       | 1         | 0.3%  | 100%    |
| 32 - 48       |           |       |         |
| 48 - 64       |           |       |         |
| 64 - 96       |           |       |         |
| 96 - 128      |           |       |         |
| 128 - 192     |           |       |         |
| 192 - 256     |           |       |         |
| 256 - 384     |           |       |         |
| 384 - 512     |           |       |         |
| 512 - 1024    |           |       |         |
| 1024 - 2048   |           |       |         |
| 2044 - 4096   |           |       |         |
| Total         | 300.00    |       |         |


**COMMENTS:** Second reach 0.5 miles upstream from ERO Study Site

STREAM NAME: Pikes Peak Highway - North Catamount Creek Reach 2

ID NUMBER: NCAT2
DATE: 9/3/2013
CREW: Hauser, VonLoh

 Particle Size
 D15
 D35
 D50
 D84

 Distribution (mm)
 0.108
 2.611
 4.899
 11.183



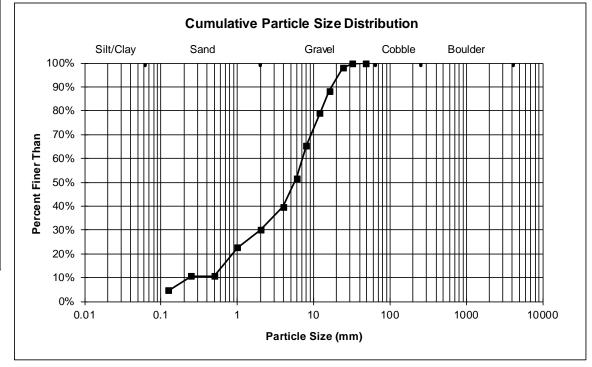
D95

15.251

Lpart

24.0

| Particle Size | # in Size | % of  | % Finer |
|---------------|-----------|-------|---------|
| (mm)          | Class     | Total | Than    |
| < 0.062       | 14        | 4.7%  |         |
| 0.062 - 0.125 | 0         | 0.0%  | 5%      |
| 0.125 - 0.25  | 18        | 6.0%  | 11%     |
| 0.255         | 0         | 0.0%  | 11%     |
| 0.5 - 1.0     | 36        | 12.0% | 23%     |
| 1 - 2         | 22        | 7.3%  | 30%     |
| 2 - 4         | 29        | 9.7%  | 40%     |
| 4 - 6         | 36        | 12.0% | 52%     |
| 6 - 8         | 41        | 13.7% | 65%     |
| 8 - 12        | 41        | 13.7% | 79%     |
| 12 - 16       | 28        | 9.3%  | 88%     |
| 16 - 24       | 29        | 9.7%  | 98%     |
| 24 - 32       | 5         | 1.7%  | 100%    |
| 32 - 48       | 1         | 0.3%  | 100%    |
| 48 - 64       |           |       |         |
| 64 - 96       |           |       |         |
| 96 - 128      |           |       |         |
| 128 - 192     |           |       |         |
| 192 - 256     |           |       |         |
| 256 - 384     |           |       |         |
| 384 - 512     |           |       |         |
| 512 - 1024    |           |       |         |
| 1024 - 2048   |           |       |         |
| 2044 - 4096   |           |       |         |
|               |           |       |         |
| Total         | 300.00    |       |         |


**COMMENTS:** ERO Study Site

STREAM NAME: Pikes Peak Highway - North Fork Crystal Creek Reach 1

ID NUMBER: NCRY1
DATE: 8/21/2013
CREW: Hauser, VonLoh

 Particle Size
 D15
 D35
 D50
 D84
 D95
 Lpart

 Distribution (mm)
 0.642
 2.862
 5.671
 14.000
 21.162
 34.0



| Particle Size | # in Size | % of  | % Finer |
|---------------|-----------|-------|---------|
| (mm)          | Class     | Total | Than    |
| < 0.062       | 42        | 14.0% |         |
| 0.062 - 0.125 | 0         | 0.0%  | 14%     |
| 0.125 - 0.25  | 38        | 12.7% | 27%     |
| 0.255         | 0         | 0.0%  | 27%     |
| 0.5 - 1.0     | 7         | 2.3%  | 29%     |
| 1 - 2         | 5         | 1.7%  | 31%     |
| 2 - 4         | 23        | 7.7%  | 38%     |
| 4 - 6         | 32        | 10.7% | 49%     |
| 6 - 8         | 28        | 9.3%  | 58%     |
| 8 - 12        | 56        | 18.7% | 77%     |
| 12 - 16       | 34        | 11.3% | 88%     |
| 16 - 24       | 32        | 10.7% | 99%     |
| 24 - 32       | 2         | 0.7%  | 100%    |
| 32 - 48       | 1         | 0.3%  | 100%    |
| 48 - 64       |           |       |         |
| 64 - 96       |           |       |         |
| 96 - 128      |           |       |         |
| 128 - 192     |           |       |         |
| 192 - 256     |           |       |         |
| 256 - 384     |           |       |         |
| 384 - 512     |           |       |         |
| 512 - 1024    |           |       |         |
| 1024 - 2048   |           |       |         |
| 2044 - 4096   |           |       |         |
|               |           |       |         |
| Total         | 300.00    |       |         |

**COMMENTS:** Second reach 500 ft upstream from ERO Study Site

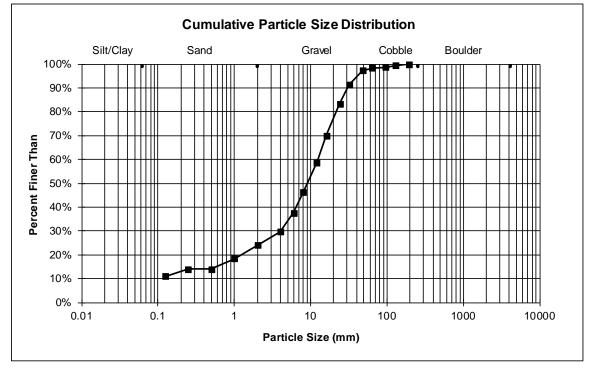
STREAM NAME: Pikes Peak Highway - North Fork Crystal Creek Reach 2

ID NUMBER: NCRY2
DATE: 8/21/2013
CREW: Hauser, VonLoh

 Particle Size
 D15
 D35
 D50
 D84
 D95
 Lpart

 Distribution (mm)
 0.132
 2.959
 6.188
 14.333
 20.615
 33.0




| Particle Size | # in Size | % of  | % Finer |
|---------------|-----------|-------|---------|
| (mm)          | Class     | Total | Than    |
| < 0.062       | 33        | 11.0% |         |
| 0.062 - 0.125 | 0         | 0.0%  | 11%     |
| 0.125 - 0.25  | 9         | 3.0%  | 14%     |
| 0.255         | 0         | 0.0%  | 14%     |
| 0.5 - 1.0     | 13        | 4.3%  | 18%     |
| 1 - 2         | 17        | 5.7%  | 24%     |
| 2 - 4         | 17        | 5.7%  | 30%     |
| 4 - 6         | 24        | 8.0%  | 38%     |
| 6 - 8         | 26        | 8.7%  | 46%     |
| 8 - 12        | 37        | 12.3% | 59%     |
| 12 - 16       | 34        | 11.3% | 70%     |
| 16 - 24       | 40        | 13.3% | 83%     |
| 24 - 32       | 24        | 8.0%  | 91%     |
| 32 - 48       | 18        | 6.0%  | 97%     |
| 48 - 64       | 3         | 1.0%  | 98%     |
| 64 - 96       | 1         | 0.3%  | 99%     |
| 96 - 128      | 2         | 0.7%  | 99%     |
| 128 - 192     | 2         | 0.7%  | 100%    |
| 192 - 256     |           |       |         |
| 256 - 384     |           |       |         |
| 384 - 512     |           |       |         |
| 512 - 1024    |           |       |         |
| 1024 - 2048   |           |       |         |
| 2044 - 4096   |           |       |         |
| Total         | 300.00    |       |         |

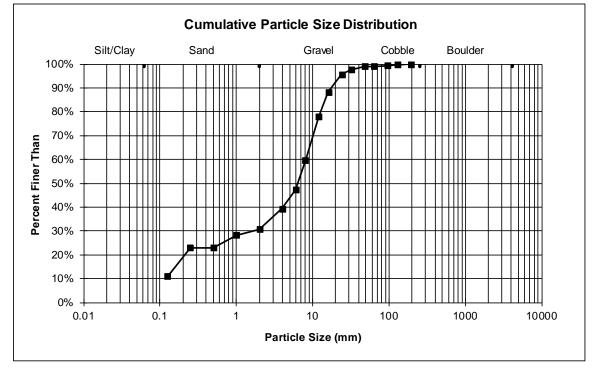
**COMMENTS:** ERO Reach

STREAM NAME: Pikes Peak Highway - Oil Creek Reach 1

ID NUMBER: OILC1
DATE: 9/25/2013
CREW: Hauser, VonLoh

| Particle Size     | D15   | D35   | D50   | D84    | D95    | Lpart |
|-------------------|-------|-------|-------|--------|--------|-------|
| Distribution (mm) | 0.587 | 5.241 | 9.025 | 24.582 | 40.998 | 148.0 |




| Particle Size | # in Size | % of  | % Finer |
|---------------|-----------|-------|---------|
| (mm)          | Class     | Total | Than    |
| <0.062        | 33        | 11.0% |         |
| 0.062 - 0.125 | 0         | 0.0%  | 11%     |
| 0.125 - 0.25  | 36        | 12.0% | 23%     |
| 0.255         | 0         | 0.0%  | 23%     |
| 0.5 - 1.0     | 16        | 5.3%  | 28%     |
| 1 - 2         | 7         | 2.3%  | 31%     |
| 2 - 4         | 26        | 8.7%  | 39%     |
| 4 - 6         | 24        | 8.0%  | 47%     |
| 6 - 8         | 37        | 12.3% | 60%     |
| 8 - 12        | 55        | 18.3% | 78%     |
| 12 - 16       | 31        | 10.3% | 88%     |
| 16 - 24       | 22        | 7.3%  | 96%     |
| 24 - 32       | 6         | 2.0%  | 98%     |
| 32 - 48       | 4         | 1.3%  | 99%     |
| 48 - 64       | 0         | 0.0%  | 99%     |
| 64 - 96       | 1         | 0.3%  | 99%     |
| 96 - 128      | 1         |       | 100%    |
| 128 - 192     | 1         |       | 100%    |
| 192 - 256     |           |       |         |
| 256 - 384     |           |       |         |
| 384 - 512     |           |       |         |
| 512 - 1024    |           |       |         |
| 1024 - 2048   |           |       |         |
| 2044 - 4096   |           |       |         |
|               |           |       |         |
| Total         | 300.00    |       |         |

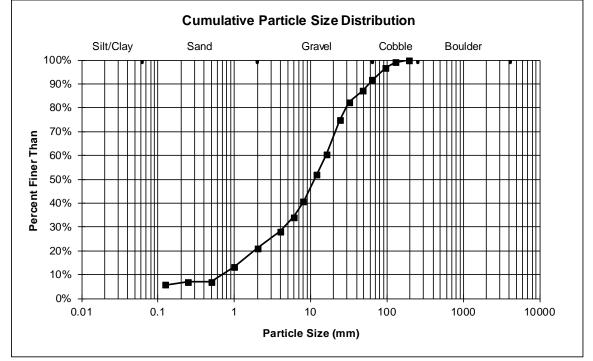
**COMMENTS:** About 0.2 miles upstream form ERO Study Site

STREAM NAME: Pikes Peak Highway - Ski Creek Reach 1

ID NUMBER: SKIC1
DATE: 8/26/2013
CREW: Hauser, VonLoh

| Particle Size     | D15   | D35   | D50   | D84    | D95    | Lpart |
|-------------------|-------|-------|-------|--------|--------|-------|
| Distribution (mm) | 0.157 | 2.828 | 6.385 | 14.182 | 23.131 | 152.0 |




| Particle Size | # in Cizo | % of  | % Finer     |
|---------------|-----------|-------|-------------|
| (mm)          | Class     | Total | Than        |
| <0.062        | 17        | 5.7%  | IIIaII      |
|               | * *       |       | <b>C</b> 0/ |
| 0.062 - 0.125 | 0         | 0.0%  | 6%          |
| 0.125 - 0.25  | 4         | 1.3%  | 7%          |
| 0.255         | 0         | 0.0%  | 7%          |
| 0.5 - 1.0     | 19        | 6.3%  | 13%         |
| 1 - 2         | 23        | 7.7%  | 21%         |
| 2 - 4         | 21        | 7.0%  | 28%         |
| 4 - 6         | 18        | 6.0%  | 34%         |
| 6 - 8         | 20        | 6.7%  | 41%         |
| 8 - 12        | 34        | 11.3% | 52%         |
| 12 - 16       | 25        | 8.3%  | 60%         |
| 16 - 24       | 43        | 14.3% | 75%         |
| 24 - 32       | 23        | 7.7%  | 82%         |
| 32 - 48       | 14        | 4.7%  | 87%         |
| 48 - 64       | 14        | 4.7%  | 92%         |
| 64 - 96       | 15        | 5.0%  | 97%         |
| 96 - 128      | 7         | 2.3%  | 99%         |
| 128 - 192     | 3         | 1.0%  | 100%        |
| 192 - 256     |           |       |             |
| 256 - 384     |           |       |             |
| 384 - 512     |           |       |             |
| 512 - 1024    |           |       |             |
| 1024 - 2048   |           |       |             |
| 2044 - 4096   |           |       |             |
| 2044 4090     |           |       |             |
| Total         | 300.00    |       |             |

**COMMENTS:** Second reach near mile marker 10 on Pike's Peak Highway

STREAM NAME: Pikes Peak Highway - Ski Creek Reach 2

ID NUMBER: SKIC2
DATE: 8/22/2013
CREW: Hauser, VonLoh

| Particle Size     | D15   | D35   | D50    | D84    | D95    | Lpart |
|-------------------|-------|-------|--------|--------|--------|-------|
| Distribution (mm) | 1.163 | 6.265 | 11.171 | 36.986 | 83.864 | 175.0 |



| Particle Size | # in Size | % of  | % Finer |
|---------------|-----------|-------|---------|
| (mm)          | Class     | Total | Than    |
| < 0.062       | 8         | 2.7%  |         |
| 0.062 - 0.125 | 0         | 0.0%  | 3%      |
| 0.125 - 0.25  | 12        | 4.0%  | 7%      |
| 0.255         | 0         | 0.0%  | 7%      |
| 0.5 - 1.0     | 17        | 5.7%  | 12%     |
| 1 - 2         | 13        | 4.3%  | 17%     |
| 2 - 4         | 24        | 8.0%  | 25%     |
| 4 - 6         | 27        | 9.0%  | 34%     |
| 6 - 8         | 26        | 8.7%  | 42%     |
| 8 - 12        | 45        | 15.0% | 57%     |
| 12 - 16       | 36        | 12.0% | 69%     |
| 16 - 24       | 42        | 14.0% | 83%     |
| 24 - 32       | 26        | 8.7%  | 92%     |
| 32 - 48       | 10        | 3.3%  | 95%     |
| 48 - 64       | 5         | 1.7%  | 97%     |
| 64 - 96       | 8         | 2.7%  | 100%    |
| 96 - 128      | 1         |       | 100%    |
| 128 - 192     |           |       |         |
| 192 - 256     |           |       |         |
| 256 - 384     |           |       |         |
| 384 - 512     |           |       |         |
| 512 - 1024    |           |       |         |
| 1024 - 2048   |           |       |         |
| 2044 - 4096   |           |       |         |
| T-4-1         | 000.00    |       |         |
| Total         | 300.00    |       |         |

**COMMENTS:** ERO Study Site

STREAM NAME: Pikes Peak Highway - South Catamount Creek Reach 1

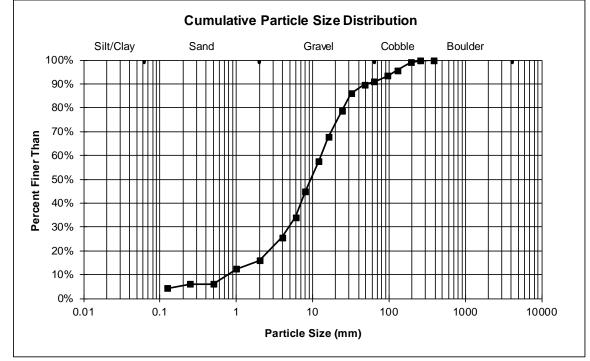
ID NUMBER: SCAT1
DATE: 9/9/2013
CREW: Hauser, VonLoh

 Particle Size
 D15
 D35
 D50
 D84
 D95
 Lpart

 Distribution (mm)
 1.532
 6.272
 9.842
 24.537
 46.093
 103.0



| Particle Size | # in Size | % of  | % Finer |
|---------------|-----------|-------|---------|
| (mm)          | Class     | Total | Than    |
| <0.062        | 13        | 4.3%  |         |
| 0.062 - 0.125 | 0         | 0.0%  | 4%      |
| 0.125 - 0.25  | 5         | 1.7%  | 6%      |
| 0.255         | 0         | 0.0%  | 6%      |
| 0.5 - 1.0     | 19        | 6.3%  | 12%     |
| 1 - 2         | 11        | 3.7%  | 16%     |
| 2 - 4         | 29        | 9.7%  | 26%     |
| 4 - 6         | 25        | 8.3%  | 34%     |
| 6 - 8         | 33        | 11.0% | 45%     |
| 8 - 12        | 38        | 12.7% | 58%     |
| 12 - 16       | 30        | 10.0% | 68%     |
| 16 - 24       | 33        | 11.0% | 79%     |
| 24 - 32       | 22        | 7.3%  | 86%     |
| 32 - 48       | 11        | 3.7%  | 90%     |
| 48 - 64       | 4         | 1.3%  | 91%     |
| 64 - 96       | 7         | 2.3%  | 93%     |
| 96 - 128      | 7         | 2.3%  | 96%     |
| 128 - 192     | 10        | 3.3%  | 99%     |
| 192 - 256     | 2         | 0.7%  | 100%    |
| 256 - 384     | 1         | 0.3%  | 100%    |
| 384 - 512     |           |       |         |
| 512 - 1024    |           |       |         |
| 1024 - 2048   |           |       |         |
| 2044 - 4096   |           |       |         |
|               |           |       |         |
| Total         | 300.00    |       |         |


**COMMENTS:** Second reach 500 ft upstream from ERO Study Site

STREAM NAME: Pikes Peak Highway - South Catamount Creek Reach 2

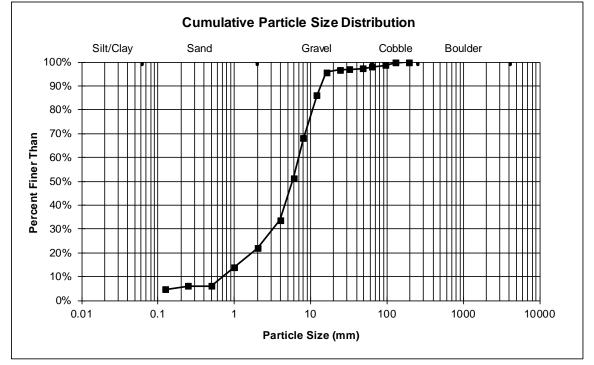
ID NUMBER: SCAT2
DATE: 8/26/2013
CREW: Hauser, VonLoh

 Particle Size
 D15
 D35
 D50
 D84
 D95
 Lpart

 Distribution (mm)
 1.656
 6.159
 9.389
 29.585
 117.900
 275.0



| Particle Size | # in Size | % of  | % Finer |
|---------------|-----------|-------|---------|
| (mm)          | Class     | Total | Than    |
| <0.062        | 14        | 4.7%  |         |
| 0.062 - 0.125 | 0         | 0.0%  | 5%      |
| 0.125 - 0.25  | 4         | 1.3%  | 6%      |
| 0.255         | 0         | 0.0%  | 6%      |
| 0.5 - 1.0     | 24        | 8.0%  | 14%     |
| 1 - 2         | 24        | 8.0%  | 22%     |
| 2 - 4         | 35        | 11.7% | 34%     |
| 4 - 6         | 53        | 17.7% | 51%     |
| 6 - 8         | 50        | 16.7% | 68%     |
| 8 - 12        | 54        | 18.0% | 86%     |
| 12 - 16       | 29        | 9.7%  | 96%     |
| 16 - 24       | 3         | 1.0%  | 97%     |
| 24 - 32       | 1         | 0.3%  | 97%     |
| 32 - 48       | 1         | 0.3%  | 97%     |
| 48 - 64       | 2         | 0.7%  | 98%     |
| 64 - 96       | 2         | 0.7%  | 99%     |
| 96 - 128      | 3         | 1.0%  | 100%    |
| 128 - 192     | 1         | 0.3%  | 100%    |
| 192 - 256     |           |       |         |
| 256 - 384     |           |       |         |
| 384 - 512     |           |       |         |
| 512 - 1024    |           |       |         |
| 1024 - 2048   |           |       |         |
| 2044 - 4096   |           |       |         |
| Total         | 300.00    |       |         |
| iulai         | 300.00    |       |         |


**COMMENTS:** Reach established upstream from confluence with Glen Cove Creek because of the transbasin diversion installed in Ski Creek

STREAM NAME: Pikes Peak Highway - South Catamount Creek Reach 3

ID NUMBER: SCAT3
DATE: 8/28/2013
CREW: Hauser, VonLoh

 Particle Size
 D15
 D35
 D50
 D84
 D95
 Lpart

 Distribution (mm)
 1.091
 4.124
 5.819
 11.471
 15.686
 160.0



## Appendix O

## Stream Bar Sample

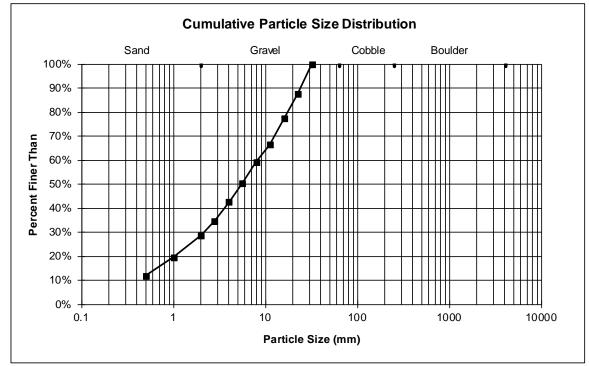
# Particle Size Distribution Summary and Graphs

2013

### Summary of Stream Channel Particle Size Distribution from Sieve Analysis of Bar Samples on Pikes Peak, 2013

| Cita Nama                        | Site ID | Date         |       | Pa    | rticle Siz | e Distribi | ution  |      |
|----------------------------------|---------|--------------|-------|-------|------------|------------|--------|------|
| Site Name                        | Site iD | Site ID Date |       | D35   | D50        | D84        | D95    | D100 |
| Glen Cove Creek Reach 1          | GLEN1   | 8/28/2013    | 0.666 | 2.840 | 5.491      | 19.951     | 27.751 | 32.0 |
| North Catamount Creek Reach 1    | NCAT1   | 9/3/2013     | 1.082 | 2.549 | 3.527      | 6.639      | 9.390  | 14.0 |
| North Catamount Creek Reach 1    | NCAT1†  | 9/25/2013    | 0.671 | 1.537 | 2.305      | 4.352      | 5.707  | 9.0  |
| North Catamount Creek Reach 2    | NCAT2   | 9/3/2013     | 2.806 | 4.401 | 5.516      | 9.534      | 13.479 | 19.0 |
| North Catamount Creek Reach 2    | NCAT2†  | 9/25/2013    | 1.092 | 2.839 | 4.098      | 8.635      | 11.738 | 14.0 |
| North Fork Crystal Creek Reach 1 | NCRY1   | 8/21/2013    | 1.186 | 2.915 | 4.564      | 12.932     | 24.409 | 30.0 |
| North Fork Crystal Creek Reach 2 | NCRY2   | 8/21/2013    | 0.203 | 1.134 | 1.804      | 4.034      | 7.105  | 21.0 |
| Oil Creek Reach 1                | OILC1   | 9/25/2013    | 1.146 | 4.064 | 5.990      | 13.516     | 26.971 | 30.0 |
| South Catamount Creek Reach 1    | SCAT1   | 9/9/2013     | 0.668 | 3.014 | 4.559      | 13.823     | 26.213 | 31.0 |
| South Catamount Creek Reach 2    | SCAT2   | 8/26/2013    | 0.901 | 3.089 | 5.424      | 15.447     | 34.429 | 37.0 |
| South Catamount Creek Reach 2    | SCAT2†  | 9/24/2013    | 1.034 | 2.145 | 3.029      | 6.913      | 11.828 | 16.0 |
| South Catamount Creek Reach 3    | SCAT3   | 8/28/2013    | 1.255 | 2.965 | 4.156      | 8.421      | 11.404 | 17.0 |
| Ski Creek Reach 1                | SKIC1   | 8/26/2013    | 0.460 | 1.847 | 3.375      | 13.496     | 24.061 | 30.0 |
| Ski Creek Reach 1                | SKIC1†  | 9/24/2013    | 0.676 | 2.091 | 3.200      | 9.575      | 17.013 | 21.0 |
| Ski Creek Reach 2                | SKIC2   | 8/22/2013    | 0.087 | 1.050 | 2.059      | 6.077      | 15.030 | 24.0 |
| Severy Creek Reach 1             | SVRY1   | 11/11/2013   | 0.044 | 0.832 | 2.194      | 8.418      | 15.56  | 21.0 |
| Severy Creek Reach 2             | SVRY2   | 11/11/2013   | 0.725 | 1.575 | 2.409      | 5.546      | 9.755  | 12.0 |
| West Fork Beaver Creek Reach 2   | WBVR2   | 9/17/2013    | 1.087 | 4.382 | 7.306      | 20.223     | 33.017 | 35.0 |
| †Second survey post flood event. |         |              |       |       |            |            |        | ·    |

| Size Finer | Wt. on | % of Total |         |
|------------|--------|------------|---------|
| Than (mm)  | Sieve  |            | Than    |
| Pan        | 60.30  | 11.8%      |         |
| 0.5        | 39.10  | 7.7%       | 11.8%   |
| 1.0        | 47.20  | 9.3%       | 19.5%   |
| 2.0        | 30.20  | 5.9%       | 28.8%   |
| 2.8        | 40.00  | 7.8%       | 34.7%   |
| 4.0        | 40.40  | 7.9%       | 42.5%   |
| 5.6        | 44.40  | 8.7%       | 50.5%   |
| 8.0        | 37.30  | 7.3%       | 59.2%   |
| 11.2       | 55.40  | 10.9%      | 66.5%   |
| 16.0       | 51.60  | 10.1%      | 77.4%   |
| 22.4       | 63.80  | 12.5%      | 87.5%   |
| 32.0       | *      |            | 100.0%  |
| 45.0       |        |            | -       |
| 64.0       |        |            |         |
| 90         |        |            |         |
| 128        |        |            |         |
| 181        |        |            |         |
| 256        |        |            |         |
| 362        |        |            |         |
| 512        |        |            |         |
| 1024       |        |            |         |
| 2048       |        |            |         |
| 4096       |        |            |         |
|            |        |            |         |
| Total      | 509.70 |            | 1-1- 1- |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Bar Sample taken at Cross Section E

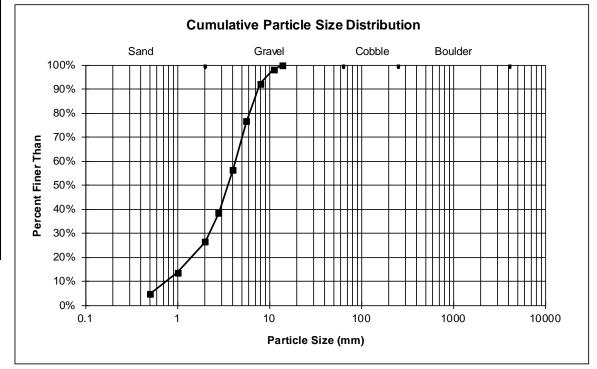
SITE NAME: Pike's Peak Highway - Glen Cove Creek Reach 1

ID NUMBER: GLEN1
DATE: 8/28/2013
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84    | D95    | Lpart |
|-------|-------|-------|--------|--------|-------|
| 0.666 | 2.840 | 5.491 | 19.951 | 27.751 | 32.0  |



| Size Finer  | Wt. on     | % of Total    | % Finer  |
|-------------|------------|---------------|----------|
| Than (mm)   | Sieve      |               | Than     |
| Pan         | 24.70      | 4.7%          |          |
| 0.5         | 46.20      | 8.8%          | 4.7%     |
| 1.0         | 67.80      | 12.9%         | 13.5%    |
| 2.0         | 62.10      | 11.8%         | 26.5%    |
| 2.8         | 94.60      | 18.0%         | 38.3%    |
| 4.0         | 105.90     | 20.2%         | 56.4%    |
| 5.6         | 81.60      | 15.6%         | 76.6%    |
| 8.0         | 31.50      | 6.0%          | 92.1%    |
| 11.2        | 9.70       | 1.9%          | 98.1%    |
| 14.0        | *          |               | 100.0%   |
| 22.4        |            |               | -        |
| 32.0        |            |               |          |
| 45.0        |            |               |          |
| 64.0        |            |               |          |
| 90          |            |               |          |
| 128         |            |               |          |
| 181         |            |               |          |
| 256         |            |               |          |
| 362         |            |               |          |
| 512         |            |               |          |
| 1024        |            |               |          |
| 2048        |            |               |          |
| 4096        |            |               |          |
|             |            |               |          |
| Total       | 524.10     |               |          |
| *Magaurad v | alua of th | a largest nor | tiala in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Bar Sample taken between Cross Section B and C on right bank

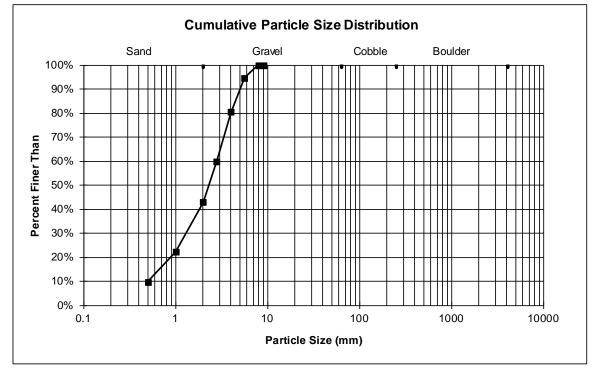
SITE NAME: Pike's Peak Highway - North Catamount Creek Reach 1

ID NUMBER: NCAT1
DATE: 9/3/2013
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 1.082 | 2.549 | 3.527 | 6.639 | 9.390 | 14.0  |



| -          | ,      |            |        |
|------------|--------|------------|--------|
| Size Finer | Wt. on | % of Total |        |
| Than (mm)  | Sieve  |            | Than   |
| Pan        | 52.90  | 9.7%       |        |
| 0.5        | 68.40  | 12.5%      | 9.7%   |
| 1.0        | 112.60 | 20.6%      | 22.2%  |
| 2.0        | 92.90  | 17.0%      | 42.8%  |
| 2.8        | 112.40 | 20.6%      | 59.8%  |
| 4.0        | 78.20  | 14.3%      | 80.4%  |
| 5.6        | 28.00  | 5.1%       | 94.7%  |
| 8.0        | 0.80   | 0.1%       | 99.9%  |
| 9.0        | *      |            | 100.0% |
| 16.0       |        |            | -      |
| 22.4       |        |            |        |
| 32.0       |        |            |        |
| 45.0       |        |            |        |
| 64.0       |        |            |        |
| 90         |        |            |        |
| 128        |        |            |        |
| 181        |        |            |        |
| 256        |        |            |        |
| 362        |        |            |        |
| 512        |        |            |        |
| 1024       |        |            |        |
| 2048       |        |            |        |
| 4096       |        |            |        |
|            |        |            |        |
| Total      | 546.20 |            | V-1    |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Bar Sample taken between Cross Section B and C on right bank

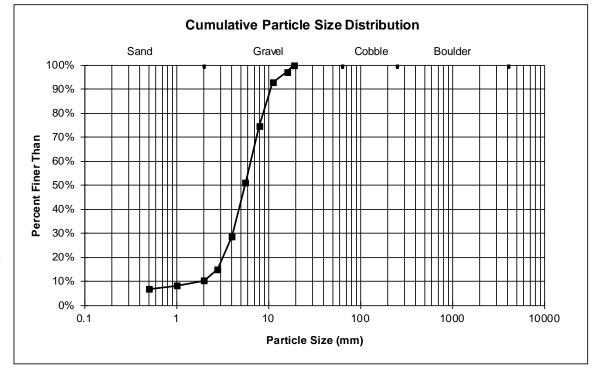
SITE NAME: Pike's Peak Highway - North Catamount Creek Reach 1

ID NUMBER: NCAT1
DATE: 9/25/2013
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.671 | 1.537 | 2.305 | 4.352 | 5.707 | 9.0   |



| Size Finer         | Wt. on     | % of Total    | % Finer |
|--------------------|------------|---------------|---------|
| Than (mm)          | Sieve      |               | Than    |
| Pan                | 28.40      | 6.8%          |         |
| 0.5                | 5.90       | 1.4%          | 6.8%    |
| 1.0                | 8.30       | 2.0%          | 8.2%    |
| 2.0                | 19.60      | 4.7%          | 10.2%   |
| 2.8                | 57.30      | 13.7%         | 14.9%   |
| 4.0                | 93.20      | 22.4%         | 28.7%   |
| 5.6                | 97.90      | 23.5%         | 51.0%   |
| 8.0                | 76.10      | 18.2%         | 74.5%   |
| 11.2               | 18.20      | 4.4%          | 92.7%   |
| 16.0               | 12.10      | 2.9%          | 97.1%   |
| 19.0               | *          |               | 100.0%  |
| 32.0               |            |               | -       |
| 45.0               |            |               |         |
| 64.0               |            |               |         |
| 90                 |            |               |         |
| 128                |            |               |         |
| 181                |            |               |         |
| 256                |            |               |         |
| 362                |            |               |         |
| 512                |            |               |         |
| 1024               |            |               |         |
| 2048               |            |               |         |
| 4096               |            |               |         |
|                    |            |               |         |
| Total              | 417.00     |               |         |
| *1./10000111000111 | alua af th | a largest nor | iala in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Bar Sample taken 3' downstream from Cross Section B

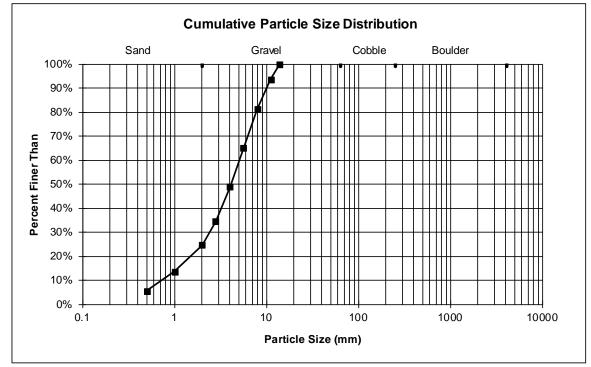
SITE NAME: Pike's Peak Highway - North Catamount Creek Reach 2

ID NUMBER: NCAT2
DATE: 9/3/2013
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95    | Lpart |
|-------|-------|-------|-------|--------|-------|
| 2.806 | 4.401 | 5.516 | 9.534 | 13.479 | 19.0  |



| Size Finer | Wt. on | % of Total | % Finer |
|------------|--------|------------|---------|
| Than (mm)  | Sieve  |            | Than    |
| Pan        | 32.50  | 5.5%       |         |
| 0.5        | 48.30  | 8.1%       | 5.5%    |
| 1.0        | 65.10  | 11.0%      | 13.6%   |
| 2.0        | 58.70  | 9.9%       | 24.6%   |
| 2.8        | 85.50  | 14.4%      | 34.4%   |
| 4.0        | 96.20  | 16.2%      | 48.8%   |
| 5.6        | 95.80  | 16.1%      | 65.0%   |
| 8.0        | 74.30  | 12.5%      | 81.2%   |
| 11.2       | 37.60  | 6.3%       | 93.7%   |
| 14.0       | *      |            | 100.0%  |
| 22.4       |        |            | -       |
| 32.0       |        |            |         |
| 45.0       |        |            |         |
| 64.0       |        |            |         |
| 90         |        |            |         |
| 128        |        |            |         |
| 181        |        |            |         |
| 256        |        |            |         |
| 362        |        |            |         |
| 512        |        |            |         |
| 1024       |        |            |         |
| 2048       |        |            |         |
| 4096       |        |            |         |
|            |        |            |         |
| Total      | 594.00 |            | tala ta |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Bar Sample taken 3' downstream from Cross Section B

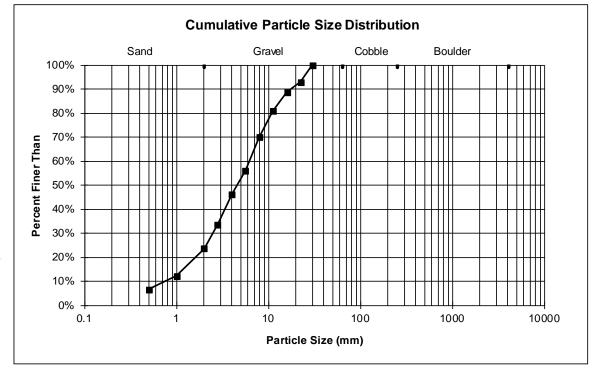
SITE NAME: Pike's Peak Highway -North Catamount Creek Reach 2

ID NUMBER: NCAT2
DATE: 9/25/2013
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95    | Lpart |
|-------|-------|-------|-------|--------|-------|
| 1.092 | 2.839 | 4.098 | 8.635 | 11.738 | 14.0  |



|                                         |            | _             |          |
|-----------------------------------------|------------|---------------|----------|
| Size Finer                              | Wt. on     | % of Total    | % Finer  |
| Than (mm)                               | Sieve      |               | Than     |
| Pan                                     | 39.40      | 6.6%          |          |
| 0.5                                     | 33.70      | 5.6%          | 6.6%     |
| 1.0                                     | 68.60      | 11.4%         | 12.2%    |
| 2.0                                     | 59.80      | 10.0%         | 23.6%    |
| 2.8                                     | 75.40      | 12.6%         | 33.6%    |
| 4.0                                     | 59.10      | 9.8%          | 46.1%    |
| 5.6                                     | 83.80      | 14.0%         | 56.0%    |
| 8.0                                     | 65.30      | 10.9%         | 70.0%    |
| 11.2                                    | 47.10      | 7.8%          | 80.8%    |
| 16.0                                    | 25.40      | 4.2%          | 88.7%    |
| 22.4                                    | 42.50      | 7.1%          | 92.9%    |
| 30.0                                    | *          |               | 100.0%   |
| 45.0                                    |            |               | -        |
| 64.0                                    |            |               |          |
| 90                                      |            |               |          |
| 128                                     |            |               |          |
| 181                                     |            |               |          |
| 256                                     |            |               |          |
| 362                                     |            |               |          |
| 512                                     |            |               |          |
| 1024                                    |            |               |          |
| 2048                                    |            |               |          |
| 4096                                    |            |               |          |
|                                         |            |               |          |
| Total                                   | 600.10     |               |          |
| *1.100000000000000000000000000000000000 | alua af th | a largast par | tiala in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Bar Sample taken upstream from Cross Section E

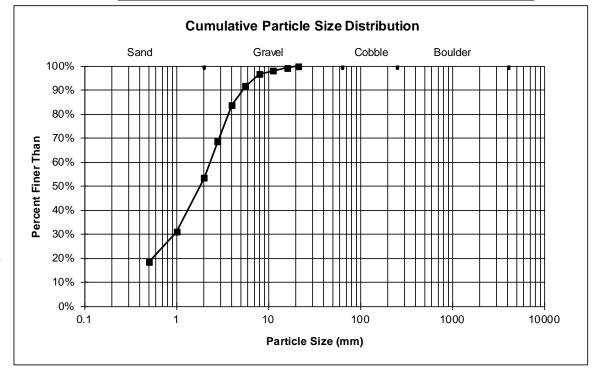
SITE NAME: Pike's Peak Highway - North Fork Crystal Creek Reach 1

ID NUMBER: NCRY1
DATE: 8/21/2013
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84    | D95    | Lpart |
|-------|-------|-------|--------|--------|-------|
| 1.186 | 2.915 | 4.564 | 12.932 | 24.409 | 30.0  |



| Size Finer  | Wt. on      | % of Total    |         |
|-------------|-------------|---------------|---------|
| Than (mm)   | Sieve       |               | Than    |
| Pan         | 134.70      | 18.4%         |         |
| 0.5         | 91.60       | 12.5%         | 18.4%   |
| 1.0         | 163.90      | 22.4%         | 30.9%   |
| 2.0         | 110.40      | 15.1%         | 53.3%   |
| 2.8         | 112.40      | 15.4%         | 68.4%   |
| 4.0         | 57.50       | 7.9%          | 83.8%   |
| 5.6         | 36.60       | 5.0%          | 91.7%   |
| 8.0         | 10.00       | 1.4%          | 96.7%   |
| 11.2        | 8.30        | 1.1%          | 98.0%   |
| 16.0        | 6.10        | 0.8%          | 99.2%   |
| 21.0        | *           |               | 100.0%  |
| 32.0        |             |               | -       |
| 45.0        |             |               |         |
| 64.0        |             |               |         |
| 90          |             |               |         |
| 128         |             |               |         |
| 181         |             |               |         |
| 256         |             |               |         |
| 362         |             |               |         |
| 512         |             |               |         |
| 1024        |             |               |         |
| 2048        |             |               |         |
| 4096        |             |               |         |
|             |             |               |         |
| Total       | 731.50      |               |         |
| *Magaurad v | alua af the | a largest nor | iala in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Bar Sample taken at Cross Section A on left bank

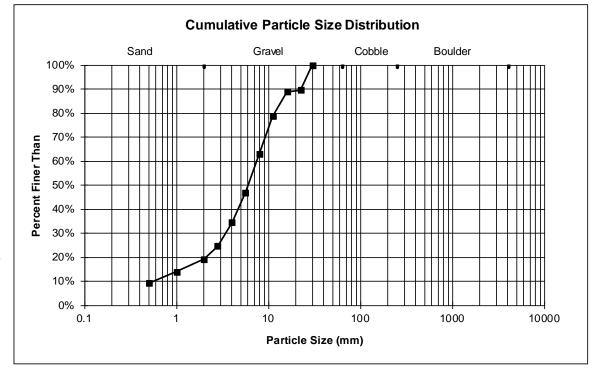
SITE NAME: Pike's Peak Highway - North Fork Crystal Creek Reach 2

ID NUMBER: NCRY2
DATE: 8/21/2013
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.203 | 1.134 | 1.804 | 4.034 | 7.105 | 21.0  |



| _           |             |               |         |
|-------------|-------------|---------------|---------|
| Size Finer  | Wt. on      | % of Total    |         |
| Than (mm)   | Sieve       |               | Than    |
| Pan         | 71.60       | 9.1%          |         |
| 0.5         | 37.70       | 4.8%          | 9.1%    |
| 1.0         | 41.70       | 5.3%          | 14.0%   |
| 2.0         | 42.60       | 5.4%          | 19.3%   |
| 2.8         | 75.90       | 9.7%          | 24.7%   |
| 4.0         | 98.70       | 12.6%         | 34.4%   |
| 5.6         | 124.20      | 15.9%         | 47.0%   |
| 8.0         | 123.30      | 15.7%         | 62.9%   |
| 11.2        | 80.20       | 10.2%         | 78.6%   |
| 16.0        | 5.70        | 0.7%          | 88.8%   |
| 22.4        | 81.70       | 10.4%         | 89.6%   |
| 30.0        | *           |               | 100.0%  |
| 45.0        |             |               | -       |
| 64.0        |             |               |         |
| 90          |             |               |         |
| 128         |             |               |         |
| 181         |             |               |         |
| 256         |             |               |         |
| 362         |             |               |         |
| 512         |             |               |         |
| 1024        |             |               |         |
| 2048        |             |               |         |
| 4096        |             |               |         |
|             |             |               |         |
| Total       | 783.30      |               |         |
| *Magaurad v | alua of the | a largest nor | iolo in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Bar Sample taken below XSD on right bank

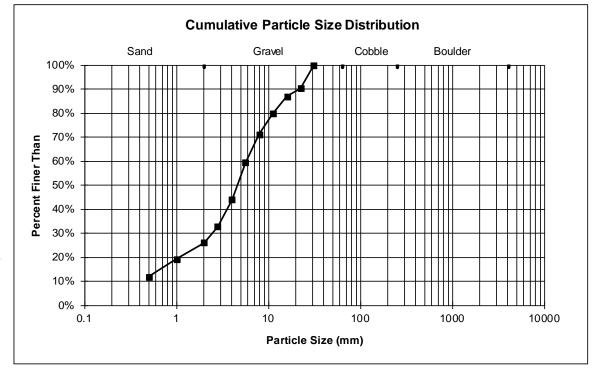
SITE NAME: Pike's Peak Highway - Oil Creek Reach 1

ID NUMBER: OILC1
DATE: 9/25/2013
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84    | D95    | Lpart |
|-------|-------|-------|--------|--------|-------|
| 1.146 | 4.064 | 5.990 | 13.516 | 26.080 | 30.0  |



| Size Finer | Wt. on | % of Total    |          |
|------------|--------|---------------|----------|
| Than (mm)  | Sieve  |               | Than     |
| Pan        | 68.50  | 11.9%         |          |
| 0.5        | 42.40  | 7.4%          | 11.9%    |
| 1.0        | 38.40  | 6.7%          | 19.3%    |
| 2.0        | 38.50  | 6.7%          | 26.0%    |
| 2.8        | 65.10  | 11.3%         | 32.7%    |
| 4.0        | 89.00  | 15.5%         | 44.0%    |
| 5.6        | 67.10  | 11.7%         | 59.5%    |
| 8.0        | 49.10  | 8.5%          | 71.1%    |
| 11.2       | 42.20  | 7.3%          | 79.7%    |
| 16.0       | 19.00  | 3.3%          | 87.0%    |
| 22.4       | 55.70  | 9.7%          | 90.3%    |
| 31.0       | *      |               | 100.0%   |
| 45.0       |        |               | -        |
| 64.0       |        |               |          |
| 90         |        |               |          |
| 128        |        |               |          |
| 181        |        |               |          |
| 256        |        |               |          |
| 362        |        |               |          |
| 512        |        |               |          |
| 1024       |        |               |          |
| 2048       |        |               |          |
| 4096       |        |               |          |
|            |        |               |          |
| Total      | 575.00 |               |          |
| *1.1000rod |        | a largast nar | tiala in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Bar Sample taken 3' upstream from Cross Section B

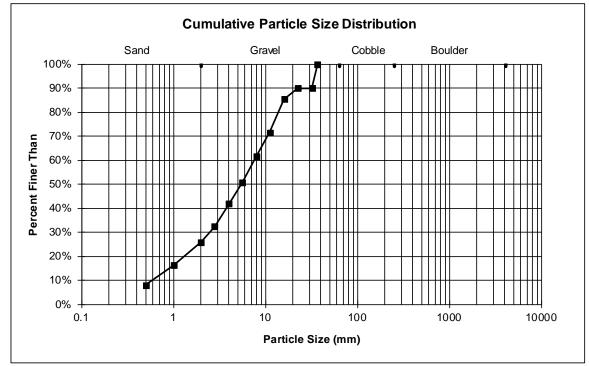
SITE NAME: Pike's Peak Highway - South Catamount Creek Reach 1

ID NUMBER: SCAT1
DATE: 9/9/2013
CREW: VonLoh

| D15   | D35   | D50   | D84    | D95    | Lpart |
|-------|-------|-------|--------|--------|-------|
| 0.668 | 3.014 | 4.559 | 13.823 | 26.213 | 31.0  |



| Size Finer | Wt. on     | % of Total    |         |
|------------|------------|---------------|---------|
| Than (mm)  | Sieve      |               | Than    |
| Pan        | 46.10      | 7.9%          |         |
| 0.5        | 48.60      | 8.3%          | 7.9%    |
| 1.0        | 56.10      | 9.6%          | 16.3%   |
| 2.0        | 38.00      | 6.5%          | 25.9%   |
| 2.8        | 54.70      | 9.4%          | 32.4%   |
| 4.0        | 52.70      | 9.0%          | 41.8%   |
| 5.6        | 62.00      | 10.6%         | 50.9%   |
| 8.0        | 58.10      | 10.0%         | 61.5%   |
| 11.2       | 80.90      | 13.9%         | 71.5%   |
| 16.0       | 26.50      | 4.6%          | 85.4%   |
| 22.4       | 0.00       | 0.0%          | 89.9%   |
| 32.0       | 58.70      | 10.1%         | 89.9%   |
| 37.0       | *          |               | 100.0%  |
| 64.0       |            |               | -       |
| 90         |            |               |         |
| 128        |            |               |         |
| 181        |            |               |         |
| 256        |            |               |         |
| 362        |            |               |         |
| 512        |            |               |         |
| 1024       |            |               |         |
| 2048       |            |               |         |
| 4096       |            |               |         |
|            |            |               |         |
| Total      | 582.40     |               |         |
| *1.4000rod | alua of th | a largast nor | iala in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Bar Sample taken 10' downstream from Cross Section E on left bank

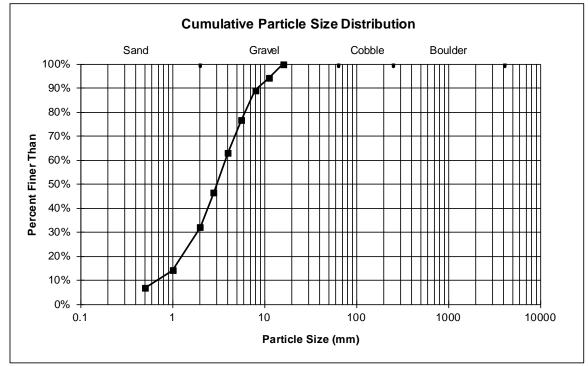
SITE NAME: Pike's Peak Highway - South Catamount Creek Reach 2

ID NUMBER: SCAT2
DATE: 8/26/2013
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84    | D95    | Lpart |
|-------|-------|-------|--------|--------|-------|
| 0.901 | 3.089 | 5.424 | 15.447 | 34.429 | 37.0  |



| Size Finer         | Wt. on | % of Total    |         |
|--------------------|--------|---------------|---------|
| Than (mm)          | Sieve  |               | Than    |
| Pan                | 32.80  | 6.7%          |         |
| 0.5                | 36.20  | 7.4%          | 6.7%    |
| 1.0                | 87.30  | 17.9%         | 14.1%   |
| 2.0                | 69.70  | 14.3%         | 32.0%   |
| 2.8                | 81.60  | 16.7%         | 46.3%   |
| 4.0                | 66.50  | 13.6%         | 63.0%   |
| 5.6                | 60.50  | 12.4%         | 76.7%   |
| 8.0                | 24.50  | 5.0%          | 89.1%   |
| 11.2               | 28.80  | 5.9%          | 94.1%   |
| 16.0               | *      |               | 100.0%  |
| 22.4               |        |               | -       |
| 32.0               |        |               |         |
| 45.0               |        |               |         |
| 64.0               |        |               |         |
| 90                 |        |               |         |
| 128                |        |               |         |
| 181                |        |               |         |
| 256                |        |               |         |
| 362                |        |               |         |
| 512                |        |               |         |
| 1024               |        |               |         |
| 2048               |        |               |         |
| 4096               |        |               |         |
|                    |        |               |         |
| Total              | 487.90 |               |         |
| *1/100001110001111 |        | a largast nar | iala in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Bar Sample taken 10' downstream from Cross Section E on left bank

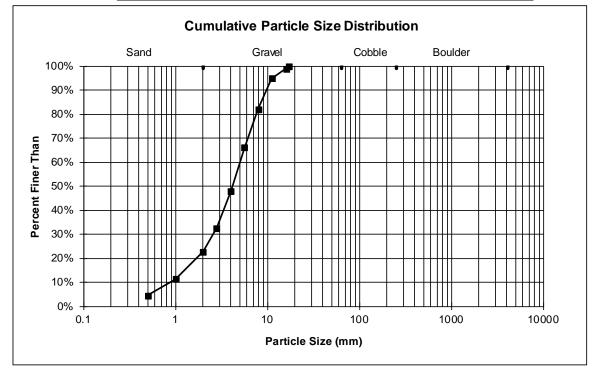
SITE NAME: Pike's Peak Highway - South Catamount Creek Reach 2

ID NUMBER: SCAT2
DATE: 9/24/2013
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95    | Lpart |
|-------|-------|-------|-------|--------|-------|
| 1.034 | 2.145 | 3.029 | 6.913 | 11.828 | 16.0  |



| Size Finer | Wt. on | % of Total | % Finer |
|------------|--------|------------|---------|
| Than (mm)  | Sieve  |            | Than    |
| Pan        | 29.90  | 4.6%       |         |
| 0.5        | 44.00  | 6.7%       | 4.6%    |
| 1.0        | 75.40  | 11.5%      | 11.2%   |
| 2.0        | 64.40  | 9.8%       | 22.7%   |
| 2.8        | 101.30 | 15.4%      | 32.5%   |
| 4.0        | 119.10 | 18.1%      | 47.9%   |
| 5.6        | 105.10 | 16.0%      | 66.1%   |
| 8.0        | 83.70  | 12.7%      | 82.1%   |
| 11.2       | 26.60  | 4.0%       | 94.8%   |
| 16.0       | 7.60   | 1.2%       | 98.8%   |
| 17.0       | *      |            | 100.0%  |
| 32.0       |        |            | -       |
| 45.0       |        |            |         |
| 64.0       |        |            |         |
| 90         |        |            |         |
| 128        |        |            |         |
| 181        |        |            |         |
| 256        |        |            |         |
| 362        |        |            |         |
| 512        |        |            |         |
| 1024       |        |            |         |
| 2048       |        |            |         |
| 4096       |        |            |         |
|            |        |            |         |
| Total      | 657.10 |            |         |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Bar Sample taken 10' downstream from Cross Section D on right bank

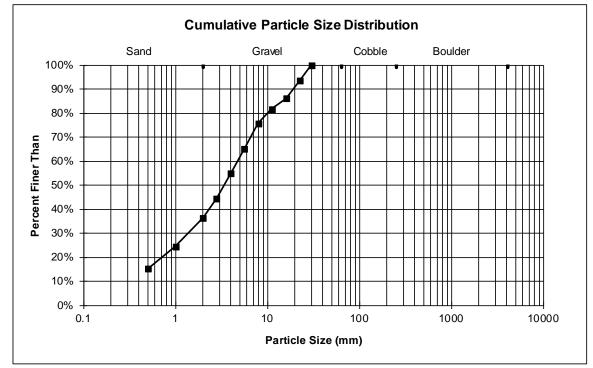
SITE NAME: Pike's Peak Highway - South Catamount Creek Reach 3

ID NUMBER: SCAT3
DATE: 8/28/2013
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95    | Lpart |
|-------|-------|-------|-------|--------|-------|
| 1.255 | 2.965 | 4.156 | 8.421 | 11.404 | 17.0  |



|             |           | _          |         |
|-------------|-----------|------------|---------|
| Size Finer  | Wt. on    | % of Total | % Finer |
| Than (mm)   | Sieve     |            | Than    |
| Pan         | 95.90     | 15.3%      |         |
| 0.5         | 58.30     | 9.3%       | 15.3%   |
| 1.0         | 74.20     | 11.8%      | 24.5%   |
| 2.0         | 51.50     | 8.2%       | 36.4%   |
| 2.8         | 65.40     | 10.4%      | 44.5%   |
| 4.0         | 64.00     | 10.2%      | 55.0%   |
| 5.6         | 66.00     | 10.5%      | 65.1%   |
| 8.0         | 38.20     | 6.1%       | 75.6%   |
| 11.2        | 27.30     | 4.3%       | 81.7%   |
| 16.0        | 45.90     | 7.3%       | 86.1%   |
| 22.4        | 41.60     | 6.6%       | 93.4%   |
| 30.0        | *         |            | 100.0%  |
| 45.0        |           |            | -       |
| 64.0        |           |            |         |
| 90          |           |            |         |
| 128         |           |            |         |
| 181         |           |            |         |
| 256         |           |            |         |
| 362         |           |            |         |
| 512         |           |            |         |
| 1024        |           |            |         |
| 2048        |           |            |         |
| 4096        |           |            |         |
|             |           |            |         |
| Total       | 628.30    |            |         |
| *Measured v | - l £ Al- | - 1        | dala la |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Bar Sample taken 10' downstream from Cross Section D

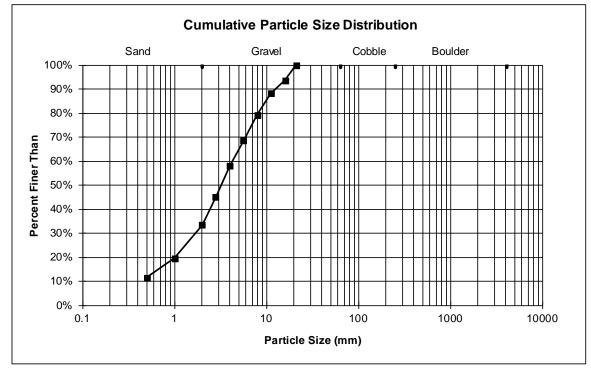
SITE NAME: Pike's Peak Highway - Ski Creek Reach 1

ID NUMBER: SKIC1
DATE: 8/26/2013
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84    | D95    | Lpart |
|-------|-------|-------|--------|--------|-------|
| 0.460 | 1.847 | 3.375 | 13.496 | 24.061 | 30.0  |



| Size Finer  | Wt. on     | % of Total    |         |
|-------------|------------|---------------|---------|
| Than (mm)   | Sieve      |               | Than    |
| Pan         | 53.00      | 11.6%         |         |
| 0.5         | 36.30      | 7.9%          | 11.6%   |
| 1.0         | 64.10      | 14.0%         | 19.5%   |
| 2.0         | 53.20      | 11.6%         | 33.5%   |
| 2.8         | 60.30      | 13.2%         | 45.1%   |
| 4.0         | 47.20      | 10.3%         | 58.2%   |
| 5.6         | 49.00      | 10.7%         | 68.5%   |
| 8.0         | 41.10      | 9.0%          | 79.2%   |
| 11.2        | 24.60      | 5.4%          | 88.2%   |
| 16.0        | 29.60      | 6.5%          | 93.5%   |
| 21.0        | *          |               | 100.0%  |
| 32.0        |            |               | -       |
| 45.0        |            |               |         |
| 64.0        |            |               |         |
| 90          |            |               |         |
| 128         |            |               |         |
| 181         |            |               |         |
| 256         |            |               |         |
| 362         |            |               |         |
| 512         |            |               |         |
| 1024        |            |               |         |
| 2048        |            |               |         |
| 4096        |            |               |         |
|             |            |               |         |
| Total       | 458.40     |               |         |
| *Magaurad v | alua af th | a largast nar | iala in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Bar Sample taken 10' downstream from Cross Section D

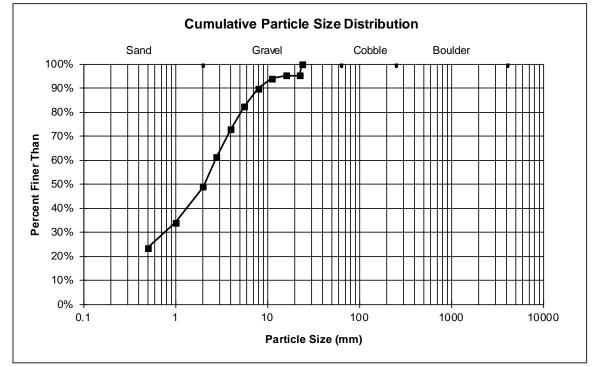
SITE NAME: Pike's Peak Highway -Ski Creek Reach 1

ID NUMBER: SKIC1
DATE: 9/24/2013
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95    | Lpart |
|-------|-------|-------|-------|--------|-------|
| 0.676 | 2.091 | 3.200 | 9.575 | 17.013 | 21.0  |



| Size Finer       | Wt. on     | % of Total    | % Finer |
|------------------|------------|---------------|---------|
| Than (mm)        | Sieve      |               | Than    |
| Pan              | 115.50     | 23.4%         |         |
| 0.5              | 51.80      | 10.5%         | 23.4%   |
| 1.0              | 73.80      | 15.0%         | 33.9%   |
| 2.0              | 61.40      | 12.5%         | 48.9%   |
| 2.8              | 56.30      | 11.4%         | 61.4%   |
| 4.0              | 46.70      | 9.5%          | 72.8%   |
| 5.6              | 36.90      | 7.5%          | 82.3%   |
| 8.0              | 20.40      | 4.1%          | 89.8%   |
| 11.2             | 6.50       | 1.3%          | 93.9%   |
| 16.0             | 0.00       | 0.0%          | 95.2%   |
| 22.4             | 23.50      | 4.8%          | 95.2%   |
| 24.0             | *          |               | 100.0%  |
| 45.0             |            |               | -       |
| 64.0             |            |               |         |
| 90               |            |               |         |
| 128              |            |               |         |
| 181              |            |               |         |
| 256              |            |               |         |
| 362              |            |               |         |
| 512              |            |               |         |
| 1024             |            |               |         |
| 2048             |            |               |         |
| 4096             |            |               |         |
|                  |            |               |         |
| Total            | 492.80     |               |         |
| *N/000011rod 1/4 | alua af th | a largast par | iala in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Bar Sample taken 6' upstream from Cross Section A left bank

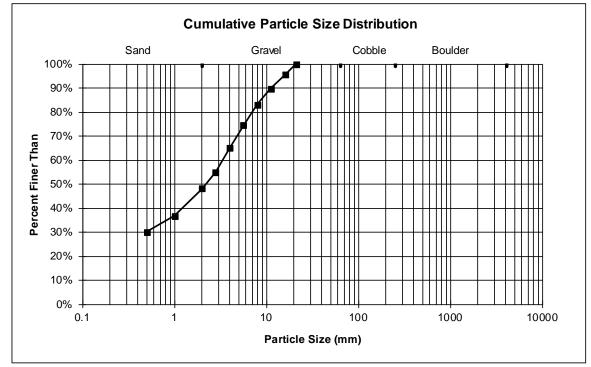
SITE NAME: Pike's Peak Highway - Ski Creek Reach 2

ID NUMBER: SKIC2
DATE: 8/22/2013
CREW: Hauser, VonLoh

| D15   | D35   | D50   | D84   | D95    | Lpart |
|-------|-------|-------|-------|--------|-------|
| 0.087 | 1.050 | 2.059 | 6.077 | 15.030 | 24.0  |



| Size Finer | Wt. on | % of Total | % Finer |
|------------|--------|------------|---------|
| Than (mm)  | Sieve  |            | Than    |
| Pan        | 146.10 | 30.0%      |         |
| 0.5        | 32.70  | 6.7%       | 30.0%   |
| 1.0        | 55.20  | 11.4%      | 36.8%   |
| 2.0        | 33.00  | 6.8%       | 48.1%   |
| 2.8        | 49.90  | 10.3%      | 54.9%   |
| 4.0        | 45.60  | 9.4%       | 65.2%   |
| 5.6        | 41.00  | 8.4%       | 74.6%   |
| 8.0        | 32.40  | 6.7%       | 83.0%   |
| 11.2       | 28.20  | 5.8%       | 89.7%   |
| 16.0       | 22.10  | 4.5%       | 95.5%   |
| 21.0       | *      |            | 100.0%  |
| 32.0       |        |            | -       |
| 45.0       |        |            |         |
| 64.0       |        |            |         |
| 90         |        |            |         |
| 128        |        |            |         |
| 181        |        |            |         |
| 256        |        |            |         |
| 362        |        |            |         |
| 512        |        |            |         |
| 1024       |        |            |         |
| 2048       |        |            |         |
| 4096       |        |            |         |
|            |        |            |         |
| Total      | 486.20 | - 1        | V-1- :  |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Bar Sample taken at Cross Section A

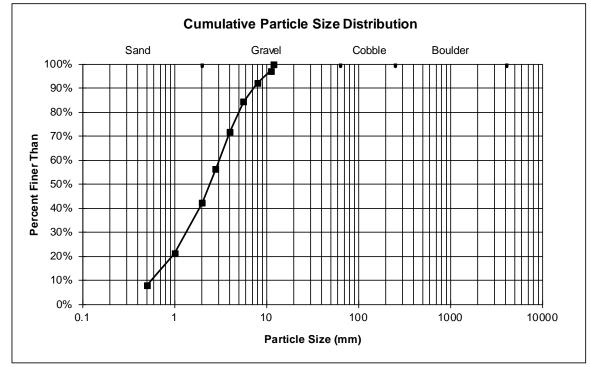
SITE NAME: Pike's Peak Highway - Severy Creek Reach 1

ID NUMBER: SVRY1
DATE: 11/11/2013
CREW: VonLoh

| D15   | D35   | D50   | D84   | D95    | Lpart |  |
|-------|-------|-------|-------|--------|-------|--|
| 0.044 | 0.833 | 2.194 | 8.418 | 15.559 | 21.0  |  |



| -          |        |            |        |
|------------|--------|------------|--------|
| Size Finer | Wt. on | % of Total |        |
| Than (mm)  | Sieve  |            | Than   |
| Pan        | 32.90  | 7.8%       |        |
| 0.5        | 56.00  | 13.4%      | 7.8%   |
| 1.0        | 88.30  | 21.1%      | 21.2%  |
| 2.0        | 58.70  | 14.0%      | 42.3%  |
| 2.8        | 65.20  | 15.5%      | 56.3%  |
| 4.0        | 52.60  | 12.5%      | 71.8%  |
| 5.6        | 32.20  | 7.7%       | 84.4%  |
| 8.0        | 21.10  | 5.0%       | 92.0%  |
| 11.2       | 12.30  | 2.9%       | 97.1%  |
| 12.0       | *      |            | 100.0% |
| 22.4       |        |            | -      |
| 32.0       |        |            |        |
| 45.0       |        |            |        |
| 64.0       |        |            |        |
| 90         |        |            |        |
| 128        |        |            |        |
| 181        |        |            |        |
| 256        |        |            |        |
| 362        |        |            |        |
| 512        |        |            |        |
| 1024       |        |            |        |
| 2048       |        |            |        |
| 4096       |        |            |        |
|            |        |            |        |
| Total      | 419.30 |            | V-1    |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Bar Sample taken downstream from Cross Section E

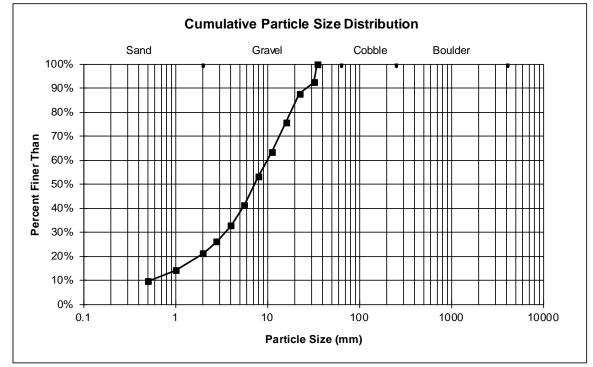
SITE NAME: Pike's Peak Highway - Severy Creek Reach 2

ID NUMBER: SVRY2
DATE: 11/11/2013
CREW: VonLoh

| D15   | D35   | D50   | D84   | D95   | Lpart |
|-------|-------|-------|-------|-------|-------|
| 0.725 | 1.575 | 2.409 | 5.547 | 9.755 | 12.0  |



| Size Finer  | Wt. on     | % of Total    | % Finer  |
|-------------|------------|---------------|----------|
| Than (mm)   | Sieve      |               | Than     |
| Pan         | 73.10      | 9.5%          |          |
| 0.5         | 35.60      | 4.6%          | 9.5%     |
| 1.0         | 53.50      | 7.0%          | 14.2%    |
| 2.0         | 37.60      | 4.9%          | 21.1%    |
| 2.8         | 51.10      | 6.7%          | 26.0%    |
| 4.0         | 65.80      | 8.6%          | 32.7%    |
| 5.6         | 90.20      | 11.7%         | 41.2%    |
| 8.0         | 79.40      | 10.3%         | 53.0%    |
| 11.2        | 94.90      | 12.4%         | 63.3%    |
| 16.0        | 91.70      | 11.9%         | 75.7%    |
| 22.4        | 36.00      | 4.7%          | 87.6%    |
| 32.0        | 59.00      | 7.7%          | 92.3%    |
| 35.0        | *          |               | 100.0%   |
| 64.0        |            |               | -        |
| 90          |            |               |          |
| 128         |            |               |          |
| 181         |            |               |          |
| 256         |            |               |          |
| 362         |            |               |          |
| 512         |            |               |          |
| 1024        |            |               |          |
| 2048        |            |               |          |
| 4096        |            |               |          |
|             |            |               |          |
| Total       | 767.90     |               |          |
| *Magaurad w | alua af th | a largest nor | tiala in |


<sup>\*</sup>Measured value of the largest particle in the sample and not a sieve weight

**COMMENTS:** Bar Sample taken between Cross Section D and E

SITE NAME: Pike's Peak Highway - West Fork Beaver Creek Reach 2

ID NUMBER: WBVR2
DATE: 9/17/2013
CREW: VonLoh

| D15   | D35   | D50   | D84    | D95    | Lpart |
|-------|-------|-------|--------|--------|-------|
| 1.088 | 4.383 | 7.306 | 20.223 | 33.017 | 35.0  |



## Appendix P

Riparian Vegetation Summary

2013

### Riparian Vegetation Summary Pikes Peak, 2013

| Site ID | Date      | Camera             | Cross Section and Pin to Pin Distance in (ft) | Bar Sample    | Bank  | Bank<br>Distance<br>from LPIN<br>(ft) | Camera<br>Distance<br>from LPIN<br>(ft) | Percent<br>Cover | Comments                  |
|---------|-----------|--------------------|-----------------------------------------------|---------------|-------|---------------------------------------|-----------------------------------------|------------------|---------------------------|
|         |           |                    |                                               | At XSE right  |       |                                       |                                         |                  |                           |
| GLEN1   | 8/28/2013 | Olympus Stylus 400 | A (20.03)                                     | bank          | Left  | 9                                     | 12                                      | 10               | Sedge, Forb, Shrub        |
| GLEN1   |           | Olympus Stylus 400 | Α                                             |               | Right | 13                                    | 8.5                                     | 60               | Moss, Sedge, Forb, Shrub  |
| GLEN1   |           | Olympus Stylus 400 | B(16.57)                                      |               | Left  | 6.3                                   | 9.5                                     | 5                | Grass, Shrub              |
| GLEN1   |           | Olympus Stylus 400 | В                                             |               | Right | 9                                     | 5.7                                     | 10               | Grass, Sedge, Forb, shrub |
| GLEN1   |           | Olympus Stylus 400 | C (17.31)                                     |               | Left  | 5.9                                   | 9.9                                     | 10               | Sedge                     |
| GLEN1   |           | Olympus Stylus 400 | С                                             |               | Right | 9.6                                   | 6                                       | 20               | Sedge, Forb               |
| GLEN1   |           | Olympus Stylus 400 | D (49.99)                                     |               | Left  | 16.8                                  | 21                                      | 5                | Shrub                     |
| GLEN1   |           | Olympus Stylus 400 | D                                             |               | Right | 29                                    | 27.2                                    | 5                | Grass, Forb, Shrub, Tree  |
| GLEN1   |           | Olympus Stylus 400 | E (24.29)                                     |               | Left  | 8                                     | 15.5                                    | 15               | Sedge, Forb, Shrub        |
| GLEN1   |           | Olympus Stylus 400 | Е                                             |               | Right | 19.7                                  | 12                                      | 20               | Grass, Forb, Shrub        |
|         |           |                    |                                               | At XSC right  |       |                                       |                                         |                  |                           |
| NCAT1   | 9/3/2013  | Olympus Stylus 400 | A (57.53)                                     | bank          | Left  | 12                                    | 17                                      | 10               | Grass, Sedge, Forb        |
| NCAT1   |           | Olympus Stylus 400 | Α                                             |               | Right | 16.5                                  | 12                                      | 20               | Grass, Sedge, Forb        |
| NCAT1   |           | Olympus Stylus 400 | B (58.83)                                     |               | Left  | 46                                    | 50                                      | 30               | Grass, Sedge              |
| NCAT1   |           | Olympus Stylus 400 | В                                             |               | Right | 50.5                                  | 47                                      | 25               | Grass, Sedge, Forb        |
| NCAT1   |           | Olympus Stylus 400 | C (38.85)                                     |               | Left  | 16.7                                  | 21.5                                    | 30               | Grass, Sedge, Forb, Shrub |
| NCAT1   |           | Olympus Stylus 400 | С                                             |               | Right | 30.3                                  | 26                                      | 15               | Grass, Sedge, Forb        |
| NCAT1   |           | Olympus Stylus 400 | D (44.77)                                     |               | Left  | 28.5                                  | 30                                      | 40               | Sedge, Forb, Shrub        |
| NCAT1   |           | Olympus Stylus 400 | D                                             |               | Right | 32.5                                  | 29.3                                    | 50               | Sedge, Forb               |
| NCAT1   |           | Olympus Stylus 400 | E (60.78)                                     |               | Left  | 42.8                                  | 47                                      | 20               | Grass, Sedge, Shrub       |
| NCAT1   |           | Olympus Stylus 400 | Е                                             |               | Right | 45.5                                  | 41                                      | 30               | Grass, Sedge              |
|         |           |                    |                                               | 3' downstream |       |                                       |                                         |                  |                           |
| NCAT2   | 9/3/2013  | Olympus Stylus 400 | A (29.17)                                     | from XSB      | Left  | 12                                    | 16.5                                    | 30               | Grass, Sedge, Shrub       |
| NCAT2   |           | Olympus Stylus 400 | Α                                             |               | Right | 16.2                                  | 12                                      | 35               | Grass, Sedge              |
| NCAT2   |           | Olympus Stylus 400 | B (40.59)                                     |               | Left  | 8.8                                   | 13                                      | 30               | Grass, Sedge              |
| NCAT2   |           | Olympus Stylus 400 | В                                             |               | Right | 11.8                                  | 8                                       | 20               | Grass, Sedge              |
| NCAT2   |           | Olympus Stylus 400 | C (42.34)                                     |               | Left  | 11.5                                  | 17                                      | 25               | Grass, Sedge              |

| Site ID        | Date      | Camera                                | Cross<br>Section and<br>Pin to Pin<br>Distance in<br>(ft) | Bar Sample                   | Bank          | Bank<br>Distance<br>from LPIN<br>(ft) | Camera<br>Distance<br>from LPIN<br>(ft) | Percent<br>Cover | Comments                            |
|----------------|-----------|---------------------------------------|-----------------------------------------------------------|------------------------------|---------------|---------------------------------------|-----------------------------------------|------------------|-------------------------------------|
| NCAT2          |           | Olympus Stylus 400                    | С                                                         |                              | Right         | 16.4                                  | 11.5                                    | 30               | Grass, Sedge, Forb                  |
| NCAT2          |           | Olympus Stylus 400                    | D (29.78)                                                 |                              | Left          | 6                                     | 10.5                                    | 35               | Grass, Sedge, Forb, Shrub           |
| NCAT2          |           | Olympus Stylus 400                    | D                                                         |                              | Right         | 9.7                                   | 5                                       | 30               | Grass, Sedge, Forb                  |
| NCAT2          |           | Olympus Stylus 400                    | E (34.25)                                                 |                              | Left          | 10                                    | 15                                      | 50               | Moss, Sedge, Forb, Shrub            |
| NCAT2          |           | Olympus Stylus 400                    | E                                                         |                              | Right         | 13.1                                  | 2.5                                     | 25               | Grass, Sedge                        |
| NCRY1          | 8/21/2013 | Olympus Stylus 400                    | A (54.53)                                                 | At XSA left bank             | Left          | 35.5                                  | 39                                      | 15               | Grass, Sedge, Forb                  |
| NCRY1          |           | Olympus Stylus 400                    | Α                                                         |                              | Right         | 38.8                                  | 36                                      | 20               | Grass, Sedge, forb                  |
| NCRY1          |           | Olympus Stylus 400                    | B (51.31)                                                 |                              | Left          | 38.8                                  | 42                                      | 15               | Sedge, Tree                         |
| NCRY1          |           | Olympus Stylus 400                    | В                                                         |                              | Right         | 41.5                                  | 38                                      | 20               | Moss, Sedge, Shrub                  |
| NCRY1          |           | Olympus Stylus 400                    | C (43.61)                                                 |                              | Left          | 26.3                                  | 29                                      | 80               | Moss, Grass, Forb, Tree             |
| NCRY1          |           | Olympus Stylus 400                    | С                                                         |                              | Right         | 28.7                                  | 25                                      | 60               | Moss, Sedge, Forb                   |
| NCRY1          |           | Olympus Stylus 400                    | D (41.53)                                                 |                              | Left          | 29.6                                  | 32.8                                    | 15               | Sedge                               |
| NCRY1          |           | Olympus Stylus 400                    | D                                                         |                              | Right         | 31.5                                  | 29.5                                    | 10               | Sedge, Shrub                        |
| NCRY1          |           | Olympus Stylus 400                    | E (37.98)                                                 |                              | Left          | 30                                    | 33.7                                    | 45               | Sedge                               |
| NCRY1          |           | Olympus Stylus 400                    | E                                                         |                              | Right         | 34.3                                  | 31                                      | 75               | Moss, Grass, Forb, Shrub            |
| NCRY2          | 8/21/2013 | Objective Chalans 400                 | A (24.22)                                                 | Upstream from                | 1 044         | 10.5                                  | 45.5                                    | 20               | Cross Church                        |
| NCRY2          | 6/21/2013 | Olympus Stylus 400 Olympus Stylus 400 | A (24.23)<br>A                                            | XSE                          | Left          | 20.6                                  | 15.5<br>15                              | 20<br>10         | Grass, Shrub<br>Moss, Grass, Forb   |
| NCRY2          |           | Olympus Stylus 400                    | B (35.00)                                                 |                              | Right<br>Left | 21.4                                  | 25                                      | 15               | Grass, Forb, Shrub                  |
|                |           | , , ,                                 |                                                           |                              |               |                                       |                                         | 10               | ·                                   |
| NCRY2<br>NCRY2 |           | Olympus Stylus 400 Olympus Stylus 400 | B<br>C (33.82)                                            |                              | Right<br>Left | 30.5<br>19.3                          | 26<br>24                                | 30               | Moss, Forb, Shrub<br>Grass, Shrub   |
| NCRY2          |           | Olympus Stylus 400                    | C (33.62)                                                 |                              |               | 27.4                                  | 23                                      | 15               | Grass, Silrub<br>Grass, Forb, Shrub |
| NCRY2          |           | Olympus Stylus 400                    | D (28.71)                                                 |                              | Right<br>Left | 14.5                                  | 18.3                                    | 5                | Grass, Forb                         |
| NCRY2          |           | Olympus Stylus 400                    | D (26.71)                                                 |                              | Right         | 22.9                                  | 19.3                                    | 0                | Sediment                            |
| NCRY2          |           | Olympus Stylus 400                    | E (34.35)                                                 |                              | Left          | 5.3                                   | 7.1                                     | 5                | Shrub                               |
|                |           | , , ,                                 | E (34.35)                                                 |                              |               |                                       |                                         | 50               |                                     |
| NCRY2          |           | Olympus Stylus 400                    |                                                           | 4' downstream from XSA right | Right         | 18.4                                  | 15.6                                    | 50               | Moss                                |
| OILC1          | 9/25/2013 | Olympus Stylus 400                    | A (48.75)                                                 | bank                         | Left          | 10.5                                  | 13.5                                    | 5                | Moss, Grass, Shrub                  |
| OILC1          |           | Olympus Stylus 400                    | Α                                                         |                              | Right         | 16.6                                  | 14                                      | 20               | Sedge, Shrub                        |

| Site ID | Date      | Camera             | Cross Section and Pin to Pin Distance in (ft) | Bar Sample                        | Bank  | Bank<br>Distance<br>from LPIN<br>(ft) | Camera<br>Distance<br>from LPIN<br>(ft) | Percent<br>Cover | Comments                  |
|---------|-----------|--------------------|-----------------------------------------------|-----------------------------------|-------|---------------------------------------|-----------------------------------------|------------------|---------------------------|
| OILC1   |           | Olympus Stylus 400 | B (41.34)                                     |                                   | Left  | 9.8                                   | 12                                      | 5                | Moss, Sedge               |
| OILC1   |           | Olympus Stylus 400 | В                                             |                                   | Right | 15.5                                  | 13                                      | 5                | Moss, Forb, Sedge         |
| OILC1   |           | Olympus Stylus 400 | C (32.67)                                     |                                   | Left  | 16.2                                  | 19                                      | 20               | Sedge                     |
| OILC1   |           | Olympus Stylus 400 | С                                             |                                   | Right | 20                                    | 17.5                                    | 30               | Sedge                     |
| OILC1   |           | Olympus Stylus 400 | D (45.68)                                     |                                   | Left  | 13.9                                  | 18                                      | 0                | Sediment                  |
| OILC1   |           | Olympus Stylus 400 | D                                             |                                   | Right | 21                                    | 17.5                                    | 10               | Moss, Sedge               |
| OILC1   |           | Olympus Stylus 400 | E (38.35)                                     |                                   | Left  | 8.9                                   | 12                                      | 40               | Moss, Grass, Sedge, Forb  |
| OILC1   |           | Olympus Stylus 400 | Е                                             |                                   | Right | 15.6                                  | 11                                      | 20               | Moss, Sedge               |
| SKIC1   | 8/26/2013 | Olympus Stylus 400 | A (15.04)                                     | 10' downstream<br>from XSD        | Left  | 6.2                                   | 8                                       | 20               | Moss, Grass, Forb         |
| SKIC1   |           | Olympus Stylus 400 | Α                                             |                                   | Right | 11.1                                  | 8.5                                     | 40               | Lichen, Moss, Grass, Forb |
| SKIC1   |           | Olympus Stylus 400 | B (14.15)                                     |                                   | Left  | 4.9                                   | 7                                       | 5                | Moss, Forb                |
| SKIC1   |           | Olympus Stylus 400 | В                                             |                                   | Right | 10.5                                  | 7.5                                     | 5                | Forb, Tree                |
| SKIC1   |           | Olympus Stylus 400 | C (16.60)                                     |                                   | Left  | 4.1                                   | 7                                       | 35               | Grass, Forb               |
| SKIC1   |           | Olympus Stylus 400 | С                                             |                                   | Right | 11                                    | 9                                       | 25               | Moss, Grass, Forb         |
| SKIC1   |           | Olympus Stylus 400 | D (33.57)                                     |                                   | Left  | 16                                    | 19.5                                    | 60               | Moss, Grass, Forb, Shrub  |
| SKIC1   |           | Olympus Stylus 400 | D                                             |                                   | Right | 23.2                                  | 19.5                                    | 5                | Forb, Shrub               |
| SKIC1   |           | Olympus Stylus 400 | E (21.78)                                     |                                   | Left  | 14.5                                  | 17.5                                    | 35               | Grass, Forb, Shrub        |
| SKIC1   |           | Olympus Stylus 400 | Е                                             |                                   | Right | 19.2                                  | 15                                      | 55               | Moss, Grass, Forb, Tree   |
| SKIC2   | 8/22/2013 | Olympus Stylus 400 | A (50.70)                                     | 6' upstream from<br>XSA left bank | Left  | 32.8                                  | 36                                      | 20               | Moss, Grass, Forb, Shrub  |
| SKIC2   |           | Olympus Stylus 400 | Α                                             |                                   | Right | 40.7                                  | 35                                      | 35               | Moss, Grass, Forb, Tree   |
| SKIC2   |           | Olympus Stylus 400 | B (46.73)                                     |                                   | Left  | 28.5                                  | 35.5                                    | 5                | Moss                      |
| SKIC2   |           | Olympus Stylus 400 | В                                             |                                   | Right | 34.5                                  | 32.5                                    | 15               | Moss, Grass, Forb, Shrub  |
| SKIC2   |           | Olympus Stylus 400 | C (29.76)                                     |                                   | Left  | 2.6                                   | 6                                       | 15               | Moss, Grass, Forb, Shrub  |
| SKIC2   |           | Olympus Stylus 400 | С                                             |                                   | Right | 10.6                                  | 7                                       | 5                | Moss, Forb                |
| SKIC2   |           | Olympus Stylus 400 | D (28.31)                                     |                                   | Left  | 4.3                                   | 11                                      | 35               | Moss, Forb, Shrub         |
| SKIC2   |           | Olympus Stylus 400 | D                                             |                                   | Right | 12.5                                  | 8                                       | 5                | Grass, Forb               |
| SKIC2   |           | Olympus Stylus 400 | E (41.90)                                     |                                   | Left  | 24.9                                  | 31                                      | 35               | Lichen, Moss, Grass, Forb |
| SKIC2   |           | Olympus Stylus 400 | E                                             |                                   | Right | 31.1                                  | 26                                      | 5                | Moss, Grass               |

| Site ID | Date       | Camera             | Cross<br>Section and<br>Pin to Pin<br>Distance in<br>(ft) | Bar Sample             | Bank  | Bank<br>Distance<br>from LPIN<br>(ft) | Camera<br>Distance<br>from LPIN<br>(ft) | Percent<br>Cover | Comments                 |
|---------|------------|--------------------|-----------------------------------------------------------|------------------------|-------|---------------------------------------|-----------------------------------------|------------------|--------------------------|
|         |            |                    |                                                           |                        |       |                                       |                                         |                  |                          |
| SVRY1   | 11/11/2013 | Olympus Stylus 400 | A (13.70)                                                 | At XSA                 | Left  | 2                                     | 7                                       | 35               | Moss, Grass, Sedge, Forb |
| SVRY1   |            | Olympus Stylus 400 | Α                                                         |                        | Right | 7.8                                   | 4                                       | 25               | Sedge                    |
| SVRY1   |            | Olympus Stylus 400 | B (11.83)                                                 |                        | Left  | 5                                     | 8                                       | 20               | Sedge                    |
| SVRY1   |            | Olympus Stylus 400 | В                                                         |                        | Right | 5                                     | 5                                       | 25               | Sedge, Shrub             |
| SVRY1   |            | Olympus Stylus 400 | C (14.82)                                                 |                        | Left  | 4.9                                   | 8                                       | 30               | Sedge                    |
| SVRY1   |            | Olympus Stylus 400 | С                                                         |                        | Right | 7.8                                   | 5                                       | 20               | Sedge, Shrub             |
| SVRY1   |            | Olympus Stylus 400 | D (12.09)                                                 |                        | Left  | 4.6                                   | 8                                       | 30               | Sedge, Shrub             |
| SVRY1   |            | Olympus Stylus 400 | D                                                         |                        | Right | 8.6                                   | 4                                       | 80               | Moss, Forb, Shrub        |
| SVRY1   |            | Olympus Stylus 400 | E (9.57)                                                  |                        | Left  | 2.7                                   | 7                                       | 45               | Grass, Sedge             |
| SVRY1   |            | Olympus Stylus 400 | Е                                                         |                        | Right | 6.6                                   | 4                                       | 80               | Moss, Sedge, Forb, Shrub |
| SVRY2   | 11/11/2013 | Olympus Stylus 400 | A (95.72)                                                 | Downstream<br>from XSE | Left  | 20.2                                  | 28                                      | 0                | Sediment                 |
| SVRY2   |            | Olympus Stylus 400 | Α                                                         |                        | Right | 37                                    | 32                                      | 0                | Sediment                 |
| SVRY2   |            | Olympus Stylus 400 | B (116.96)                                                |                        | Left  | 29.5                                  | 35                                      | 0                | Sediment                 |
| SVRY2   |            | Olympus Stylus 400 | В                                                         |                        | Right | 47.2                                  | 41                                      | 0                | Sediment                 |
| SVRY2   |            | Olympus Stylus 400 | C (158.61)                                                |                        | Left  | 59.2                                  | 65                                      | 0                | Sediment                 |
| SVRY2   |            | Olympus Stylus 400 | С                                                         |                        | Right | 79.5                                  | 73                                      | 0                | Sediment                 |
| SVRY2   |            | Olympus Stylus 400 | D (156.58)                                                |                        | Left  | 74.8                                  | 79                                      | 0                | Sediment                 |
| SVRY2   |            | Olympus Stylus 400 | D                                                         |                        | Right | 91.5                                  | 87                                      | 0                | Sediment                 |
| SVRY2   |            | Olympus Stylus 400 | E (211.52)                                                |                        | Left  | 62.5                                  | 72                                      | 0                | Sediment                 |
| SVRY2   |            | Olympus Stylus 400 | Е                                                         |                        | Right | 81                                    | 71                                      | 0                | Sediment                 |
| SCAT1   | 9/9/2013   | Olympus Stylus 400 | A (22.96)                                                 | 3' upstream from XSB   | Left  | 6.4                                   | 11.5                                    | 25               | Grass, Sedge, Forb       |
| SCAT1   |            | Olympus Stylus 400 | Α                                                         |                        | Right | 11.2                                  | 8.9                                     | 75               | Moss, Grass, Sedge       |
| SCAT1   |            | Olympus Stylus 400 | B (20.83)                                                 |                        | Left  | 10.5                                  | 14                                      | 80               | Moss, Grass, Forb        |
| SCAT1   |            | Olympus Stylus 400 | В                                                         |                        | Right | 18.3                                  | 14                                      | 20               | Moss, Grass, Sedge, Forb |
| SCAT1   |            | Olympus Stylus 400 | C (21.86)                                                 |                        | Left  | 4                                     | 10                                      | 10               | Grass, Sedge             |
| SCAT1   |            | Olympus Stylus 400 | C                                                         |                        | Right | 13.7                                  | 9.6                                     | 15               | Grass, Sedge             |
| SCAT1   |            | Olympus Stylus 400 | D (18.12)                                                 |                        | Left  | 5.5                                   | 12                                      | 30               | Grass, Sedge, Forb       |

| Site ID        | Date      | Camera                                   | Cross<br>Section and<br>Pin to Pin<br>Distance in<br>(ft) | Bar Sample                               | Bank          | Bank<br>Distance<br>from LPIN<br>(ft) | Camera<br>Distance<br>from LPIN<br>(ft) | Percent<br>Cover | Comments                                       |
|----------------|-----------|------------------------------------------|-----------------------------------------------------------|------------------------------------------|---------------|---------------------------------------|-----------------------------------------|------------------|------------------------------------------------|
| SCAT1          |           | Olympus Stylus 400                       | D                                                         |                                          | Right         | 11.7                                  | 6                                       | 75               | Moss, Grass, Sedge, Forb                       |
| SCAT1          |           | Olympus Stylus 400                       | E (24.02)                                                 |                                          | Left          | 10                                    | 16                                      | 30               | Grass, Sedge, Forb                             |
| SCAT1          |           | Olympus Stylus 400                       | E                                                         |                                          | Right         | 15.5                                  | 10                                      | 60               | Moss, Grass, Sedge                             |
| SCAT2          | 8/26/2013 | Olympus Stylus 400                       | A (28.57)                                                 | 10' upstream<br>from XSE left<br>bank    | Left          | 3.9                                   | 9                                       | 35               | Moss, Grass, Forb, Tree                        |
| SCAT2          |           | Olympus Stylus 400                       | Α                                                         |                                          | Right         | 15                                    | 9.5                                     | 15               | Moss, Grass, Forb, Tree                        |
| SCAT2          |           | Olympus Stylus 400                       | B (17.05)                                                 |                                          | Left          | 3                                     | 7                                       | 5                | Grass, Sedge                                   |
| SCAT2          |           | Olympus Stylus 400                       | В                                                         |                                          | Right         | 11.3                                  | 7                                       | 25               | Moss, Sedge, Forb                              |
| SCAT2          |           | Olympus Stylus 400                       | C (19.81)                                                 |                                          | Left          | 4                                     | 6                                       | 30               | Moss, Sedge, Forb                              |
| SCAT2          |           | Olympus Stylus 400                       | С                                                         |                                          | Right         | 13.2                                  | 9                                       | 10               | Moss, Sedge, Forb                              |
| SCAT2          |           | Olympus Stylus 400                       | D (38.50)                                                 |                                          | Left          | 7.6                                   | 11                                      | 10               | Sedge, Forb                                    |
| SCAT2          |           | Olympus Stylus 400                       | D                                                         |                                          | Right         | 15.4                                  | 12.7                                    | 25               | Moss, Grass, Sedge                             |
| SCAT2          |           | Olympus Stylus 400                       | E (18.95)                                                 |                                          | Left          | 3.3                                   | 7                                       | 15               | Sedge, Forb                                    |
| SCAT2          |           | Olympus Stylus 400                       | E                                                         |                                          | Right         | 11.2                                  | 8                                       | 35               | Moss, Sedge, Forb                              |
| SCAT3<br>SCAT3 | 8/29/2013 | Olympus Stylus 400<br>Olympus Stylus 400 | A (44.32)<br>A                                            | 10' downstream<br>from XSD right<br>bank | Left<br>Right | 26<br>29.2                            | 29.4<br>25.2                            | 15<br>35         | Grass, Sedge, Forb, Shrub<br>Moss, Sedge, Forb |
| SCAT3          |           | Olympus Stylus 400                       | B (32.19)                                                 |                                          | Left          | 12.1                                  | 16                                      | 5                | Sedge                                          |
| SCAT3          |           | Olympus Stylus 400                       | В                                                         |                                          | Right         | 15.5                                  | 12.7                                    | 25               | Grass, Sedge                                   |
| SCAT3          |           | Olympus Stylus 400                       | C (15.79)                                                 |                                          | Left          | 2.6                                   | 6.8                                     | 35               | Sedge                                          |
| SCAT3          |           | Olympus Stylus 400                       | С                                                         |                                          | Right         | 6.2                                   | 3.1                                     | 25               | Moss, Sedge                                    |
| SCAT3          |           | Olympus Stylus 400                       | D (19.60)                                                 |                                          | Left          | 8                                     | 11.6                                    | 25               | Sedge                                          |
| SCAT3          |           | Olympus Stylus 400                       | D                                                         |                                          | Right         | 10                                    | 8.1                                     | 25               | Sedge                                          |
| SCAT3          |           | Olympus Stylus 400                       | E (18.48)                                                 |                                          | Left          | 4.6                                   | 8.2                                     | 30               | Moss, Sedge, Forb                              |
| SCAT3          |           | Olympus Stylus 400                       | Е                                                         |                                          | Right         | 6.5                                   | 3.8                                     | 10               | Sedge, Forb, Shrub                             |
| WBVR2          | 9/17/2013 | Olympus Stylus 400                       | A (44.40)                                                 | XSB <> XSC left<br>bank                  | Left          | 7.5                                   | 16.0                                    | 35               | Moss, Shrub                                    |
| WBVR2          |           | Olympus Stylus 400                       | А                                                         |                                          | Right         | 25.0                                  | 19.0                                    | 5                | Grass                                          |

| Site ID | Date | Camera             | Cross<br>Section and<br>Pin to Pin<br>Distance in<br>(ft) | Bar Sample | Bank  | Bank<br>Distance<br>from LPIN<br>(ft) | Camera<br>Distance<br>from LPIN<br>(ft) | Percent<br>Cover | Comments                 |
|---------|------|--------------------|-----------------------------------------------------------|------------|-------|---------------------------------------|-----------------------------------------|------------------|--------------------------|
| WBVR2   |      | Olympus Stylus 400 | B (90.60)                                                 |            | Left  | 14.0                                  | 21.0                                    | 5                | Grass, Shrub             |
| WBVR2   |      | Olympus Stylus 400 | В                                                         |            | Right | 42.3                                  | 37.0                                    | 0                | Sediment                 |
| WBVR2   |      | Olympus Stylus 400 | C (151.93)                                                |            | Left  | 100.5                                 | 107.0                                   | 5                | Grass                    |
| WBVR2   |      | Olympus Stylus 400 | С                                                         |            | Right | 126.0                                 | 119.0                                   | 25               | Grass, Shrub             |
| WBVR2   |      | Olympus Stylus 400 | D (149.43)                                                |            | Left  | 97.0                                  | 108.0                                   | 0                | Sediment                 |
| WBVR2   |      | Olympus Stylus 400 | D                                                         |            | Right | 127.5                                 | 123.0                                   | 0                | Sediment                 |
| WBVR2   |      | Olympus Stylus 400 | E (96.25).                                                |            | Left  | 32.2                                  | 38.0                                    | 35               | Moss, Grass, Shrub, Tree |
| WBVR2   |      | Olympus Stylus 400 | Е                                                         |            | Right | 54.5                                  | 43.0                                    | 0                | Sediment                 |