Annual Progress Report for 2014

MONITORING THE EFFECTIVENESS AND VALIDATING RESPONSE TO THE ROAD RELATED MITIGATION PRACTICES IMPLEMENTED ON THE PIKES PEAK HIGHWAY

April 13, 2015

West Fork Beaver Creek, Pikes Peak, Colorado.

Photo by Josh VonLoh, METI Inc.

Submitted by:

C.A. Troendle, S. Winkler, J. VonLoh, and H. Karlsson METI, Inc. 8600 Boeing Drive El Paso, Texas 79925

Submitted to:

USDA Forest Service 2150A Centre Ave Fort Collins, CO 80526

INTRODUCTION	
DISCHARGE POINTS	5
MULTIPLE-USE	6
SITE LOCATION AND IDENTIFICATION	9
OBJECTIVE	10
EFFECTIVENESS MONITORING	10
PRECIPITATION	
HIGHWAY SURFACE STABILIZATION	
STABILIZING CUT AND FILL SLOPES	
ARMORING DRAINAGE CHANNELS	
DRAINAGE DITCHES	
CONVEYANCE CHANNELS	
SEDIMENT TRAPS (SEDIMENT PONDS AND ROCK WEIRS)	
VALIDATION MONITORING	
STREAM CHANNEL CROSS SECTIONS	
BANK EROSION	
PARTICLE SIZE DISTRIBUTION	
PEBBLE COUNTS	
GRAB SAMPLES	
VEGETATION	
SUMMARY	
REFERENCES	
APPENDIX A	
APPENDIX B	47
APPENDIX C	
APPENDIX D	55
APPENDIX E	
APPENDIX F	63
APPENDIX G	
APPENDIX H	
APPENDIX I	
APPENDIX J	
APPENDIX K	
APPENDIX L	
APPENDIX M	
APPENDIX N	

TABLE OF CONTENTS

APPENDIX O	
APPENDIX P	

Executive Summary

Monitoring the Effectiveness and Validating Response to the Road Related Mitigation Practices Implemented on the Pikes Peak Highway

C.A. Troendle, S. Winkler, J. VonLoh, and H. Karlsson

This is the twelfth report documenting the annual monitoring efforts on the Pikes Peak Highway as part of the Settlement Agreement between the Sierra Club and the United States Department of Agriculture, Forest Service in Sierra Club v. Veneman, Civil Action No. 98-M-662 (D. Colo.), (U.S. Department of Justice 2002). The original monitoring plan and subsequent amendments call for effectiveness monitoring, designed to determine how well the mitigation practices implemented contribute to meeting their objectives; and validation monitoring, designed to determine how the mitigation practices affect the riparian, wetland, and aquatic systems within the area of influence of the Pikes Peak Highway (USDA Forest Service 2002 and 2003).

Effectiveness monitoring for the Pikes Peak Highway is focused on the 14-mile-long, 300-footwide highway corridor (150-feet each side of the highway centerline), starting at mile marker seven and continuing to the summit. The only resurfacing treatment used on the highway for mitigation purposes was asphalt paving which was completed in 2011. In 2014, a private contractor for the City of Colorado Springs installed a pipe back above rock weir 234RW (Basin 3: Severy and Ski Creek Watersheds) to divert water under the highway to a shotcrete ditch above sediment pond 237RW. This diverted drainage from Severy Creek Watershed to Ski Creek Watershed. Drainage ditch 205DD at the Halfway Picnic Area (Basin 2: North Fork of Crystal and Ski Creek Watersheds) was lined with shotcrete. The highway crew also reinforced the concrete blocks below drainage ditch 188DD pipe back at the Halfway Picnic Area (Basin 2). The runoff exiting the culvert had shown signs of breaching the shotcrete drainage ditch and conveying discharge into the channel below. In addition, 830 tons of gravel was used to repair highway shoulders and potholes at the summit, while a total of 85 yards of material was removed from seventeen rock weirs and one sediment pond (237RW) during clean-out. Eleven rock weirs were refaced with 3/4-inch rock (thirty-six yards) after clean-out to improve efficiency (personal communication with Dave Jordan, City of Colorado Springs, Skilled Maintenance Supervisor).

The U.S. Forest Service, Crystal Creek Fuels Reduction Project completed tree remediation on one linear mile within the highway corridor in Basin 1 (Lower North Fork of Crystal Creek Watershed) during the 2014 field season. The silvicultural practices implemented included a combination of partial tree removal and clearcuttings as well as slash and understory removal. The disturbance associated with the vegetation treatments potentially compromised several monitoring sites and may affect the integrity as well as the ability to obtain future measurements at these sites.

Precipitation measurements from the three electronic rain gauges (Onset Computer Corp.) and the NRCS Snotel site, located at Glen Cove indicated that precipitation was average for 2014. In addition to the electronic rain gauges, standard non-recording rain gauges (All-Weather) were installed at each monitoring site as described in the 2010 Annual Report. The estimate of total precipitation for electronic rain gauge 075RG was available from August 30 through September

8, 2014, but daily precipitation for the period was not, as the daily file was corrupted. Standard rain gauge 076RG was vandalized in July and data was lost from July 1 through July 8, 2014 when it was replaced. Electronic rain gauge 077RG was not installed until June 2, 2014. Rain gauge 077RG malfunctioned during the pre-season calibration and was sent to Onset Computer Corp. for repairs. Prior to the 2015 field season, three new HOBO Data Logging Rain Gauges (RG3) will be purchased.

Silt fences were not exposed to high runoff and erosion activities in 2014. The field crew completed periodic site visits to 56 sites. The upper fence at cut slope site 059CS in Basin 7 (Glen Cove, Ski, and North Fork of Crystal Creek Watersheds) was removed in 2012 after highway construction limited access and relocated large boulders preventing fence material from being reliably fastened. The upper fences at five fill slope sites (048FS, 052FS, 055FS, 083FS, and 086FS) in Basin 7 were damaged during highway construction in 2011. As a result, the upper fences were removed from the sampling in 2012 and not replaced, and the lower fences continue to be monitored. In addition, silt fences were removed from fill slope site 196FS and conveyance channel 245CC was established in 2009. Silt fences from 13 cut slope, 28 fill slope, and 15 rock weir sites were monitored in 2014. In addition, one of the cut slope silt fences was breached during the 2014 field season. All silt fence sites were visited periodically, sediment volume measured, and silt fences evaluated for repair or replacement.

Four of the original 20 drainage ditches selected for monitoring were surveyed in 2014. Sixteen of the original 20 drainage ditches have been paved or lined with shotcrete since monitoring began, including drainage ditch 205DD (Basin 2) which was lined with shotcrete in 2014. This eliminates the need for further monitoring unless visual inspection provides evidence of failure, in which case cross sections will be re-established and surveys completed to document change. The four remaining drainage ditches located in Basins 1 and 2 are lined with erosion control fabric and will continue to be surveyed annually.

Eighty-eight of 117 conveyance channels were surveyed in 2014. In addition, six conveyance channels (027CC, 099CC, 111CC, 112CC, 118CC, and 119CC) were documented using photographic and observation monitoring. These sites were not surveyed due to the exposure of large boulders and the general instability of the slope following past rock weir failures. Conveyance channels 109CC and 110CC were also documented using photographic and observation monitoring as weather conditions didn't allow for an end of season survey. Conveyance channel 212CC, which was lined with rip rap in 2011 was surveyed as the channel had breached immediately below the contributing culvert. The highway crew was notified and the channel was repaired. Conveyance channel 064CC was damaged by a vehicle crash during the Pikes Peak International Hill Climb. There was significant impact to the site; boulders and trees where moved downslope from cross section B to just above cross section C and several benchmarks were destroyed. The field crew was able to re-establish this site and extended cross section B by 4-feet to capture any activity on the de-vegetated hill slope. Although the original intent of the survey site may be compromised, there is still value in continuing to survey 064CC.

Thirty-six sediment traps were monitored in 2014, including 24 rock weirs, seven sediment ponds and five cutoff walls with riprap aprons below. Nineteen sites were surveyed at least twice to monitor their effectiveness in trapping sediment from winter and summer runoff. The

rock weirs were surveyed and sediment volume was measured in the silt fences located down slope of the rock weirs (15 rock weirs have associated silt fences). In 2012, the highway crew removed five breached rock weirs (236RW, 238RW, 240RW, 242RW, and 243RW) in the switchbacks (Basins 3 and 4: Upper Ski and North French Creeks) and replaced them with cutoff walls with riprap aprons below. Photographic and observation monitoring were used to document changes at these sites along with three sediment ponds (258RW, 260RW, and 262RW). Eight of the 24 rock weir sites demonstrated some degree of failure, where water and sediment were seen piping under or through the sediment trap, the sediment trap was overtopped, or the sediment trap was breached. Four of these weirs (202RW, 250RW, 252RW, and 254RW) were observed and photographed overtopping during a storm event on July 8, 2014. This storm event was not notable in terms of volume, but a five minute hailstorm preceded the weirs overtopping. It is important to note that all of these weirs were mostly empty of sediment before the storm event. Rock weir 176RW was lined with shotcrete in 2013. As a result, the weir is full of standing water and overtops during most storm events. Many of the rock weirs were full of sediment rendering them ineffective, resulting in an inability of the field crew to effectively monitor these structures. The highway crew cleaned-out seventeen rock weirs and one sediment pond (237RW) this field season. The field crew completed surveys of these sites shortly after clean-out.

The primary focus of the validation monitoring is to address the condition of the riparian wetland and aquatic systems along the Pikes Peak Highway. Surveys were completed on all stream reaches (Boehmer, East Fork of Beaver, Glen Cove, North Catamount, North Fork of Crystal, Oil, Severy, Ski, South Catamount, and West Fork of Beaver Creeks). A pebble count and grab sample were completed on all streams except North Fork Crystal Creek as the stream bed is dry, inactive, and vegetation is encroaching into the channel. In the past, stream channel surveys have included planview surveys, profile surveys, cross section surveys, thalweg surveys, bankfull surveys, bank erosion surveys, vegetation surveys, pebble counts, and grab samples. In 2014, stream channel surveys included only cross section surveys, thalweg surveys, vegetation surveys, pebble counts, and grab samples except as noted above.

Numerous grab samples were collected from the cut slope and fill slope silt fences, the rock weirs and their associated silt fences, and from the stream bars throughout the 2014 field season. A subset of these was selected to be analyzed in the laboratory for particle size distribution. The balance of samples will be analyzed only if the variability in the particle size distribution of the subset of samples chosen for initial analysis warrants additional analysis. Laboratory analyses for the 2014 field season have been completed on the grab samples and a summary of particle size distributions and graphs are presented in this report. Comparing the distribution of material captured in traps near the highway to sediment deposits (bars) in the streams will validate response to highway mitigation practices.

Included with the full report is a data DVD containing all survey data (field and post processing) plus digital photographs (recommended viewing) for all sites for the 2014 field season. The annual reports and data may also be accessed from:

http://www.fs.fed.us/emc/rig/pikespeak/index.shtml

INTRODUCTION

The proposed actions presented in the Pikes Peak Highway Drainage, Erosion and Sediment Control Plan Environmental Assessment (Hydrosphere Resource Consultants 1999) were designed to achieve the following goals:

- Stabilize road surface materials, cut slopes, and fill slopes
- Reduce runoff velocities and dissipate erosive energy
- Collect runoff in armored ditches and conveyance channels
- Reduce erosion and sediment deposition in drainage channels
- Retain sediment in traps and ponds to reduce downstream sedimentation

In May 2001, a monitoring plan was approved as part of the Settlement Agreement between the Sierra Club and the United States Department of Agriculture, Forest Service in Sierra Club v. Venneman, Civil Action No. 98-M-662 (D. Colo.), (U.S. Department of Justice 2002). The monitoring plan outlines appropriate procedures for monitoring and documenting the effectiveness of mitigation practices in achieving the above desired goals (USDA Forest Service 2002). The monitoring effort, which includes implementation monitoring, effectiveness monitoring, and validation monitoring, began in 2003 and ends in 2017.

Implementation monitoring verifies that mitigation practices are properly implemented. Staffs from both the city of Colorado Springs and the U.S. Forest Service are responsible for this aspect of the monitoring program. Because all parties assume that mitigation practices will be properly implemented, successes or failures in design or implementation will be addressed in the annual monitoring reports only to the extent that they impact subsequent monitoring.

Effectiveness monitoring is intended to document whether or not the properly implemented mitigation practice is effective in achieving the desired goal(s) or purpose(s) for that practice. Effectiveness monitoring for the Pikes Peak Highway is focused on the 14-mile-long, 300-foot-wide highway corridor (150-feet each side of the highway centerline), starting at mile marker seven and continuing to the summit, and is intended to document how effective the mitigation practices are in reducing erosion and sedimentation from features such as the road surface, cut and fill slopes, drainage ditches and conveyance channels. Precipitation is also monitored to provide an index to the amount and erosive energy of rainfall events. Effectiveness monitoring is the cornerstone of the monitoring effort described in this report.

An equally critical component in the monitoring program is validation monitoring, which is intended to document the degree to which the properly implemented and effective mitigation practices ultimately influence the resource of concern. In this report, validation monitoring addresses the condition of the riparian, wetland, and aquatic systems adjacent to the Pikes Peak Highway and attempts to provide data to validate that discharge management and reductions in sedimentation from the highway do in fact result in improvements in the channel and riparian environment below.

Subsequent changes in the proposed action plan for road mitigation (Burke 2002) required amendment of the approved monitoring plan (USDA Forest Service 2003). Initially, a variety of

highway surface stabilization practices were proposed for road mitigation. Those were reduced to a single surfacing procedure, asphalt paving, eliminating the need for a monitoring design that incorporated multiple surface treatments. Rock weirs to detain the water and sediment exiting the highway corridor from all events up to the magnitude of the design storm are completed or under construction in selected locations. By design, sediment should settle out in the rock weir, where it can be measured directly, while water percolates through a porous berm. The addition of rock weirs eliminated the need to sample sediment concentrations in pond inflow and outflow as well as measure material trapped in the pond as originally stated in the monitoring plan. Additional revisions in the mitigation design concentrate road drainage from very long segments or reaches (as long as two miles) of both pavement and ditch line into fewer diversion points and conveyance channels, reducing the number of diversions off the highway and the number of proposed sampling sites.

The entire highway has been paved with asphalt, rather than surfaced using a variety of treatments, which should significantly reduce or eliminate the potential for continued surface erosion to occur from the road surface. Erosion rates from the gravel portion of the highway were monitored as described in the approved monitoring plan, but since paving of the entire highway was completed in 2011, it is assumed that erosion from the road surface has been reduced to zero. As noted above, sediment pond design has been altered but monitoring will still focus on quantifying total sediment exported in the discharge water and the effectiveness of the mitigation practices in reducing that export. This report includes a brief description of the current monitoring protocol for each metric of concern and documents any changes in the monitoring protocol that may have occurred since the previous annual report.

The U.S. Forest Service oversees monitoring of the streams draining the basins below the highway to validate that discharge management and reductions in sedimentation from the highway result in improvements in the channel and riparian environment. A suite of tributaries in the Pikes Peak Watershed has been identified as either impacted or non-impacted by the presence and maintenance of the Pikes Peak Highway. North Catamount, South Catamount, Glen Cove, Oil, and Boehmer Creeks represent previously non-impacted streams. Ski, Severy, East Fork of Beaver, North Fork of Crystal, and West Fork of Beaver Creeks are all considered stream systems impacted by the highway. Depending on the magnitude of the reduction in the amount of sediment delivered to the stream system and changes in discharge amount and energy, it may be possible to document changes in channel morphology and riparian condition that occur as a consequence of highway management.

Discharge Points

The mitigation practices implemented on the Pikes Peak Highway have five inherent goals, three of which relate to managing, or controlling, road related discharge. As a result, numerous modifications in the road side drainage network were made over the course of the paving process. Drainage ditches were lengthened and discharge points were altered, resulting in discharge water being diverted from one watershed to another. In the case of Severy Creek, for example, discharge into the watershed from the road prism has been virtually eliminated, reducing the erosive energy of flow as well as decreasing sediment supply. In contrast, discharge into South Catamount Creek, previously an "non-impacted" watershed has been

increased. Increases or decreases in flow diverted off the road prism and into the conveyance channels draining to the stream channels can alter channel response and should be considered in any analysis of treatment effect. Table 1 lists the changes in the road drainage network and diversion points that have occurred during the course of the paving project. It should be noted that no attempt is made to quantify the amount of water diverted, only to document that water exiting at one point was diverted to another point.

Site ID	Basin	Change in	Year	Ditch	Comment
	#	Watershed	Treated	Treatment	
234RW	3	SVRY>SKIC	2014	Shotcrete, Pipe Back	Rock Weir 234RW breached in 2011. In 2014, weir was rebuilt and a pipe back installed to divert discharge from 234RW (SVRY) to sediment pond 237RW (SKIC).
188DD	2	NCRY>SCAT	2013	Shotcrete, Pipe Back	Historically 188DD drained into 176RW, 178RW, 179RW, 180RW, 181RW NCRY. In 2013, ditch lined with shotcrete eliminated drainage into all weirs except 176RW. Pipe back diverted water to SCAT.
080DD	7	GLEN>SKIC	2011	Shotcrete, Pipe Back	Drainage ditches 080DD, 082DD, and 085DD combined into one continuous drainage ditch, lined
082DD	7	GLEN>SKIC	2011	Shotcrete, Pipe Back	with shotcrete in 2011. Watershed for 080DD, 082DD changed to SKIC. Watershed for 085DD did not change as it was always SKIC.
				Shotcrete, Pipe	
085DD	7	SKIC	2011	Back	
109CC	3	SVRY>SKIC	2007	Shotcrete, Culvert	Discharge from conveyance channels 109CC and 110CC originally drained into 100CC (SVRY). The culvert for 100CC was plugged in 2007 diverting
110CC	3	SVRY>SKIC	2007	Shotcrete, Culvert	drainage from 109CC and 110CC into 238RW (SCAT).
236RW	3	SKIC>GLEN	2003	Shotcrete, Cut- off wall, rip rap	Ski Creek diversion diverted all alpine runoff to Glen Cove Watershed in 2003.
238RW	3	SKIC>GLEN	2003	Shotcrete, Cut- off wall, rip rap	
242RW	4	SKIC>GLEN	2003	Shotcrete, Cut- off wall, rip rap	
243RW	4	SKIC>GLEN	2003	Shotcrete, Cut- off wall, rip rap	
115CC	4	SKIC>GLEN	2003	Shotcrete, Cut- off wall, rip rap	
116CC	4	SKIC>GLEN	2003	Shotcrete, Cut- off wall, rip rap	
117CC	4	SKIC>GLEN	2003	Shotcrete, Cut- off wall, rip rap	

Table 1. Changes in road drainage network and discharge points including year treated, treatments for drainage ditches, and reason for change, Pikes Peak 2014.

Multiple-Use

The highway corridor is managed for multiple use and some of these activities have the potential to compromise long established study sites as well as the outcome of the monitoring study. Some of these activities are described below.

The U.S. Forest Service, Crystal Creek Fuels Reduction Project completed tree remediation on one linear mile within the highway corridor in Basin 1 (Lower North Fork of Crystal Creek

Watershed) during the 2014 field season. The silvicultural practices implemented included a combination of partial tree removal and clearcuttings as well as slash and understory removal. The disturbance associated with the vegetation treatments may potentially alter sediment movement at several monitoring sites. Rock weir 009RA had been compromised by an access road. The fabric-lined ditch adjacent to the highway that delivers water and sediment into 009RA had been filled with material to provide access to a road constructed from the shotcrete ditch to the top of a knoll. Once tree remediation was completed in September, the fill material was removed and the ditch was graded to its original contours (Figure 1).

The access road was also decommissioned and restored. Five successional rolling dips were built on the road bed to decelerate and divert runoff onto the adjacent hill slope. The soil on the road was agitated to promote new vegetation growth. The field crew replaced three benchmarks damaged by logging equipment and completed a post restoration survey of 009RA once the highway crew completed repairs.

In addition to the clear cut units, clear-cut breaks, or swaths, were also created. The breaks parallel the highway and cross monitoring sites as most of the conveyance channels and rock weirs are perpendicular to the highway (Figure 2). This compromises the integrity of some monitoring sites and may compromise the ability to obtain valid measurements at some of those sites. A list of the rock weir and conveyance channel cross sections potentially compromised by the silvicultural activities and associated disturbances can be found in Table 2. The designation directly impacted implies disturbance has occurred on or near the monitoring site, while the designation potentially impacted refers to sites not located in the disturbance area but close enough that they may be compromised.

Rock weirs in the start of Basin 1 (002RW, 003RW, 006RW, and 202RW) may be impacted by the parking, camping, and spectator areas for the 2015 Pikes Peak International Hill Climb. That impact may be extended to nearby survey cross sections. In previous years, spectators built wooden structures in the weirs. Also, trampling within weirs may compromise future measurements. At the least, sites will need to be surveyed prior to and after the race by the field crew.

Work in 2014 completed by the Rocky Mountain Field Institute (RMFI) continued previous year's work at two ongoing wetland restoration sites; Severy Creek and Tin Barn Wetlands. Touch-up work was also completed at Glen Cove Creek and within the Ski Creek drainage near the Glen Cove Inn. RMFI used Youth Corps crews and community volunteers to complete the 2014 projects. Restoration activities such as these are often environmentally positive, but can be at cross-purpose if they compromise the long-term monitoring sites assessing the impacts of the highway treatments. The stream channel stabilization completed on Severy Creek included; installation of eight contour logs, construction of log and rock retaining wall to reinforce stream bank, and sediment removal (.5-cubic yards) to encourage water flow to the wetland. It appears that this work was completed between monitoring sites Severy Creek reach 1 and 2 and may result in questionable data from Reach 1. The field crew will visit the site in 2015 to determine potential risk.

Figure 1. Rock weir 009RA with temporary access road crossing contributing ditch (top) and drainage ditch after removal of material at the end of the field season (bottom), Pikes Peak 2014.

Figure 2. Clear cut break below rock weir 009RA encompassing cross sections of conveyance channel 223CC, Pikes Peak 2014.

Site Location and Identification

A 15-year study requires that monitoring sites be uniquely identified and periodically relocated. Each precipitation gauge, cut slope and fill slope, road reach, drainage ditch and conveyance channel, rock weir and sediment pond, and stream channel reach monitored as part of this study has been uniquely identified and located. Each site is marked as a waypoint in a geographic information system (GIS) platform with attributes for latitude, longitude, and elevation, as well as a unique code, to distinguish it in the field. The coding convention used for the effectiveness monitoring sites is a five-character alpha-numeric code comprised of a three-digit feature number followed by a two-letter feature identifier (e.g., for site 001FS where 001 is the feature number and FS identifies the feature, a fill slope). The validation monitoring sites also use a five-character coding convention in which four letters identify the stream name and the last digit identifies the stream reach (e.g., OILC1 = Oil Creek, Reach 1).

Table 2. Directly impacted and potentially impacted monitoring sites from the Crystal Creek Fuels Reduction Project, Pikes Peak 2014.

Directly Impacted	Associated Sites	Potentially Impacted	Associated Sites
002RW	218CC	001FS	NA
003RW	219CC	011CS	010DD
006RW	220CC, 005DD	177FS	NA
009RA	223CC		
004CC	NA		

Every feature being monitored has at least three benchmarks or control points used to locate the feature and obtain repeated, spatially similar, three-dimensional surveys, as appropriate. The benchmarks or control points are monumented by 2.5-foot lengths of 0.5-inch rebar pounded into the ground and topped with plastic yellow caps. Aluminum nursery tags wired to the rebar identify the individual benchmarks or control points (e.g., CP01). Every feature surveyed has at least three points with which to register the survey, although some features in close proximity may share control points.

In 2014, no new monitoring sites were established. Site names, locations, and feature descriptions can be found in Appendix A. Note that Appendix A provides a complete list of all waypoints established since the project began in 2003; not all of the sites listed were sampled during the 2014 monitoring season. A USGS topographic map that documents the location of each monitoring site is presented in Appendix B.

OBJECTIVE

The objective of this report is to document the data collected and progress made in the effectiveness and validation monitoring of the mitigation practices implemented on the Pikes Peak Highway during the 2014 field season. Each annual report beginning in 2007 follows a consistent format that provides a description of the protocol used to monitor each metric of concern as defined by the monitoring plan or its amendment, and a summary of the data collected for that particular year. It should be realized that, by design, not all metrics or monitoring locations will be sampled every year. As a result, some reports will contain site data not presented in other reports. A full data set from all years is available in the data archive. It should also be noted that it was not the intent of the settlement agreement to include analysis of the data beyond a quality assurance and quality control assessment of the monitoring effort. Therefore the annual report will state the intended purpose for collecting the data and present the data in a format useful for subsequent analysis.

EFFECTIVENESS MONITORING

The road mitigation practices implemented by the City of Colorado Springs are intended to control erosion and manage the erosive energy of surface water discharge from the Pikes Peak Highway. Effectiveness monitoring consists of documenting the impact that various mitigation practices have on the erosion and sedimentation processes that occur within the road corridor. Erosion rates and sediment volumes are primarily indexed using a combination of survey techniques and sediment traps (silt fences, rock weirs and sediment ponds). Grab samples of sediment and water are analyzed to document particle size distributions of deposited material and sediment concentration in discharge water leaving the site. Precipitation is also monitored to provide an index to the amount and erosive energy of rainfall events.

The following sections describe the metrics being monitored and the data collected in order to document the effectiveness of mitigation. The standard protocol for identifying and numbering the various sample sites is presented up front, followed by a description of the monitoring sites and metrics.

Precipitation

Three tipping bucket rain gauges (Onset Computer Corp.) equipped with event data loggers (HOBO) were installed at the beginning of the field season to index precipitation over the elevational range of the monitored portion of the highway. Although precipitation is not a response variable, it is a significant causal variable in evaluating the effectiveness of mitigation. Rain gauge 075RG is located just uphill from the Halfway Picnic Area near mile marker 10 at an elevation of 10,109-feet. This is at the upper end of Basin 2 (North Fork of Crystal and Ski Creek Watersheds), in the subalpine zone. Rain gauge 076RG is located near the Elk Park Trailhead (No. 652) at the boundary between the subalpine and the alpine zones at 11,810-feet elevation. Rain gauge 077RG is located near the Devil's Playground and well into the alpine area at 13,069-feet elevation. Rain gauges installed for this study operate from early May, or as soon as the field crew starts for the season, until late September or early October when the crew finishes for the year. Data loggers record a date-time stamp for each tip of the rain gauge bucket (1 tip = 0.01 inches) from which volume, duration, and intensity (or rate) of each rainfall event can be determined.

In 2014, two of the three tipping bucket rain gauges were installed by May 6 and rain gauge 077RG was installed by June 2. Rain gauge 077RG malfunctioned during the pre-season calibration and was sent to Onset Computer Corp. for repairs. In addition, to avoid loss of data should a tipping bucket rain gauge fail, a standard, non-recording rain gauge (All-Weather) was also installed at each site as described in the 2010 Annual Report. The standard rain gauges provide a second index of precipitation amount for the sampling interval.

Total seasonal precipitation (May 6 – September 29, 2014) for the three monitoring sites for both the electronic and standard rain gauges is listed in Table 3. The estimate of total precipitation of .55-inches from August 30 through September 8, 2014 for electronic rain gauge 075RG appears to be correct, but daily precipitation for the period was not, as the daily file was corrupted. Standard rain gauge 076RG was vandalized in July and data was lost from July 1 through July 8, 2014 when it was replaced. Precipitation in the electronic rain gauge 076RG measured .24-inches for that period. As mentioned earlier, electronic rain gauge 077RG was not installed until June 2, 2014. Precipitation in the standard rain gauge 077RG measured 1.1-inches from May 6 through June 1, 2014. When appropriate, total precipitation was adjusted for the rain gauges to account for missing data (Table 3).

Gauge ID	Latitude (hddd°mm.mmm)	Longitude (hddd°mm.mmm)	Elevation	Total Pre Electro	cipitation nic (in)	Total Pree Standa		Dates of Operation		
U	(nuuu mm.mmn)	(nuuu mm.mmn)	(ft)	Measured	Adjusted	Measured	Adjusted	2014		
075RG	N38 53.797	W105 03.890	10,109	10.95	N/A	10.89	N/A	5/6 - 9/29		
076RG	N38 52.582	W105 03.970	11,810	12.97	N/A	14.22†	14.46	5/6 - 9/29		
077RG	N38 51.783	W105 03.999	13,069	9.52†	10.62	10.99	N/A	5/6∞ - 9/29		
 <i>†</i> Indicates missing data due to equipment malfunction and/or damage to the rain gauge. ∞ Electronic rain gauge 077RG installed June 2, 2014. 										

Table 3. Location, measured and adjusted precipitation accumulation, and dates of operation for electronic and standard rain gauges, Pikes Peak 2014.

The maximum rainfall intensity that the electronic rain gauge smart sensor can accurately measure is one inch of rain per hour. If intensity exceeds one inch per hour, precipitation may be under estimated (Onset Computer Corp.). This may cause a disparity between the electronic and

standard rain gauge measurements, especially during intense storm events. Prior to the 2015 field season, three new HOBO Data Logging Rain Gauges (RG3) will be purchased. The maximum rainfall intensity that the RG3 electronic rain gauge smart sensor can accurately measure is five inches of rain per hour (Onset Computer Corp.). This should decrease the disparity in measurement between the electronic and standard rain gauges.

In 2014, seasonal totals varied between the three sites with the mid-elevation receiving the most precipitation (Figures 3 and 4). Daily and periodic precipitation is presented in Appendix C and the basic rain gauge data (date-time stamp) is presented on the data DVD accompanying the report.

In addition to the three sites established as part of this study, a Natural Resources Conservation Service (NRCS) Snotel site located at Glen Cove, between rain gauges 075RG and 076RG at an elevation of 11,469-feet, has precipitation data available for the entire year. Data for the NRCS Snotel site can be accessed from:

http://www.wcc.nrcs.usda.gov/snotel/snotel.pl?sitenum=1057&state=co

Highway Surface Stabilization

Historically, thousands of cubic yards of gravel material had been added to the Pikes Peak Highway road surface annually as part of the continuing maintenance program. Most of this material has since migrated elsewhere; either washed down the ditch line during snowmelt or following rainfall events or cast over the side onto the fill slope and the hillside below during road grading procedures. This material has been perceived to be the primary source for the sediment deposited in the streams (Chavez et al. 1993). The primary emphasis in the road mitigation practices was to reduce the volume of material available to be eroded (supply) and to manage the discharge water (energy) to reduce sediment transport. Initially a variety of alternate surfacing options were proposed.

As noted earlier, and as documented in amendments to the monitoring plan, the design of the monitoring protocol, appropriate for estimating road erosion, was significantly modified to reflect changes to the road bed stabilization practices implemented on the highway. The entire highway has been paved with asphalt, rather than surfaced using a variety of treatments, which should significantly reduce or eliminate the potential for continued surface erosion to occur from the road surface. Prior to 2011, erosion rates from the gravel portion of the highway were monitored as described in the approved monitoring plan, but since paving of the entire highway was completed in 2011, it is assumed that erosion from the paved road surface is zero and road surface surveys have been discontinued.

As a surrogate for estimating actual erosion rates, road surface elevation for selected road reaches prior to paving was monitored over time to document erosion rates, or changes in the volume of material stored on untreated road segments. Uniform road reaches were selected with survey cross sections permanently established at five intervals along each selected road reach (i.e., approximately one cross section per 20 meters of road). The road cross sections were periodically surveyed to provide the basis for estimating the degree of erosion or deposition

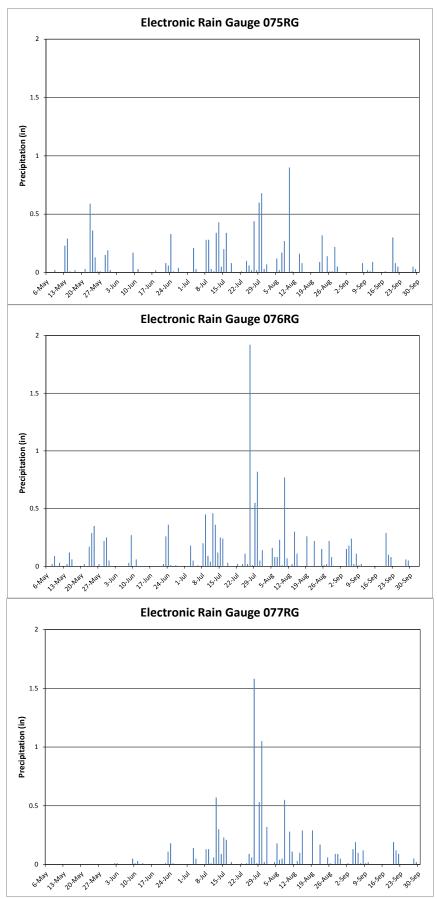


Figure 3. Daily precipitation for three electronic rain gauges, Pikes Peak 2014.

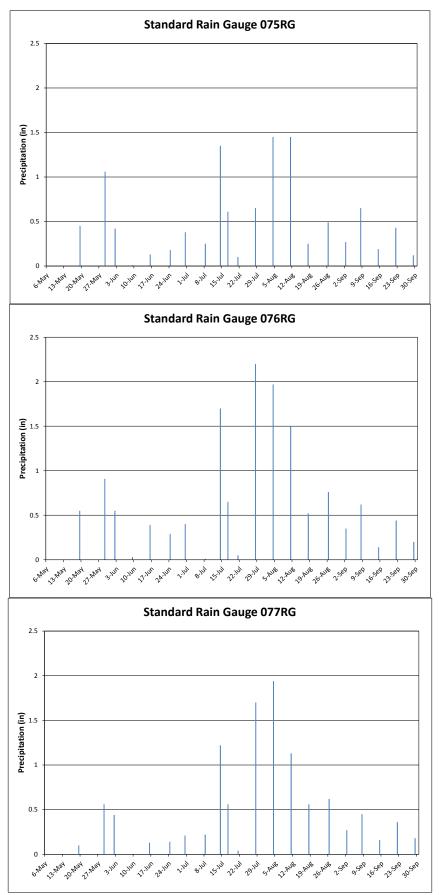


Figure 4. Precipitation by measurement date for the three standard rain gauges, Pikes Peak 2014.

occurring in the road reach they represent. Individual road cross sections were monumented using a 2.5-foot piece of rebar driven into the road surface at the upper edge of the fill slope. In addition, permanently monumented baseline elevation points (benchmarks) were established for each road reach and were used as references for each cross section. Monitoring consisted of surveying the surface elevation of the road cross sections, relative to the benchmark for the road reach. Either the average elevation of the cross section, or the survey transect, can be compared for different surveys to determine changes in the volume of material stored, or changes in surface configuration that may have occurred between measurements. Averaging the response for the five cross sections and multiplying that by the area of the road reach (estimated as average length times average width) yields an estimate of the change in the volume of material stored on the road reach during the interval between measurements.

Stabilizing Cut and Fill Slopes

Erosion from cut and fill slopes along the highway may provide a continuous source of sediment to wetland, riparian, and aquatic systems. It is expected that highway mitigation practices will reduce sediment movement from these slopes in two ways. First, stabilizing the road bed through paving should also stabilize the angle of repose of adjacent cut and fill slopes, eliminating the constant adjustments that occur in the angle of repose of those slopes following changes to the plane of the road bed. Second, paving has eliminated the need for the continual addition of road base material, the primary source of material that had eroded onto fill slopes and hillsides. Effectiveness will be estimated by comparing changes in the amount and timing of sediment trapped in silt fences at the base of the cut and fill slopes following paving.

A 30-foot silt fence placed at the base of the slope of interest is used to trap sediment. Periodic measurements of the volume of material trapped behind the fence (i.e., after spring snowmelt and again after each large rainfall event) provide an index of the amount of material being eroded from the slope above the fence. Each silt fence is routinely visited to ensure timely measurement and maintenance. Should the silt fence fill to the point of reduced efficiency or fail during the period between measurements, the fence is either repaired, replaced, cleaned-out, or relocated to a new monitoring site. Initially (2003 and 2004), the volume trapped was determined from surveys of the surface behind the fence before and after the sediment was removed. Since then, the volume of trapped sediment behind the silt fence has been estimated by removing the accumulated material and measuring the amount removed by placing it in graduated containers for a measure of total volume. A sub-sample of the material removed is collected for laboratory analysis to determine total weight per unit volume and particle size distribution.

On cut slopes, erosion is monitored using two silt fences per site: one is placed across the base of the cut slope just above the ditch line to capture the sediment coming off the cut slope (lower fence); a second is placed on the upper edge of the cut slope to intercept and trap the sediment delivered to the cut slope from the undisturbed hill slope above (upper fence). This partitioning allows separation of the contribution of the cut slope to the road or ditch line from that of the undisturbed hill slope above. The latter measurement also provides an index of natural erosion rates. The contributing area of the lower fence is represented by a rectangle above the fence that spans the width of the fence and extends to just below the upper fence at the toe of the undisturbed slope. The contributing area of the upper fence is more difficult to define and

depends on the topographic features of the hill slope above. Contributing area for both lower and upper fences has been determined and measured for all cut slope monitoring sites. Currently, 22 cut slope silt fences have been installed at 13 sites. Initially, they were proportionally divided between the treated (paved) and untreated portions of the highway. The sampling design included cut slopes located in road segments that were treated at differing times, ensuring a wide range in the variability of conditions sampled both before and after highway mitigation. Paving of the entire highway was completed in 2011 resulting in all portions of the highway being treated.

Cut slope silt fences were not exposed to high runoff and erosion activity in 2014 reducing the need for cleaning. The upper fence at cut slope site 059CS (Basin 7: Glen Cove, Ski, and North Fork of Crystal Creek Watersheds) was damaged during highway construction in 2012. As a result, the upper fence from this site was removed from the sampling and not replaced, and the lower fence continues to be monitored. In addition, one of the 22 cut slope silt fences was breached during the 2014 field season. The condition of each silt fence was documented following each site visit. In the *SiteSummary.xls file* on the data DVD, site visit dates are annotated with the condition of the silt fence, any repairs or replacements that were completed to maintain the silt fence, and an indication if the fence was breached prior to the survey date. The sediment removed from the cut slope silt fence. It can be assumed that there was zero sediment removed from cut slope silt fences for the 2014 monitoring season are presented in Appendix D. All cut slope data and photographs for the 2014 season are available on the accompanying data DVD.

A similar design has been implemented for monitoring the effectiveness of mitigation practices intended to minimize erosion from fill slopes. The design includes the use of two silt fences per site: one is placed at the base of the fill slope to trap what originates from the fill slope (upper fence); a second is placed at the base of the hill slope on which the fill slope resides or at the boundary of the 150-foot corridor associated with the road right-of-way, whichever is the shorter distance (lower fence). The second lower fence is offset from the first fence and presumably not influenced by the upper fence. This design allows for trapping the eroded material in the upper fence as it leaves the fill slope as well as estimating the sediment being delivered off-site or down slope as indexed by the lower fence. Material trapped in the lower fence includes natural erosion from the slope below the fill slope as well as material contributed from the fill slope and transported downslope to the boundary of the corridor. In this way, not only will the on-site effectiveness of the mitigation practice as it effects fill slope erosion be evaluated, but an estimate of the amount of eroded material from the fill slope that is attenuated downslope will also be obtained. The contributing area of the upper fill slope fence spans the width of the fence and extends upslope to the edge of the road bed. The contributing area of the lower fence is defined by the width of the lower fence and the distance to the upper fence. However, like the fences above cut slopes, the actual contributing area of the lower fence is influenced by the topographic features of the hill slope. Contributing area for both the lower and upper fences has been determined and measured for all fill slope monitoring sites. Currently, 50 fill slope silt fences have been installed at 28 sites. Again, the sites were initially distributed between treated and untreated sections of the highway. Paving of the entire highway was completed in 2011

resulting in all sections of the highway being treated. Estimating the volume of material trapped behind the fill slope silt fences is accomplished in the same manner as that for the cut slope fences.

As with the cut slope silt fences, accumulation in the fill slope silt fences did not exhibit high runoff and erosion activity in 2014, reducing the need for cleaning. The upper fences at five fill slope sites (048FS, 052FS, 055FS, 083FS, and 086FS) in Basin 7 were damaged during highway construction in 2011. The upper fence at fill slope site 088FS (Basin 3: Severy and Ski Creek Watersheds) was damaged during highway construction in 2009. As a result, the upper fences from these six sites were removed from the sampling and not replaced, and the lower fences continue to be monitored. In addition, silt fences were removed from fill slope site 196FS and conveyance channel 245CC was established in 2009. Notes were taken in the field to document the condition of the silt fence during each site visit. In the SiteSummary.xls file on the data DVD, site visit dates are annotated with the condition of the silt fence, any repairs or replacements that were completed to maintain the silt fence, and an indication if the fence was breached prior to the survey date. The sediment volume for the fill slope silt fences was recorded in the *SiteSummary.xls file* only if there was sediment removed from the fill slope silt fence. It can be assumed that there was zero sediment removed on all other silt fence site visits. A summary of fill slope site visits and sediment removed from fill slope silt fences for the 2014 monitoring season can be found in Appendix E. All fill slope data and photographs for 2014 are available on the accompanying data DVD.

Numerous grab samples were collected from material trapped in the cut and fill slope silt fences throughout the 2014 field season. A subset of these was selected to be analyzed in the laboratory for particle size distribution. The balance of samples will be analyzed only if the variability in the particle size distribution of the subset of samples chosen for initial analysis warrants additional analysis. Laboratory analyses for the 2014 grab samples have been completed and a summary of particle size distributions and graphs are presented in Appendix F and on the accompanying data DVD.

Initially, the monitoring plan anticipated taking measurements of the accumulation behind all silt fences two to three times per year. The actual number of measurements taken is dependent on many factors including; winter snowpack, soil moisture, number and size of rainfall events, and availability of crew members to clean-out silt fences while completing other tasks. Estimates of human induced erosion and sediment delivery (from cut slope, fill slope, and silt fences located down slope near the streamside or boundary of the 150-foot corridor), can be compared with estimates of "natural movement" estimated from what is trapped in the silt fencing placed above cut slopes for periods before and after mitigation to determine the effectiveness of the practice and other best management practices (BMPs) intended to reduce human induced erosion.

Using silt fences to monitor sediment transport has proven to be difficult where silt fences cross rock surfaces—frequent breaching and fence failure had occurred over the course of the study. Silt fences fail most frequently where fence material cannot be reliably fastened to rock surfaces, particularly at the base of cut slopes at higher elevations. As a corrective measure, the sampling protocol was revised for three cut slope monitoring sites (102CS, 123CS, and 141CS) that cross rock surfaces. The lower cut slope silt fences on each of these sites were replaced with two

permanent survey cross sections (labeled A and B), one established at the vegetation line just below the upper fence and a second established 1/3 of the distance between the top of the cut slope and the road. The cross sections are the same length as the original fence and are monumented with rebar at each end. Monitoring consists of surveying the surface elevation, relative to the benchmark, of the cut slope cross section. The silt fence at the top of the cut slope has been maintained at all three sites. This procedural change is intended to provide a qualitative estimate of cut slope erosion in situations where a quantitative estimate is not feasible.

Cross section graphs for the three surveyed cut slope monitoring sites that correspond to the survey dates presented in Table 4 can be found in Appendix G. Photographs and survey data for all sites are available on the accompanying data DVD.

Table 4. Management practices implemented below cut slope monitoring sites, and cut slope monitoring site survey dates, Pikes Peak 2014.

Site ID	Basin #	Watershed	Management Practice	Survey Dates	
102CS	6	WBVR	Asphalt Road, Shotcrete Ditch	7/3/2014	9/15/2014
123CS	6	FRENCH	Asphalt Road, Shotcrete Ditch	7/3/2014	9/15/2014
141CS	6	WBVR	Asphalt Road, Shotcrete Ditch	7/3/2014	9/15/2014

Armoring Drainage Channels

Drainage channels, which include both the drainage ditches along roads and the conveyance channels below culverts, were to be lined (armored) with riprap or concrete to control further erosion and deposition of sediment as mitigation progressed. However, all reaches except those meeting the criteria stated in the latest U.S. Forest Service Design Review (Burke 2002) are paved or lined with shotcrete, lined with erosion control fabric, or left untreated.

Effectiveness monitoring consists of monitoring the fabric-lined and unlined drainage ditches only, by establishing cross sections in the channels to be periodically surveyed, so that measured changes in cross sectional area could be used to determine if erosion or deposition was reduced or increased. Once drainage ditches were paved or lined with shotcrete, they were no longer surveyed. If visual inspection provides evidence of failure in the pavement or shotcrete, cross sections will be re-established and surveys completed to document change.

Conveyance channels are those features that drain water away from the road system to the streams below. For the most part, they are not physically treated or stabilized as part of the road mitigation effort, but road management practices may greatly alter the amount of discharge and sediment delivered to the conveyance channels. The monitoring technique is similar for both ditches and conveyance channels, but the sample size differs.

Drainage Ditches

Most of the drainage ditches selected for monitoring were aligned with the road reaches previously selected to monitor changes in road surface. Additional drainage ditches were selected independently of the road reaches, as needed, to complete the desired road slope/contributing area/armoring material matrix defined in the monitoring plan. As with the road surface erosion transects, five cross sectional transects per segment of drainage channel

(lined, not lined) were established (labeled A–E except for site 188DD, which had eight cross sections labeled A–H). For each cross section, a reference pin was located at the base of the cut slope on the inside of the ditch; a second pin was located on the edge of the road surface, if possible. Asphalt nails were used in the paved road surfaces to mark the end point if road conditions prohibited installation of rebar. The effectiveness of the lining methods in reducing erosion and deposition can be determined by obtaining cross section information at control sites for several years prior to, and then after, treatment. This information will be useful in the future as new drainage ditch segments are lined.

Four of the original 20 drainage ditches selected for monitoring had not been paved or lined with shotcrete and were surveyed in 2014. Sixteen of the original 20 drainage ditches had been paved or lined with shotcrete since monitoring began, including drainage ditch 205DD (Basin 2) which was lined with shotcrete in 2014. The shotcrete treatment eliminates the need for further monitoring unless visual inspection provides evidence of failure, in which case cross sections will be re-established and surveys completed to document change. The four remaining drainage ditches located in Basins 1 and 2 are lined with erosion control fabric and will continue to be surveyed annually. As noted earlier, drainage ditch 005DD may have been impacted by the Crystal Creek Fuels Reduction Project, which may compromise future measurements at this site. Drainage ditch survey cross sections that correspond to the survey dates presented in Table 5 can be found in Appendix H. Drainage ditch survey data and photographs for 2014 are available on the accompanying data DVD.

Site ID	Basin #	Watershed	Road Treatment	Ditch Treatment	Survey Date
005DD	1	SCAT	Asphalt	Erosion Control Fabric	9/25/2014
010DD	1	SCAT	Asphalt	Erosion Control Fabric	9/25/2014
182DD	2	SCAT	Asphalt	Erosion Control Fabric	6/9/2014
195DD	2	SCAT	Asphalt	Erosion Control Fabric	9/25/2014

Table 5. Drainage ditches surveyed including description of road treatments above drainage ditches, treatments for drainage ditches, and drainage ditch survey dates, Pikes Peak 2014.

Conveyance Channels

Monitoring the effectiveness of mitigation practices on conveyance channels also represents a critical component in the monitoring program. Many of these channels have eroded into gullies and have contributed to the sediment load of the wetland, riparian, and aquatic systems below. From mile marker seven to the summit, 115 conveyance channels were identified and surveyed during the first three years of monitoring. Two additional channels were identified and surveyed in 2009 and four additional channels were identified and surveyed in 2009 and four additional channels were identified and surveyed in 2009 and four additional channels were identified and surveyed in 2009 and four additional channels were identified and surveyed in 2011. Two conveyance channel monitoring sites were eliminated during construction of sediment ponds in Basin 5 (Boehmer and East Fork of Beaver Creek Watersheds) and Basin 6 (East Fork and West Fork of Beaver Creek Watersheds). Conveyance channel 014CC was originally identified as a monitoring site, but was never surveyed. Conveyance channel 015CC located above sediment pond 199RW was lined with shotcrete in 2003 and is no longer surveyed. Conveyance channel 212CC was lined with rip rap in 2011. However, it continues to be monitored as the channel is exhibiting signs of failure. In 2012, two additional sites in Basin 7 (263CC and 265CC) were established in the channels below the new sediments ponds (262RW and 264RW).

It is not possible to survey all 117 conveyance channels every year. Instead, as many conveyance channels as possible are surveyed each year. Although, the entire highway has been paved, the fixed sub-sample of 13 conveyance channels that were initially selected to compare paved (7) and un-paved (6) road sections are surveyed annually, with the assumption that erosion, or changes in storage, from the paved segments will be zero. Conveyance channels located below the rock weirs are also surveyed annually. If the rock weirs fail (as has been observed), changes in conveyance channel geometry may occur. Effectiveness of the rock weirs in mitigating sediment transport can be evaluated in part by comparing the erosion rate in the conveyance channels located or initiated below the rock weirs with erosion rates observed in other conveyance channels located in proximity to treated and untreated road segments. Every conveyance channel is surveyed using a series of three cross sections located within the 150-foot boundary of the highway corridor (labeled A–C except for site 053CC, which has four cross sections labeled A–D and site 232CC, which has five cross sections labeled A–E).

Eighty-eight of 117 conveyance channels were surveyed in 2014 (Table 6). In addition, six conveyance channels (027CC, 099CC, 111CC, 112CC, 118CC, and 119CC) were documented using photographic and observation monitoring. These sites were not surveyed due to the exposure of large boulders and the general instability of the slope following past rock weir failure. Conveyance channels 109CC and 110CC were also documented using photographic and observation monitoring as weather conditions didn't allow for an end of season survey. Conveyance channel 212CC, which was lined with rip rap in 2011 was surveyed as the channel had breached immediately below the contributing culvert. The highway crew was notified and the channel was repaired. Conveyance channel 064CC was damaged by a vehicle crash and the subsequent removal of the vehicle during the Pikes Peak International Hill Climb (Figure 5). There was significant impact to the site; boulders and trees where moved downslope from cross section B to just above cross section C and several benchmarks were destroyed. The field crew was able to re-establish this site and extended cross section B by 4-feet to capture any future activity from the de-vegetated hill slope. Although the original intent of the survey site may be compromised, there is still value in continuing to survey 064CC. As noted earlier, conveyance channels 004CC, 218CC, 219CC, 220CC, and 223CC may have been compromised by the Crystal Creek Fuels Reduction Project, which may affect the integrity of future measurements at these sites.

Cross sections for the conveyance channels listed in Table 6 are presented in Appendix I. At first glance, graphs of the conveyance channel cross sections presented in Appendix I may appear counter intuitive, as the low point in the cross section may be at the right or left end pin. This presentation is not an error. Not all conveyance channels were formed as a result of natural drainage processes. Many were formed as the result of road related discharges and the flow path is across the slope rather than downslope, thus causing rills to form across the slope. The comparison of successive measurements provides the most useful information. Conveyance channel survey data and photographs for 2014 are available on the accompanying data DVD.

Sediment Traps (Sediment Ponds, Rock Weirs, and Cut-Off Walls)

The original mitigation plan called for building sediment ponds designed to trap sediment while allowing water to exit as a stream. Initially, the proposed monitoring consisted of periodic pond

conveyance	e channels	, and conveyand	ce channel survey					
Site ID	Basin #	Watershed	Road	Ditch	Channel	Survey		
004CC	1	NODY	Treatment	Treatment	Treatment	Date 9/29/2014		
004CC 012CC	1 2	NCRY SCAT	Asphalt	Fabric	Culvert, Rip Rap			
	2		Asphalt	Fabric	Rock Weir	6/5/2014		
013CC	2	SCAT	Asphalt	Fabric	Rock Weir	6/5/2014		
016CC	2	NCRY	Acabalt	Shotcrete	Culvert Removed	8/5/2014		
01000	۷	NONT	Asphalt	Shorele	Culvert	0/3/2014		
017CC	2	SCAT	Asphalt	Fabric	Removed	8/5/2014		
017CC	2	NCRY	Asphalt	Shotcrete	Untreated	7/22/2014		
01000	2	NORT	Лэрнан	Onotorete	Culvert	1/22/2014		
019CC	2	SCAT	Asphalt	Fabric	Removed	7/8/2014		
01300	2	OUAT	Asphan		Culvert	110/2014		
021CC	2	NCRY	Asphalt	Shotcrete	Removed	7/8/2014		
02100	~	NORT	Aophan	Chotorete	Culvert	110/2014		
023CC	2	NCRY	Asphalt	Shotcrete	Removed	7/1/2014		
025CC	2	SCAT	Asphalt	Shotcrete	Untreated	7/1/2014		
02000		00/11	ropriait	Chlotoroto	Culvert	1,1,2011		
026CC	2	NCRY	Asphalt	Shotcrete	Removed	8/7/2014		
02000			rophat		Culvert	0/1/2011		
027CC†	2	NCRY	Asphalt	Shotcrete	Removed	9/2/2014		
					Pipe Back, Rock			
029CC	2	NCRY	Asphalt	Shotcrete	Weir	8/27/2014		
		_			Culvert			
032CC	2	SCAT	Asphalt	Shotcrete	Removed	7/1/2014		
			1		Pipe Back, Rock			
034CC	2	NCRY	Asphalt	Shotcrete	Weir	7/2/2014		
035CC	7	SKIC	Asphalt	Shotcrete	Rip Rap	6/11/2014		
036CC	7	NCRY	Asphalt	Shotcrete	Culvert	7/2/2014		
037CC	7	NCRY	Asphalt	Shotcrete	Culvert, Rip Rap	6/3/2014		
			Asphalt,					
040CC	1	NCRY	Asphalt Curb	Fabric	Straw Wattle	6/24/2014		
053CC	7	SKIC	Asphalt	Shotcrete	Rip Rap	6/18/2014		
054CC	7	SKIC	Asphalt	Shotcrete	Untreated	6/18/2014		
058CC	7	SKIC	Asphalt	Shotcrete	Culvert, Rip Rap	7/21/2014		
063CC	7	SKIC	Asphalt	Shotcrete	Rock Weir	6/11/2014		
064CC	7	SKIC	Asphalt	Shotcrete	Culvert, Rip Rap	8/13/2014		
					Culvert			
070CC	7	SKIC	Asphalt	Shotcrete	Removed	6/30/2014		
					Pipe Back,			
					Culvert			
081CC	7	GLEN	Asphalt	Shotcrete	Removed	6/30/2014		
	_	a . -	.		Culvert			
084CC	7	GLEN	Asphalt	Shotcrete	Removed	6/10/2014		
089CC	3	SCAT	Asphalt	Shotcrete	Rock Weir	8/6/2014		
091CC	3	SKIC	Asphalt	Shotcrete	Untreated	8/12/2014		
			.		Culvert			
094CC	3	SKIC	Asphalt	Shotcrete	Removed	8/12/2014		
			A I I		Cut-Off Wall,	040/004		
099CC†	3	SKIC/SCAT	Asphalt	Shotcrete	Rip Rap	8/13/2014		
104CC	6	WBVR	Asphalt	Shotcrete	Culvert, Rip Rap	7/3/2014		
108CC	3	FRENCH	Asphalt	Shotcrete	Rock Weir	8/12/2014		

Table 6. Road and drainage ditch treatments associated with conveyance channels, treatments applied to conveyance channels, and conveyance channel survey dates, Pikes Peak 2014.

Site ID	Basin #	Watershed	Road Treatment	Ditch Treatment	Channel Treatment	Survey Date
109CC†	3	SVRY/SCAT	Asphalt	Shotcrete	Culvert	9/2/2014
110CC†	3	SVRY/SCAT	Asphalt	Shotcrete	Culvert	9/2/2014
,			1		Cutoff Wall, Rip	
111CC†	3	SKIC/SCAT	Asphalt	Shotcrete	Rap	7/31/2014
			•		Culvert	
112CC†	3	SCAT	Asphalt	Shotcrete	Removed	9/2/2014
114CC	4	FRENCH	Asphalt	Shotcrete	Rock Weir	7/21/2014
			•		Cutoff Wall, Rip	
118CC†	4	SKIC/SCAT	Asphalt	Shotcrete	Rap	7/31/2014
					Cutoff Wall, Rip	
119CC†	4	SKIC/SCAT	Asphalt	Shotcrete	Rap	7/31/2014
120CC	6	WBVR	Asphalt	Shotcrete	Sediment Pond	8/7/2014
121CC	6	WBVR	Asphalt	Shotcrete	Culvert, Rip Rap	7/14/2014
122CC	6	WBVR	Asphalt	Shotcrete	Culvert, Rip Rap	7/14/2014
125CC	6	WBVR	Asphalt	Shotcrete	Culvert, Rip Rap	7/10/2014
126CC	6	WBVR	Asphalt	Shotcrete	Culvert, Rip Rap	7/10/2014
130CC	6	FRENCH	Asphalt	Shotcrete	Pipe Back	8/12/2014
132CC	6	WBVR	Asphalt	Shotcrete	Culvert, Rip Rap	7/23/2014
133CC	6	EBVR	Asphalt	Shotcrete	Culvert, Rip Rap	7/23/2014
137CC	5	EBVR	Asphalt	Shotcrete	Untreated	7/24/2014
138CC	5	BHMR	Asphalt	Shotcrete	Untreated	7/24/2014
139CC	6	EBVR	Asphalt	Shotcrete	Rock Apron	7/23/2014
140CC	6	EBVR	Asphalt	Shotcrete	Untreated	7/23/2014
	•		Asphalt,	0		.,_0,_0
175CC	1	NCRY	Asphalt Curb	Untreated	Rock Apron	8/19/2014
184CC	2	SCAT	Asphalt	Shotcrete	Sediment Pond	6/3/2014
					Pipe Back, Rock	
189CC	2	NCRY	Asphalt	Shotcrete	Apron	7/2/2014
208CC	7	SKIC	Asphalt	Shotcrete	Untreated	8/6/2014
210CC	2	SKIC	Asphalt	Shotcrete	Untreated	7/2/2014
211CC	2	SKIC	Asphalt	Shotcrete	Untreated	7/1/2014
212CC	7	SKIC	Asphalt	Shotcrete	Culvert, Rip Rap	6/10/2014
213CC	6	FRENCH	Asphalt	Shotcrete	Untreated	8/7/2014
214CC	5	EBVR	Asphalt	Shotcrete	Untreated	7/24/2014
215CC	5	EBVR	Asphalt	Shotcrete	Untreated	7/24/2014
	-		Asphalt,			
216CC	1	NCRY	Asphalt Curb	Asphalt	Rock Weir	9/29/2014
			Asphalt,	•		
217CC	1	NCRY	Asphalt Curb	Asphalt	Rock Weir	9/29/2014
218CC	1	SCAT	Asphalt	Untreated	Rock Weir	9/10/2014
219CC	1	SCAT	Asphalt	Shotcrete	Rock Weir	9/23/2014
220CC	1	SCAT	Asphalt	Fabric	Rock Weir	9/10/2014
221CC	1	NCRY	Asphalt	Shotcrete	Rock Weir	9/22/2014
222CC	1	NCRY	Asphalt	Shotcrete	Rock Weir	9/22/2014
223CC	1	SCAT	Asphalt	Fabric	Rock Weir	9/8/2014
224CC	2	NCRY	Asphalt	Asphalt	Rock Weir	6/9/2014
					Rock Weir,	
225CC	2	SCAT	Asphalt	Fabric	Straw Wattles	6/9/2014
			Asphalt,			
226CC	2	NCRY	Asphalt Curb	Fabric	Rock Weir	9/17/2014
			Asphalt,			
				1	1	

Site ID	Basin #	Watershed	Road Treatment	Ditch Treatment	Channel Treatment	Survey Date
				Fabric, Straw		
228CC	2	SCAT	Asphalt	Wattles	Rock Weir	6/5/2014
					Pipe Back, Rock	
229CC	2	NCRY	Asphalt	Shotcrete	Weir	8/27/2014
					Pipe Back, Rock	
230CC	2	NCRY	Asphalt	Shotcrete	Weir	7/2/2014
					Pipe Back, Rock	
231CC	2	NCRY	Asphalt	Shotcrete	Weir	7/2/2014
232CC	7	SCAT	Asphalt	Shotcrete	Untreated	7/22/2014
					Pipe Back, Rock	
235CC	3	SVRY/SKIC	Asphalt	Shotcrete	Weir	8/20/2014
244CC	2	NCRY	Asphalt	Shotcrete	Untreated	7/16/2014
245CC	2	NCRY	Asphalt	Asphalt	Untreated	8/7/2014
246CC	5	EBVR	Asphalt	Shotcrete	Sediment Pond	7/15/2014
247CC	6	WBVR	Asphalt	Shotcrete	Sediment Pond	7/15/2014
251CC	7	NCRY	Asphalt	Shotcrete	Rock Weir	7/16/2014
253CC	7	SKIC	Asphalt,	Shotcrete	Rock Weir	7/16/2014
263CC	7	SKIC	Asphalt	Shotcrete	Sediment Pond	6/10/2014
265CC	7	SKIC	Asphalt	Shotcrete	Sediment Pond	6/2/2014
† Photogi	raphic and	observation mo	nitoring only.			

surveys to index sediment accumulation as well as measurement of the suspended sediment concentrations in discharge entering and exiting the pond. The combination of sediment accumulation in the pond plus the sediment exiting the pond in the outflow was intended to provide an estimate of total sediment transport. In accordance with the revised mitigation design, rock weirs presumably capable of detaining all the water and sediment discharged from the road segment for events up to the design storm have been constructed. The monitoring strategy assumes that the rock weirs detain all discharge long enough for the sediment to settle out, while the water percolates out of the rock weir through the porous berm. Measuring sediment accumulation in the rock weir presumably indexes total sediment movement. In the event the rock weir does not detain all the storm discharge delivered to it (actual discharge exceeds the design discharge or the rock weirs fail to function properly), silt fences have been installed on the downhill side of the rock weirs to trap sediment carried in surface discharge passing over or through the berm. A silt fence is preferred over grab samples of discharge because any overflow or through flow that occurs is most likely to be diffused and not concentrated. Also, using a silt fence to trap the sediment provides a measure of total transport. The measurement protocol for these silt fences is the same as that employed for the cut and fill slope silt fences.

As with the road surface erosion transects, four sediment ponds (199RW, 237RW, 256RW, and 264RW) are surveyed using a series of cross sections (labeled A–C except for site 256RW, which has four cross sections labeled A–D and site 199RW, which has five cross sections labeled A–E) to estimate volumetric changes in sediment accumulation. Three sediment ponds (258RW, 260RW, and 262RW) are monitored by recording observations in the field notes and using photographic monitoring to document changes. In those few cases where there is a defined inflow and outflow to a pond, water samples to estimate trap efficiency can be grab sampled from the inlet and outlet of the ponds as originally planned. Surveys of the sediment traps should be completed after spring snowmelt and again after significant rainfall events, perhaps a total of

four times per year. In addition, surveys taken before and after rock weir cleaning can be used to estimate the total volume or amount of material removed and this cumulative estimate can be used to verify appropriateness or adjust estimates based on the incremental surveys.

Figure 5. Conveyance channel 064CC showing boulders and trees above cross section C after vehicle crash during the Hill Climb, Pikes Peak 2014.

As noted above, any conveyance channels that appear to be present below the rock weirs are monitored. If the rock weirs fail, as many did in 2014, any changes in the conveyance channel geometry that may result should be documented by the surveys. If the rock weirs are effective in reducing the erosive energy of the discharge, the reduction in erosion in the conveyance channels can be documented by comparing response in channels draining treated and untreated road segments.

In 2014, a private contractor for the City of Colorado Springs installed a pipe back system above rock weir 234RW (Basin 3) to divert water under the highway to a shotcrete ditch above sediment pond 237RW (Figure 6). This diverted drainage from Severy Creek Watershed to Ski Creek Watershed. In 2012, the highway crew removed five breached rock weirs (236RW, 238RW, 240RW, 242RW, and 243RW) in the switchbacks (Basins 3 and 4: Upper Ski and North French Creeks) and replaced them with cutoff walls with riprap aprons below (Figure 7). Photographic and observation monitoring are used to document changes at these sites along with three sediment ponds (258RW, 260RW, and 262RW). As noted earlier, rock weirs 002RW, 003RW, 006RW, and 009RA may have been compromised by the Crystal Creek Fuels

Figure 6. Pipe back under the highway above rock weir 234RW which diverts water entering Severy Creek to a shotcrete ditch above sediment pond 237RW which flows into Ski Creek, Pikes Peak 2014.

Figure 7. Rock weir 243RW was removed and replaced with cutoff wall with riprap apron below, Pikes Peak 2012.

Reduction Project, which may affect the integrity of future measurements at these sites.

Thirty-six sediment traps were monitored in 2014, including 24 rock weirs, seven sediment ponds, and five cutoff walls with riprap aprons below. Nineteen sites were surveyed at least twice to monitor their effectiveness in trapping sediment from winter and summer runoff. The rock weirs were surveyed and sediment volume was measured in the silt fences located down slope of the rock weirs (15 rock weirs have associated silt fences). Eight of the 24 rock weir sites demonstrated some degree of failure, where water and sediment were seen piping under or through the sediment trap, the sediment trap was overtopped, or the sediment trap was breached. Four of these weirs (202RW, 250RW, 252RW, and 254RW) were observed and photographed overtopping during a storm event on July 8, 2014 (Figure 8). This storm event was not notable in terms of volume, but a five minute hailstorm preceded the weirs overtopping. It is important to note that all of these weirs were mostly empty of sediment before the storm event. Rock weir 176RW was lined with shotcrete in 2013. As a result, the weir is full of standing water and overtops during most storm events rendering it ineffective in dissipating energy (Figure 9). Many of the rock weirs were full of sediment rendering them ineffective, in mitigating both sediment transport and energy. The highway crew cleaned-out seventeen rock weirs and one sediment pond (237RW) this field season. The field crew completed surveys of these sites shortly after clean-out.

Figure 8. Rock weir 202RW overtopping during storm event on July 8, Pikes Peak 2014.

Figure 9. Rock weir 176RW lined with shotcrete and filled with standing water. The high flow is causing the shotcrete to be undercut, Pikes Peak 2014.

As noted earlier for silt fences on the cut and fill slopes, volume data from the breached rock weirs or sediment fences below rock weirs may under estimate total sediment production. Survey dates for the rock weirs and sediment ponds are presented in Table 7. A summary of rock weir silt fence site visits, and sediment accumulation in rock weir silt fences and the rock weirs for the 2014 monitoring season, as well as rock weir and sediment pond cross sections from 2014 are presented in Appendix J.

The average elevations for the rock weir surfaces were obtained by determining the average elevation of the survey points. The volumetric change between the two surveys was then estimated by multiplying the difference in the average geo-referenced elevations for the two surveys by the area of the rock weir (Appendix J). As noted earlier, the negative values imply a decrease in sediment accumulation between two surveys. Sediment trap data and photographs for 2014 are available on the accompanying data DVD.

Grab samples of the sediment retained in both the rock weirs and silt fences below the weirs were collected each time the weirs were surveyed or the fences cleaned. As noted earlier, a

subset of these grab samples was selected for analysis of particle size distribution. The balance of samples will be analyzed only if the variability in the particle size distribution of the subset of samples chosen for initial analysis warrants additional analysis. In addition, water samples to determine suspended sediment were collected from the inflow and outflow of the sediment ponds 199RW, 237RW, and 262RW. Laboratory analyses for the 2014 grab samples have been completed and a summary of particle size distributions and graphs are presented in Appendix K and on the accompanying data DVD. Laboratory analyses on the suspended sediment samples for the 2014 field season are presented in Appendix L and on the accompanying data DVD.

Site ID	Basin #	Watershed	Management Practice	Survey	Dates
002RW	1	SCAT	Untreated Ditch	6/17/2014	9/10/2014
003RW	1	SCAT	Shotcrete Ditch	6/17/2014	9/10/2014
006RW	1	SCAT	Fabric Ditch	5/30/2014	9/10/2014
008RW	1	NCRY	Shotcrete Ditch	5/29/2014	9/22/2014
009RA	1	SCAT	Fabric Ditch	5/29/2014	9/8/2014
152RW	2	SCAT	Fabric Ditch	6/9/2014	9/25/2014
153RW	2 2	SCAT	Fabric Ditch	6/5/2014	9/23/2014
161RW	2	NCRY	Asphalt Curb and Ditch	5/20/2014	9/11/2014
162RW	2	NCRY	Asphalt Ditch	5/20/14	9/22/2014
176RW	2	NCRY	Shotcrete Ditch	5/30/2014	9/17/2014
199RW	2	SCAT	Shotcrete Ditch, Pipe Back	6/3/2014	9/23/2014
200RW	1	NCRY	Asphalt Curb and Ditch	6/16/2014	9/29/2014
201RW	2	NCRY	Asphalt Curb and Ditch	6/17/2014	9/17/2014
202RW	2	SCAT	Asphalt Ditch	5/20/2014	9/11/2014
233RW	3	SCAT	Shotcrete Ditch	5/30/2014	9/17/2014
234RW†	3	SVRY/SKIC	Shotcrete Ditch, Pipe Back	8/20/2014	
			Shotcrete Ditch, Cutoff		
236RW∞	3	SKIC/SCAT	Wall, Rip Rap	8/21/2014	
			Shotcrete Ditch, Culvert		
237RW	3	SKIC	Removed	6/12/2014	9/17/2014
			Shotcrete Ditch, Cutoff		
238RW∞	3	SKIC/SCAT	Wall, Rip Rap	8/21/2014	
239RW	3	FRENCH	Shotcrete Ditch	7/21/2014	
			Shotcrete Ditch, Cutoff		
240RW∞	3	SKIC	Wall, Rip Rap	7/31/2014	
241RW	4	FRENCH	Shotcrete Ditch	7/21/2014	
			Shotcrete Ditch, Cutoff		
242RW∞	4	SKIC/SCAT	Wall, Rip Rap	7/31/2014	
			Shotcrete Ditch, Cutoff		
243RW∞	4	SKIC/SCAT	Wall, Rip Rap	7/31/2014	
250RW	7	NCRY	Shotcrete Ditch	6/2/2014	9/11/2014
252RW	7	SKIC	Shotcrete Ditch	5/30/2014	
254RW	7	SKIC	Shotcrete Ditch	6/11/2014	9/17/2014
256RW	6	WBVR	Shotcrete Ditch, Culvert	7/10/2014	
258RW†	6	WBVR	Shotcrete Ditch, Culvert	7/15/2014	
260RW†	5	EBVR	Shotcrete Ditch	7/15/2014	
262RW†	7	SKIC	Shotcrete Ditch	6/10/2014	
264RW	7	SKIC	Shotcrete Ditch	6/2/2014	9/11/2014

Table 7. Management practices implemented above sediment traps, and sediment trap survey dates, Pikes Peak 2014.

∞ Rock weir removed in 2012 and replaced with cutoff wall and riprap apron below.

Photographic and observation monitoring only.

VALIDATION MONITORING

Validating the effect of road restoration practices on aquatic, wetland, and riparian conditions is more difficult than determining the effectiveness of mitigation practices in reducing erosion and sedimentation at specific locations on site or close to the highway. On-site response to the mitigation practices should be direct, dramatic, and occur in real time. Off-site response, such as in the stream channels, is likely to be more diffused, less dramatic, cumulative in nature, and subject to changes in condition elsewhere in the watershed, all of which make validation of response to mitigation complex. The watersheds of concern have been subject to road related impacts for more than 80 years. Any road-related degradation in the channel systems is the aggregate result of long-term, road-related discharge and sediment pulses. The interruption of those pulses as a result of road mitigation practices may be too subtle to be detectable in the near term, therefore creating a challenge in selecting the most appropriate indicator metric.

The scale chosen for validation monitoring is that of the stream channel reach. Within each stream reach selected, channel morphology, bed and bank particle size distribution, bank erosion, and vegetation diversity is monitored and characterized. A suite of tributaries in the Pikes Peak Watershed were identified as either impacted or non-impacted by the presence of the Pikes Peak Highway (Chavez et al. 1993). North Catamount, South Catamount, Glen Cove, Oil, and Boehmer Creeks represent previously non-impacted streams. Ski, Severy, East Fork of Beaver, North Fork of Crystal, and West Fork of Beaver Creeks are all considered stream systems impacted by the highway. Study reaches have been selected in each of the 10 streams, and periodic monitoring will be conducted in each stream reach for the entire 15-year study period. Oil Creek has only one monitored stream reach because the upper portion of the stream is on private land and not accessible. Glen Cove Creek has only one stream reach because it is a small tributary of South Catamount Creek, which has three stream reaches. All other streams have two stream reaches. Because response can be expected to be gradual, it is not necessary that all streams be measured every year; however, annual measurement is completed if time permits.

The monitoring assumption is that stream channel adjustments that might occur in the impacted stream reaches following road mitigation practices will not occur on either the reference stream reaches (those not influenced by the highway) or in the impacted streams draining the portions of highway that have not received mitigation. However, this does not imply that differences that may have existed at the start of the monitoring program between the five reference and the five impacted stream systems were the consequence of road-related impacts. Rather, any long-term trends in convergence or divergence in the comparison of conditions in the impacted and the control stream reaches following road mitigation will be evaluated as potential indicators of stream channel response to highway mitigation practices.

The techniques proposed by Harrelson et al. (1994) were used to establish the stream channel reference sites. Selected stream reaches are at least 100 meters in length and contain several meander lengths or riffle-pool-riffle complexes. In 2005, two additional reaches were established in response to the diversion wall built on Ski Creek to divert all alpine runoff into Glen Cove Creek. Glen Cove Creek is a tributary to South Catamount Creek, and enters upstream from the two reference stream reaches on South Catamount Creek. The diversion on Ski Creek increased discharge into both Glen Cove and South Catamount Creeks and additional

monitoring seemed warranted, since what were considered non-impacted streams are now being impacted.

Stream Channel Cross Sections

Five channel cross sections have been located and permanently referenced in each of the stream reaches, following the selection and installation criteria in Harrelson et al. (1994). The purpose for the cross sections is to document changes in channel cross sectional geometry that may occur over time. Five cross sections in a 100-meter stream reach should be adequate to provide an indication of change in channel cross section geometry, should it occur naturally or as the consequence of mitigation. In addition to the cross sections, longitudinal surveys of the channel thalweg through the stream reach are conducted to document surface water and thalweg slope and location (Harrelson et al. 1994). Over time, changes in geometry such as width to depth ratios in the cross sections, thalweg elevation and location in the floodplain, longitudinal profile, or channel gradient may reflect a response to road mitigation impacts on sediment supply or discharge energy when compared to responses in the control reaches. If possible, cross sections are surveyed each fall so that changes in channel geometry can be documented on an annual basis. Because it can be expected that channel responses to the road mitigation practices will not be as robust as other metrics, it is not critical that each stream be surveyed each year.

Surveys were completed on all stream reaches (Boehmer, East Fork of Beaver, Glen Cove, North Catamount, North Fork of Crystal, Oil, Severy, Ski, South Catamount, and West Fork of Beaver Creeks). Stream channel cross sections from the 2014 monitoring season can be found in Appendix M. Stream channel cross section and thalweg survey data for 2014 are available on the accompanying data DVD.

Bank Erosion

Bank erosion is being documented primarily through the channel cross section surveys. If the channel is actively down cutting or migrating laterally, the change is an index to bank erosion. Additional bed and bank features are also displayed in a map of the stream reach (Harrelson et al., 1994) and through the use of permanent photo points. In each stream reach, measuring and comparing the lengths of bank that are stable versus lengths of bank that are actively eroding also provides an index of the proportion of eroding banks. If the stream reach contains areas of significant bank erosion, bank pins will be installed to measure the lateral rate of erosion.

Installation of such pins is only warranted if erosion appears to be active and severe in certain locations within the stream reach or if the onset of bank erosion begins to occur during the monitoring period. Over the long-term, the five cross sections located within a 100-meter stream reach should index channel and bank stability by documenting changes in channel geometry and location. Secondary measures such as thalweg surveys and bank erosion monitoring should help document any further change.

In 2014, measurements specific to bank erosion consisted of channel cross section surveys, thalweg surveys, and photographic documentation. There were no visual indications that bank

erosion was significant enough to warrant installation of bank pins to measure the lateral rate of erosion.

Particle Size Distribution

Assuming that road mitigation practices are effective in reducing discharge energy and sediment delivery to the channel system, and that no offsetting responses occur, the percentage of fine particles in the stream channel bed can be expected to decrease over time. A greater percentage of the stream bed is likely to be composed of larger particles as the fine particles are winnowed out and not replaced. This assumes that the resulting flow regime is adequate to carry the sediment supply, as a severe reduction in flow without a reduction in available sediment could cause aggradation. The composition of the sediment trapped behind silt fences, and deposited in rock weirs and in bars on the stream reaches is assessed through the collection of grab samples and analyzed in the laboratory for particle size distribution. Comparing the particle size distribution in material captured in traps near the highway with sediment deposits (bars) in the streams and pebble counts taken in the stream channel should validate response to highway mitigation practices.

Pebble Counts

Pebble counts in each stream reach are conducted during each survey using the Bevenger and King Pebble Count Procedure (Bevenger and King, 1995). The procedure calls for a zigzag sampling pattern that passes through the stream reach, crossing from bank to bank. Three-hundred particles are sampled in each survey and one survey per field season is completed in each of the stream reaches. To help support this aspect of the validation monitoring, the particle size distribution of the material caught in silt fences and in the rock weir sediment traps is available for comparison to the bed material in the streams.

Stream pebble counts were completed on Boehmer, East Fork of Beaver, Glen Cove, North Catamount, Oil, Severy, Ski, South Catamount, and West Fork of Beaver Creeks. A pebble count was not completed on North Fork Crystal Creek as the stream bed is dry, inactive, and vegetation is encroaching into the channel. A summary of the stream channel particle size distribution from the pebble counts is presented in Table 8. Stream pebble count particle size distribution graphs from the 2014 monitoring season can be found in Appendix N and on the accompanying data DVD.

Grab Samples

Sediment grab samples were collected from bars on all streams surveyed in 2014 except North Fork Crystal Creek. As mentioned above, this stream bed is dry, inactive, and vegetation is encroaching into the channel. A photograph showing the encroaching vegetation was taken of the stream bar where grab samples had been collected in previous years (Figure 10). Comparing the distribution of material captured in traps near the highway to sediment deposits (bars) in the streams may be useful in validating response to highway mitigation practices. Laboratory analyses for the 2014 grab samples have been completed and a summary of stream channel

particle size distributions and graphs for 2014 are presented in Appendix O and on the accompanying data DVD.

Site Name	Site ID	Data		Particle Size Distribution (mm)					
Site Name	Sile ID	Date	D15	D35	D50	D84	D95	D100	
Boehmer Creek Reach 1	BHMR1	9/18/2014	0.034	0.509	0.630	1.063	1.681	5.0	
Boehmer Creek Reach 2	BHMR2	9/18/2014	0.079	0.689	1.074	2.582	3.899	16.0	
East Fork Beaver Creek Reach 1	EBVR1	9/18/2014	1.581	3.192	3.989	8.846	18.270	25.0	
East Fork Beaver Creek Reach 2	EBVR2	9/18/2014	2.851	3.785	5.325	8.248	10.755	12.0	
Glen Cove Creek Reach 1	GLEN1	9/9/2014	1.005	2.758	4.349	11.398	16.831	20.0	
North Catamount Creek Reach 1	NCAT1	8/21/2014	0.654	1.380	2.095	4.773	7.351	13.0	
North Catamount Creek Reach 2	NCAT2	8/21/2014	1.285	3.680	6.151	11.512	16.279	20.0	
Oil Creek Reach 1	OILC1	9/3/2014	2.541	4.926	6.849	14.713	23.651	32.0	
Severy Creek Reach 1	SVRY1	9/24/2014	0.510	1.393	2.361	6.561	10.289	13.0	
Severy Creek Reach 2	SVRY2	9/24/2014	0.723	2.155	3.471	13.607	24.764	32.0	
Ski Creek Reach 1	SKIC1	8/20/2014	0.220	1.343	2.347	7.978	14.687	24.0	
Ski Creek Reach 2	SKIC2	8/18/2014	0.213	1.425	3.272	16.998	25.386	31.0	
South Catamount Creek Reach 1	SCAT1	8/20/2014	0.084	0.995	3.794	15.505	23.141	29.0	
South Catamount Creek Reach 2	SCAT2	9/9/2014	1.685	6.889	11.105	19.684	22.381	32.0	
South Catamount Creek Reach 3	SCAT3	9/9/2014	20.890	7.509	8.268	9.435	11.899	12.0	
West Fork Beaver Creek Reach 1	WBVR1	9/16/2014	0.806	2.805	3.815	10.514	14.634	21.0	
West Fork Beaver Creek Reach 2	WBVR2	9/16/2014	0.538	1.858	3.124	7.886	15.839	19.0	

Table 8. Summary of particle size distribution of pebble counts in stream channels, Pikes Peak 2014.

Vegetation

Vegetation photo points established at the top of the left and right banks (facing downstream) at each cross section have been monumented and are intended to document changes in vegetation type, density, and percent cover over time as riparian and wetland areas recover (Hall 2002). Vegetation is grouped into general categories of moss, grass, sedge, forb, or shrub to document vegetation presence. Percent cover is estimated for the top of bank area 1.5-feet on either side of the center line of the cross section. This monitoring is not intended to determine the degree of departure that current conditions might reflect relative to a reference value. Monitoring will document the evolution or transition that occurs as the disturbed streams respond to the effects of road mitigation and will allow for comparison of any trends to those that occur in the control stream reaches.

Vegetation photo points were completed for Boehmer, East Fork of Beaver, Glen Cove, North Catamount, North Fork of Crystal, Oil, South Catamount, Ski, Severy, and West Fork of Beaver Creeks. The riparian vegetation summary from the 2014 monitoring season is presented in Appendix P. Vegetation data and photographs from 2014 are available on the accompanying data DVD.

Figure 10. North Fork Crystal Creek Reach 2 showing re-vegetation of stream bed and stream bar at cross section E, Pikes Peak 2014.

SUMMARY

The 2014 monitoring season was successful with regard to the number of sites visited, the amount of data collected, and the quality of the data. A total of 186 sites were monitored during the 2014 field season, many of which were visited more than once. Precipitation measurements from the rain gauges and the NRCS Snotel site, located at Glen Cove indicated that precipitation was average for 2014.

The rock weirs exhibited a greater degree of failure in 2014 than in previous years. Many of the weirs were full of sediment from the previous year rendering them ineffective, resulting in an inability of the field crew to effectively monitor these structures. In some cases (176RW, 202RW, 250RW, 252RW, and 254RW) it appears that a design modification is warranted and in those cases has or is being identified to address perceived deficiencies. It is important to note that these weirs were cleaned-out before a storm event resulted in their failure. Subsequent analysis of the data will indicate if rainfall events were larger, more intense, and more frequent and also contributed to observed problems. The City of Colorado Springs Highway Department did clean-out seventeen rock weirs and one sediment pond this field season. The field crew completed surveys of these sites shortly after clean-out.

REFERENCES

Bevenger, G. S.; King R.M. 1995. A pebble count procedure for assessing watershed cumulative effects. Res. Pap. RM-RP-319. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 17 p.

Burke, M. 2002. Pikes Peak Highway drainage, erosion, and sediment control plan Forest Service engineering design review. Phase 2 Report, v. 1.4. U.S. Department of Agriculture, Forest Service.18 p.

Hall, F.C. 2002. Photo point monitoring handbook: part A-field procedures. Gen. Tech. Rep. PNW-GTR-526. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 48 p.

Harrelson, C.C.; Rawlins, C.L.; Potyondy J.P. 1994. Stream channel reference sites: an illustrated guide to field technique. Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 61 p.

Hydrosphere Resource Consultants. 1999. Pikes Peak Highway drainage, erosion and sediment control plan environmental assessment. Unpublished report. Boulder, CO. 97 p.

Nankervis, J.M. 2004. Monitoring effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. Blue Mountain Consultants, Berthoud, CO. 22 p.

Nankervis, J.M. 2005. Monitoring effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. Blue Mountain Consultants, Berthoud, CO. 29 p.

Nankervis, J.M. 2006. Monitoring effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. Blue Mountain Consultants, Berthoud, CO. 21 p.

Nankervis, J.M. 2007. Monitoring effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. Blue Mountain Consultants, Berthoud, CO. 19 p.

Robichaud, P.R.; Brown, R.E. 2002. Silt fences: an economical technique for measuring hillslope soil erosion. Gen. Tech. Rep. RMRS-GTR-94. Moscow, ID: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Forestry Sciences Laboratory. 24 p.

Troendle, C.A.; Winkler, S.; LaPerriere, M. 2008. Monitoring the effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. METI Inc., El Paso, TX. 24 p.

Troendle, C.A.; Winkler, S.; Derengowski, J.; VonLoh, J. 2009. Monitoring the effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. METI Inc., El Paso, TX. 32 p.

Troendle, C.A.; Winkler, S.; Derengowski, J.; VonLoh, J. 2010. Monitoring the effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. METI Inc., El Paso, TX. 34 p.

Troendle, C.A.; Winkler, S.; Derengowski, J.; VonLoh, J. 2011. Monitoring the effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. METI Inc., El Paso, TX. 32 p.

Troendle, C.A.; Winkler, S.; VonLoh, J.; Derengowski, J. 2012. Monitoring the effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. METI Inc., El Paso, TX. 33 p.

Troendle, C.A.; Winkler, S.; VonLoh, J.; Willis, J. 2013. Monitoring the effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. METI Inc., El Paso, TX. 33 p.

Troendle, C.A.; Winkler, S.; VonLoh, J.; Hauser, P. 2014. Monitoring the effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. METI Inc., El Paso, TX. 37 p.

USDA Forest Service. 2000. Decision notice and finding of no significant impact – Pikes Peak Highway drainage, erosion, and sediment control plan. Unpublished report. Pike and San Isabel National Forests and Cimarron Comanche National Grassland. Pueblo, CO. 16 p.

USDA Forest Service. 2002. Monitoring the effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished monitoring plan. 16 p.

USDA Forest Service. 2003. Amendment #1 to Monitoring the effectiveness and validating response to the road related mitigation practices implemented on the Pikes Peak Highway. Unpublished report. 2 p.

USDA Forest Service. 2012. National best management practices for water quality management on National Forest System lands, volume 1: national core BMP technical guide. Washington D.C. USDA Forest Service. 165p.

U.S. Department of Justice. 2002. Settlement Agreement between the U.S. Forest Service and the Sierra Club. Unpublished report. Denver, CO. 15 p.

Acknowledgements

Many thanks to the U.S. Forest Service Pikes Peak Ranger District and Rocky Mountain Research Station for all their logistical, technical, laboratory, and related assistance. Thanks to the City of Colorado Springs, the Pikes Peak Highway Crew, and Highway Project Managers who shared their time and invaluable knowledge.

Thanks also to the City of Colorado Springs, the Public Works Department of Cripple Creek, and the Tezak Family for allowing access to closed and/or private watersheds for the validation monitoring.

Special thanks to METI Inc., the U.S. Forest Service, EMC Resource Information Group, Black Creek Hydrology, LLC, Blue Mountain Consultants, and Jeff Hovermale, U.S. Forest Service, Pikes Peak Ranger District for a successful twelfth year.

We are especially grateful for the open communication between Jeff Hovermale, U.S. Forest Service, Pikes Peak Ranger District, Jack Glavan and Dave Jordan, City of Colorado Springs, Pikes Peak Highway Department, and Josh VonLoh and Hannah Karlsson, METI Inc., Pikes Peak Monitoring Project Field Crew.

Appendix A

Site Locations for Effectiveness and Validation Monitoring

Site ID	Latitude (hddd°mm.mmm)	Longitude (hddd°mm.mmm)	Altitude (ft)	Feature Description
001FS	N38 55.211	W105 02.238	9410	Fill Slope
002RW	N38 55.224	W105 02.264	9410	Rock Weir
003RW	N38 55.200	W105 02.258	9416	Rock Weir
004CC	N38 55.132	W105 02.278	9431	Conveyance Channel
005DD	N38 55.087	W105 02.415	9447	Drainage Ditch
006RW	N38 55.109	W105 02.482	9415	Rock Weir
007FS	N38 55.094	W105 02.520	9414	Fill Slope
008RW	N38 55.075	W105 02.554	9417	Rock Weir
009RA	N38 55.046	W105 02.655	9443	Rock Apron
010DD	N38 54.907	W105 02.734	9457	Drainage Ditch
011CS	N38 54.909	W105 02.730	9459	Cut Slope
012CC	N38 54.748	W105 03.060	9528	Conveyance Channel
013CC	N38 54.730	W105 03.068	9525	Conveyance Channel
015CC	N38 54.603	W105 03.174	9547	Conveyance Channel
016CC	N38 54.602	W105 03.111	9525	Conveyance Channel
017CC	N38 54.510	W105 03.246	9565	Conveyance Channel
018CC	N38 54.472	W105 03.298	9576	Conveyance Channel
019CC	N38 54.457	W105 03.384	9599	Conveyance Channel
020CC	N38 54.345	W105 03.383	9637	Conveyance Channel
021CC	N38 54.299	W105 03.461	9668	Conveyance Channel
022CC	N38 54.288	W105 03.552	9692	Conveyance Channel
023CC	N38 54.272	W105 03.583	9701	Conveyance Channel
024CC	N38 54.289	W105 03.638	9715	Conveyance Channel
025CC	N38 54.258	W105 03.697	9744	Conveyance Channel
026CC	N38 54.232	W105 03.643	9752	Conveyance Channel
027CC	N38 54.183	W105 03.652	9771	Conveyance Channel
028CC	N38 54.149	W105 03.714	9818	Conveyance Channel
029CC	N38 54.145	W105 03.816	9856	Conveyance Channel
030CC	N38 54.134	W105 03.828	9855	Conveyance Channel
031CC	N38 54.130	W105 03.829	9861	Conveyance Channel
032CC	N38 54.159	W105 03.836	9858	Conveyance Channel
033CC	N38 54.106	W105 03.854	9886	Conveyance Channel
034CC	N38 54.037	W105 03.896	9940	Conveyance Channel
035CC	N38 53.909	W105 04.000	10060	Conveyance Channel
036CC	N38 53.866	W105 03.875	10126	Conveyance Channel
037CC	N38 53.821	W105 03.855	10217	Conveyance Channel
038CC	N38 53.759	W105 03.787	10254	Conveyance Channel
039FS	N38 54.910	W105 02.812	9455	Fill Slope
040CC	N38 54.914	W105 02.789	9464	Conveyance Channel
041CP	N38 53.807	W105 03.893	10072	Road Survey Control Point
042DD	N38 53.719	W105 03.746	10161	Drainage Ditch
043FS	N38 53.726	W105 03.764	10180	Fill Slope
044RX	N38 53.726	W105 03.763	10183	Road Cross Section
045CS	N38 53.657	W105 03.868	10266	Cut Slope

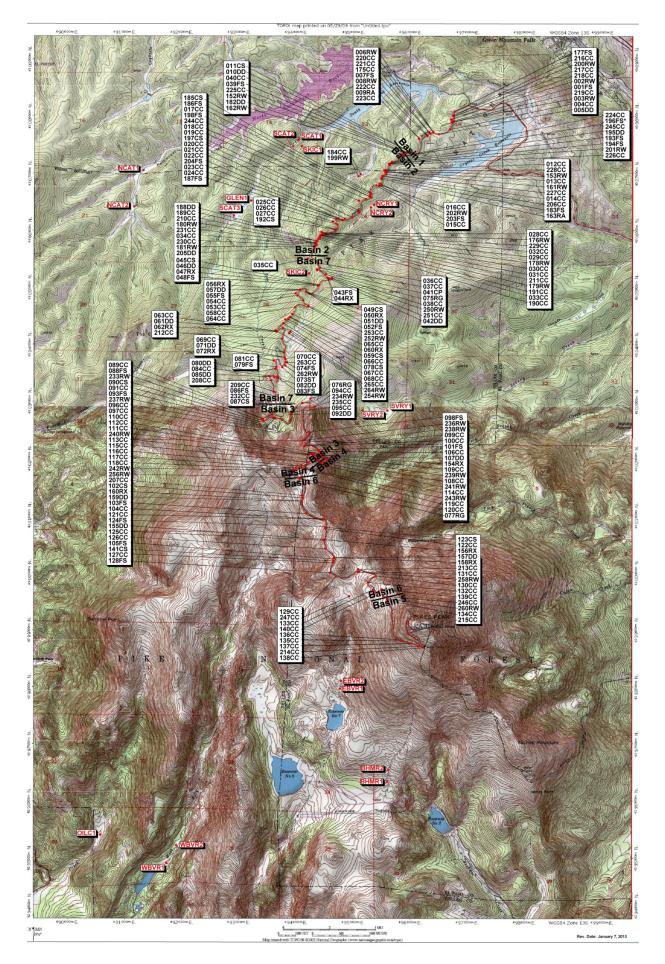
Site Locations for Effectiveness and Validation Monitoring, Pikes Peak 2014†

Site ID	Latitude (hddd°mm.mmm)	Longitude (hddd°mm.mmm)	Altitude (ft)	Feature Description
046DD	N38 53.658	W105 03.868	10268	Drainage Ditch
047RX	N38 53.658	W105 03.868	10268	Road Cross Section
048FS	N38 53.651	W105 03.880	10275	Fill Slope
049CS	N38 53.592	W105 04.020	10406	Cut Slope
050RX	N38 53.593	W105 04.020	10404	Road Cross Section
051DD	N38 53.593	W105 04.021	10397	Drainage Ditch
052FS	N38 53.593	W105 04.021	10401	Fill Slope
053CC	N38 53.560	W105 04.127	10478	Conveyance Channel
054CC	N38 53.579	W105 04.148	10448	Conveyance Channel
055FS	N38 53.612	W105 04.095	10445	Fill Slope
056RX	N38 53.614	W105 04.096	10442	Road Cross Section
057DD	N38 53.613	W105 04.095	10445	Drainage Ditch
058CC	N38 53.513	W105 04.057	10512	Conveyance Channel
059CS	N38 53.353	W105 04.222	10697	Cut Slope
060RX	N38 53.354	W105 04.219	10691	Road Cross Section
061DD	N38 53.221	W105 04.381	10808	Drainage Ditch
062RX	N38 53.216	W105 04.381	10805	Road Cross Section
063CC	N38 53.223	W105 04.394	10803	Conveyance Channel
064CC	N38 53.448	W105 04.155	10634	Conveyance Channel
065CC	N38 53.382	W105 04.192	10679	Conveyance Channel
066CC	N38 53.336	W105 04.243	10701	Conveyance Channel
067CC	N38 53.297	W105 04.299	10736	Conveyance Channel
068CC	N38 53.251	W105 04.305	10841	Conveyance Channel
069CC	N38 53.019	W105 04.287	10989	Conveyance Channel
070CC	N38 52.956	W105 04.276	11028	Conveyance Channel
071DD	N38 52.972	W105 04.285	11017	Drainage Ditch
072RX	N38 52.972	W105 04.285	11015	Road Cross Section
073ST	N38 52.879	W105 04.311	11062	Sediment Trap
074FS	N38 52.927	W105 04.272	11053	Fill Slope
075RG	N38 53.797	W105 03.890	10109	Precipitation Gauge
076RG	N38 52.582	W105 03.970	11810	Precipitation Gauge
077RG	N38 51.783	W105 03.999	13069	Precipitation Gauge
078CS	N38 53.331	W105 04.275	10478	Cut Slope
079FS	N38 52.882	W105 04.382	11254	Fill Slope
080DD	N38 52.865	W105 04.391	11256	Drainage Ditch
081CC	N38 52.943	W105 04.415	11194	Conveyance Channel
082DD	N38 52.787	W105 04.376	11284	Drainage Ditch
083FS	N38 52.777	W105 04.362	11288	Fill Slope
084CC	N38 52.796	W105 04.471	11360	Conveyance Channel
085DD	N38 52.786	W105 04.410	11313	Drainage Ditch
086FS	N38 52.602	W105 04.390	11447	Fill Slope
087CS	N38 52.435	W105 04.432	11542	Cut Slope
088FS	N38 52.388	W105 04.549	11590	Fill Slope
089CC	N38 52.391	W105 04.555	11580	Conveyance Channel
090CS	N38 52.366	W105 04.540	11604	Cut Slope
091CC	N38 52.402	W105 04.414	11643	Conveyance Channel

Site ID	Latitude (hddd°mm.mmm)	Longitude (hddd°mm.mmm)	Altitude (ft)	Feature Description
092DD	N38 52.432	W105 04.204	11781	Drainage Ditch
093FS	N38 52.399	W105 04.401	11642	Fill Slope
094CC	N38 52.540	W105 04.069	11873	Conveyance Channel
095CC	N38 52.452	W105 04.205	11787	Conveyance Channel
096CC	N38 52.379	W105 04.217	11746	Conveyance Channel
097CC	N38 52.381	W105 04.310	11678	Conveyance Channel
098FS	N38 52.265	W105 03.995	12242	Fill Slope
099CC	N38 52.131	W105 04.046	12319	Conveyance Channel
100CC	N38 52.133	W105 03.936	12353	Conveyance Channel
101FS	N38 52.097	W105 03.875	12390	Fill Slope
102CS	N38 51.641	W105 04.063	12963	Cut Slope
103FS	N38 51.491	W105 04.021	12950	Fill Slope
104CC	N38 51.444	W105 03.894	12923	Conveyance Channel
105FS	N38 51.062	W105 03.694	13083	Fill Slope
106CC	N38 52.082	W105 03.858	12251	Conveyance Channel
107DD	N38 52.044	W105 03.824	12312	Drainage Ditch
108CC	N38 51.994	W105 03.769	12362	Conveyance Channel
109CC	N38 52.027	W105 03.825	12393	Conveyance Channel
110CC	N38 52.062	W105 03.914	12448	Conveyance Channel
111CC	N38 52.051	W105 03.992	12511	Conveyance Channel
112CC	N38 52.049	W105 03.933	12531	Conveyance Channel
113CC	N38 52.002	W105 03.873	12577	Conveyance Channel
114CC	N38 51.956	W105 03.840	12601	Conveyance Channel
115CC	N38 51.977	W105 03.995	12692	Conveyance Channel
116CC	N38 51.940	W105 04.080	12736	Conveyance Channel
117CC	N38 51.925	W105 04.141	12777	Conveyance Channel
118CC	N38 51.912	W105 04.177	12797	Conveyance Channel
119CC	N38 51.914	W105 04.032	12850	Conveyance Channel
120CC	N38 51.823	W105 04.090	12876	Conveyance Channel
121CC	N38 51.439	W105 03.804	12877	Conveyance Channel
122CC	N38 51.347	W105 03.789	12920	Conveyance Channel
123CS	N38 51.361	W105 03.782	12920	Cut Slope
124FS	N38 51.362	W105 03.788	12931	Fill Slope
125CC	N38 51.238	W105 03.806	12986	Conveyance Channel
126CC	N38 51.158	W105 03.789	13031	Conveyance Channel
127CC	N38 51.032	W105 03.697	13064	Conveyance Channel
128FS	N38 50.930	W105 03.732	13072	Fill Slope
129CC	N38 50.897	W105 03.662	13068	Conveyance Channel
130CC	N38 50.900	W105 03.177	13183	Conveyance Channel
131CC	N38 50.940	W105 03.382	13088	Conveyance Channel
132CC	N38 50.840	W105 03.274	13217	Conveyance Channel
133CC	N38 50.768	W105 03.213	13282	Conveyance Channel
134CC	N38 50.671	W105 03.035	13401	Conveyance Channel
135CC	N38 50.285	W105 02.872	13677	Conveyance Channel
136CC	N38 50.299	W105 02.931	13624	Conveyance Channel
137CC	N38 50.260	W105 02.755	13733	Conveyance Channel

Site ID	Latitude (hddd°mm.mmm)	Longitude (hddd°mm.mmm)	Altitude (ft)	Feature Description
138CC	N38 50.221	W105 02.605	13805	Conveyance Channel
139CC	N38 50.774	W105 03.110	13370	Conveyance Channel
140CC	N38 50.730	W105 03.195	13327	Conveyance Channel
141CS	N38 51.043	W105 03.690	13103	Cut Slope
152RW	N38 54.912	W105 02.837	9444	Rock Weir
153RW	N38 54.741	W105 03.066	9457	Rock Weir
154RX	N38 52.040	W105 03.817	12112	Road Cross Section
155DD	N38 51.245	W105 03.803	12917	Drainage Ditch
156RX	N38 51.244	W105 03.799	12922	Road Cross Section
157DD	N38 51.074	W105 03.684	13100	Drainage Ditch
158RX	N38 51.074	W105 03.683	13099	Road Cross Section
159DD	N38 51.610	W105 04.072	13091	Drainage Ditch
160RX	N38 51.611	W105 04.072	13066	Road Cross Section
161RW	N38 54.720	W105 03.055	9516	Rock Weir
162RW	N38 54.887	W105 02.854	9518	Rock Weir
163RA	N38 54.665	W105 03.115	9528	Rock Weir
175CC	N38 55.104	W105 02.532	9437	Conveyance Channel
176RW	N38 54.146	W105 03.795	9838	Rock Weir
177FS	N38 55.302	W105 02.224	9323	Fill Slope
178RW	N38 54.142	W105 03.821	9839	Rock Weir
179RW	N38 54.127	W105 03.852	9851	Rock Weir
180RW	N38 54.055	W105 03.903	9906	Rock Weir
181RW	N38 54.025	W105 03.918	9919	Rock Weir
182DD	N38 54.895	W105 02.860	9430	Drainage Ditch
183FS	N38 54.675	W105 03.109	9453	Fill Slope
184CC	N38 54.708	W105 03.363	9308	Conveyance Channel
185CS	N38 54.536	W105 03.246	9532	Cut Slope
186FS	N38 54.524	W105 03.242	9538	Fill Slope
187FS	N38 54.281	W105 03.658	9711	Fill Slope
188DD	N38 54.075	W105 03.892	9894	Drainage Ditch
189CC	N38 54.073	W105 03.886	9887	Conveyance Channel
190CC	N38 54.095	W105 03.869	9871	Conveyance Channel
191CC	N38 54.117	W105 03.854	9855	Conveyance Channel
192CS	N38 54.183	W105 03.677	9786	Cut Slope
193FS	N38 54.821	W105 02.983	9507	Fill Slope
194FS	N38 54.811	W105 03.004	9506	Fill Slope
195DD	N38 54.827	W105 02.983	9505	Drainage Ditch
196FS	N38 54.872	W105 02.900	9497	Fill Slope
197CS	N38 54.364	W105 03.383	9640	Cut Slope
198FS	N38 54.497	W105 03.254	9560	Fill Slope
199RW	N38 54.688	W105 03.389	9326	Sediment Pond
200RW	N38 55.261	W105 02.246	9418	Rock Weir
201RW	N38 54.805	W105 03.021	9522	Rock Weir
202RW	N38 54.619	W105 03.132	9450	Rock Weir
203FS	N38 54.603	W105 03.139	9517	Fill Slope
204FS	N38 54.273	W105 03.572	9707	Fill Slope

Site ID	Latitude (hddd°mm.mmm)	Longitude (hddd°mm.mmm)	Altitude (ft)	Feature Description
205DD	N38 54.022	W105 03.927	9983	Drainage Ditch
206CC	N38 54.689	W105 03.097	9506	Conveyance Channel
207CC	N38 51.664	W105 04.062	12962	Conveyance Channel
208CC	N38 52.754	W105 04.445	11172	Conveyance Channel
209CC	N38 52.647	W105 04.411	11365	Conveyance Channel
210CC	N38 54.059	W105 03.916	9849	Conveyance Channel
211CC	N38 54.130	W105 03.844	9853	Conveyance Channel
212CC	N38 53.149	W105 04.311	10893	Conveyance Channel
213CC	N38 50.964	W105 03.391	13046	Conveyance Channel
214CC	N38 50.234	W105 02.661	13198	Conveyance Channel
215CC	N38 50.356	W105 02.792	13375	Conveyance Channel
216CC	N38 55.263	W105 02.236	9289	Conveyance Channel
217CC	N38 55.255	W105 02.232	9284	Conveyance Channel
218CC	N38 55.226	W105 02.268	9359	Conveyance Channel
219CC	N38 55.202	W105 02.262	9371	Conveyance Channel
220CC	N38 55.108	W105 02.482	9411	Conveyance Channel
221CC	N38 55.107	W105 02.482	9305	Conveyance Channel
222CC	N38 55.070	W105 02.554	9319	Conveyance Channel
223CC	N38 55.048	W105 02.657	9394	Conveyance Channel
224CC	N38 54.878	W105 02.852	9493	Conveyance Channel
225CC	N38 54.917	W105 02.840	9441	Conveyance Channel
226CC	N38 54.796	W105 03.010	9431	Conveyance Channel
227CC	N38 54.706	W105 03.053	9480	Conveyance Channel
228CC	N38 54.746	W105 03.078	9431	Conveyance Channel
229CC	N38 54.140	W105 03.788	9774	Conveyance Channel
230CC	N38 54.028	W105 03.912	9902	Conveyance Channel
231CC	N38 54.050	W105 03.908	9910	Conveyance Channel
232CC	N38 52.583	W105 04.557	11399	Conveyance Channel
233RW	N38 52.383	W105 04.560	11074	Rock Weir
234RW	N38 52.502	W105 03.924	11915	Rock Weir
235CC	N38 52.504	W105 03.920	11928	Conveyance Channel
236RW	N38 52.185	W105 04.066	12177	Rock Weir
237RW	N38 52.398	W105 04.393	11219	Sediment Pond
238RW	N38 52.131	W105 04.048	12340	Rock Weir
239RW	N38 52.008	W105 03.774	12517	Rock Weir
240RW	N38 52.048	W105 03.990	12644	Rock Weir
241RW	N38 51.976	W105 03.834	12686	Rock Weir
242RW	N38 51.903	W105 04.176	12851	Rock Weir
243RW	N38 51.919	W105 04.043	12900	Rock Weir
244CC	N38 54.487	W105 03.232	9569	Conveyance Channel
245CC	N38 54.872	W105 02.900	9497	Conveyance Channel
246CC	N38 50.709	W105 03.090	13423	Conveyance Channel
247CC	N38 50.709	W105 03.499	13080	Conveyance Channel
250RW	N38 53.724	W105 03.710	10232	Rock Weir
251CC	N38 53.723	W105 03.712	10229	Conveyance Channel
252RW	N38 53.456	W105 03.998	10598	Rock Weir


Site ID	Latitude (hddd°mm.mmm)	Longitude (hddd°mm.mmm)	Altitude (ft)	Feature Description		
253CC	N38 53.462	W105 03.998	10582	Conveyance Channel		
254RW	N38 53.226	W105 04.396	10836	Rock Weir		
256RW	N38 51.832	W105 04.112	12923	Sediment Pond		
258RW	N38 50.938	W105 03.394	13091	Sediment Pond		
260RW	N38 50.682	W105 03.043	13415	Sediment Pond		
262RW	N38 52.890	W105 04.297	11086	Sediment Pond		
263CC	N38 52.919	W105 04.258	11056	Conveyance Channel		
264RW	N38 53.201	W105 04.228	10864	Sediment Pond		
265CC	N38 53.209	W105 04.206	10843	Conveyance Channel		
BHMR1	N38 48.951	W105 03.040	11885	Boehmer Creek 1		
BHMR2	N38 49.061	W105 03.027	11995	Boehmer Creek 2		
EBVR1	N38 49.832	W105 03.612	12156	East Fork Beaver Creek 1		
EBVR2	N38 49.907	W105 03.598	12190	East Fork Beaver Creek 2		
GLEN1	N38 54.457	W105 04.690	9519	Glen Cove Creek 1		
NCAT1	N38 54.746	W105 05.994	9415	North Catamount Creek 1		
NCAT2	N38 54.402	W105 06.106	9519	North Catamount Creek 2		
NCRY1∞	N38 54.418	W105 03.199	9453	North Fork Crystal Creek 1 & 2		
OILC1	N38 48.449	W105 06.511	10505	Oil Creek 1		
SCAT1	N38 55.035	W105 04.112	9368	South Catamount Creek 1		
SCAT2	N38 54.974	W105 04.181	9345	South Catamount Creek 2		
SCAT3	N38 54.316	W105 04.899	9412	South Catamount Creek 3		
SKIC1	N38 54.975	W105 04.078	9418	Ski Creek 1		
SKIC2	N38 53.767	W105 03.987	10035	Ski Creek 2		
SVRY1	N38 52.467	W105 03.039	10732	Severy Creek 1		
SVRY2	N38 52.472	W105 03.339	10926	Severy Creek 2		
WBVR1	N38 48.181	W105 05.710	10726	West Fork Beaver Creek 1		
WBVR2	N38 48.349	W105 05.591	10698	West Fork Beaver Creek 2		
t Not all sites were sampled during the 2014 field season.						

† Not all sites were sampled during the 2014 field season.
 ∞ North Fork Crystal Creek Reach 2 (NCRY2) is located 200ft upstream from NCRY1.

Appendix B

USGS Topographic Map

Site Locations for Effectiveness and Validation Monitoring

Appendix C

Daily Precipitation and Periodic Precipitation

	075RG	076RG	077RG
Date	(Elevation 10,109')	(Elevation 11,810')	(Elevation 13,069')
	Precipitation (in)	Precipitation (in)	Precipitation (in)
5/6/2014	0	0	Missing†
5/7/2014	0	0	Missing†
5/8/2014	0	0.02	Missing†
5/9/2014	0.02	0.09	Missing†
5/10/2014	0	0	Missing†
5/11/2014	0	0.03	Missing†
5/12/2014	0	0	Missing†
5/13/2014	0.23	0	Missing†
5/14/2014	0.29	0.02	Missing†
5/15/2014	0.01	0.12	Missing†
5/16/2014	0	0.06	Missing†
5/17/2014	0.02	0	Missing†
5/18/2014	0	0	Missing†
5/19/2014	0	0	Missing†
5/20/2014	0	0	Missing†
5/21/2014	0.03	0.02	Missing†
5/22/2014	0	0	Missing†
5/23/2014	0.59	0.17	Missing†
5/24/2014	0.36	0.29	Missing†
5/25/2014	0.13	0.35	Missing†
5/26/2014	0.01	0	Missing†
5/27/2014	0.01	0.02	Missing†
5/28/2014	0	0	Missing†
5/29/2014	0.15	0.22	Missing†
5/30/2014	0.19	0.25	Missing†
5/31/2014	0.02	0.05	Missing†
6/1/2014	0	0	Missing†
6/2/2014	0	0	0.01
6/3/2014	0	0	0.01
6/4/2014	0	0	0
6/5/2014	0	0	0
6/6/2014	0	0	0
6/7/2014	0	0	0
6/8/2014	0	0.03	0
6/9/2014	0.17	0.27	0.05
6/10/2014	0	0	0.01
6/11/2014	0.03	0.06	0.03
6/12/2014	0	0	0
6/13/2014	0	0	0.01
6/14/2014	0	0	0.01
6/15/2014	0	0	0
6/16/2014	0	0	0

Daily Precipitation for Electronic Rain Gauges, Pikes Peak 2014

	075RG	076RG	077RG
Date	(Elevation 10,109') Precipitation (in)	(Elevation 11,810') Precipitation (in)	(Elevation 13,069') Precipitation (in)
6/17/2014	0	0	0
6/18/2014	0.02	0	0
6/19/2014	0	0	0
6/20/2014	0	0	0
6/21/2014	0	0	0
6/22/2014	0.08	0.02	0.01
6/23/2014	0.06	0.26	0.11
6/24/2014	0.33	0.36	0.18
6/25/2014	0.01	0.01	0.01
6/26/2014	0	0	0
6/27/2014	0.04	0.01	0
6/28/2014	0	0	0
6/29/2014	0	0	0
6/30/2014	0	0	0
7/1/2014	0	0	0
7/2/2014	0	0	0
7/3/2014	0.21	0.18	0.14
7/4/2014	0.03	0.05	0.05
7/5/2014	0	0	0
7/6/2014	0	0.01	0
7/7/2014	0	0	0
7/8/2014	0.28	0.2	0.13
7/9/2014	0.28	0.45	0.13
7/10/2014	0.03	0.09	0.01
7/11/2014	0.01	0.04	0.06
7/12/2014	0.34	0.46	0.57
7/13/2014	0.43	0.36	0.3
7/14/2014	0.05	0.12	0.09
7/15/2014	0.20	0.25	0.23
7/16/2014	0.34	0.24	0.21
7/17/2014	0	0	0
7/18/2014	0.08	0.03	0.02
7/19/2014	0	0	0
7/20/2014	0	0	0
7/21/2014	0	0	0
7/22/2014	0.01	0.02	0.01
7/23/2014	0	0	0
7/24/2014	0.10	0.02	0.01
7/25/2014	0.06	0.11	0.09
7/26/2014	0.02	0.02	0.06
7/27/2014	0.44	1.92	1.58
7/28/2014	0.02	0.01	0.01
7/29/2014	0.60	0.55	0.53

	075RG	076RG	077RG
Date	(Elevation 10,109')	(Elevation 11,810')	(Elevation 13,069')
7/20/2014	Precipitation (in)	Precipitation (in)	Precipitation (in)
7/30/2014	0.68	0.82	1.05
7/31/2014	0.03	0.05	0.02
8/1/2014	0.07	0.14	0.32
8/2/2014	0	0	0
8/3/2014	0	0	0
8/4/2014	0	0	0.02
8/5/2014	0.12	0.16	0.18
8/6/2014	0.02	0.08	0.04
8/7/2014	0.17	0.08	0.05
8/8/2014	0.27	0.23	0.55
8/9/2014	0	0.01	0
8/10/2014	0.90	0.77	0.28
8/11/2014	0.01	0.07	0.11
8/12/2014	0	0	0
8/13/2014	0	0.02	0.03
8/14/2014	0.16	0.3	0.1
8/15/2014	0.08	0.11	0.29
8/16/2014	0	0	0
8/17/2014	0	0	0
8/18/2014	0	0	0
8/19/2014	0	0.26	0.29
8/20/2014	0	0	0
8/21/2014	0	0	0
8/22/2014	0.09	0.22	0.17
8/23/2014	0.32	0	0
8/24/2014	0	0	0
8/25/2014	0.14	0.15	0.06
8/26/2014	0.01	0.01	0.01
8/27/2014	0.01	0.02	0
8/28/2014	0.22	0.22	0.09
8/29/2014	0.05	0.08	0.09
8/30/2014	Missing†	0	0.05
8/31/2014	Missing†	0	0
9/1/2014	Missing†	0	0
9/2/2014	Missing†	0	0.01
9/3/2014	Missing†	0	0
9/4/2014	Missing†	0.15	0.13
9/5/2014	Missing†	0.18	0.19
9/6/2014	Missing†	0.24	0.1
9/7/2014	Missing†	0.02	0.01
9/8/2014	0.55∞	0.11	0.12
9/9/2014	0	0.01	0.01
	_		
9/10/2014	0.02	0.02	0.02

Date	075RG (Elevation 10,109') Precipitation (in)	076RG (Elevation 11,810') Precipitation (in)	077RG (Elevation 13,069') Precipitation (in)			
9/11/2014	0.01	0	0			
9/12/2014	0.09	0	0			
9/13/2014	0	0	0			
9/14/2014	0	0	0			
9/15/2014	0	0	0			
9/16/2014	0	0	0			
9/17/2014	0.01	0	0			
9/18/2014	0	0	0			
9/19/2014	0	0	0			
9/20/2014	0.30	0.29	0.19			
9/21/2014	0.08	0.1	0.12			
9/22/2014	0.05	0.08	0.09			
9/23/2014	0	0	0			
9/24/2014	0	0	0			
9/25/2014	0	0	0			
9/26/2014	0	0	0			
9/27/2014	0	0	0			
9/28/2014	0.05	0.06	0.05			
9/29/2014	0.03	0.05	0.02			
9/30/2014	0	0	0			
Total	10.95†	12.97	9.52†			
 <i>†</i> Indicates missing data due to equipment malfunction and/or damage to the rain gauge. ∞ Total precipitation for August 30 through September 8, 2014, but daily file corrupted. 						

Date	075RG (Elevation 10,109') Precipitation (in)	076RG (Elevation 11,810') Precipitation (in)	077RG (Elevation 13,069') Precipitation (in)
5/19/2014	0.45	0.55	0.10
5/29/2014	1.06	0.91	0.56
6/2/2014	0.42	0.55	0.44
6/9/2014	0.01	0.03	0.00
6/16/2014	0.13	0.39	0.13
6/24/2014	0.18	0.29	0.14
6/30/2014	0.38	0.40	0.21
7/8/2014	0.25	Missing†	0.22
7/14/2014	1.35	1.70	1.22
7/17/2014	0.61	0.65	0.56
7/21/2014	0.10	0.05	0.04
7/28/2014	0.65	2.20	1.70
8/4/2014	1.45	1.97	1.94
8/11/2014	1.45	1.50	1.13
8/18/2014	0.25	0.52	0.56
8/26/2014	0.49	0.76	0.62
9/2/2014	0.27	0.35	0.27
9/8/2014	0.65	0.62	0.45
9/15/2014	0.19	0.14	0.16
9/22/2014	0.43	0.44	0.36
9/29/2014	0.12	0.2	0.18
Total	10.89	14.22†	10.99
† Indicates	missing data due to dar	mage to the rain gauge	

Periodic Precipitation for Standard Rain Gauges, Pikes Peak 2014

Appendix D

Cut Slope

Site Visit Dates and Sediment Accumulation

			Cu	t Slope	e Site V	isit Da	ates 2	014		
Site ID	5/19	6/4	6/10	6/17	7/3	7/8	7/17	8/11	8/27	9/15
011CS	Х	Х		Х		Х	Х	Х	Х	Х
045CS	Х	Х		Х		Х	Х	Х	Х	Х
049CS	Х	Х		Х		Х	Х	Х	Х	Х
059CS	Х	Х		Х		Х	Х	Х	Х	Х
078CS	Х	Х		Х		Х	Х	Х	Х	Х
087CS	Х	Х		Х		Х	Х	Х	Х	Х
090CS	Х	Х	Х	Х		Х	Х	Х	Х	Х
102CS	Х	Х		Х	Х	Х	Х	Х	Х	Х
123CS	Х	Х		Х	Х	Х	Х	Х	Х	Х
141CS	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
185CS	Х	Х		Х		Х	Х	Х	Х	Х
192CS	Х	Х		Х		Х	Х	Х	Х	Х
197CS	Х	Х		Х		Х	Х	Х	Х	Х

Site Visit Dates of Cut Slope Silt Fences, Pikes Peak 2014

Site ID	Location	Date	Volume (ft ³)	Grab Sample
011CS	Upper Fence	5/19/14	0.13	Yes
192CS	Lower Fence	5/19/14	0.74	Yes
197CS	Lower Fence	5/19/14	0.20	Yes
197CS	Upper Fence	5/19/14	0.74	Yes
045CS	Lower Fence	6/4/14	0.07	Yes
049CS	Lower Fence	6/4/14	0.47	Yes
087CS	Lower Fence	6/4/14	0.34	Yes
059CS	Lower Fence	6/17/14	0.07	Yes
102CS	Upper Fence	6/17/14	0.07	Yes
123CS	Upper Fence	6/17/14	0.40	Yes
049CS	Lower Fence	7/8/14	0.07	Yes
059CS	Lower Fence	7/8/14	0.13	Yes
192CS	Lower Fence	7/8/14	0.40	Yes
011CS†	Lower Fence	7/17/14	0.40	Yes
011CS†	Upper Fence	7/17/14	0.07	Yes
087CS	Lower Fence	7/17/14	0.07	Yes
192CS	Lower Fence	7/17/14	0.33	Yes
197CS†	Lower Fence	7/17/14	0.53	Yes
197CS†	Upper Fence	7/17/14	0.33	Yes
045CS	Lower Fence	8/11/14	0.27	Yes
087CS	Lower Fence	8/11/14	0.27	Yes
090CS†	Lower Fence	8/11/14	0.07	Yes
090CS†	Upper Fence	8/11/14	0.07	Yes
185CS	Lower Fence	8/11/14	0.07	Yes
185CS	Upper Fence	8/11/14	0.07	Yes
192CS†	Lower Fence	8/11/14	0.53	Yes
011CS	Lower Fence	8/27/14	0.47	Yes
011CS	Upper Fence	8/27/14	0.07	Yes
078CS†	Lower Fence	8/27/14	0.20	Yes
192CS	192CS Lower Fence		0.53	Yes
123CS†	Upper Fence	9/15/14	0.13	Yes
141CS	Upper Fence	9/15/14	0.07	Yes
197CS	Lower Fence	9/15/14	0.33	Yes
† Grab sai	mples selected for lab	analyses.		

Sediment Accumulation in Cut Slope Silt Fences, Pikes Peak 2014

Appendix E

Fill Slope Site Visit Dates and Sediment Accumulation

Site ID	Fill Slope Site Visit Dates 2014							
Site ID	5/19	6/4	6/17	7/8	7/17	8/11	8/27	9/15
001FS	Х	Х	Х	Х	Х	Х	Х	Х
007FS	Х	Х	Х	Х	Х	Х	Х	Х
039FS	Х	Х	Х	Х	X X	Х	Х	Х
043FS	Х	Х	Х	Х	Х	Х	Х	X X X X
048FS	Х	Х	Х	Х	Х	Х	Х	Х
052FS	Х	Х	Х	Х	Х	Х	Х	Х
055FS	Х	Х	Х	X X	Х	Х	Х	X X
074FS	Х	Х	Х	Х	Х	Х	Х	Х
079FS	Х	Х	Х	Х	Х	Х	Х	Х
083FS	Х	Х	Х	Х	Х	Х	Х	Х
086FS	Х	Х	Х	Х	Х	Х	Х	Х
088FS	Х	Х	Х	Х	Х	Х	Х	X X
093FS	Х	Х	Х	Х	Х	Х	Х	Х
098FS	Х	Х	Х	Х	Х	Х	Х	Х
101FS	Х	Х	Х	Х	Х	Х	Х	Х
103FS	Х	Х	Х	Х	Х	Х	Х	X X
105FS	Х	Х	Х	Х	Х	Х	Х	
124FS	Х	Х	Х	Х	Х	Х	Х	Х
128FS	Х	Х	Х	Х	Х	Х	Х	Х
177FS	Х	Х	Х	Х	Х	Х	Х	Х
183FS	Х	Х	Х	Х	Х	Х	Х	X X X
186FS	Х	Х	Х	Х	Х	Х	Х	Х
187FS	Х	Х	Х	Х	Х	Х	Х	Х
193FS	Х	Х	Х	Х	Х	Х	Х	Х
194FS	Х	Х	Х	Х	Х	Х	Х	Х
198FS	Х	Х	Х	Х	Х	Х	Х	Х
203FS	Х	Х	Х	Х	Х	Х	Х	Х
204FS	Х	Х	Х	Х	Х	Х	Х	Х

Site Visit Dates of Fill Slope Silt Fences, Pikes Peak 2014

Site ID	Location	Date	Volume (ft ³)	Grab Sample
039FS†	Upper Fence	5/19/14	0.13	Yes
039FS <i>†</i>	Lower Fence	5/19/14	0.13	Yes
186FS	Upper Fence	5/19/14	0.13	Yes
186FS	Lower Fence	5/19/14	0.27	Yes
198FS	Upper Fence	5/19/14	0.27	Yes
203FS	Upper Fence	5/19/14	0.07	Yes
204FS†	Upper Fence	5/19/14	0.47	Yes
043FS	Upper Fence	6/4/14	0.67	Yes
052FS	Lower Fence	6/4/14	0.13	Yes
074FS†	Upper Fence	6/4/14	0.67	Yes
187FS	Upper Fence	6/4/14	2.01	Yes
001FS	Upper Fence	6/17/14	0.87	Yes
079FS	Upper Fence	6/17/14	1.00	Yes
093FS	Upper Fence	6/17/14	0.80	Yes
098FS	Upper Fence	6/17/14	1.74	Yes
101FS†	Upper Fence	6/17/14	2.41	Yes
128FS†	Upper Fence	6/17/14	0.07	Yes
001FS	Upper Fence	7/8/14	0.40	Yes
043FS	Upper Fence	7/8/14	0.20	Yes
079FS†	Upper Fence	7/8/14	0.53	Yes
083FS	Lower Fence	7/8/14	0.33	Yes
088FS	Lower Fence	7/8/14	0.13	Yes
001FS†	Upper Fence	7/17/14	1.14	Yes
098FS	Upper Fence	7/17/14	0.33	Yes
193FS	Upper Fence	7/17/14	0.67	Yes
198FS†	Upper Fence	7/17/14	0.94	Yes
203FS	Upper Fence	7/17/14	1.07	Yes
204FS	Upper Fence	7/17/14	0.20	Yes
001FS	Upper Fence	8/11/14	0.67	Yes
039FS	Upper Fence	8/11/14	0.27	Yes
039FS	Lower Fence	8/11/14	0.07	Yes
043FS <i>†</i>	Upper Fence	8/11/14	0.33	Yes
074FS	Upper Fence	8/11/14	0.27	Yes
074FS	Lower Fence	8/11/14	0.07	Yes
079FS	Upper Fence	8/11/14	1.20	Yes
086FS	Lower Fence	8/11/14	0.40	Yes
093FS	Upper Fence	8/11/14	0.67	Yes
098FS	Upper Fence	8/11/14	0.94	Yes

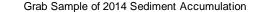
Sediment Accumulation in Fill Slope Silt Fences, Pikes Peak 2014

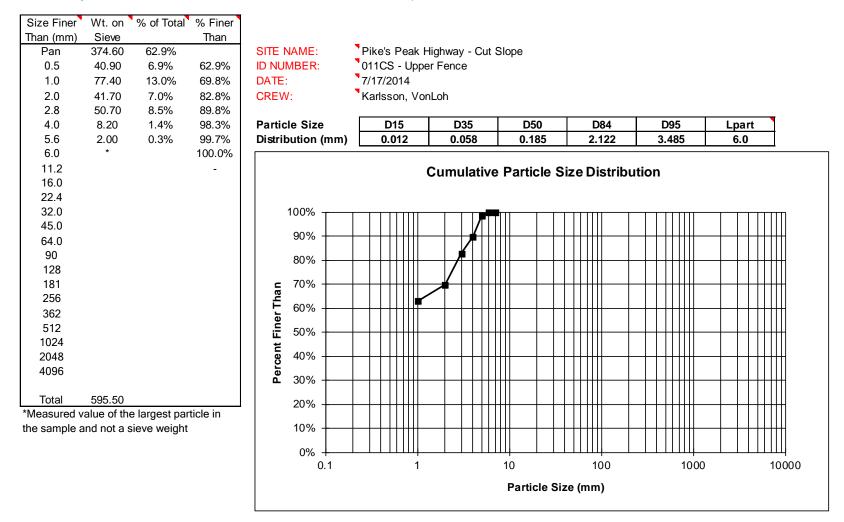
Site ID	Location	Date	Volume (ft ³)	Grab Sample					
098FS	Lower Fence	8/11/14	0.07	Yes					
101FS†	Upper Fence	8/11/14	6.15	Yes					
101FS†	Lower Fence	8/11/14	0.94	Yes					
124FS†	Upper Fence	8/11/14	0.07	Yes					
124FS†	Lower Fence	8/11/14	0.07	Yes					
177FS†	Upper Fence	8/11/14	0.14	Yes					
183FS <i>†</i>	Upper Fence	8/11/14	1.74	Yes					
186FS	Upper Fence	8/11/14	0.14	Yes					
186FS	Lower Fence		0.07 0.40	Yes Yes					
193FS	Upper Fence								
203FS	Upper Fence	8/11/14	0.40	Yes					
055FS	Lower Fence	8/27/14	0.07	Yes					
093FS	Upper Fence	8/27/14	0.27	Yes					
001FS	Upper Fence	8/27/14	0.20	Yes					
098FS	Upper Fence	8/27/14	0.40	Yes					
183FS	Upper Fence	8/27/14	0.27	Yes					
187FS Upper Fence		8/27/14	0.27	Yes					
101FS†	Upper Fence	9/15/14	0.80	Yes					
101FS†	Lower Fence	9/15/14	0.20	Yes					
† Grab sa	† Grab samples selected for lab analyses.								

Appendix F

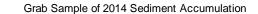
Cut and Fill Slope

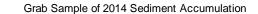
Particle Size Distribution Summary and Graphs


				Particle Size Distribution (mm)–Grab Samples 2014					
Site Name	ID	Date	D15	D35	D50	D84	D95	D100	
Pikes Peak Highway - Cut Slope	011CS - Upper Fence	7/17/2014	0.012	0.058	0.185	2.122	3.485	6.0	
Pikes Peak Highway - Cut Slope	011CS - Lower Fence	7/17/2014	0.933	2.765	4.569	10.558	15.215	20.0	
Pikes Peak Highway - Cut Slope	078CS - Lower Fence	8/27/2014	0.050	0.725	1.553	5.006	7.801	13.0	
Pikes Peak Highway - Cut Slope	087CS - Lower Fence	6/4/2014	0.774	6.931	32.464	47.508	49.882	51.0	
Pikes Peak Highway - Cut Slope	090CS - Upper Fence	8/11/2014	0.017	0.115	0.492	2.589	5.187	12.0	
Pikes Peak Highway - Cut Slope	090CS - Lower Fence	8/11/2014	0.141	0.992	1.702	3.990	7.232	11.0	
Pikes Peak Highway - Cut Slope	123CS - Upper Fence	9/15/2014	0.809	1.873	2.769	5.887	10.458	25.0	
Pikes Peak Highway - Cut Slope	192CS - Lower Fence	5/19/2014	0.041	0.649	1.601	5.152	8.817	20.0	
Pikes Peak Highway - Cut Slope	192CS - Lower Fence	8/11/2014	0.042	0.677	1.570	6.981	13.975	19.0	
Pikes Peak Highway - Cut Slope	197CS - Upper Fence	7/17/2014	0.122	1.299	2.305	6.781	10.416	21.0	
Pikes Peak Highway - Cut Slope	197CS - Lower Fence	7/17/2014	1.906	5.476	8.326	20.445	28.042	32.0	


Summary of Cut Slope Particle Size Distribution from Sieve Analysis of Grab Samples, Pikes Peak 2014

				icle Size Dis	stribution (mm)–Grab	Samples 2	2014
Site Name	ID	Date	D15	D35	D50	D84	D95	D100
Pikes Peak Highway - Fill Slope	001FS - Upper Fence	7/17/2014	0.039	0.592	1.160	3.525	7.085	12.0
Pikes Peak Highway - Fill Slope	039FS - Upper Fence	5/19/2014	0.056	0.714	1.380	5.855	13.483	32.0
Pikes Peak Highway - Fill Slope	039FS - Lower Fence	5/19/2014	0.060	0.726	1.306	3.668	7.183	13.0
Pikes Peak Highway - Fill Slope	043FS - Upper Fence	8/11/2014	0.466	1.143	1.895	5.450	10.709	13.0
Pikes Peak Highway - Fill Slope	074FS - Upper Fence	6/4/2014	0.239	1.312	2.328	6.290	19.800	28.0
Pikes Peak Highway - Fill Slope	079FS - Upper Fence	7/8/2014	0.102	0.919	1.777	6.740	13.377	20.0
Pikes Peak Highway - Fill Slope	101FS - Upper Fence	6/17/2014	1.303	2.570	3.287	7.481	11.020	18.0
Pikes Peak Highway - Fill Slope	101FS - Upper Fence	8/11/2014	1.036	2.684	3.803	10.950	21.869	28.0
Pikes Peak Highway - Fill Slope	101FS - Lower Fence	8/11/2014	2.158	3.641	6.075	24.446	32.983	34.0
Pikes Peak Highway - Fill Slope	101FS - Upper Fence	9/15/2014	1.471	5.540	9.367	19.728	23.012	24.0
Pikes Peak Highway - Fill Slope	101FS - Lower Fence	9/15/2014	1.225	3.791	5.381	21.430	27.899	31.0
Pikes Peak Highway - Fill Slope	124FS - Upper Fence	8/11/2014	0.980	2.544	3.466	12.626	34.408	38.0
Pikes Peak Highway - Fill Slope	124FS - Lower Fence	8/11/2014	1.867	3.313	4.351	8.753	17.936	30.0
Pikes Peak Highway - Fill Slope	128FS - Upper Fence	6/17/2014	1.364	3.368	5.110	10.499	15.103	21.0
Pikes Peak Highway - Fill Slope	177FS - Upper Fence	8/11/2014	0.543	1.520	3.063	12.867	23.687	26.0
Pikes Peak Highway - Fill Slope	183FS - Upper Fence	8/11/2014	0.123	0.910	1.552	4.607	7.941	21.0
Pikes Peak Highway - Fill Slope	198FS - Upper Fence	7/17/2014	0.250	1.171	2.098	4.938	7.235	14.0
Pikes Peak Highway - Fill Slope	204FS - Upper Fence	5/19/2014	0.028	0.400	0.921	3.258	6.154	15.0


Summary of Fill Slope Particle Size Distribution from Sieve Analysis of Grab Samples, Pikes Peak 2014



Size Finer	Wt. on	% of Total	% Finer					
Than (mm)	Sieve		Than					
Pan	57.50	8.7%	man	SITE				
0.5	46.70	7.0%	8.7%	ID N				
1.0	77.70	11.7%	15.7%	DAT				
2.0	52.20	7.9%	27.4%	CRE				
2.8	68.40	10.3%	35.3%	ONE				
4.0	73.70	11.1%	45.6%	Part				
5.6	97.60	14.7%	56.7%	Dist				
8.0	101.10	15.2%	71.4%					
11.2	64.30	9.7%	86.7%					
16.0	24.10	3.6%	96.4%					
20.0	*		100.0%					
32.0			_					
45.0								
64.0								
90								
128								
181				2				
256				4				
362								
512								
1024								
2048								
4096				Cont Figure Theory				
Total 663.30								
*Measured va		• •	ticle in					
the sample and not a sieve weight								

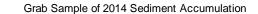
TE NAME: [•] Pike's Peak Highway - Cut Slope 011CS - Lower Fence NUMBER: 7/17/2014 TE: Karlsson, VonLoh EW: rticle Size D35 D15 D50 D84 D95 Lpart stribution (mm) 0.933 2.765 4.569 10.558 15.215 20.0 **Cumulative Particle Size Distribution** 100% 90% 80% 70% Percent Finer Than 60% 50% 40% 30% 20% 10% 0% 0.1 10 100 1000 1 10000 Particle Size (mm)

[•] Pike's Peak Highway - Cut Slope

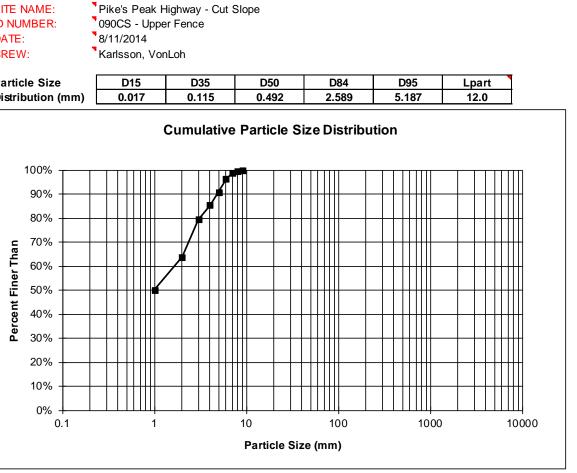
Size Finer	Wt. on	% of Total	% Finer	[
Than (mm)	Sieve		Than		
Pan	146.50	28.6%		SITE	NAME:
0.5	61.50	12.0%	28.6%	ID NU	IMBER:
1.0	76.10	14.8%	40.6%	DATE	:
2.0	52.30	10.2%	55.4%	CREV	V:
2.8	58.80	11.5%	65.6%		
4.0	53.20	10.4%	77.1%	Partie	cle Size
5.6	41.60	8.1%	87.5%	Distri	bution (
8.0	16.30	3.2%	95.6%		
11.2	6.40	1.2%	98.8%		
13.0	*		100.0%		
22.4			-		
32.0					100% -
45.0					90% -
64.0					90 % -
90					80% -
128					
181				an	70% -
256				μË	60% -
362				er	00 /0
512				Ei I	50% -
1024				Ĕ	
2048				ခို	40% -
4096				Percent Finer Than	30% -
Total	512.70				20% -
*Measured va					
the sample a		10% -			

078CS - Lower Fence 8/27/2014 Karlsson, VonLoh le Size D35 D50 D15 D84 D95 Lpart ution (mm) 0.050 0.725 1.553 5.006 7.801 13.0 **Cumulative Particle Size Distribution** 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 0.1 10 100 1000 1 10000 Particle Size (mm)

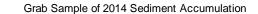
COMMENTS:


Size Finer	\//t on	% of Total	0/ Finar		
Than (mm) Pan	Sieve 105.20	12.2%	Than		NAME:
-			10.00/		
0.5	37.70	4.4%	12.2%		MBER:
1.0	45.60	5.3%	16.6%	DATE:	
2.0	29.80	3.5%	21.9%	CREW	/:
2.8	47.90	5.6%	25.4%		
4.0	18.80	2.2%	31.0%		le Size
5.6	26.70	3.1%	33.1%	Distrik	oution (
8.0	17.10	2.0%	36.2%		
11.2	24.20	2.8%	38.2%		
16.0	27.30	3.2%	41.1%		
22.4	41.40	4.8%	44.2%		
32.0	195.40	22.7%	49.0%		100% -
45.0	242.80	28.2%	71.8%		
51.0	*		100.0%		90% -
90			-		80% -
128					00% -
181					70% -
256				ha	
362				Finer Than	60% -
512				ne	E00/
1024				L II	50% -
2048				Percent	40% -
4096				- C	
				L L	30% -
Total	859.90				000/
*Measured v		e largest par	ticle in		20% -
the sample a		10% -			

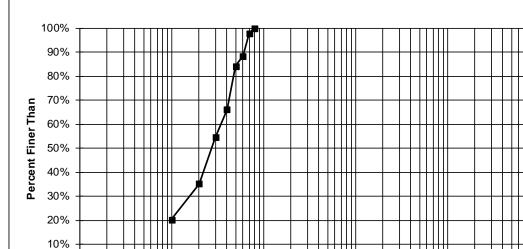
[•] Pike's Peak Highway - Cut Slope 087CS - Lower Fence 6/4/2014 Karlsson, VonLoh



the sample and not a sieve weight



Size Finer	Wt. on	% of Total	% Finer				
Than (mm)	Sieve		Than				
Pan	395.80	50.2%		SITE			
0.5	107.10	13.6%	50.2%	ID NU			
1.0	124.10	15.7%	63.7%	DATE			
2.0	46.70	5.9%	79.5%	CRE\			
2.8	42.20	5.3%	85.4%				
4.0	43.70	5.5%	90.7%	Parti			
5.6	18.50	2.3%	96.3%	Distri			
8.0	8.20	1.0%	98.6%				
11.2	2.80	0.4%	99.6%				
12.0	*		100.0%				
22.4			-				
32.0							
45.0							
64.0							
90							
128							
181				u u			
256				Lhe			
362				er '			
512				Ľ.			
1024				ut I			
2048				e			
4096				Percent Finer Than			
Total	789.10			.			
*Measured value of the largest particle in							
the sample and not a sieve weight							



0% | 0.1

Size Finer	Wt. on	% of Total	% Finer				
Than (mm)	Sieve		Than				
Pan	108.50	20.3%			SI	TE N	IA
0.5	79.60	14.9%	20.3%		ID	NU	MB
1.0	103.40	19.3%	35.2%		DA	TE:	
2.0	62.00	11.6%	54.5%		CF	REN	/:
2.8	96.40	18.0%	66.1%				
4.0	22.30	4.2%	84.1%		Ра	rtic	le
5.6	50.00	9.3%	88.3%		Di	strik	out
8.0	12.60	2.4%	97.6%				
11.0	*		100.0%				
16.0			-				
22.4							
32.0							10
45.0							~
64.0							90
90							8
128							•
181						E	7
256						Гh	~
362						Ŀ.	6
512						i.	5
1024						t I	
2048						ē	4
4096						Percent Finer Than	3
						ш	3
Total	534.80						2
*Measured value of the largest particle in							
the sample and not a sieve weight							1(

NAME: [•] Pike's Peak Highway - Cut Slope JMBER: 090CS - Lower Fence 8/11/2014 Karlsson, VonLoh cle Size D35 D50 D15 D84 ibution (mm) 0.141 0.992 1.702 3.990 **Cumulative Particle Size Distribution**

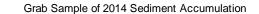
10

Particle Size (mm)

100

D95

7.232

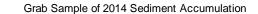

1000

10000

Lpart

11.0

COMMENTS:


[•] Pike's Peak Highway - Cut Slope

Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	64.00	8.4%		SITE N	NAME:
0.5	72.20	9.5%	8.4%	ID NU	MBER:
1.0	143.50	18.9%	17.9%	DATE	:
2.0	103.90	13.7%	36.8%	CREW	/:
2.8	197.30	25.9%	50.4%		
4.0	47.60	6.3%	76.4%	Partic	le Size
5.6	73.10	9.6%	82.7%	Distrik	oution (
8.0	26.10	3.4%	92.3%		
11.2	10.30	1.4%	95.7%		
16.0	0.00	0.0%	97.1%		
22.4	22.40	2.9%	97.1%		
25.0	*		100.0%		100% -
45.0			-		000/
64.0					90% -
90					80% -
128					
181				u n	70% -
256				Th	60% -
362				e	00 /8 -
512				Ei	50% -
1024				Ť	
2048				e	40% -
4096				Percent Finer Than	30% -
				-	50 /0
Total	760.40				20% -
*Measured v		400/			
the sample a		10% -			

123CS - Upper Fence NUMBER: 9/15/2014 ATE: Karlsson, VonLoh REW: article Size D35 D15 D50 D84 D95 Lpart stribution (mm) 0.809 1.873 2.769 5.887 10.458 25.0 **Cumulative Particle Size Distribution** 100% 90% 80% 70% Percent Finer Than 60% 50% 40% 30% 20% 10% 0% 0.1 10 100 1 1000 10000 Particle Size (mm)

0% | 0.1

[•] Pike's Peak Highway - Cut Slope

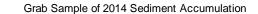
Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	205.50	30.8%		SITE I	NAME:
0.5	73.80	11.1%	30.8%	ID NU	MBER:
1.0	79.40	11.9%	41.9%	DATE	:
2.0	70.00	10.5%	53.8%	CREV	V:
2.8	83.10	12.5%	64.3%		
4.0	63.80	9.6%	76.8%	Partic	le Size
5.6	48.90	7.3%	86.4%	Distril	bution (
8.0	29.70	4.5%	93.7%		
11.2	6.30	0.9%	98.2%		
16.0	5.90	0.9%	99.1%		
20.0	*		100.0%		
32.0			-		100% -
45.0					000/
64.0					90% -
90					80% -
128					
181				Ľ	70% -
256				That	60% -
362				e.	00% -
512				Lin	50% -
1024				t t	
2048				e	40% -
4096				Percent Finer Than	30% -
				-	50 /0
Total	666.40				20% -
*Measured va		400/			
the sample a	nd not a s	sieve weight			10% -

UMBER: 192CS - Lower Fence 5/19/2014 TE: Karlsson, VonLoh EW: ticle Size D35 D15 D50 D84 D95 Lpart tribution (mm) 0.041 0.649 1.601 5.152 8.817 20.0 **Cumulative Particle Size Distribution** 100% 90% 80% 70% ē 60% 50% 40% ß 9 30% 20% 10%

10

Particle Size (mm)

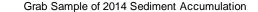
100

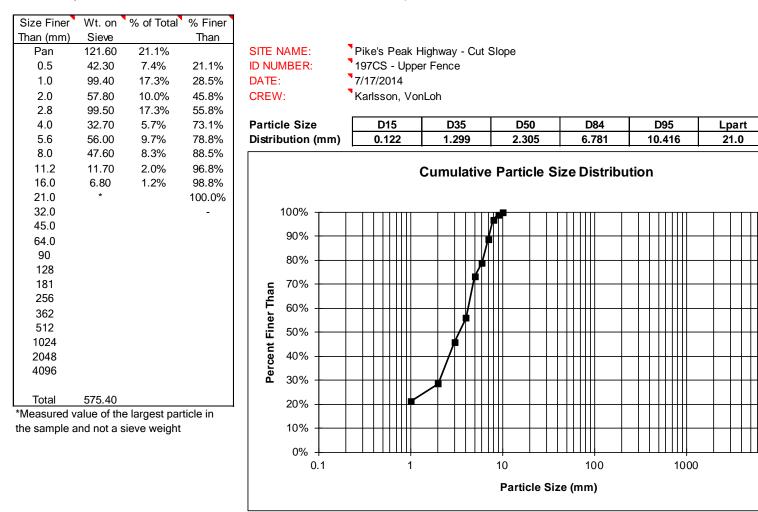

1000

10000

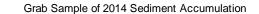
73

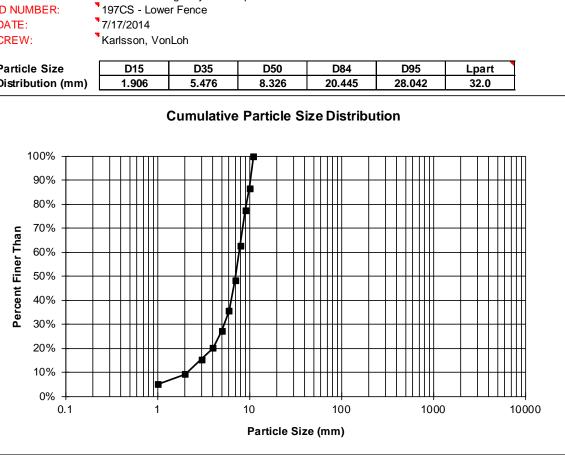
NAME:



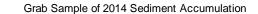

[•] Pike's Peak Highway - Cut Slope

Size Finer	Wt. on	% of Total	% Finer	[
Than (mm)	Sieve		Than				
Pan	205.30	30.7%		SITE			
0.5	65.40	9.8%	30.7%	ID NU			
1.0	97.50	14.6%	40.5%	DATE			
2.0	46.60	7.0%	55.1%	CRE			
2.8	53.60	8.0%	62.1%				
4.0	58.30	8.7%	70.1%	Parti			
5.6	56.10	8.4%	78.8%	Distr			
8.0	35.70	5.3%	87.2%				
11.2	26.40	4.0%	92.5%				
16.0	23.40	3.5%	96.5%				
19.0	*		100.0%				
32.0			-				
45.0							
64.0							
90							
128							
181							
256				Lhe			
362				er '			
512				, i			
1024				u u			
2048				e l			
4096				Percent Finer Than			
Total	668.30						
*Measured va		0 1	ticle in				
the sample and not a sieve weight							


UMBER: 192CS - Lower Fence 8/11/2014 ΓE: Karlsson, VonLoh EW: ticle Size D35 D15 D50 D84 D95 Lpart ribution (mm) 0.042 0.677 1.570 6.981 13.975 19.0 **Cumulative Particle Size Distribution** 100% 90% 80% 70% 60% 50% 40% Ð 30% 20% 10% 0% 0.1 10 100 1 1000 10000 Particle Size (mm)

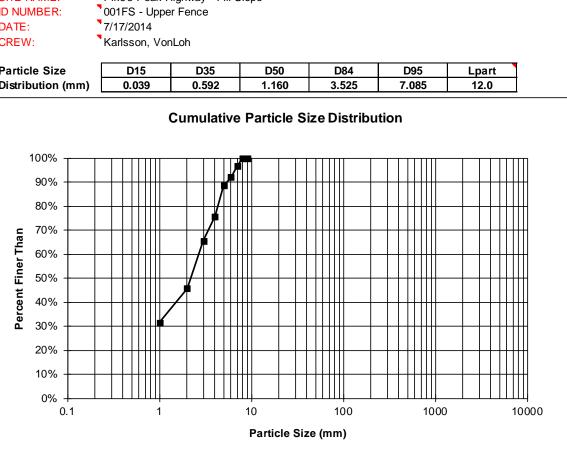


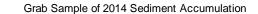
COMMENTS:



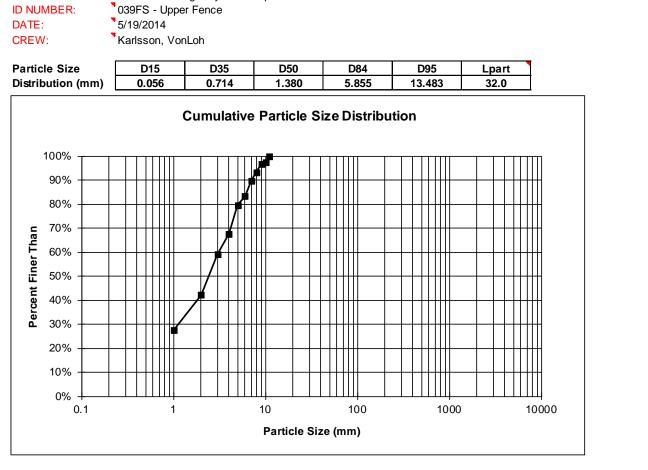
[•] Pike's Peak Highway Cut Slope

Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	36.90	5.0%			NAME:
0.5	30.60	4.2%	5.0%	ID NU	MBER:
1.0	46.20	6.3%	9.2%	DATE	:
2.0	34.50	4.7%	15.4%	CREW	/:
2.8	51.50	7.0%	20.1%		
4.0	62.30	8.5%	27.1%	Partic	le Size
5.6	93.80	12.7%	35.6%	Distrik	oution (
8.0	105.70	14.3%	48.3%		
11.2	108.00	14.7%	62.6%		
16.0	67.70	9.2%	77.3%		
22.4	99.50	13.5%	86.5%		
32.0	*		100.0%		100% -
45.0			-		000/
64.0					90% -
90					80% -
128					
181				L L	70% -
256				Finer Than	60% -
362				e.	00 % -
512				Lin	50% -
1024				E E	
2048				e	40% -
4096				Percent	30% -
	736.70			-	00 /0
Total		20% -			
*Measured v		10% -			
the sample a		10% -			



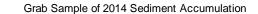


[•] Pike's Peak Highway - Fill Slope


Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	219.60	31.5%		SITE I	NAME:
0.5	99.20	14.2%	31.5%	ID NU	MBER:
1.0	137.90	19.8%	45.8%	DATE	:
2.0	70.90	10.2%	65.6%	CREV	V:
2.8	89.00	12.8%	75.8%		
4.0	24.30	3.5%	88.5%	Partic	le Size
5.6	31.50	4.5%	92.0%	Distril	bution (r
8.0	22.20	3.2%	96.5%		
11.2	1.90	0.3%	99.7%		
12.0	*		100.0%		
22.4			-		
32.0					100% T
45.0					90% -
64.0					90% -
90					80% -
128					
181				an	70% -
256				Τ ^μ	60% -
362				er	00 /0 -
512				Li I	50% -
1024				ť	
2048				ဗ	40% -
4096				Percent Finer Than	30% -
	~~~ ~~				0070
Total	696.50		Viele in		20% -
*Measured value of the largest particle in the sample and not a sieve weight					10% -
the sample a	nu not a s	sieve weight			10 % -



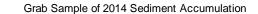




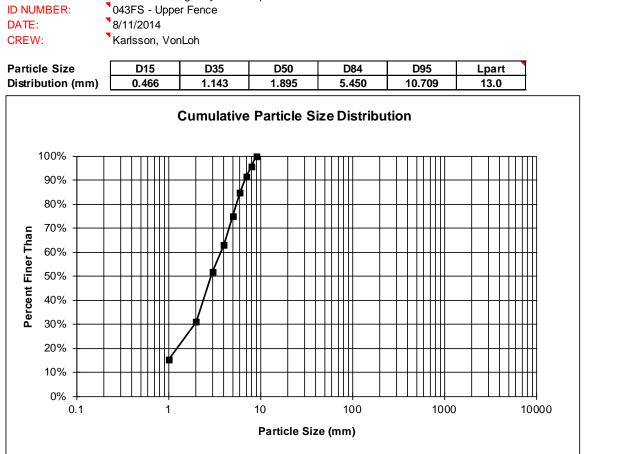

	Size Finer	Wt. on	% of Total	% Finer				
	Than (mm)	Sieve		Than				
	Pan	220.90	27.4%		SITE I	NAME:		
	0.5	118.70	14.7%	27.4%	ID NU	MBER:		
	1.0	136.20	16.9%	42.1%	DATE	:		
	2.0	68.90	8.6%	59.0%	CREV	<b>/</b> :		
	2.8	97.10	12.1%	67.6%				
	4.0	28.70	3.6%	79.6%	Partic	le Size		
	5.6	51.00	6.3%	83.2%	Distril	oution (		
	8.0	29.50	3.7%	89.5%				
	11.2	27.90	3.5%	93.2%				
	16.0	7.00	0.9%	96.7%				
	22.4	19.90	2.5%	97.5%				
	32.0	*		100.0%		100% -		
	45.0			-		000/		
	64.0					90% -		
	90					80% -		
	128					0070		
	181				5	70% -		
	256				Lhe	<b>CO</b> 0/		
	362				er '	60% -		
	512				i,	50% -		
	1024				t l			
	2048				e l	40% -		
	4096				Percent Finer Than	30% -		
						30 %		
ļ	Total	805.80				20% -		
	*Measured value of the largest particle in							
	the sample a		10% -					



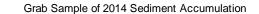



NAME:




Size Finer	Wt. on	% of Total	% Finer	[			
Than (mm)	Sieve		Than				
Pan	203.60	26.6%		S	ITE		
0.5	118.50	15.5%	26.6%	ID	) NI		
1.0	155.70	20.4%	42.2%	D	ATE		
2.0	83.70	11.0%	62.5%	С	RE		
2.8	106.10	13.9%	73.5%				
4.0	26.60	3.5%	87.4%	Р	arti		
5.6	45.40	5.9%	90.9%	D	istr		
8.0	21.80	2.9%	96.8%				
11.2	2.70	0.4%	99.6%				
13.0	*		100.0%				
22.4			-				
32.0							
45.0							
64.0							
90							
128							
181					S		
256					Tha		
362					er_		
512					ŭ.		
1024					Ę		
2048					Ser		
4096					Percent Finer Than		
					Δ.		
Total	764.10						
*Measured value of the largest particle in							
the sample and not a sieve weight							








Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve	/0 01 10101	Than		
Pan	129.90	15.2%	111011	SITE N	NAME:
0.5	134.90	15.8%	15.2%		MBER:
1.0	175.60	20.6%	31.0%	DATE	
2.0	98.50	11.5%	51.6%	CREW	
2.8	99.10	11.6%	63.1%	ONL	
4.0	85.80	10.1%	74.8%	Partic	le Size
5.6	55.90	6.6%	84.8%		oution (
8.0	35.80	4.2%	91.4%		,
11.2	37.90	4.4%	95.6%		
13.0	*		100.0%		
22.4			-		
32.0					100% -
45.0					
64.0					90% -
90					80% -
128					00 /0
181				2	70% -
256				Lha	000/
362				er	60% -
512				Finer Than	50% -
1024				L F	
2048				Cel	40% -
4096				Percent	30% -
				L L	30 % -
Total	853.40				20% -
*Measured va		100/			
the sample a		10% -			

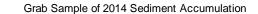


COMMENTS:

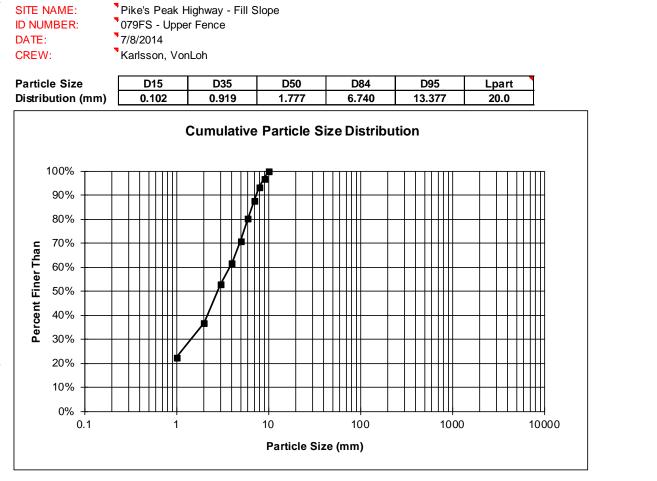


[•] Pike's Peak Highway - Fill Slope

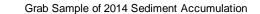
			-		
Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	133.40	17.7%			NAME:
0.5	83.70	11.1%	17.7%	ID NU	MBER:
1.0	119.40	15.8%	28.8%	DATE	:
2.0	89.40	11.9%	44.6%	CREV	V:
2.8	99.70	13.2%	56.5%		
4.0	85.60	11.4%	69.7%	Partic	cle Size
5.6	67.50	9.0%	81.1%	Distri	bution (
8.0	19.60	2.6%	90.0%		
11.2	8.50	1.1%	92.6%		
16.0	14.70	2.0%	93.8%		
22.4	32.30	4.3%	95.7%		
28.0	*		100.0%		100% -
45.0			-		000/
64.0					90% -
90					80% -
128					
181				E E	70% -
256				Γhε	60% -
362				er .	60% -
512				i i	50% -
1024				t T	
2048				Ge	40% -
4096				Percent Finer Than	30% -
				<b>–</b>	30 % -
Total	753.80				20% -
*Measured va					
the sample a	nd not a s	sieve weight			10% -


074FS - Upper Fence NUMBER: 6/4/2014 Karlsson, VonLoh REW: article Size D35 D15 D50 D84 D95 stribution (mm) 0.239 1.312 2.328 6.290 19.800 **Cumulative Particle Size Distribution** 90% 80% ź.

100% 70% Percent Finer Than 60% 50% 40% 30% 20% 10% 0% 0.1 10 100 1 1000 10000 Particle Size (mm)

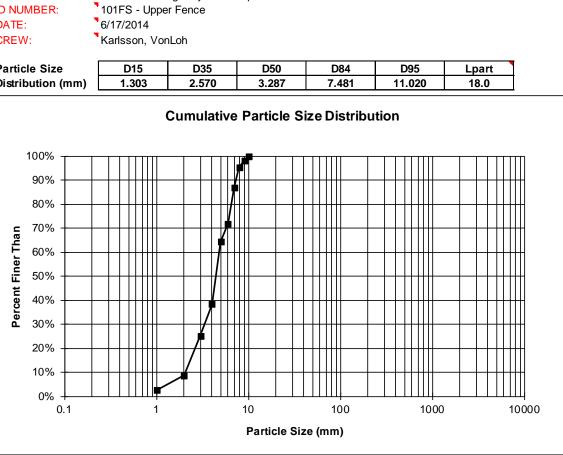

Lpart

28.0

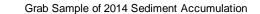




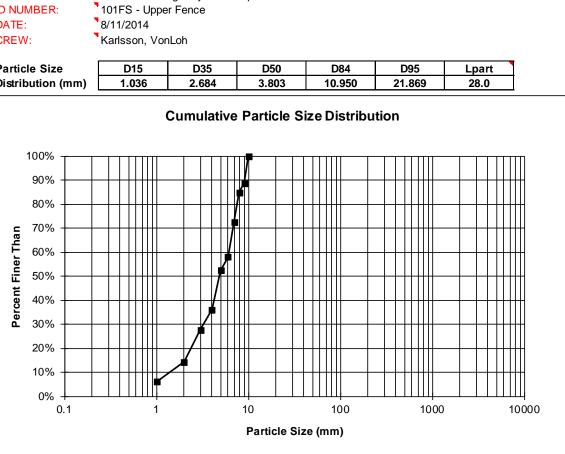

	Size Finer	Wt. on	% of Total	% Finer			
	Than (mm)	Sieve		Than			
	Pan	180.20	22.3%	man	SITE		
	0.5	116.80	14.5%	22.3%			
	1.0	129.00	14.5%	36.8%	DAT		
	2.0	73.00	9.0%	52.7%	CRE		
	2.8	73.20	9.1%	61.7%			
	4.0	75.90	9.4%	70.8%	Part		
	5.6	59.10	7.3%	80.2%	Distr		
	8.0	46.70	5.8%	87.5%			
	11.2	27.70	3.4%	93.3%			
	16.0	26.50	3.3%	96.7%			
	20.0	*		100.0%			
	32.0			-			
	45.0						
	64.0						
	90						
	128						
	181						
	256				e q		
	362				Finer Than		
	512						
	1024				ii ii		
	2048						
	4096				Percent		
	4030				, a		
	Total	808.10					
	*Measured va		e largest par	ticle in			
			• •				
the sample and not a sieve weight							



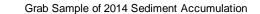

COMMENTS:




[•] Pike's Peak Highway - Fill Slope

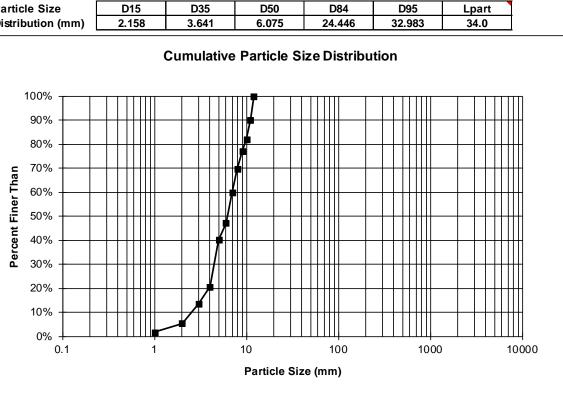

Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	21.60	2.5%		SITE I	NAME:
0.5	53.50	6.2%	2.5%	ID NU	MBER:
1.0	140.90	16.4%	8.7%	DATE	:
2.0	113.60	13.2%	25.1%	CREV	<b>/</b> :
2.8	222.50	25.9%	38.4%		
4.0	64.80	7.5%	64.3%	Partic	le Size
5.6	129.00	15.0%	71.8%	Distril	oution (
8.0	73.80	8.6%	86.8%		
11.2	22.10	2.6%	95.4%		
16.0	17.30	2.0%	98.0%		
18.0	*		100.0%		
32.0			-		100% -
45.0					000/
64.0					90% -
90					80% -
128					
181				L L L	70% -
256				Finer Than	60% -
362				e	00 /8 -
512				Ein	50% -
1024				ť	
2048				e	40% -
4096				Percent	30% -
				-	50 /0
Total	859.10				20% -
*Measured va		100/			
the sample a		10% -			



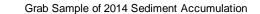

COMMENTS:



Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	45.90	6.1%		SITE I	NAME:
0.5	61.30	8.2%	6.1%	ID NU	MBER:
1.0	99.10	13.2%	14.3%	DATE	:
2.0	63.50	8.5%	27.6%	CREV	<b>/</b> :
2.8	121.40	16.2%	36.1%		
4.0	42.40	5.7%	52.3%		le Size
5.6	108.60	14.5%	58.0%	Distril	oution (
8.0	92.40	12.4%	72.5%		
11.2	28.80	3.8%	84.8%		
16.0	84.70	11.3%	88.7%		
28.0	*		100.0%		
32.0			-		100% -
45.0					000/
64.0					90% -
90					80% -
128					
181				L L	70% -
256				Γh	60% -
362				e.	60 % -
512				Finer Than	50% -
1024				t t	
2048				e	40% -
4096				Percent	30% -
					30 /8 -
Total	748.10				20% -
*Measured va		1001			
the sample a		10% -			

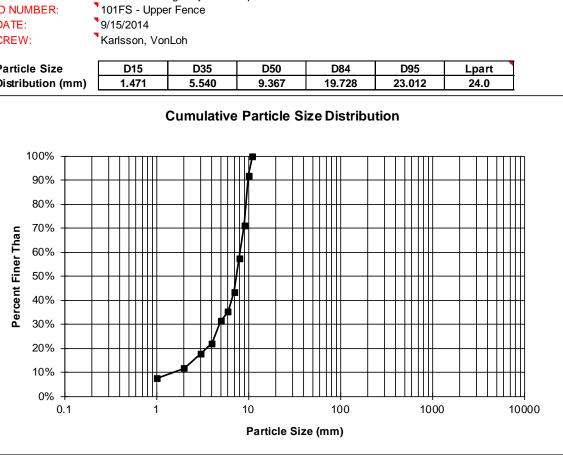



COMMENTS:

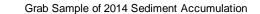



		14/4 0.0	% of Total			
			% of Total			
	Than (mm)	Sieve	4 = 0 (	Than		
	Pan	11.30	1.7%			NAME:
	0.5	24.70	3.6%	1.7%		MBER:
	1.0	55.30	8.1%	5.3%	DATE	
	2.0	49.70	7.3%	13.4%	CREV	V:
	2.8	133.40	19.5%	20.6%		
	4.0	47.50	7.0%	40.2%	Partic	le Size
	5.6	86.80	12.7%	47.1%	Distril	oution (
	8.0	66.30	9.7%	59.8%		
	11.2	50.60	7.4%	69.5%		
	16.0	35.10	5.1%	76.9%		
	22.4	54.50	8.0%	82.0%		
	32.0	68.20	10.0%	90.0%		100% -
	34.0	*		100.0%		
	64.0			-		90% -
	90					80% -
	128					0070
	181				5	70% -
	256				Lha	000/
	362				er '	60% -
	512				i i	50% -
	1024				t t	
	2048				e	40% -
	4096				Percent Finer Than	30% -
					1 -	50 /0 -
ļ	Total	683.40				20% -
	*Measured va		100/			
	the sample a		10% -			

Pike's Peak Highway - Fill Slope 101FS - Lower Fence 8/11/2014 Karlsson, VonLoh



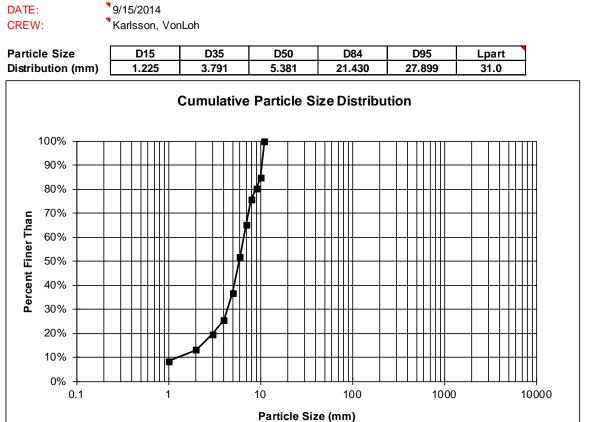

COMMENTS:



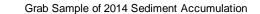

[•] Pike's Peak Highway - Fill Slope

	14/4	0/ - ( T- ) - I	0/ <b>F</b> inan		
		% of Total			
Than (mm)	Sieve		Than		
Pan	52.00	7.5%			NAME:
0.5	28.40	4.1%	7.5%		MBER:
1.0	42.40	6.1%	11.6%	DATE	:
2.0	30.30	4.4%	17.7%	CREW	<b>/</b> :
2.8	64.10	9.2%	22.1%		
4.0	26.30	3.8%	31.3%	Partic	le Size
5.6	57.40	8.3%	35.1%	Distrib	oution (
8.0	97.60	14.1%	43.4%		
11.2	94.80	13.7%	57.5%		
16.0	143.10	20.6%	71.2%		
22.4	56.90	8.2%	91.8%		
24.0	*		100.0%		100% -
45.0			-		
64.0					90% -
90					80% -
128					0070
181				5	70% -
256				Lha	000/
362				Finer Than	60% -
512				i i	50% -
1024				۲ E	
2048				Ce l	40% -
4096				Percent	000/
				L	30% -
Total	693.30				20% -
*Measured va					
the sample a		10% -			



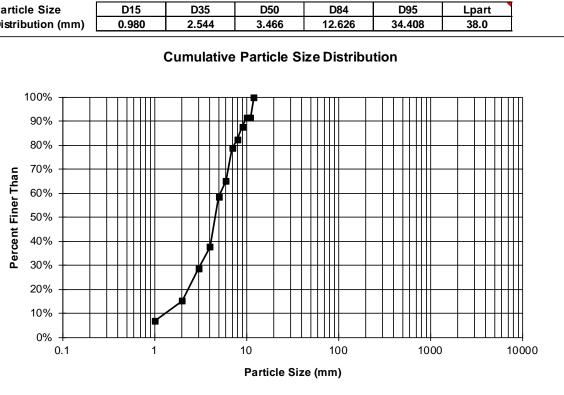

COMMENTS:



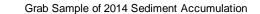

[•] Pike's Peak Highway - Fill Slope

101FS - Lower Fence

	1.4.4.				
Size Finer		% of Total			
Than (mm)	Sieve		Than		
Pan	51.70	8.3%			NAME:
0.5	29.90	4.8%	8.3%	ID NUI	MBER:
1.0	40.70	6.5%	13.1%	DATE:	
2.0	37.20	6.0%	19.6%	CREW	/:
2.8	69.10	11.1%	25.6%		
4.0	94.30	15.1%	36.7%	Partic	le Size
5.6	82.00	13.2%	51.8%	Distrib	oution (
8.0	67.00	10.7%	65.0%		
11.2	27.70	4.4%	75.7%		
16.0	27.70	4.4%	80.1%		
22.4	96.10	15.4%	84.6%		
31.0	*		100.0%		100% -
45.0			-		
64.0					90% -
90					80% -
128					0070
181				Ē	70% -
256				Lha	000/
362				er	60% -
512				ine	50% -
1024				L L	0070
2048				er l	40% -
4096				Percent Finer Than	000/
					30% -
Total	623.40				20% -
*Measured v					
the sample a		10% -			




COMMENTS:



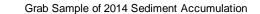

	· · · · ·				
Size Finer		% of Total			
Than (mm)	Sieve		Than		
Pan	43.80	6.7%		SITE N	NAME:
0.5	55.60	8.5%	6.7%	ID NUI	MBER:
1.0	86.50	13.3%	15.3%	DATE:	:
2.0	59.00	9.1%	28.5%	CREW	/:
2.8	135.40	20.8%	37.6%		
4.0	44.80	6.9%	58.4%	Partic	le Size
5.6	88.10	13.5%	65.2%	Distrik	oution (
8.0	22.30	3.4%	78.7%		
11.2	35.50	5.4%	82.2%		
16.0	24.30	3.7%	87.6%		
22.4	0.00	0.0%	91.3%		
32.0	56.40	8.7%	91.3%		100% -
38.0	*		100.0%		000/
64.0			-		90% -
90					80% -
128					0070
181				5	70% -
256				Lha	co.0/
362				er '	60% -
512				i.	50% -
1024				L F	
2048				e l	40% -
4096				Percent Finer Than	30% -
				<b>–</b>	30% -
Total	651.70				20% -
*Measured va					
the sample a		10% -			

Pike's Peak Highway - Fill Slope 124FS - Upper Fence 8/11/2014 Karlsson, VonLoh



COMMENTS:

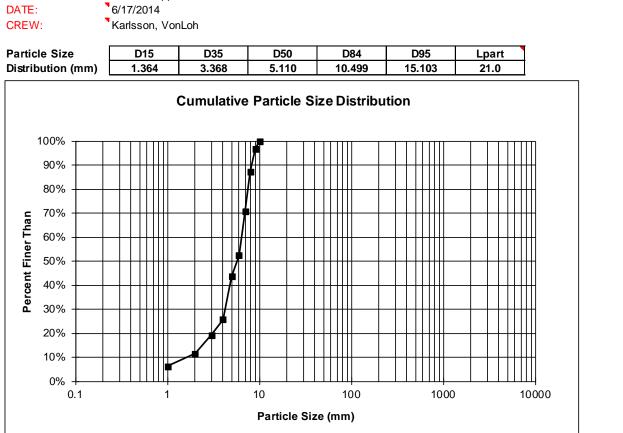



[•] Pike's Peak Highway - Fill Slope

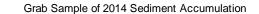
124FS - Lower Fence

Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	11.80	1.7%		SITE N	NAME:
0.5	26.40	3.9%	1.7%	ID NUI	MBER:
1.0	70.10	10.4%	5.7%	DATE:	
2.0	71.10	10.5%	16.0%	CREW	/:
2.8	121.00	17.9%	26.6%		
4.0	149.70	22.2%	44.5%	Partic	le Size
5.6	103.10	15.3%	66.6%	Distrik	oution (
8.0	53.50	7.9%	81.9%		
11.2	32.20	4.8%	89.8%		
16.0	8.60	1.3%	94.6%		
22.4	28.10	4.2%	95.8%		
30.0	*		100.0%		100% -
45.0			-		000/
64.0					90% -
90					80% -
128					
181				L L L	70% -
256				Th	60% -
362				e.	00 % -
512				Lin	50% -
1024				t T	
2048				8	40% -
4096				Percent Finer Than	30% -
				-	00 /0
Total	675.60				20% -
*Measured v		400/			
the sample a		10% -			

8/11/2014 TE: Karlsson, VonLoh EW: rticle Size D35 D15 D50 D84 D95 Lpart stribution (mm) 1.867 3.313 4.351 8.753 17.936 30.0 **Cumulative Particle Size Distribution** 100% 90% 80% 70% **Percent Finer Than** ŧ 60% 50% 40% 30% 20% 10% 0% 0.1 10 100 1 1000 10000 Particle Size (mm)

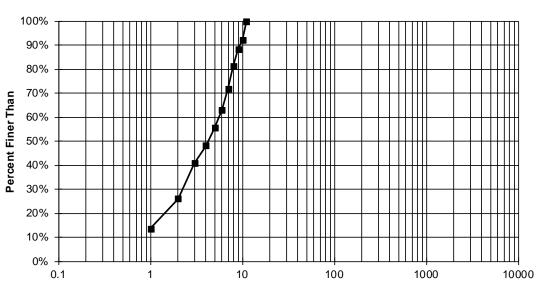

COMMENTS:




[•] Pike's Peak Highway - Fill Slope

128FS - Upper Fence

Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	35.40	6.1%			NAME:
0.5	30.90	5.4%	6.1%	ID NUI	MBER:
1.0	44.80	7.8%	11.5%	DATE:	
2.0	36.80	6.4%	19.3%	CREW	/:
2.8	103.60	18.0%	25.7%		
4.0	50.00	8.7%	43.7%		le Size
5.6	105.10	18.3%	52.4%	Distrik	oution (
8.0	95.40	16.6%	70.6%		
11.2	53.70	9.3%	87.2%		
16.0	20.10	3.5%	96.5%		
21.0	*		100.0%		
32.0			-		100% -
45.0					20.0/
64.0					90% -
90					80% -
128					
181				L L L	70% -
256				Finer Than	60% -
362				ē	00 /8 -
512				Li	50% -
1024				t l	
2048				9	40% -
4096				Percent	30% -
				-	00 /0
Total	575.80				20% -
*Measured va the sample a		10% -			
and sample a		1070 -			




COMMENTS:

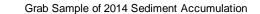


Size Finer	Wt. on	% of Total	% Finer				
Than (mm)	Sieve		Than				
Pan	89.70	13.5%			SI	TE I	NA
0.5	83.10	12.5%	13.5%		ID	NU	ME
1.0	98.50	14.8%	26.0%		DA	TE	
2.0	48.30	7.3%	40.9%		CF	REN	/:
2.8	48.90	7.4%	48.1%				
4.0	50.00	7.5%	55.5%		Ра	rtic	le
5.6	58.90	8.9%	63.0%		Di	strik	out
8.0	61.60	9.3%	71.9%				
11.2	47.80	7.2%	81.2%				
16.0	23.90	3.6%	88.4%				
22.4	53.10	8.0%	92.0%				
26.0	*		100.0%				10
45.0			-				~
64.0							9
90							8
128							-
181						E	7
256						Гĥ	6
362						e.	6
512						i.	5
1024						t I	
2048						ē	4
4096						Percent Finer Than	3
						ш	3
Total	663.80						2
*Measured value of the largest particle in							
the sample a				1			

[•] Pike's Peak Highway - Fill Slope TE NAME: 177FS - Upper Fence NUMBER: 8/11/2014 Karlsson, VonLoh rticle Size D35 D15 D50 D84 stribution (mm) 0.543 1.520 3.063 12.867 **Cumulative Particle Size Distribution** 

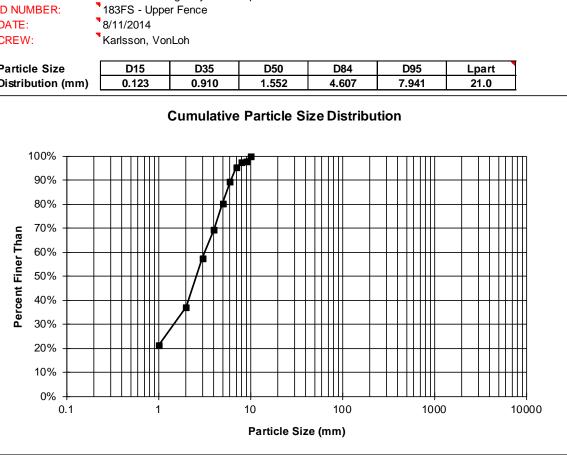


Particle Size (mm)

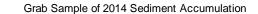

D95

23.687

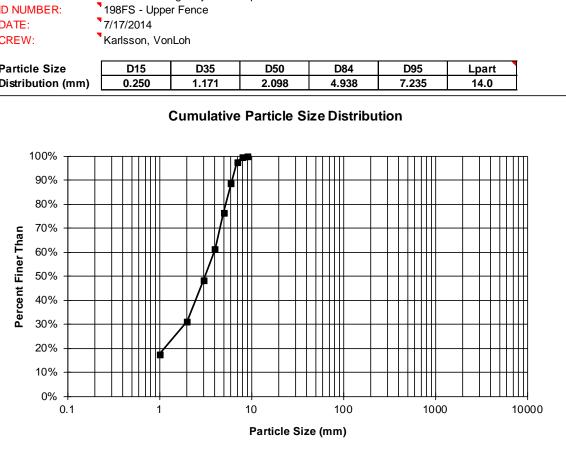
Lpart


26.0

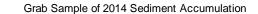
COMMENTS:



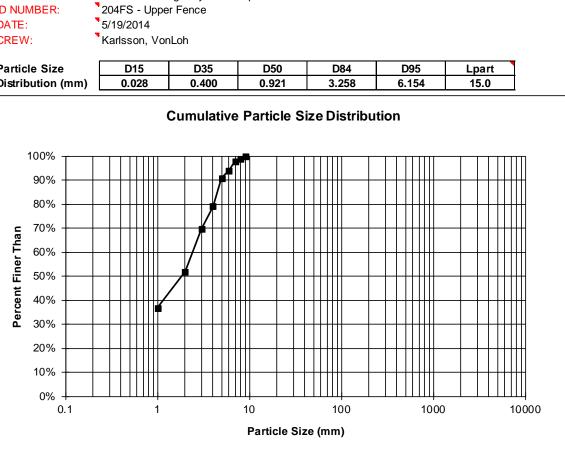

[•] Pike's Peak Highway - Fill Slope


Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	156.00	21.1%		SITE I	NAME:
0.5	119.20	16.1%	21.1%	ID NU	MBER:
1.0	149.70	20.2%	37.2%	DATE	:
2.0	89.10	12.0%	57.4%	CREV	V:
2.8	79.90	10.8%	69.4%		
4.0	66.40	9.0%	80.2%	Partic	le Size
5.6	43.80	5.9%	89.2%	Distril	bution (
8.0	16.40	2.2%	95.1%		
11.2	4.10	0.6%	97.3%		
16.0	15.60	2.1%	97.9%		
21.0	*		100.0%		
32.0			-		100% -
45.0					000/
64.0					90% -
90					80% -
128					0070
181				L L	70% -
256				Γh	60% -
362				e.	60% -
512				i i	50% -
1024				t t	
2048				e l	40% -
4096				Percent Finer Than	30% -
					30 /0 -
Total	740.20				20% -
*Measured va					
the sample a		10% -			





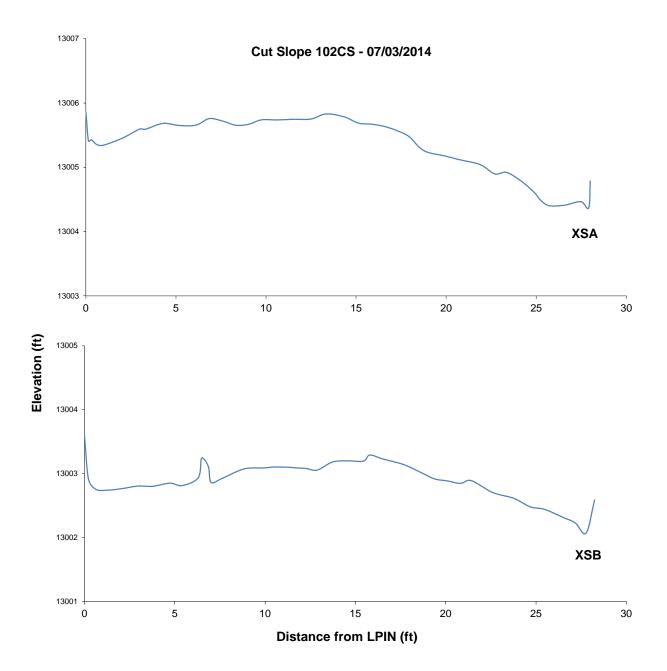


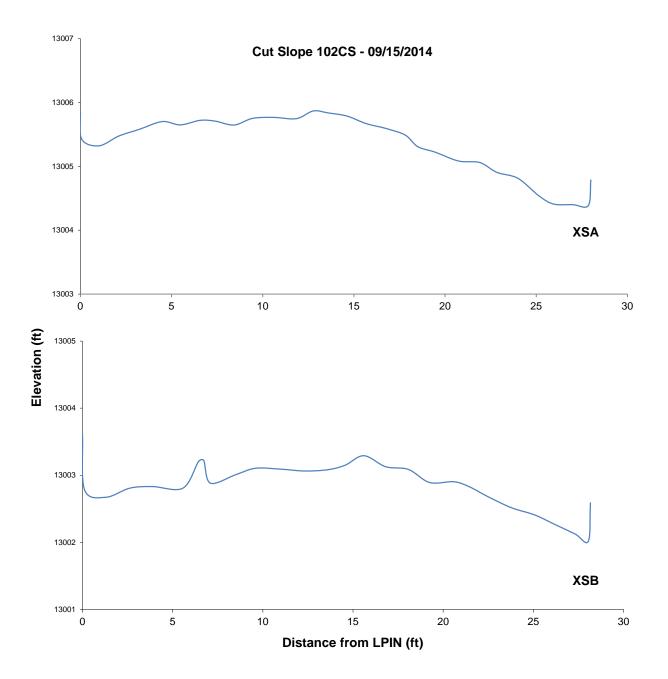


Size Finer	Wt. on	% of Total	% Einer		
Than (mm)	Sieve	76 OF TOTAL	Than		
Pan	147.30	17.5%	man	SITE	NAME:
0.5	114.60	13.6%	17.5%		MBER:
1.0	143.50	17.0%	31.1%	DATE	
2.0	143.30	17.0%	48.2%	CREV	
2.0	109.40	15.0%	46.2% 61.2%	CREV	۷.
2.8 4.0	128.00	12.2%	76.4%	Dortio	le Size
4.0 5.6	75.50	9.0%	76.4% 88.6%		
5.0 8.0	75.50 15.40	9.0% 1.8%	00.0% 97.5%	DISITI	oution (
11.2	5.40 *	0.6%	99.4%		
14.0			100.0%		
22.4			-		40.00/
32.0					100% -
45.0					90% -
64.0					00 /0
90					80% -
128					
181				an	70% -
256				Ĥ	60% -
362				er	00 /0 -
512				Finer Than	50% -
1024				- E	
2048				e	40% -
4096				Percent	30% -
					30 % -
Total	841.80				20% -
*Measured va					
the sample a		10% -			

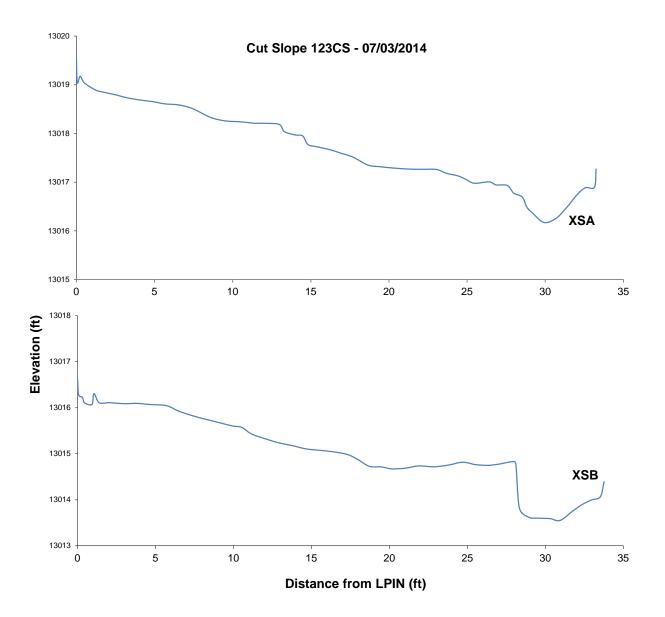


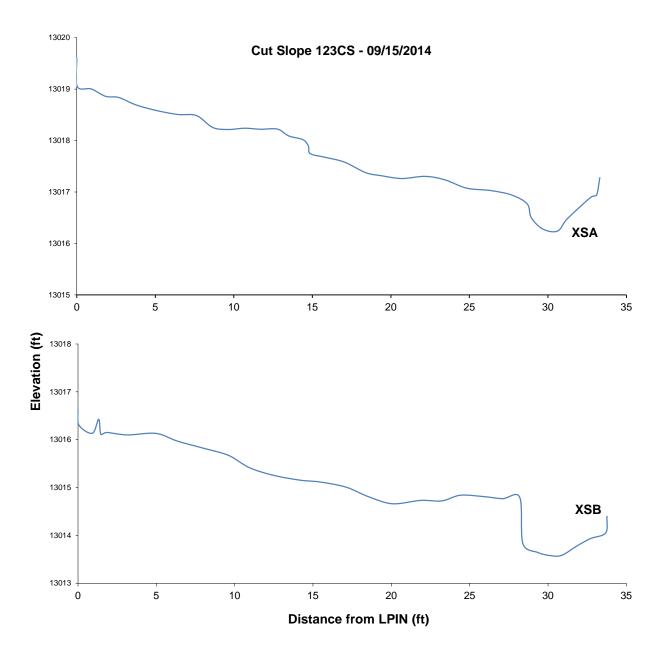


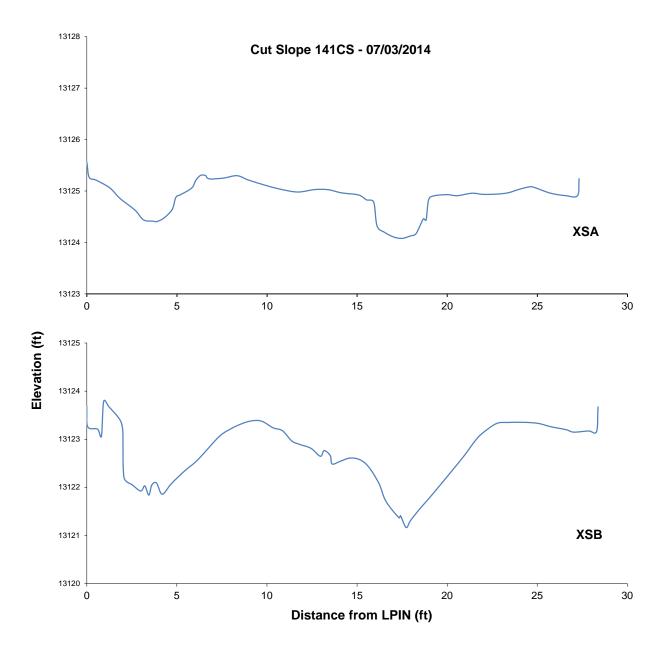


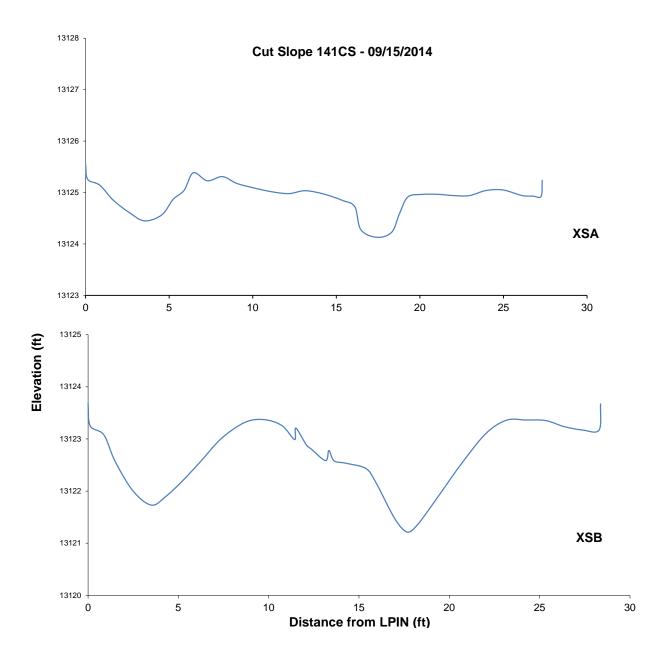

Size Finer	Wt. on	% of Total	% Einor		
Than (mm)	Sieve	78 OF 10tal	Than		
Pan	193.50	36.7%	man	SITE	NAME:
0.5	79.60	15.1%	36.7%		MBER:
1.0	93.70	17.8%	51.8%	DATE	
2.0	49.90	9.5%	69.6%	CREV	
2.0	49.90 61.80	9.3 <i>%</i> 11.7%	09.0 <i>%</i> 79.0%	CILLY	v.
4.0	17.20	3.3%	90.7%	Partic	le Size
5.6	19.80	3.8%	94.0%		bution (
8.0	6.00	1.1%	97.8%		
11.2	5.80	11170	98.9%		
15.0	*		100.0%		
22.4			-		
32.0					100% -
45.0					
64.0					90% -
90					000/
128					80% -
181					70% -
256				ha	
362				L L	60% -
512				Finer Than	50% -
1024				보	50 /0
2048				l e	40% -
4096				Percent	000/
				L	30% -
Total	527.30				20% -
*Measured va		/0			
the sample a		10% -			





Appendix G

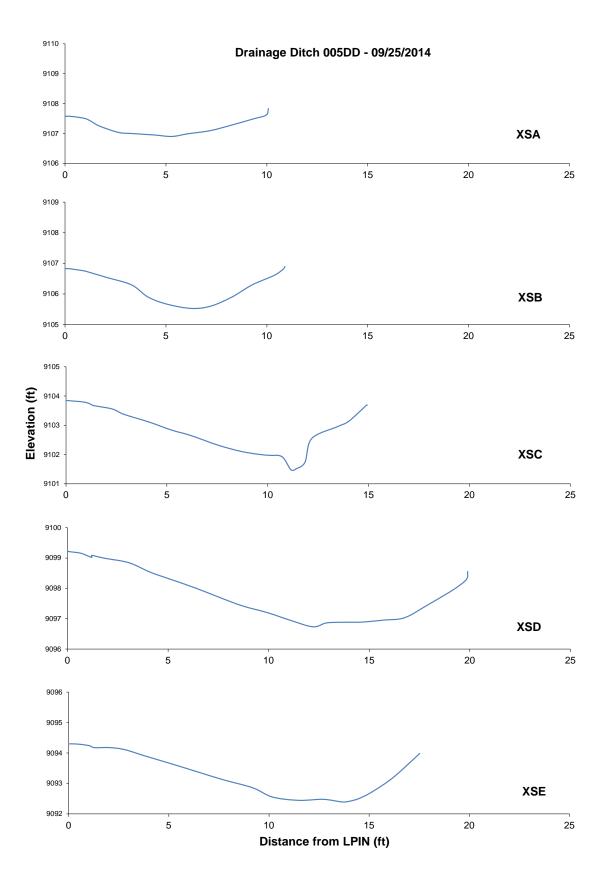

Cut Slope

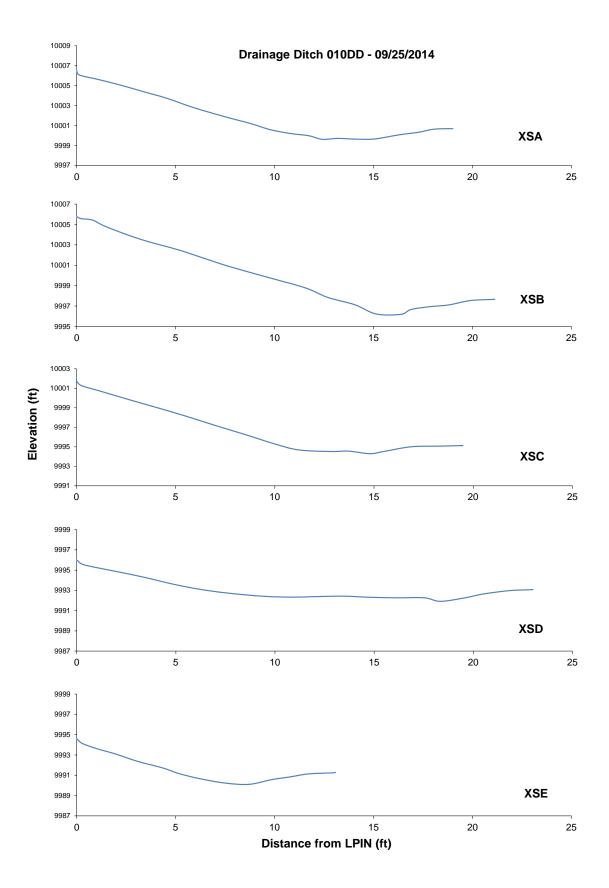

**Cross Section Graphs** 

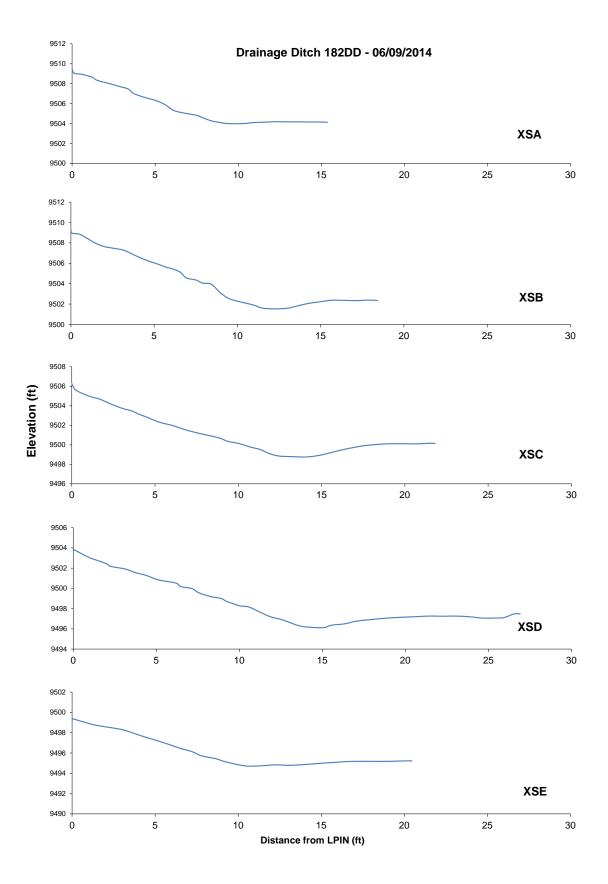


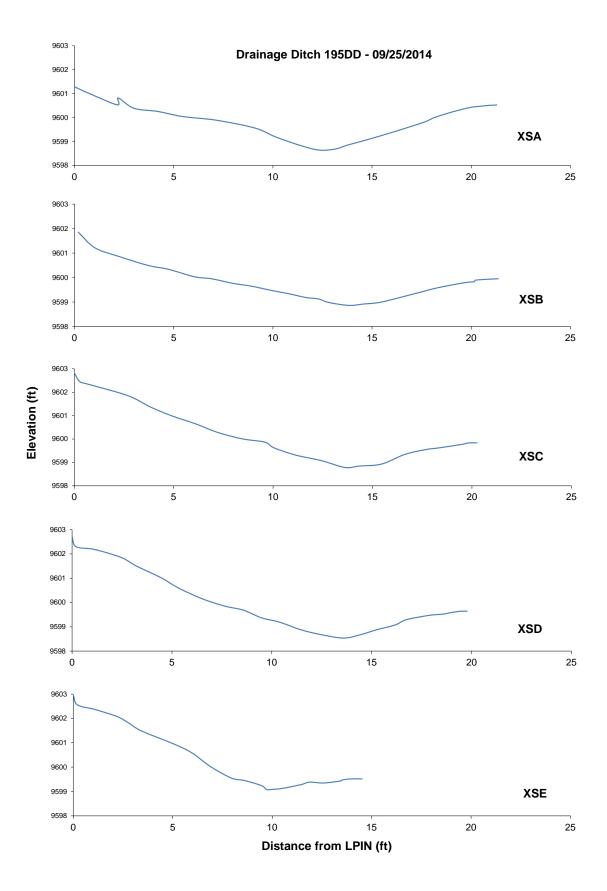




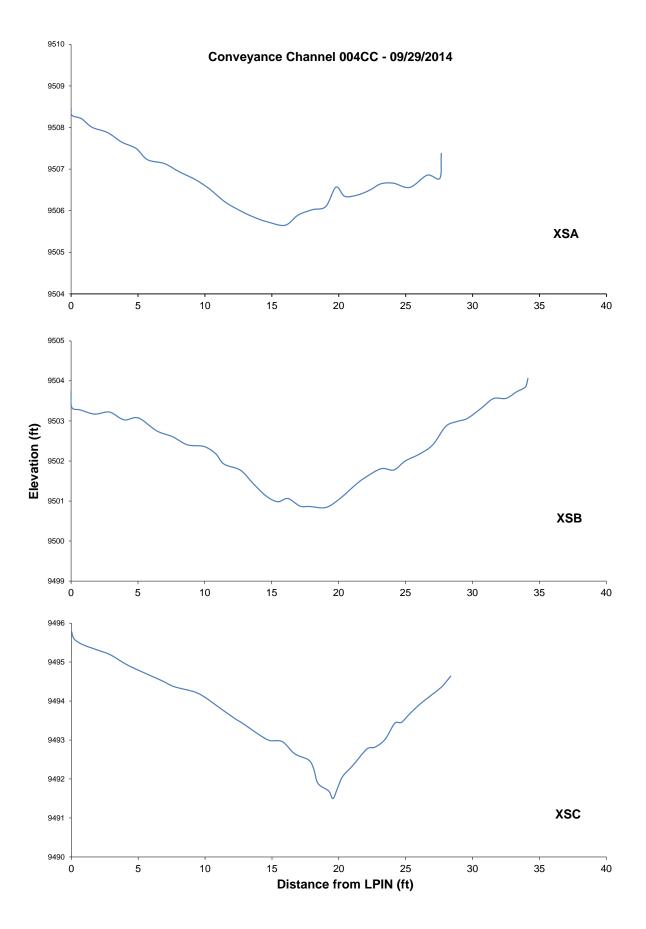


Appendix H

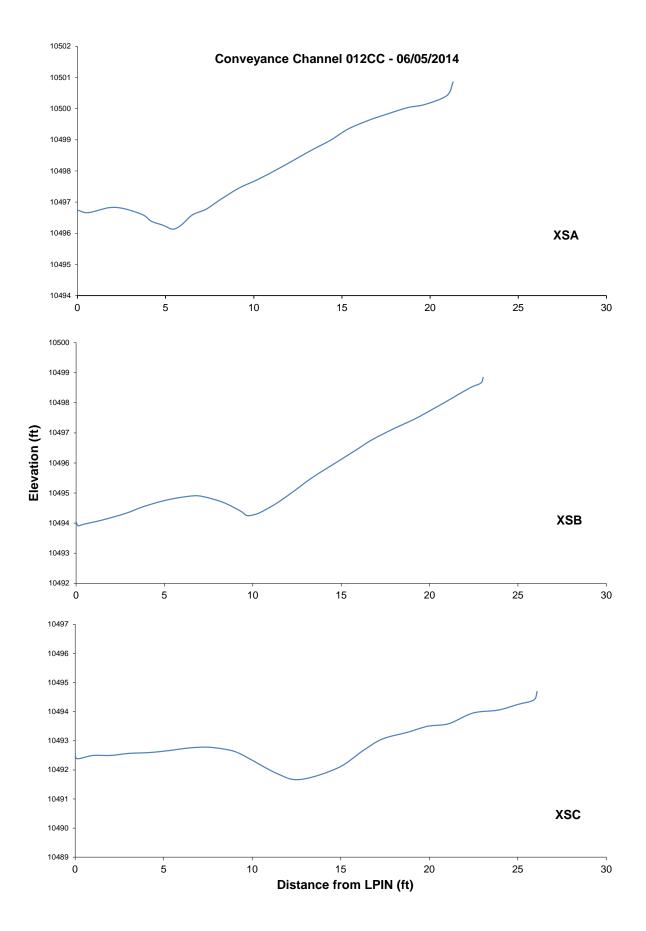
Drainage Ditch Cross Section Graphs

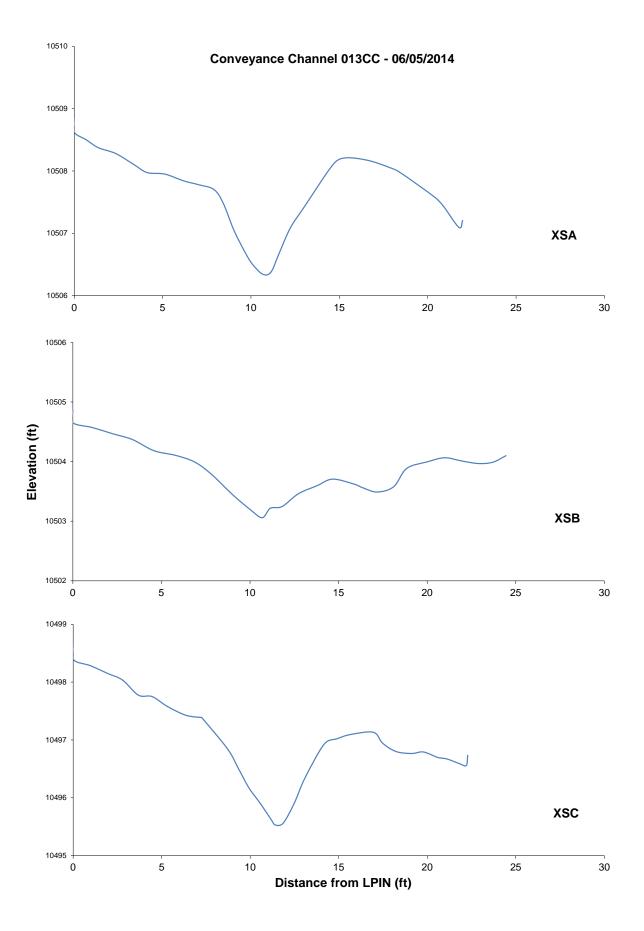


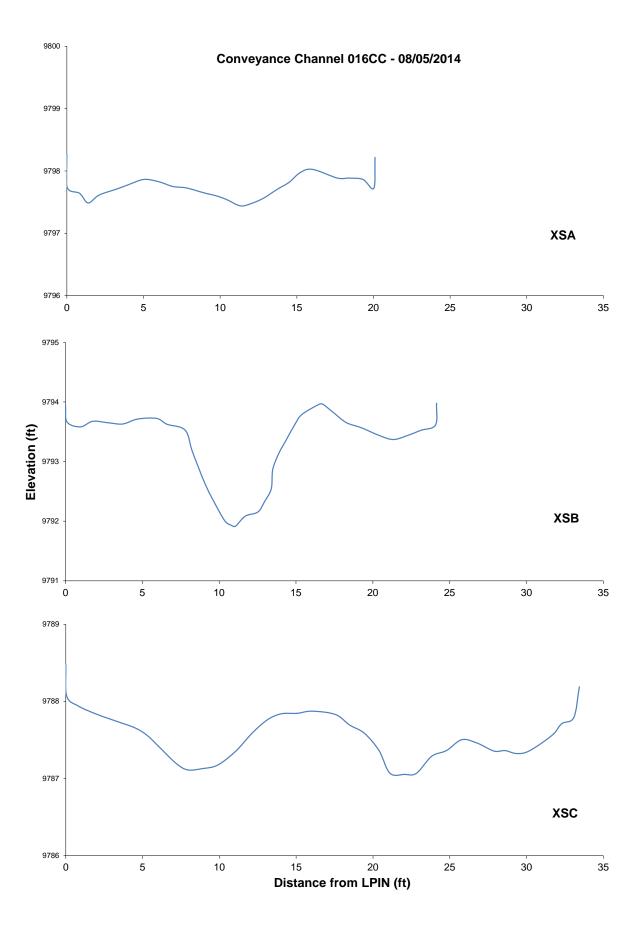


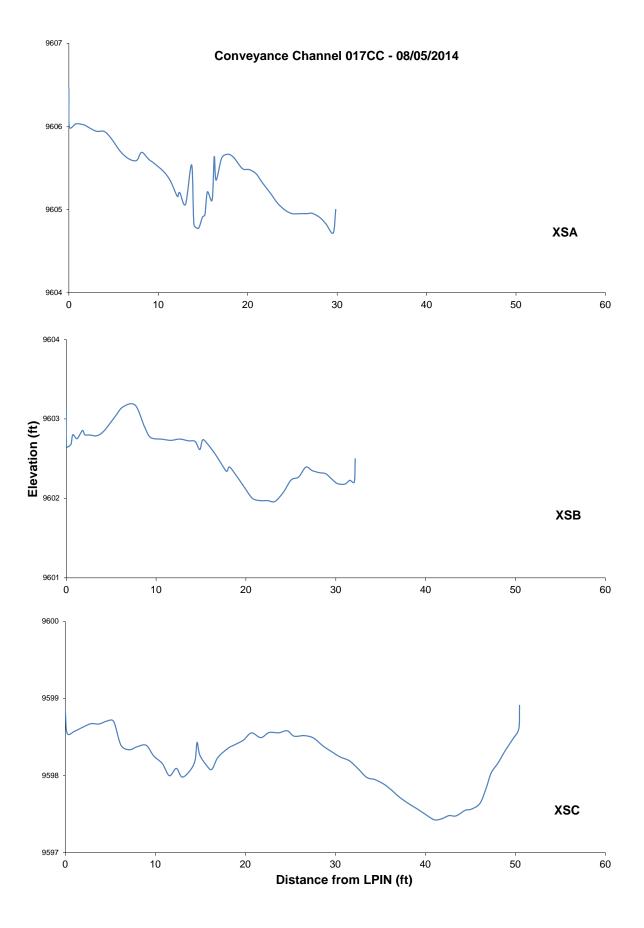


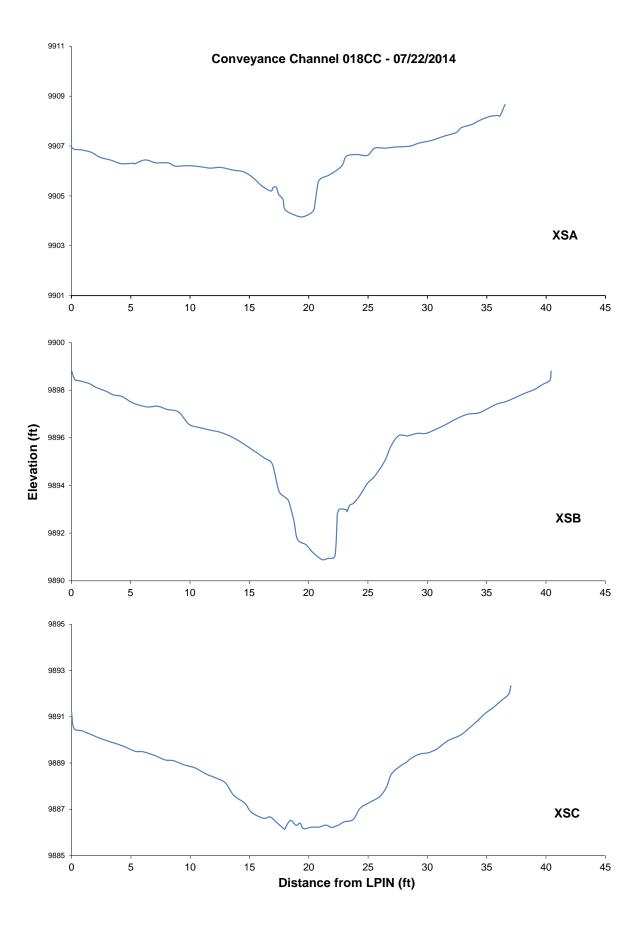


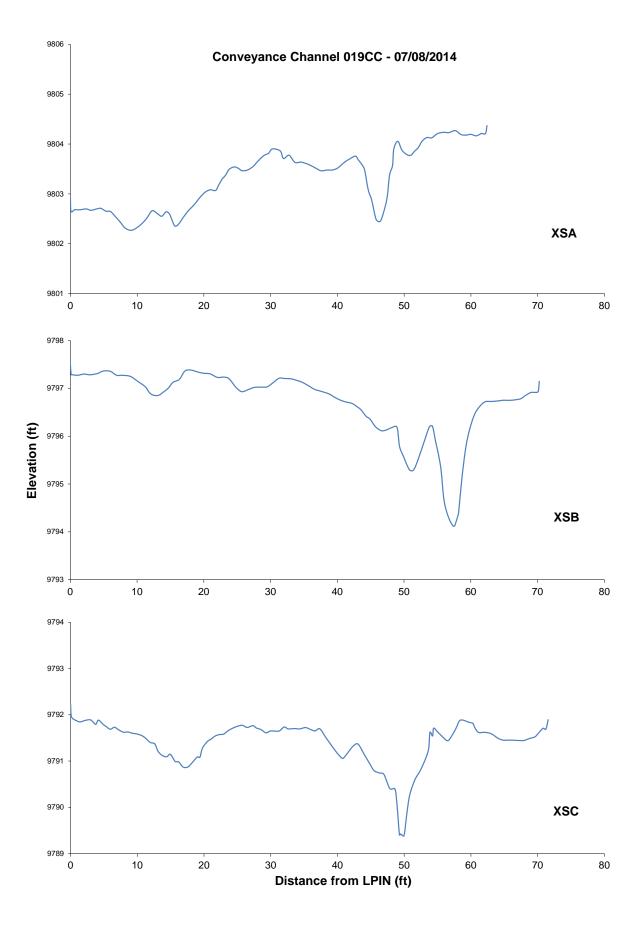


Appendix I

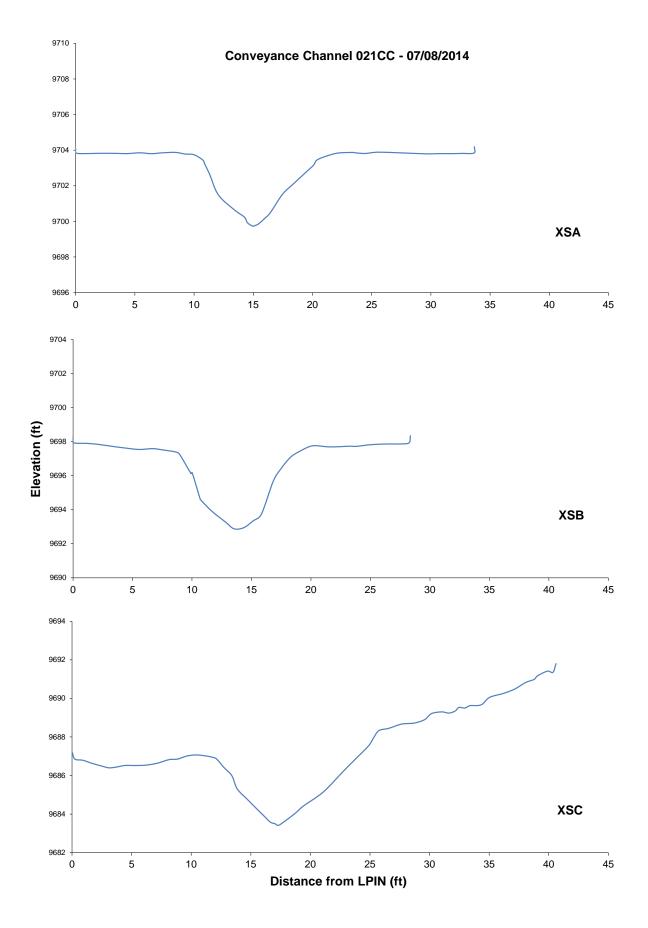

Conveyance Channel

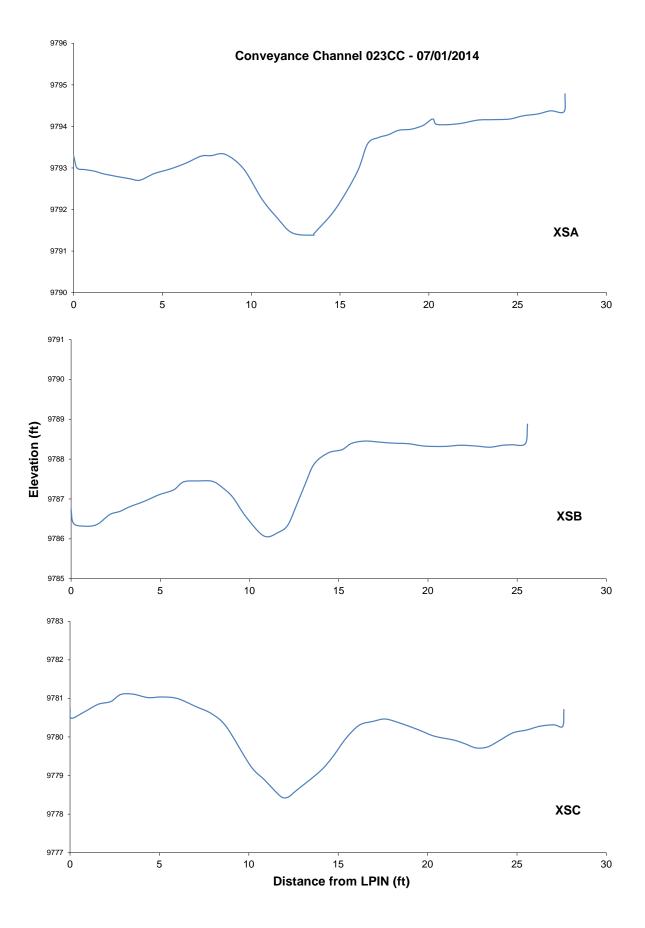

**Cross Section Graphs** 

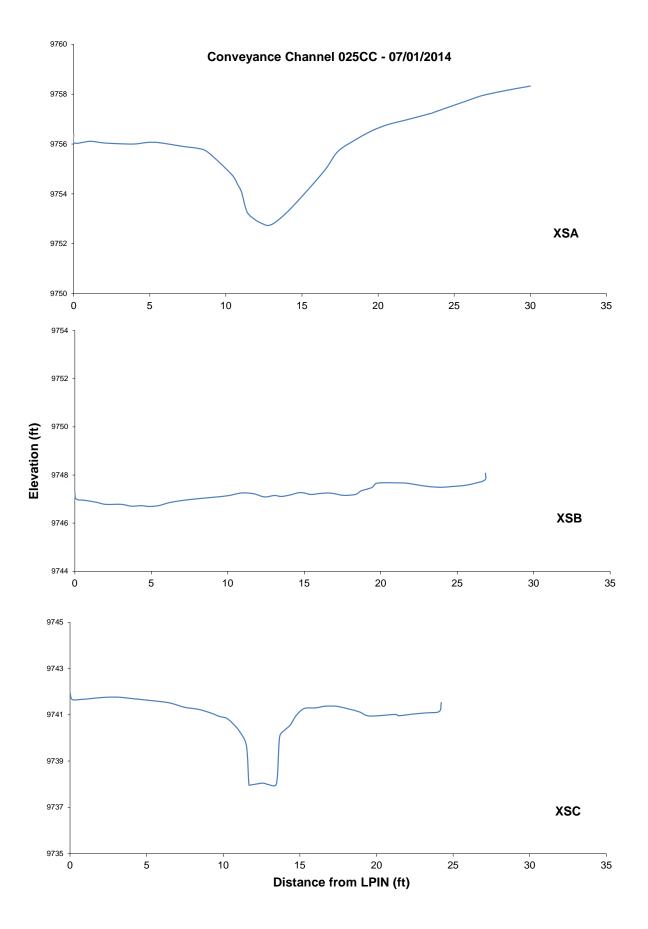

2014

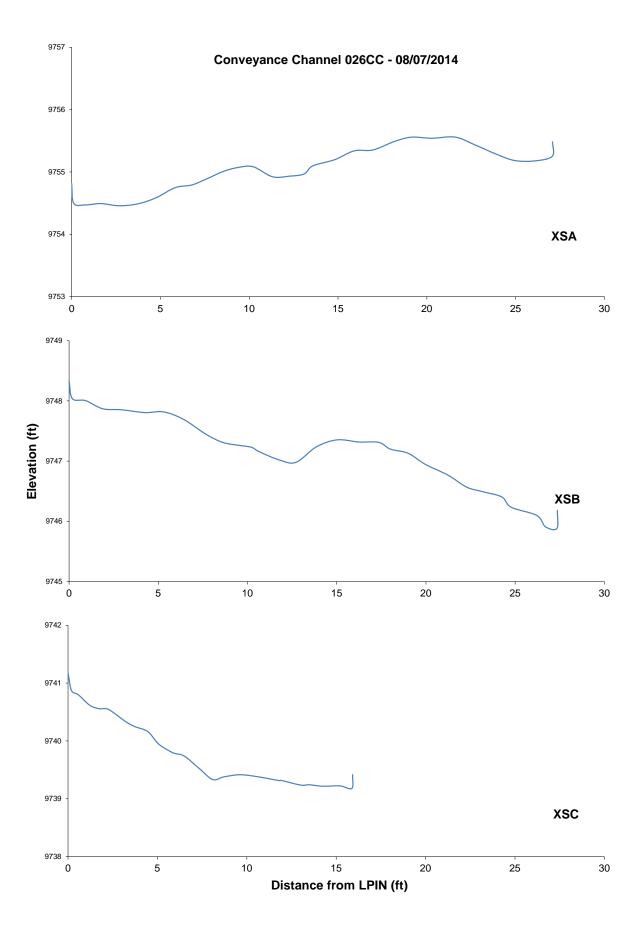


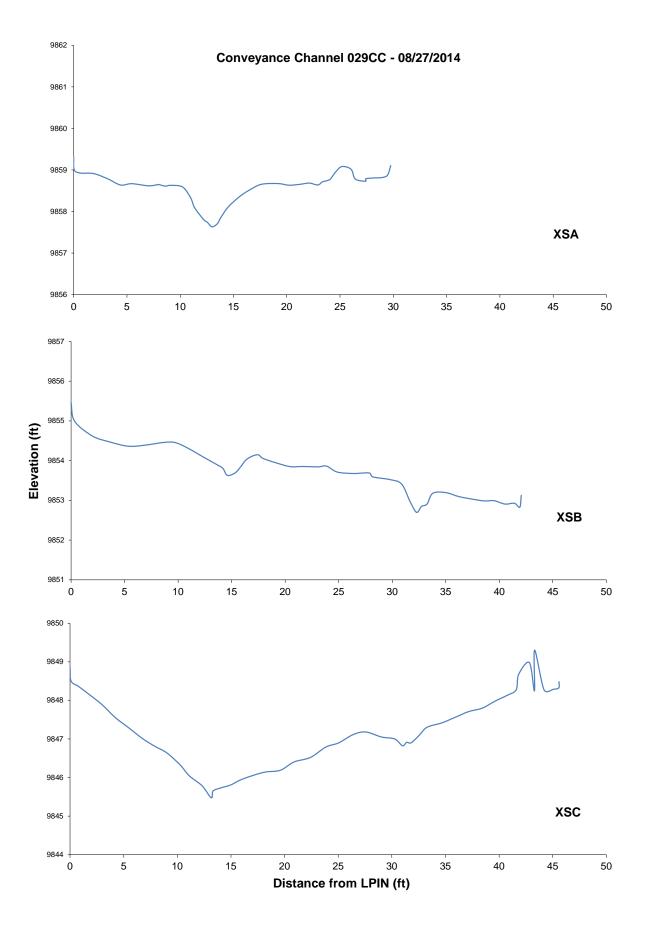



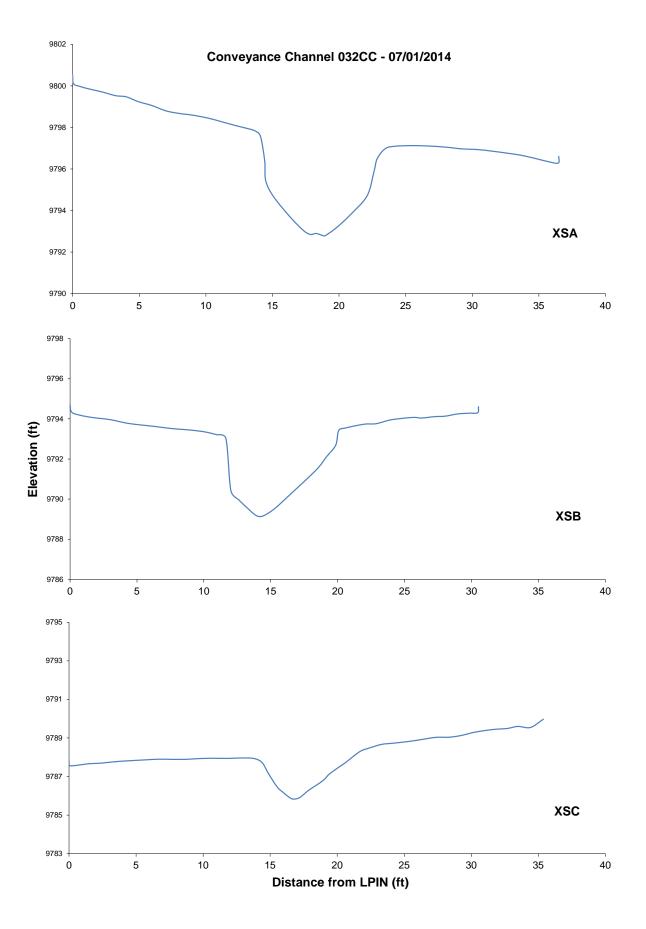



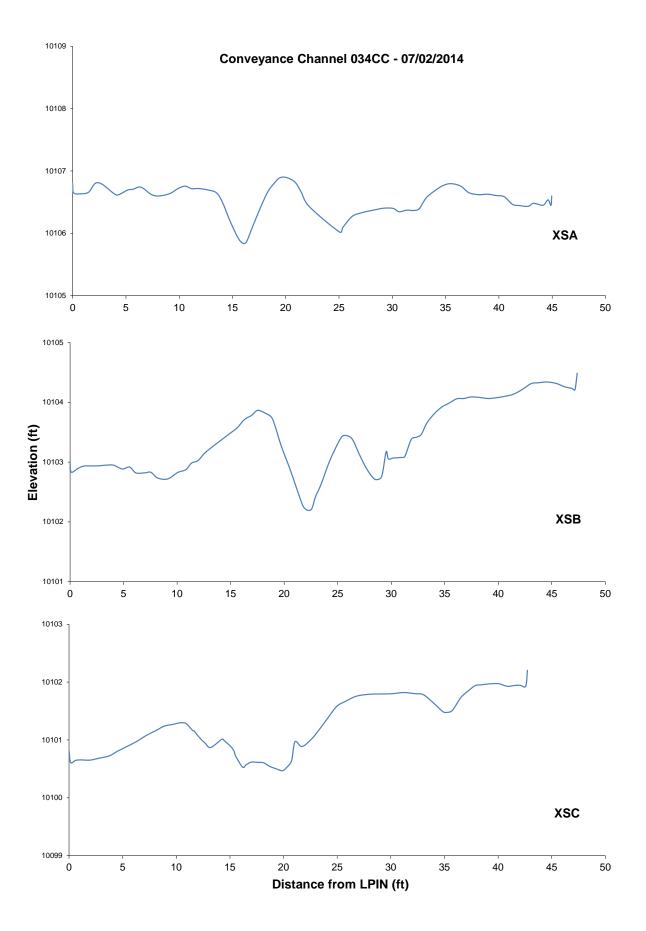



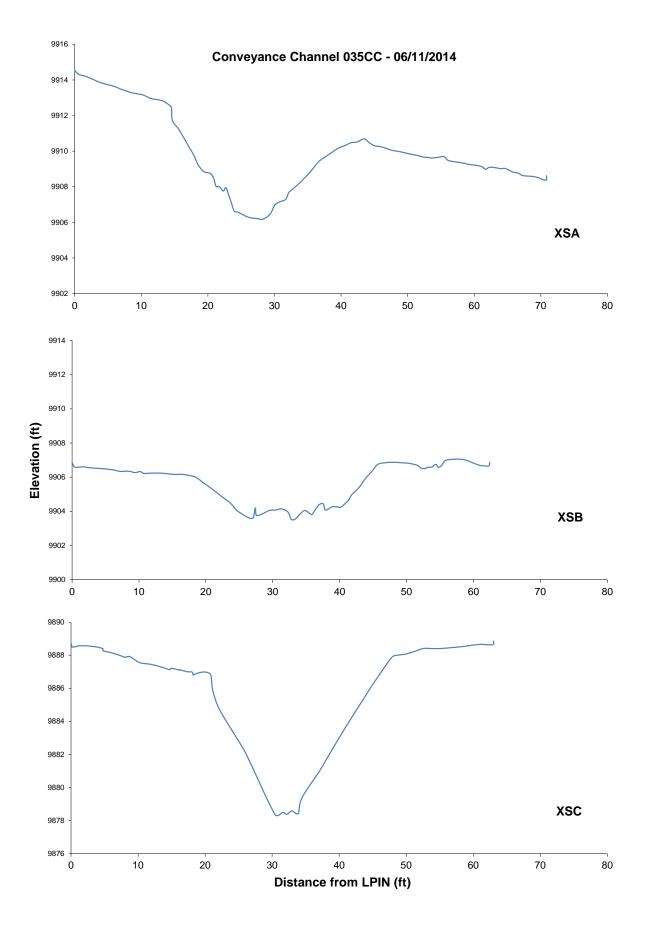



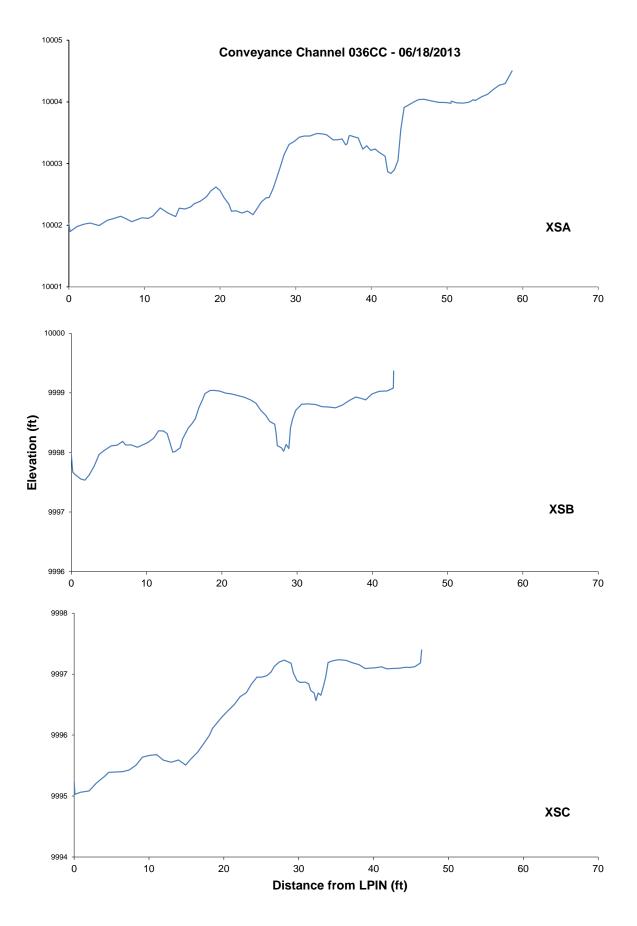



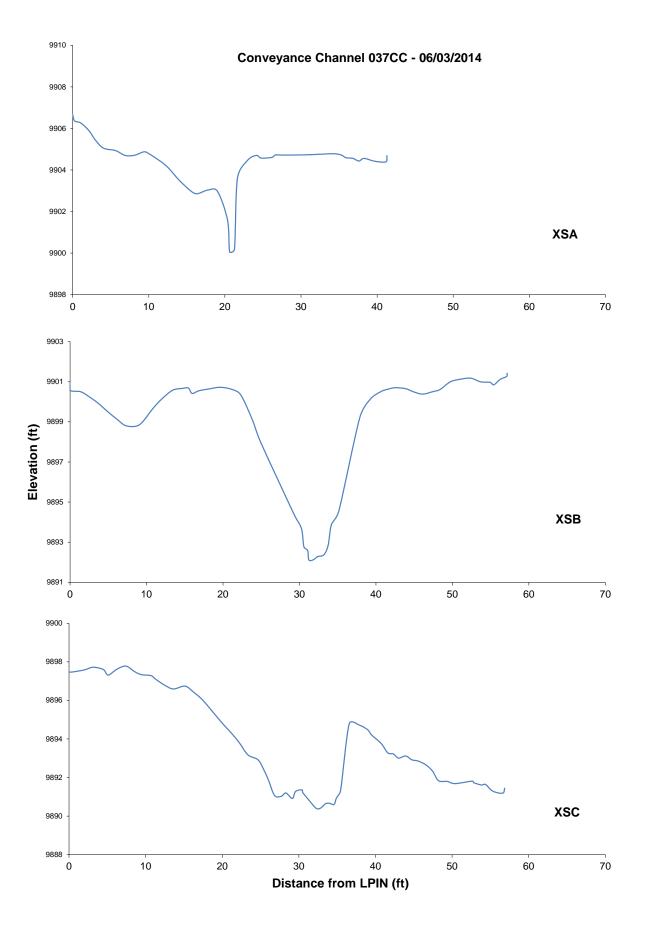



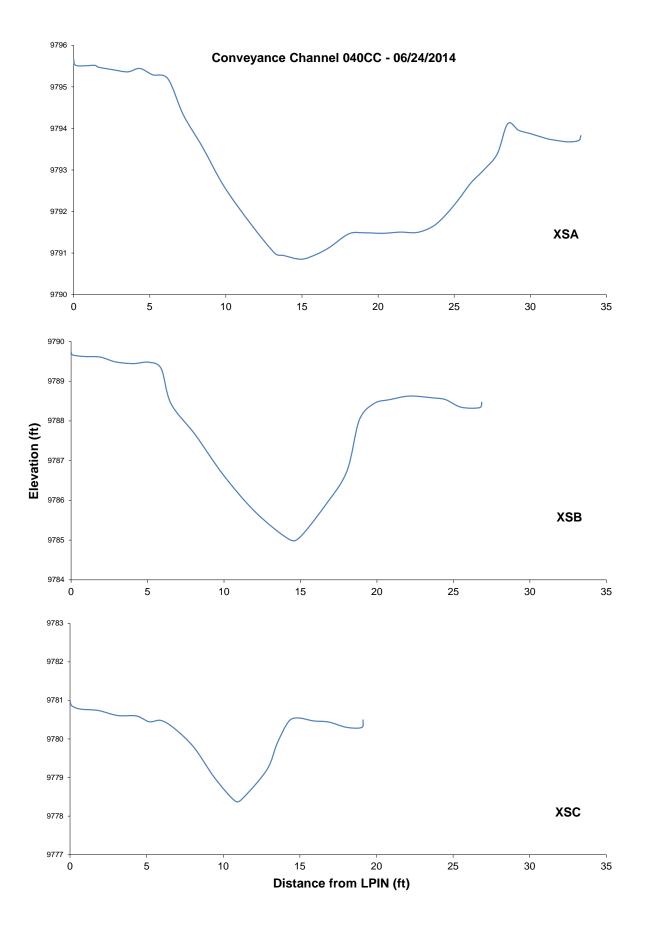



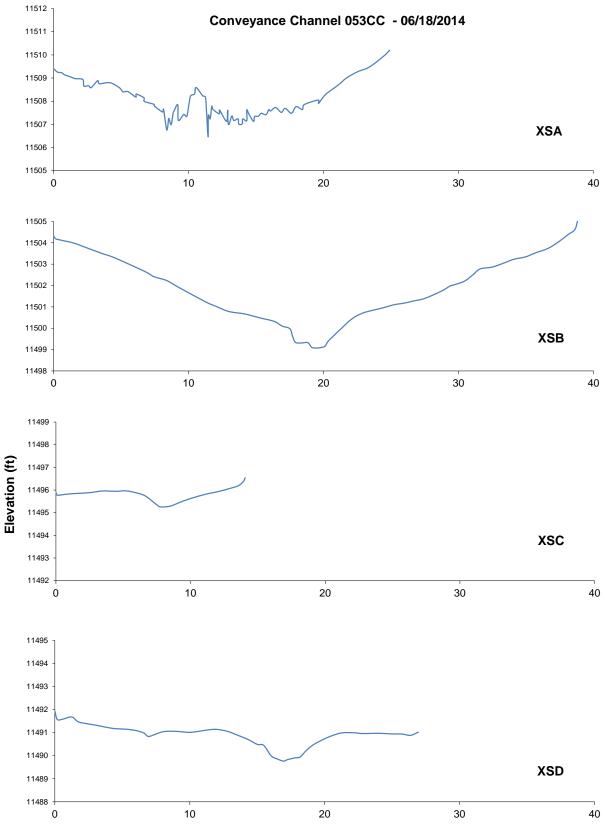



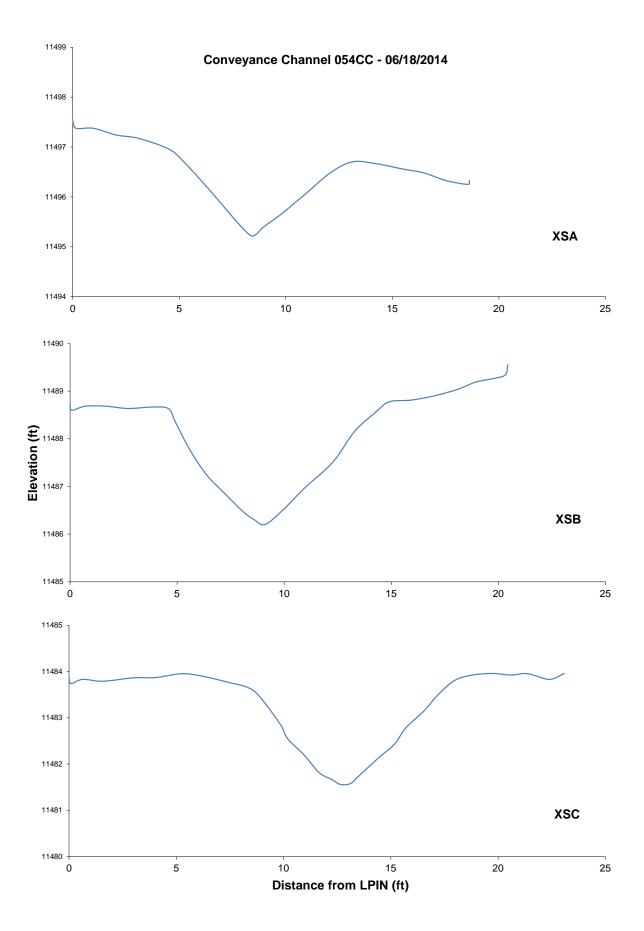



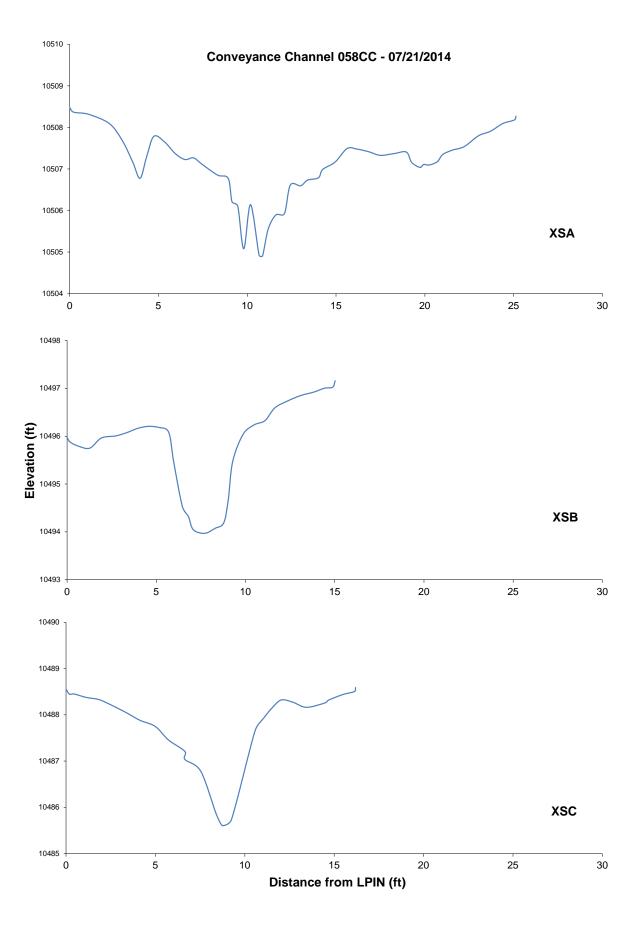



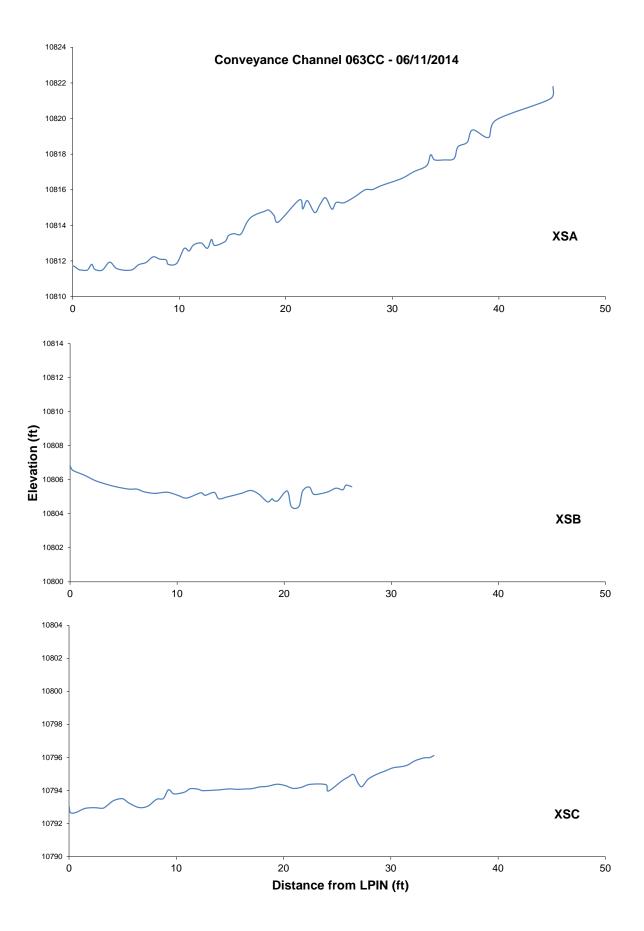





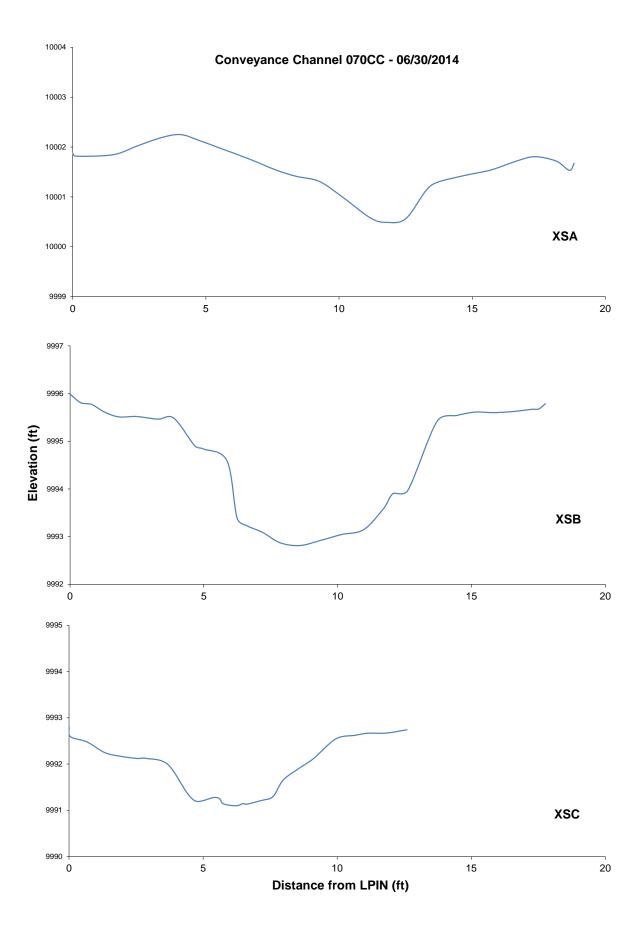



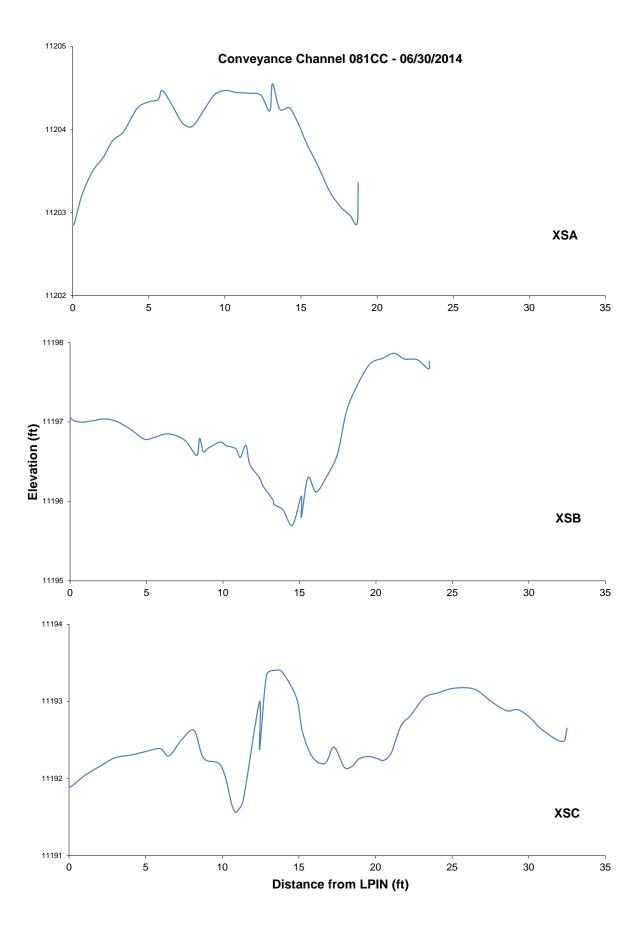



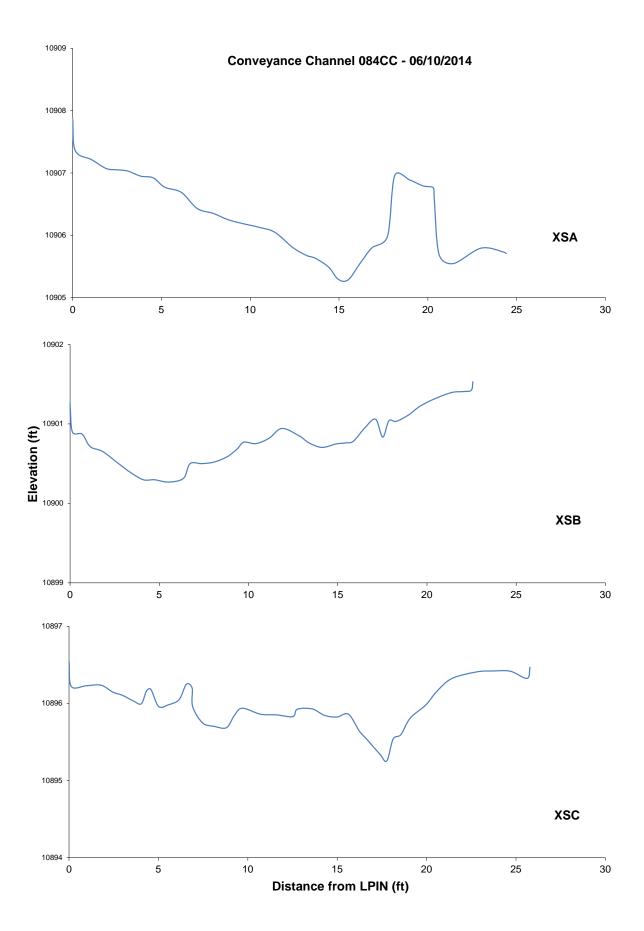


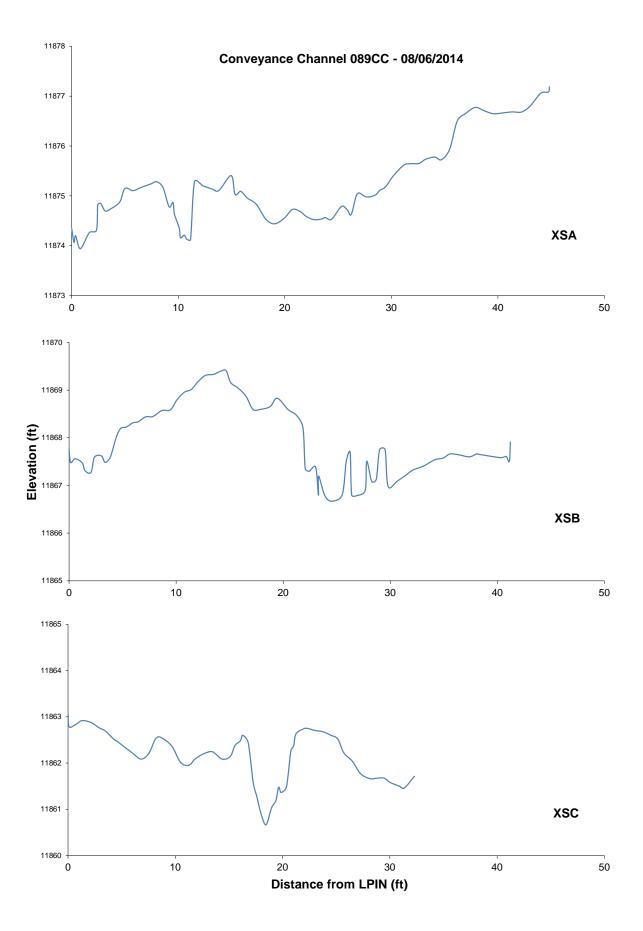


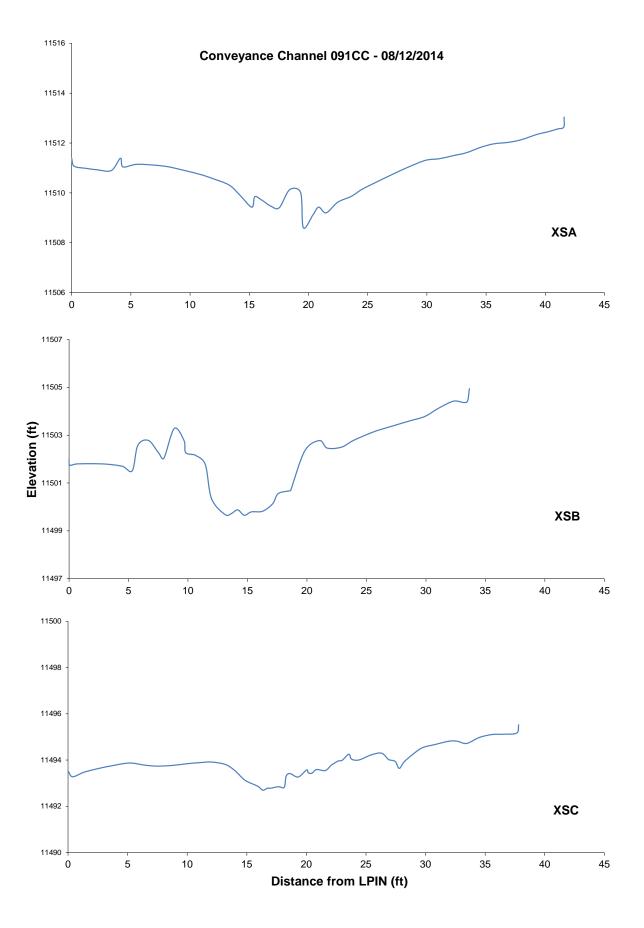


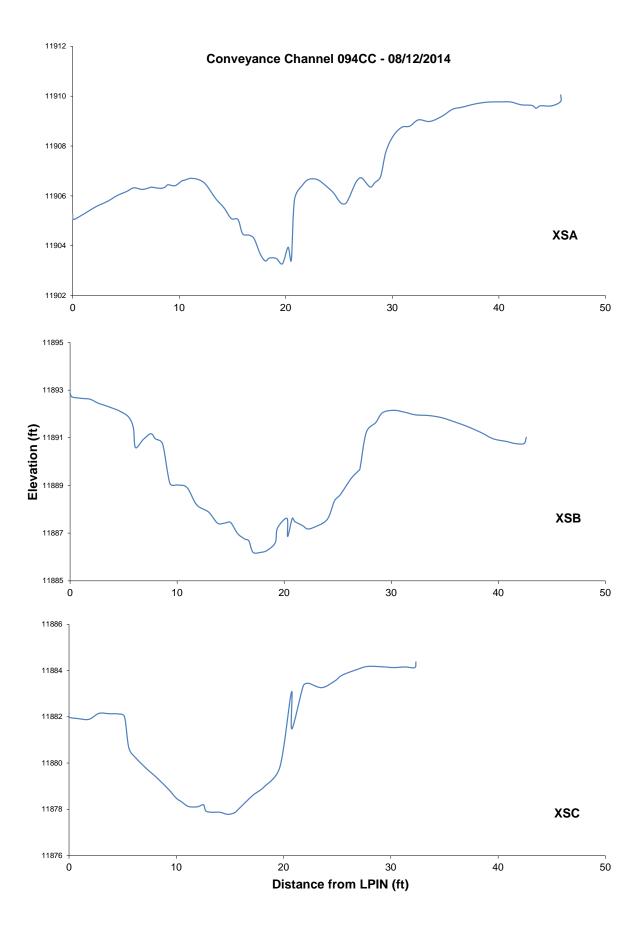


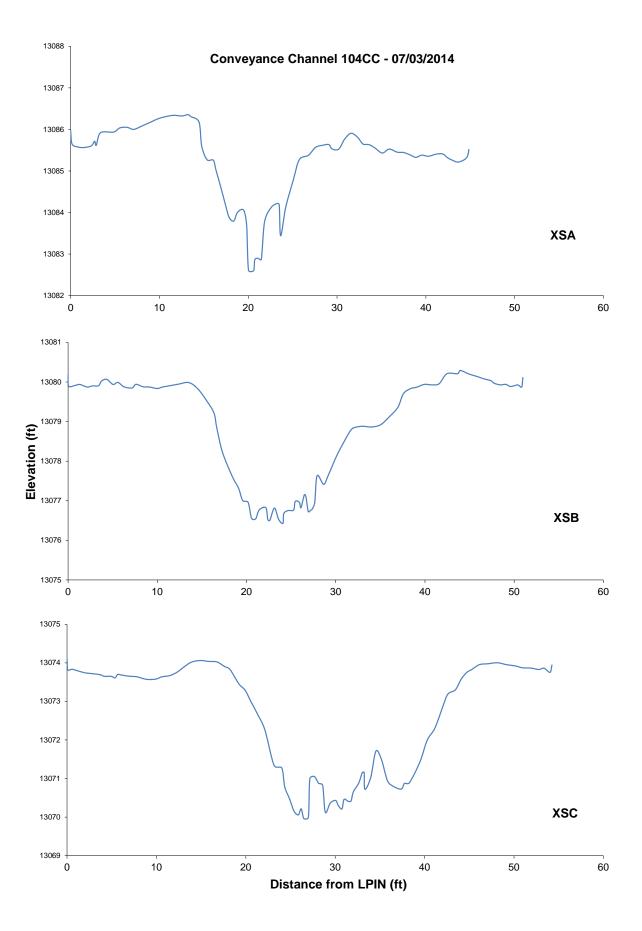



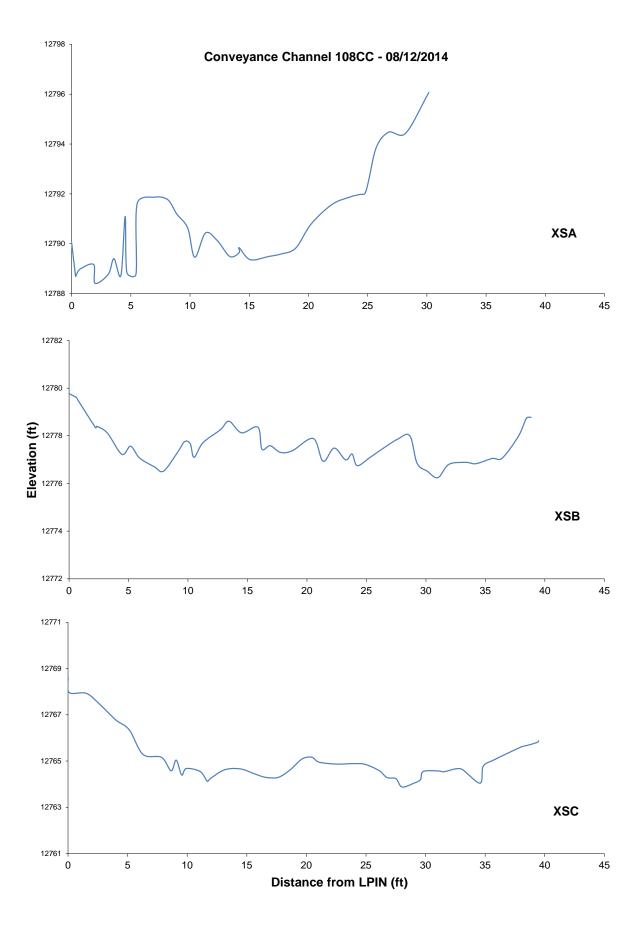



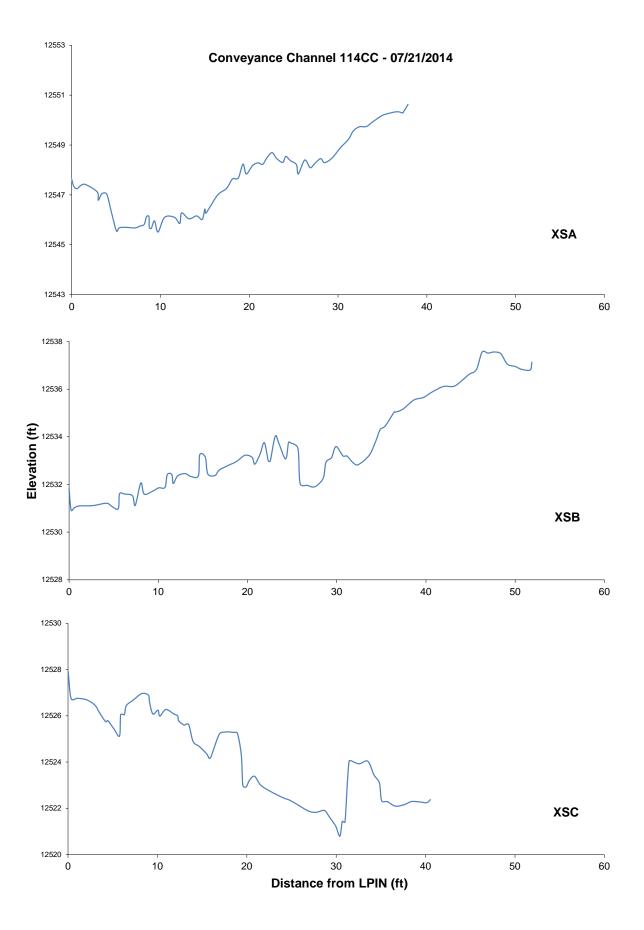



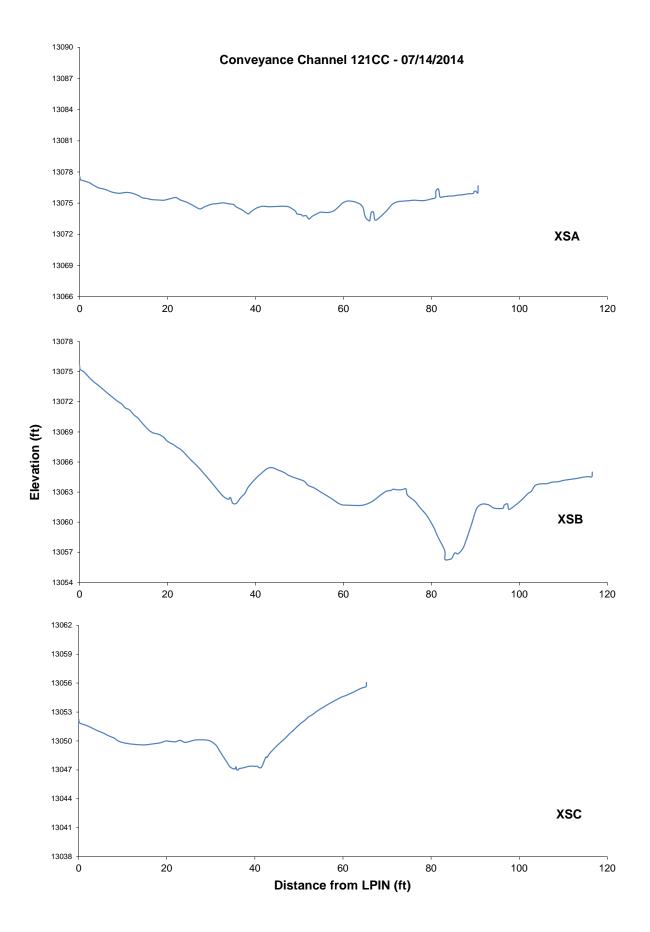



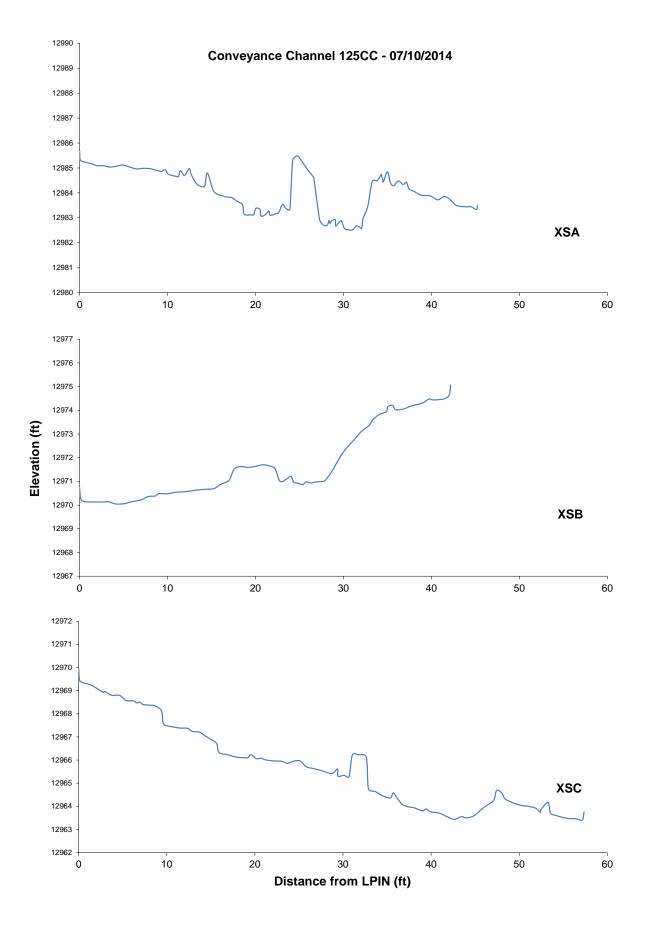



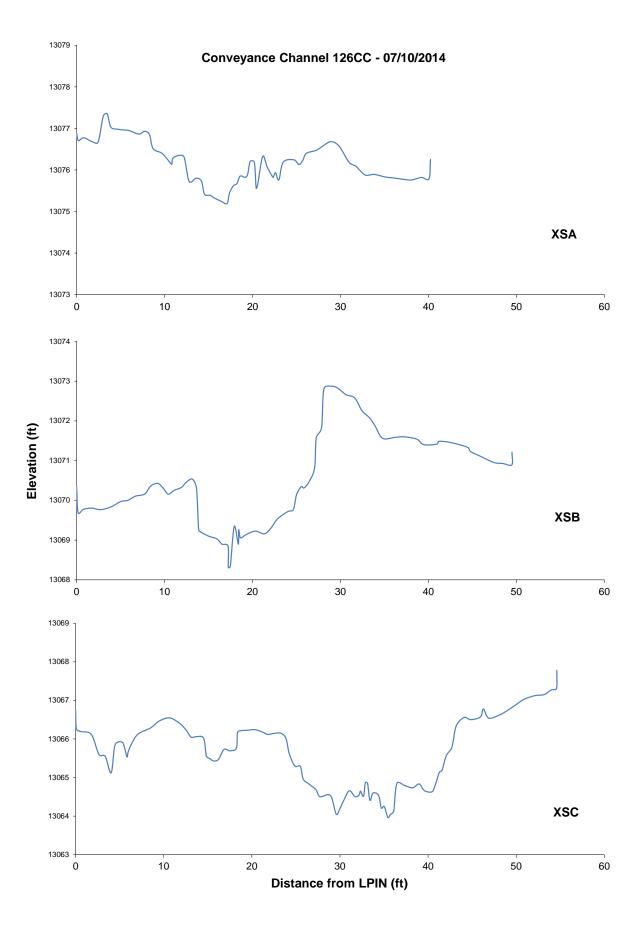



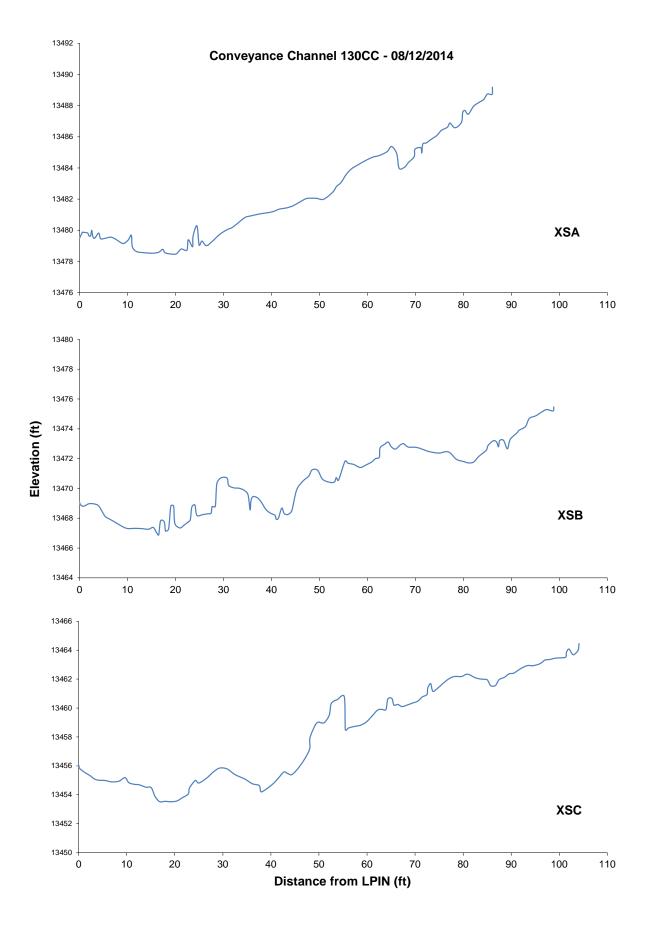


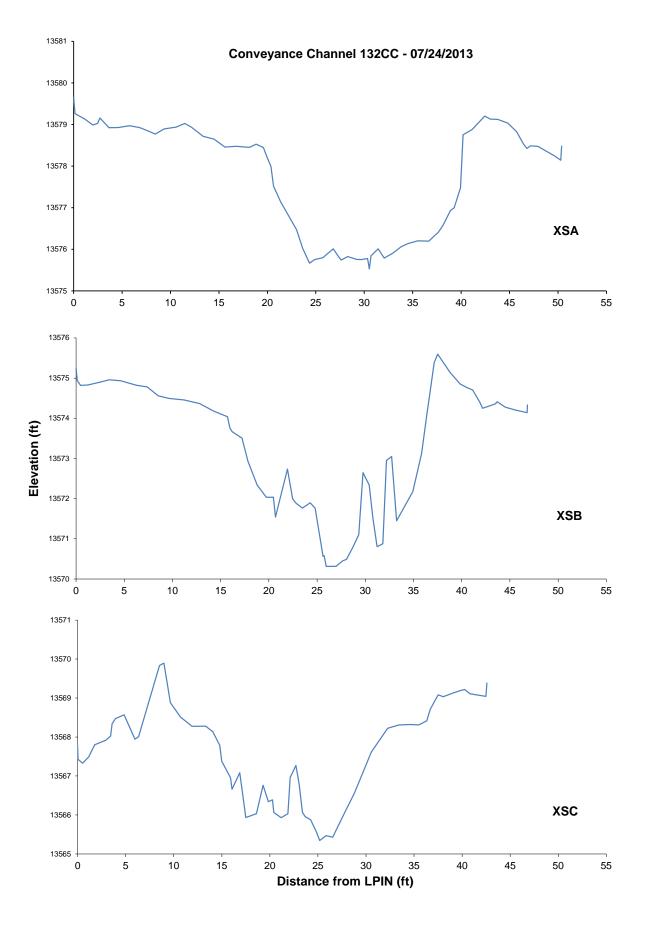



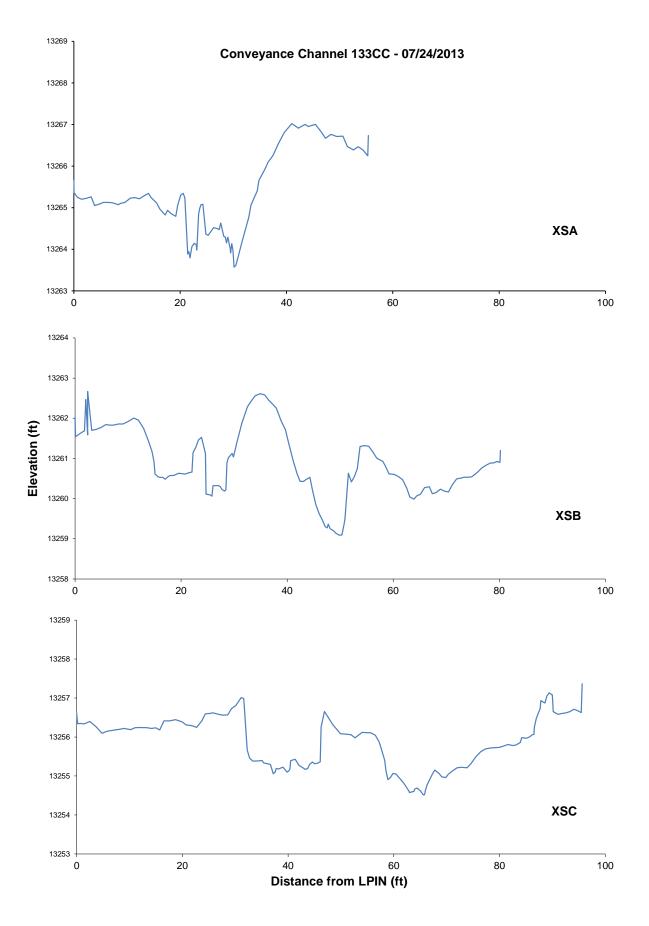


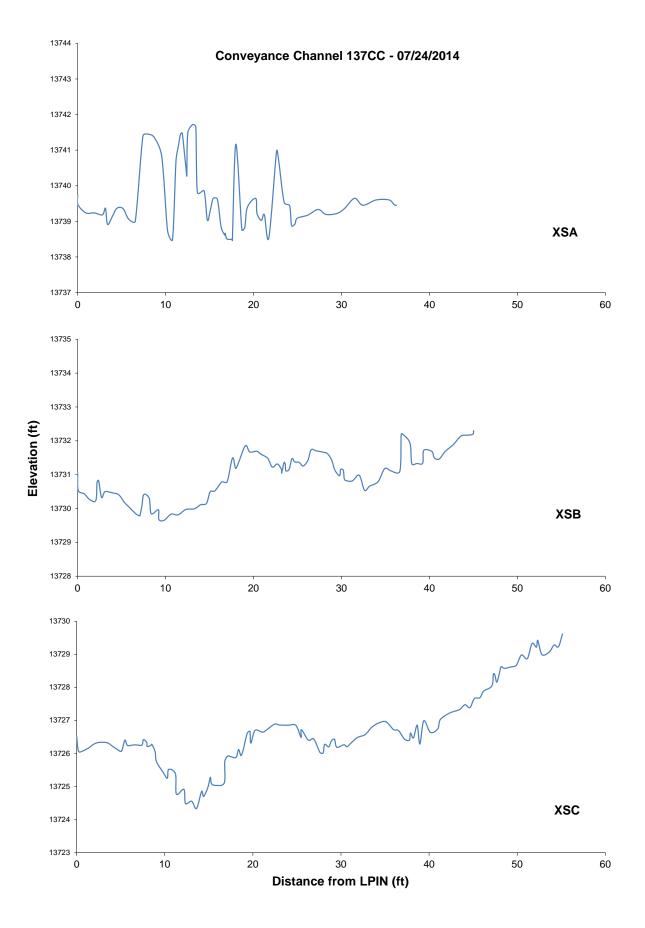



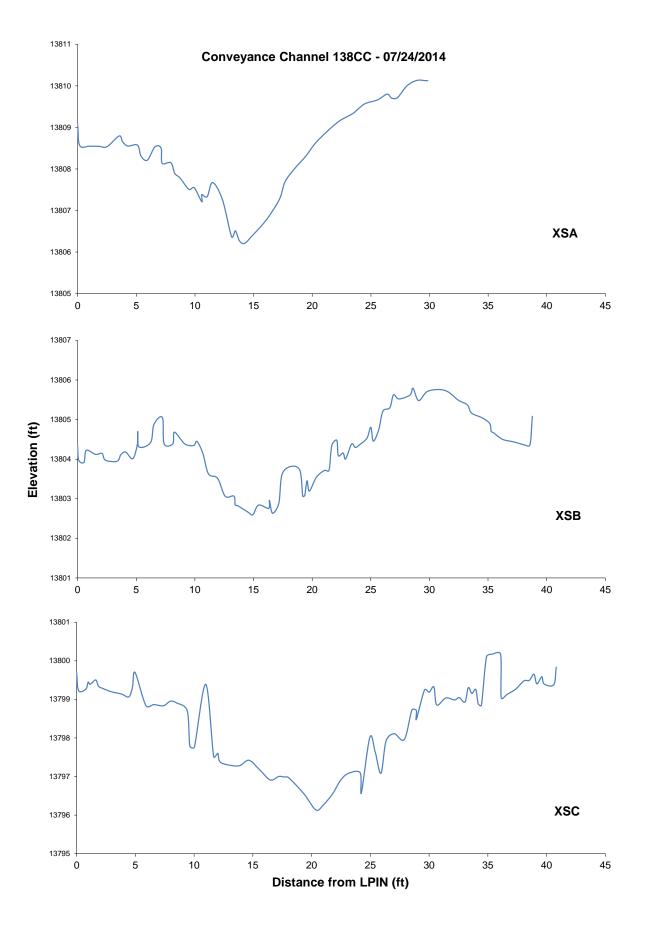



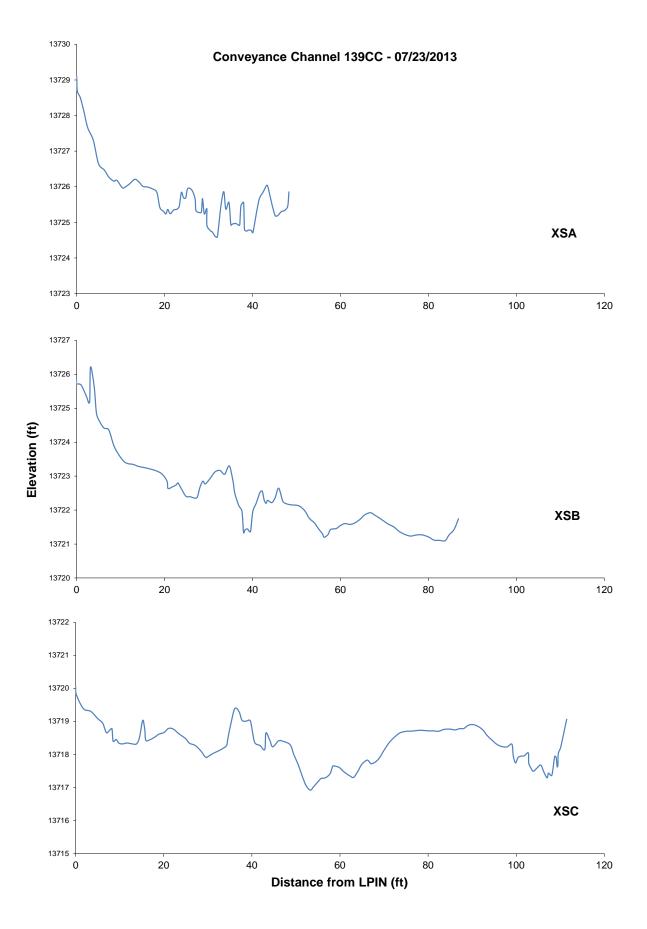



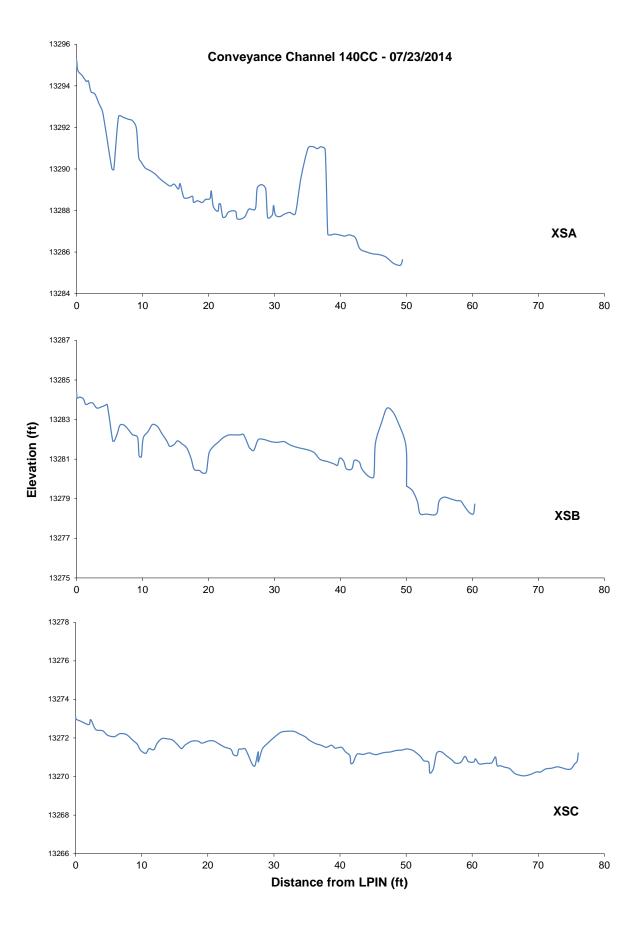



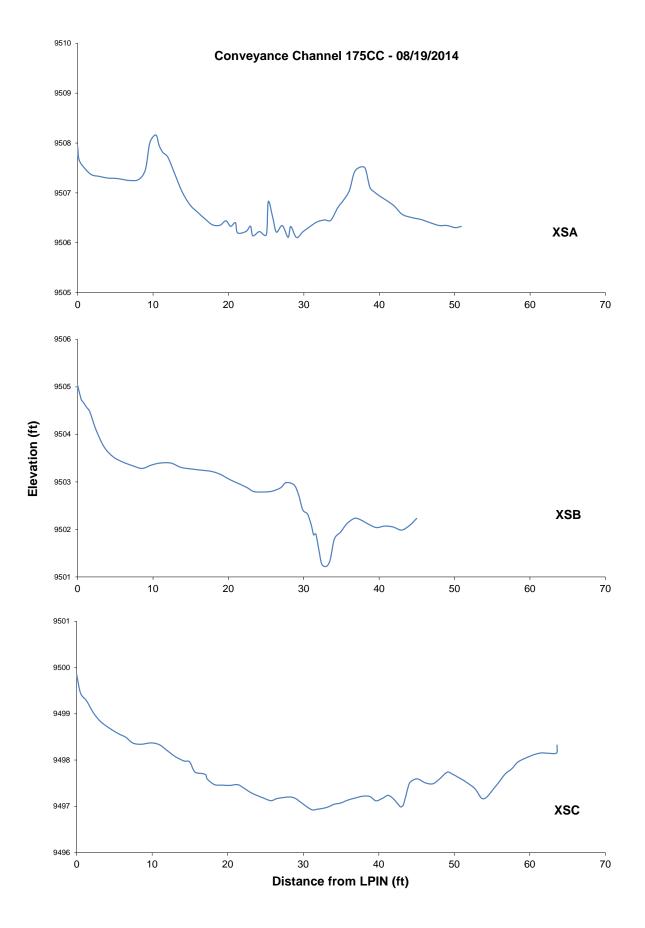



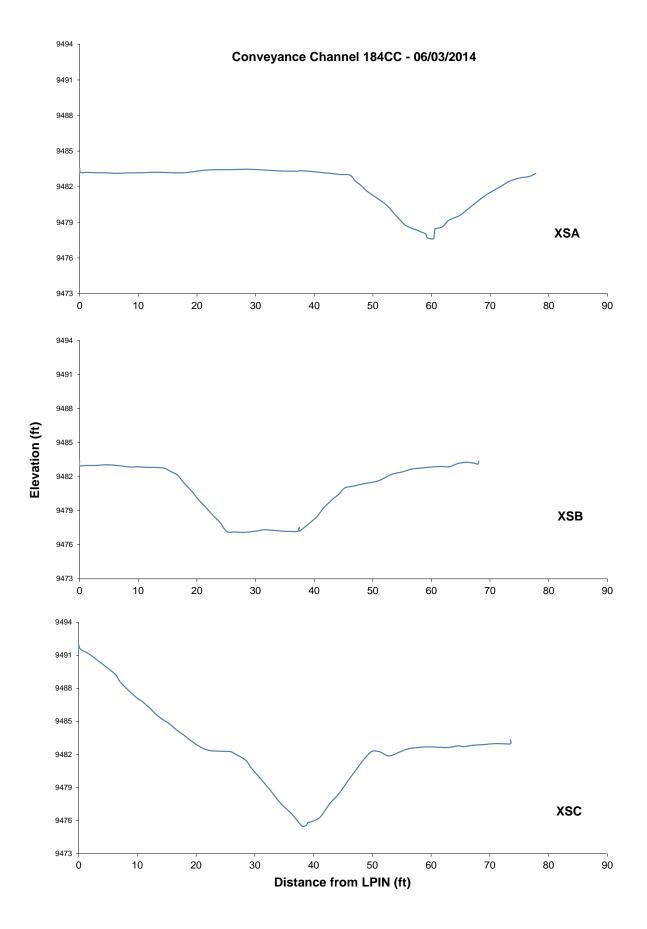



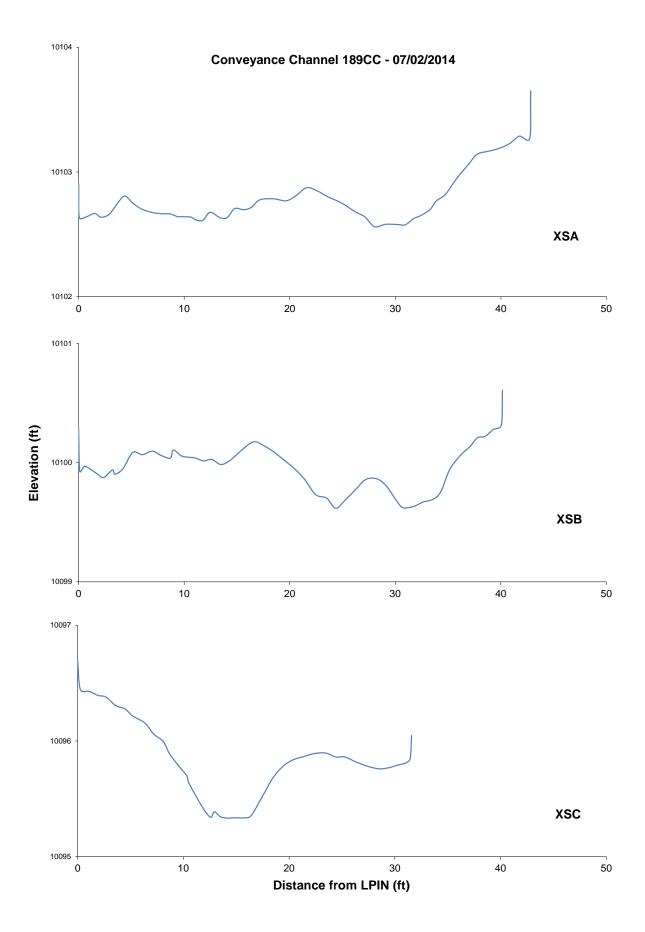



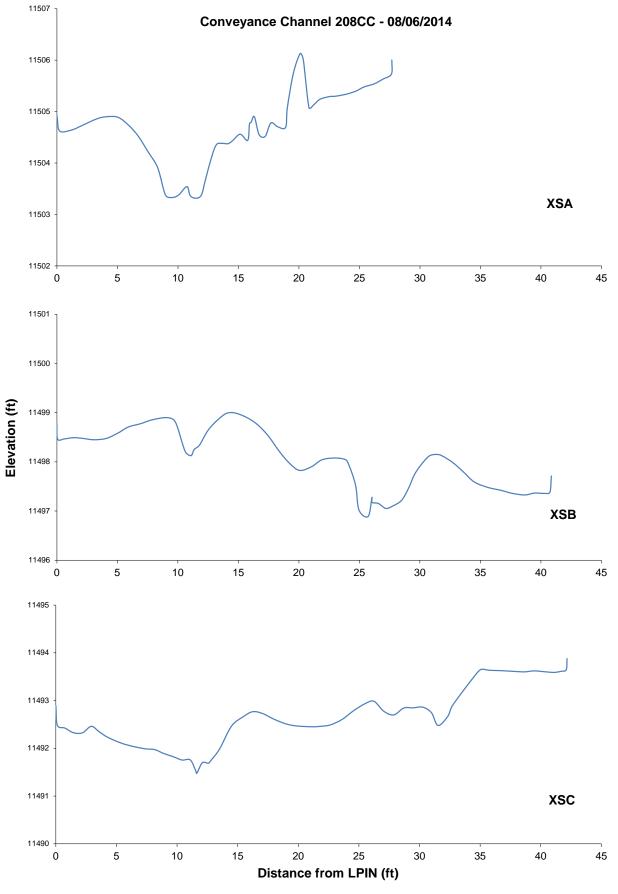



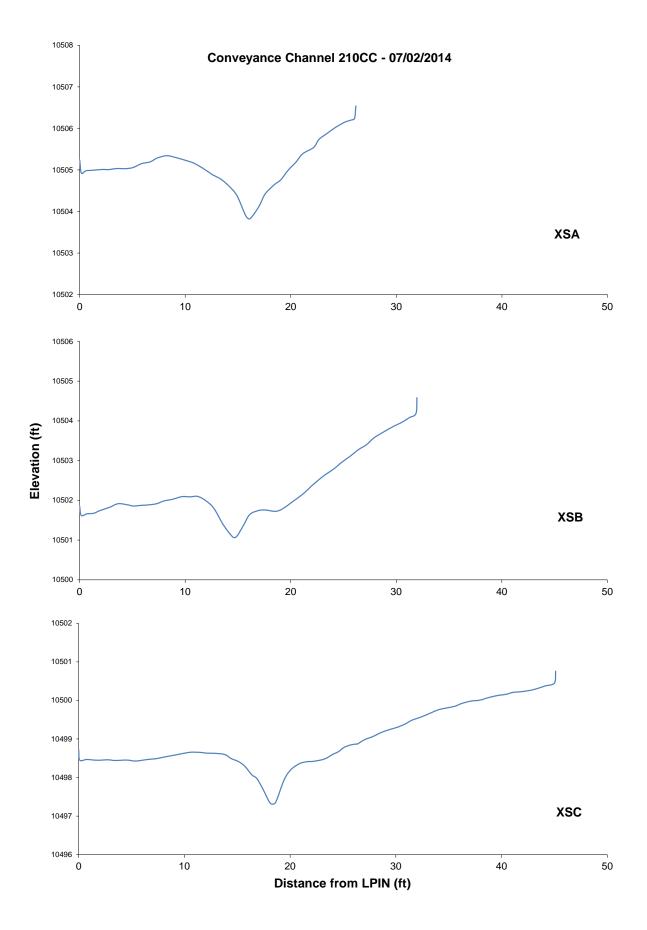



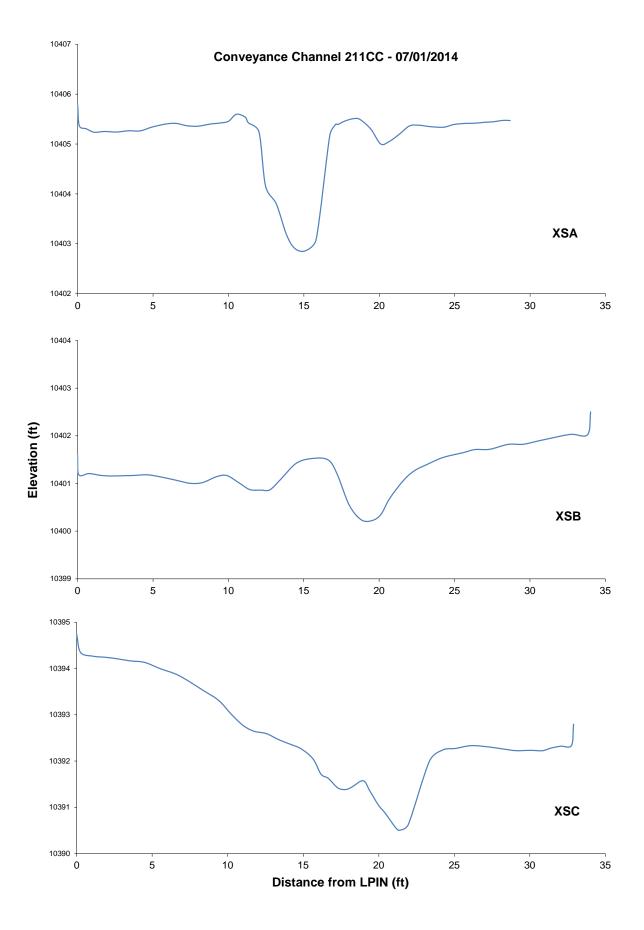



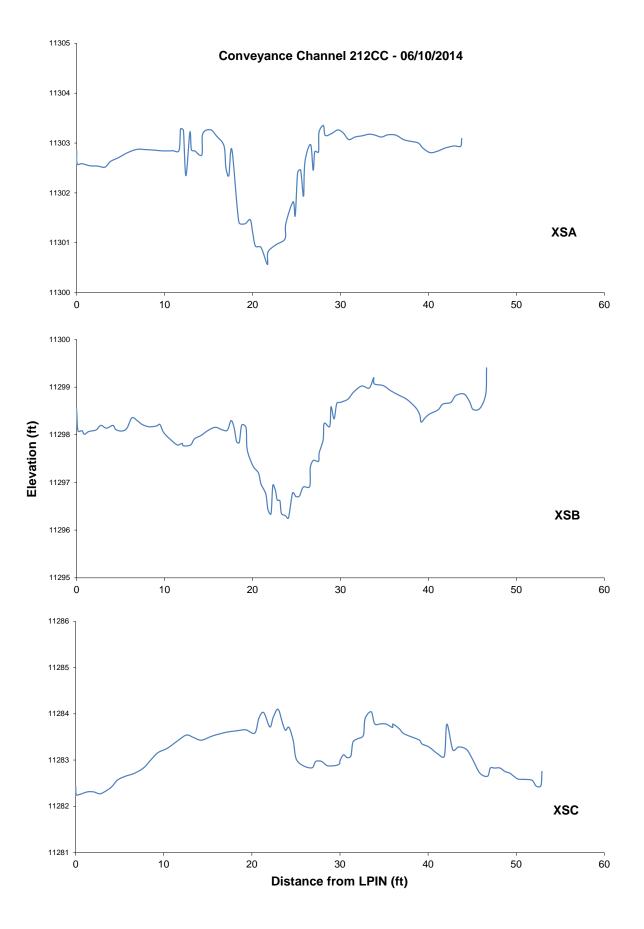



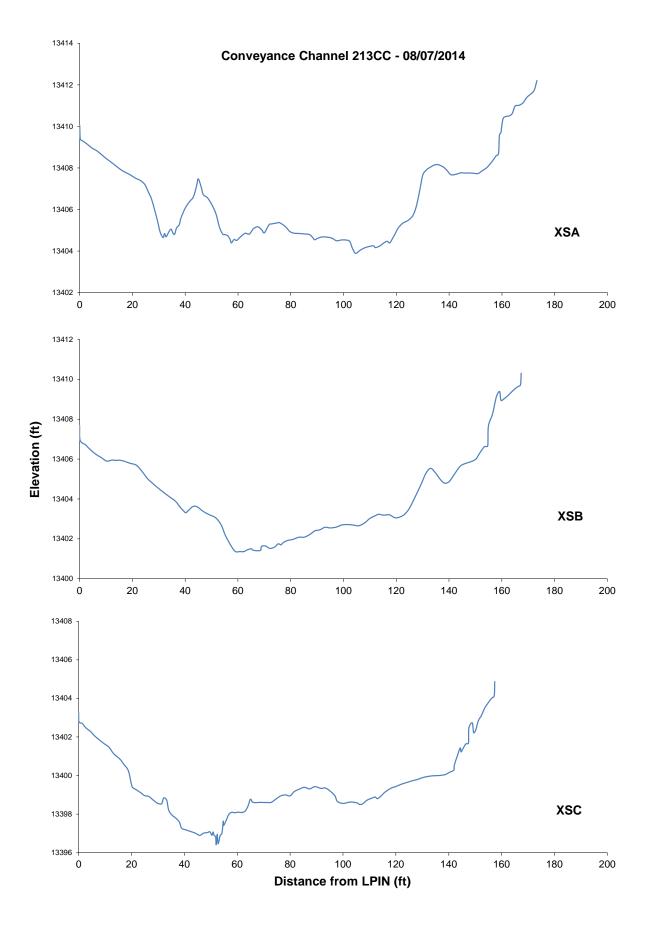



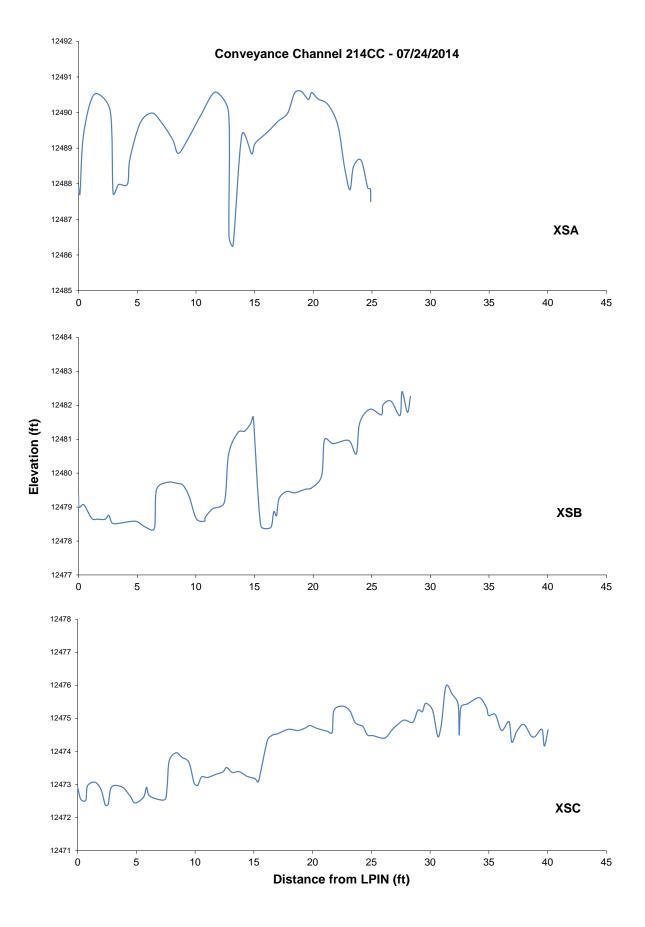


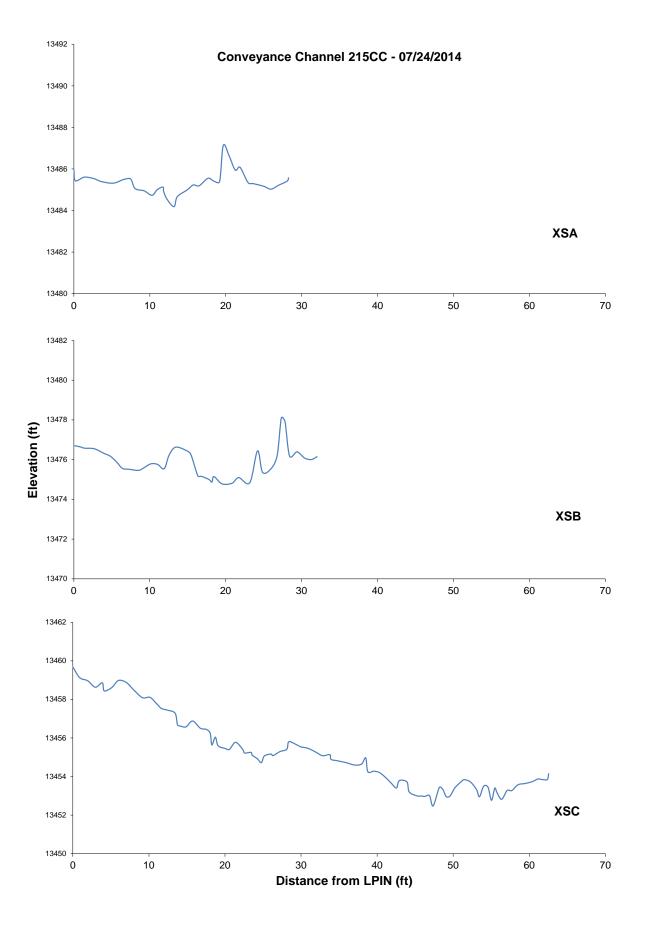



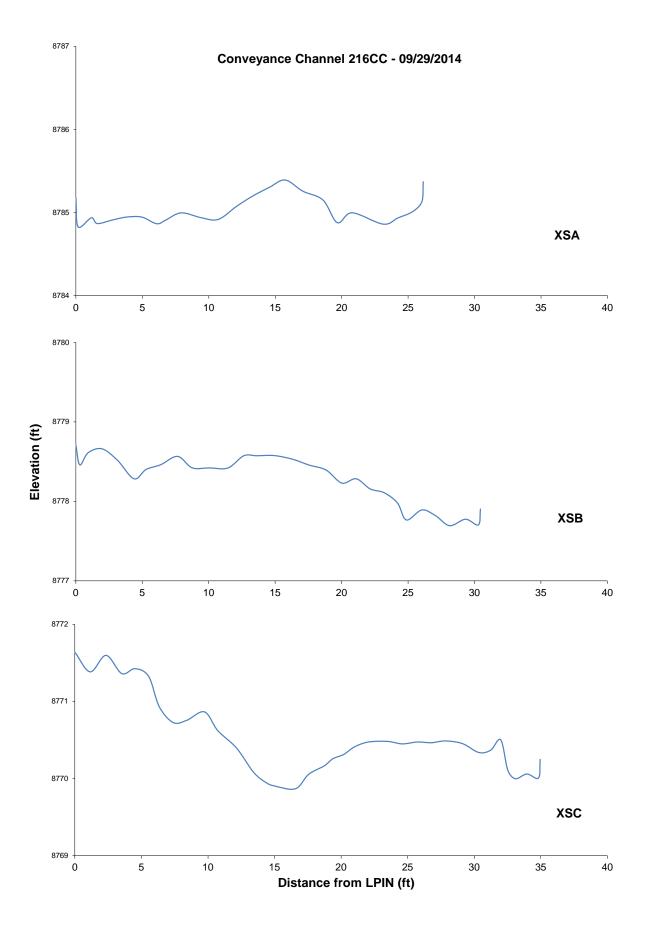



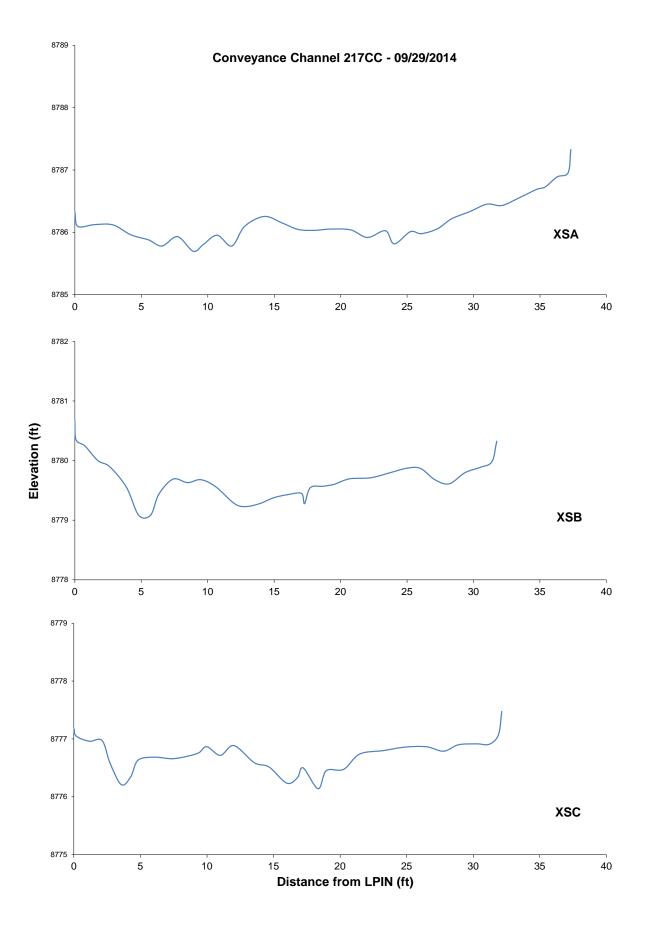



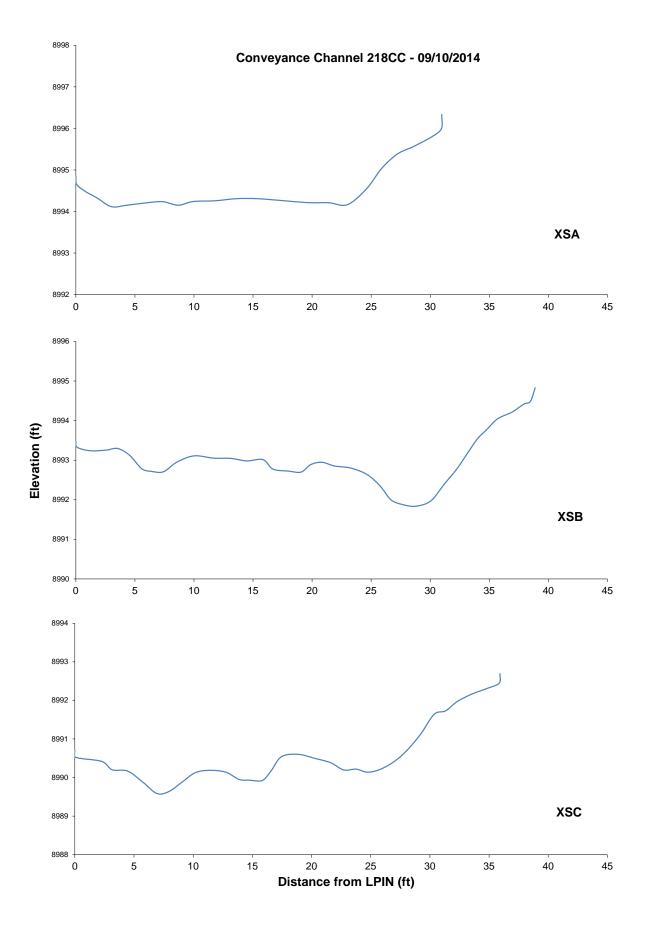



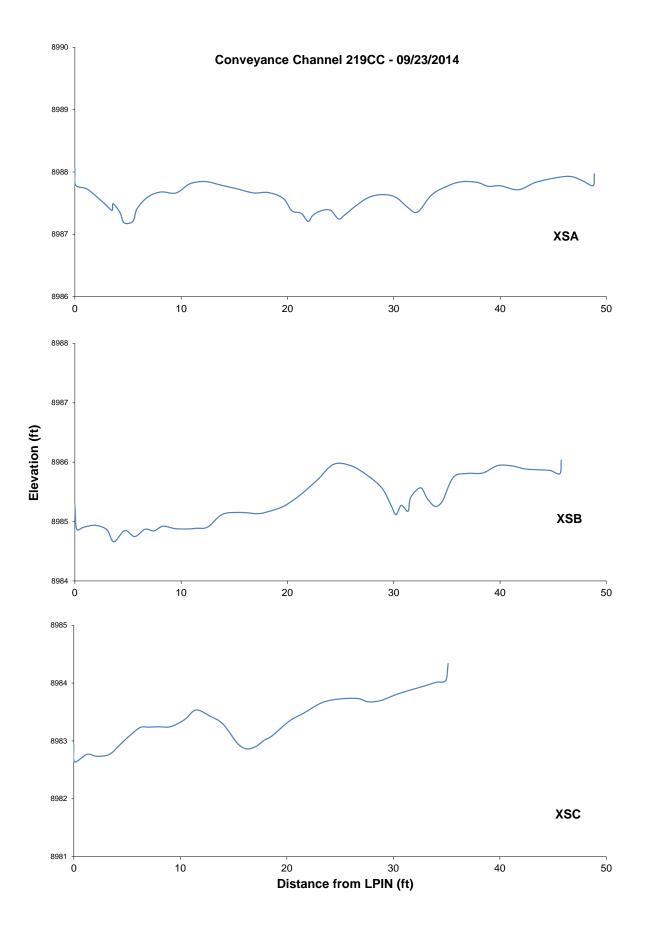



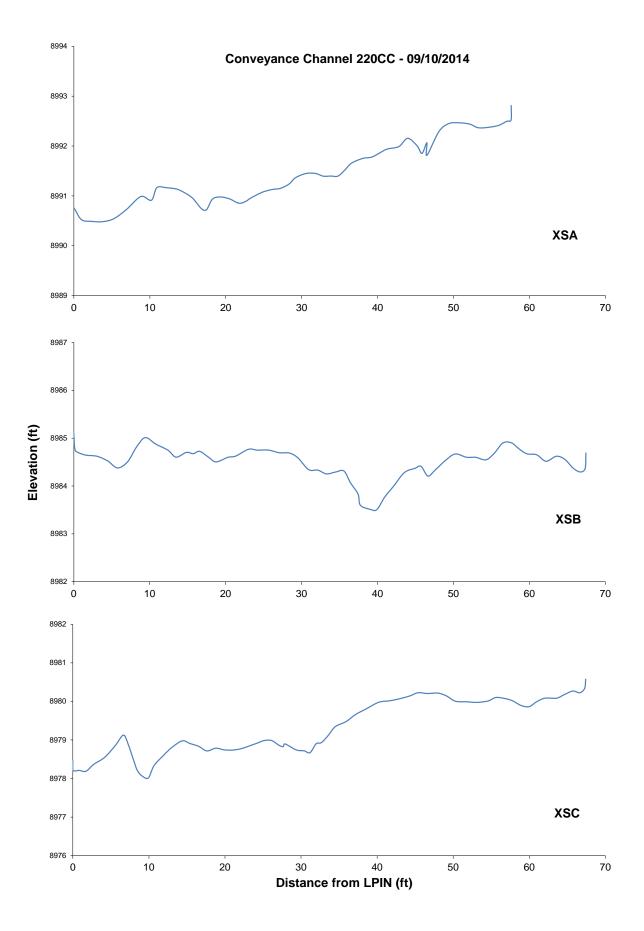



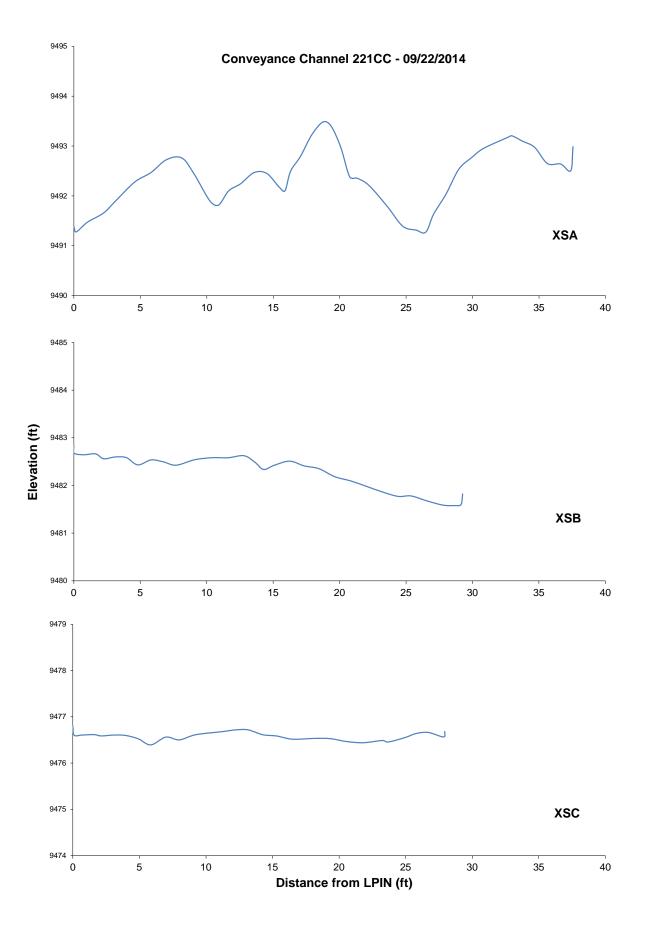



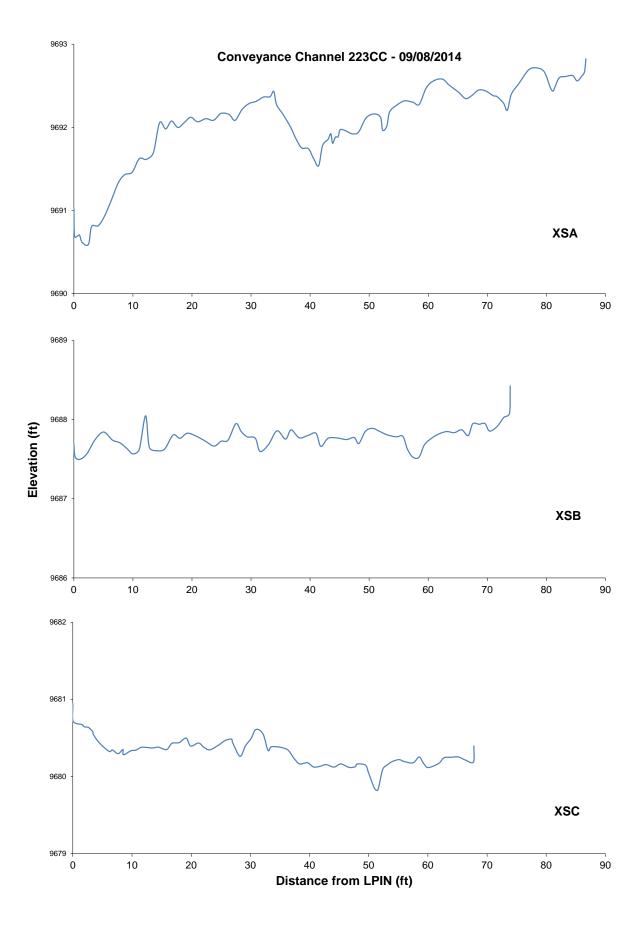



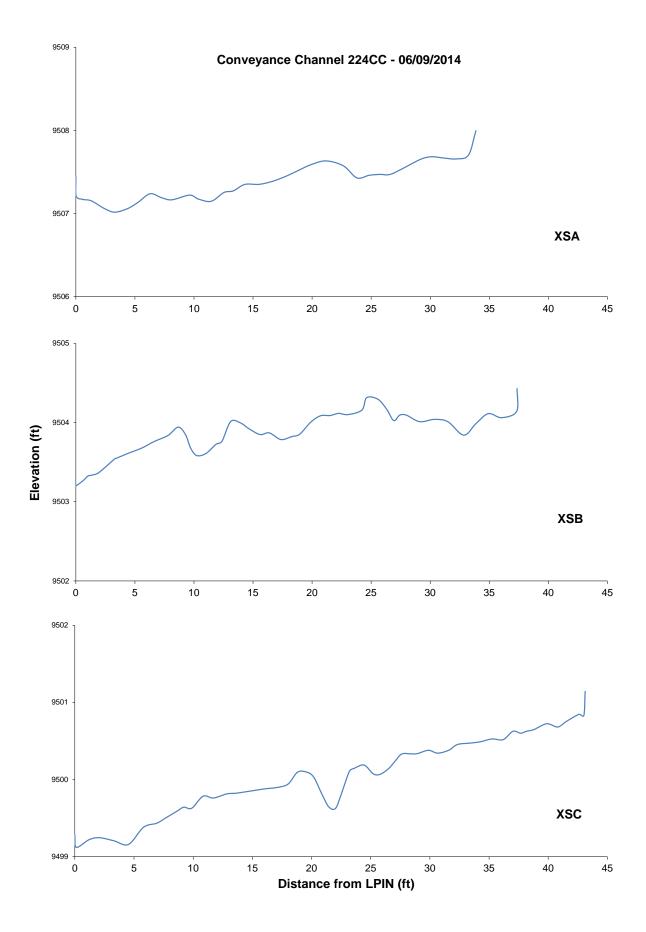



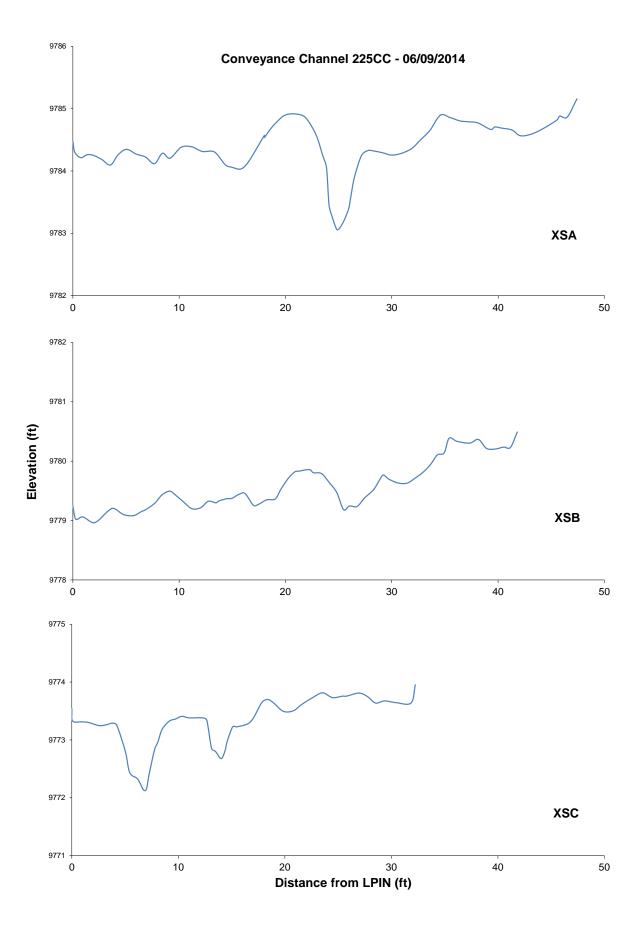



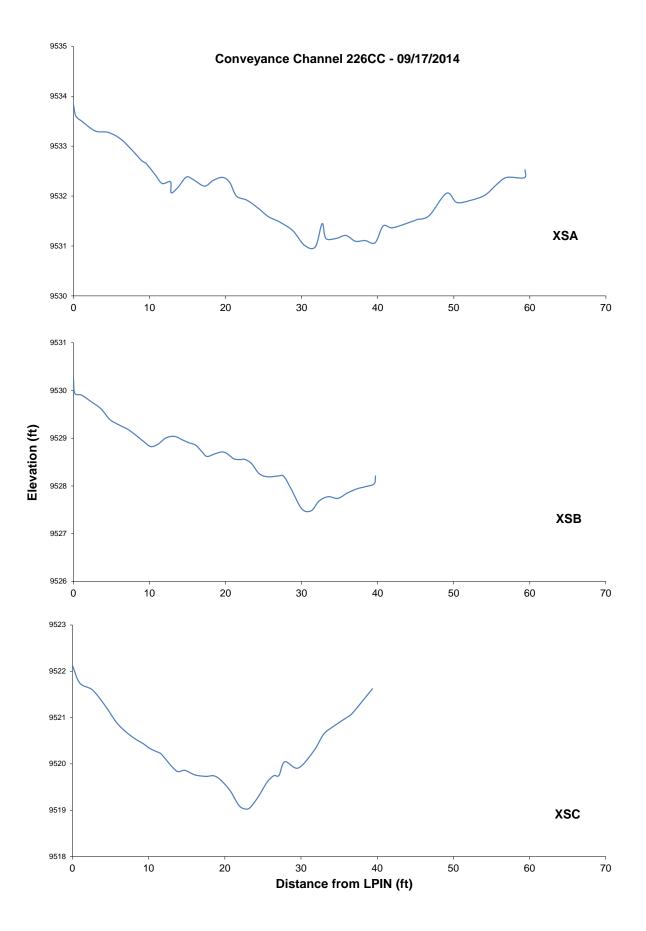



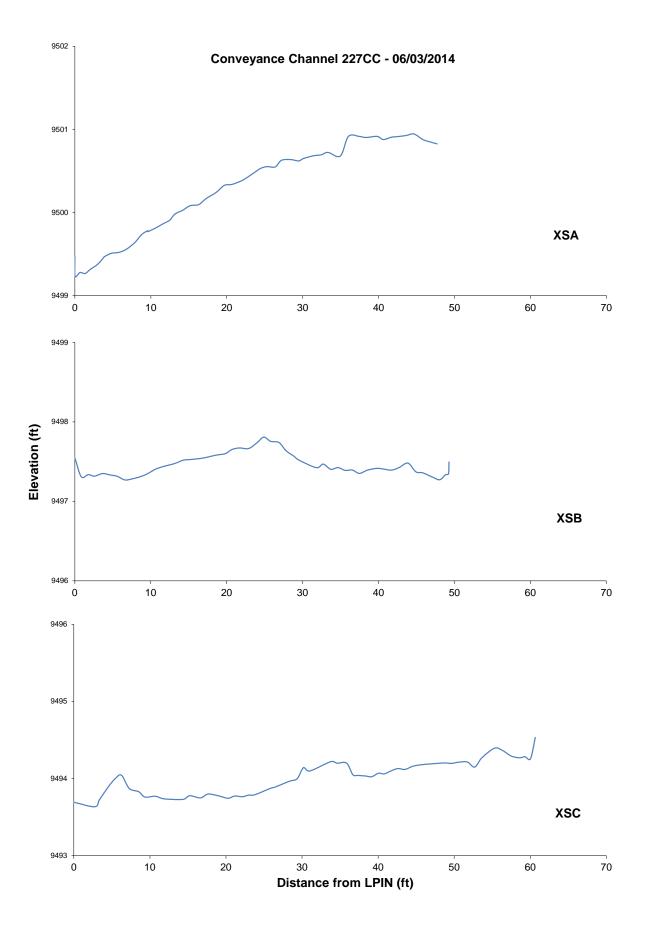



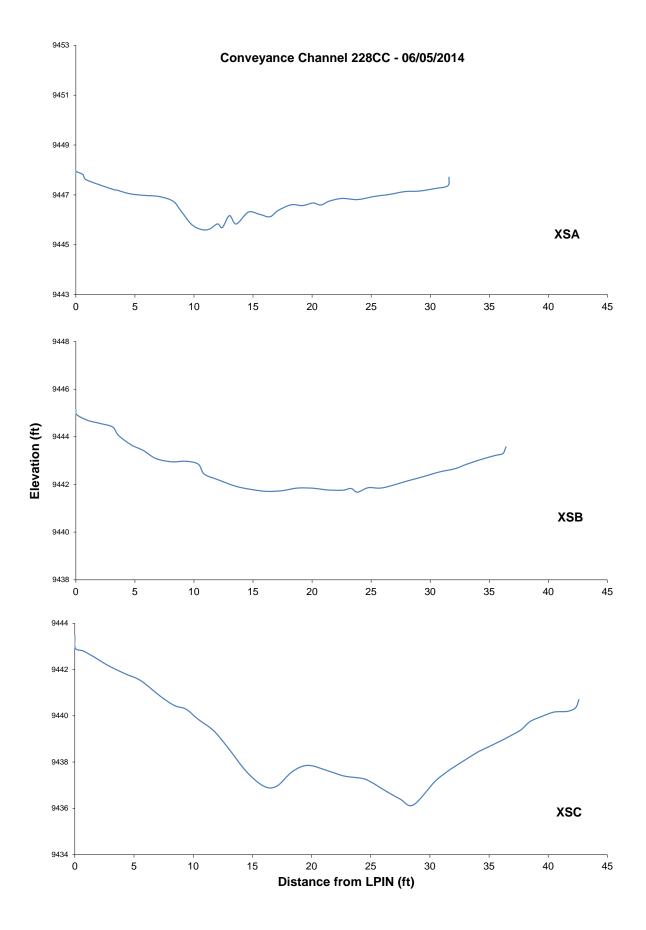



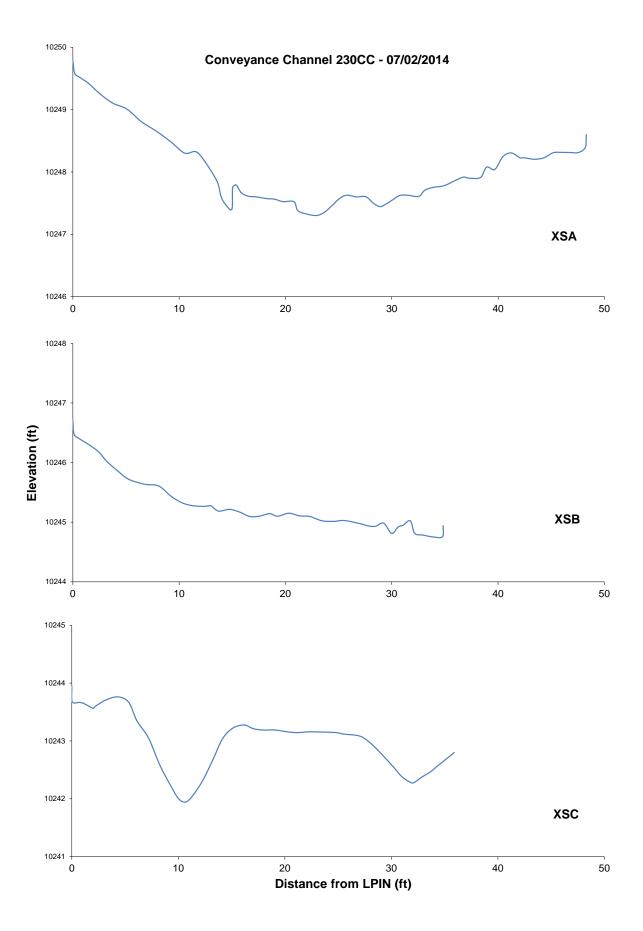



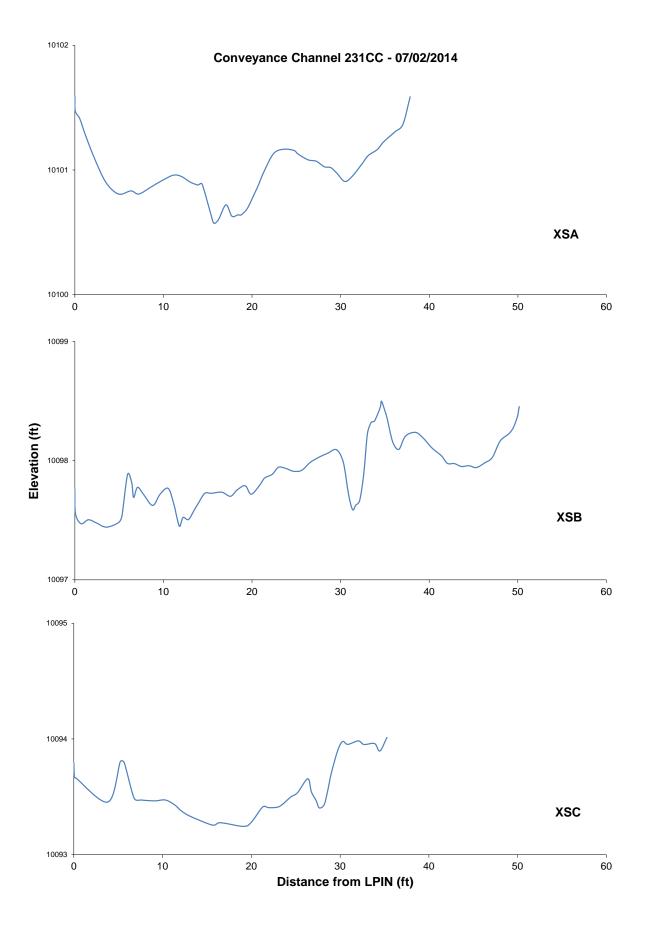



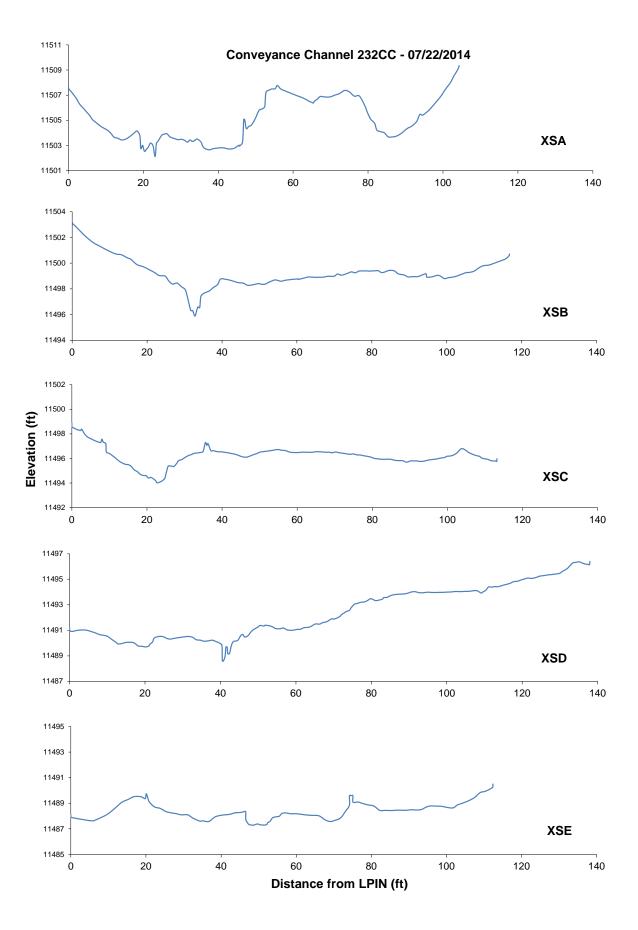


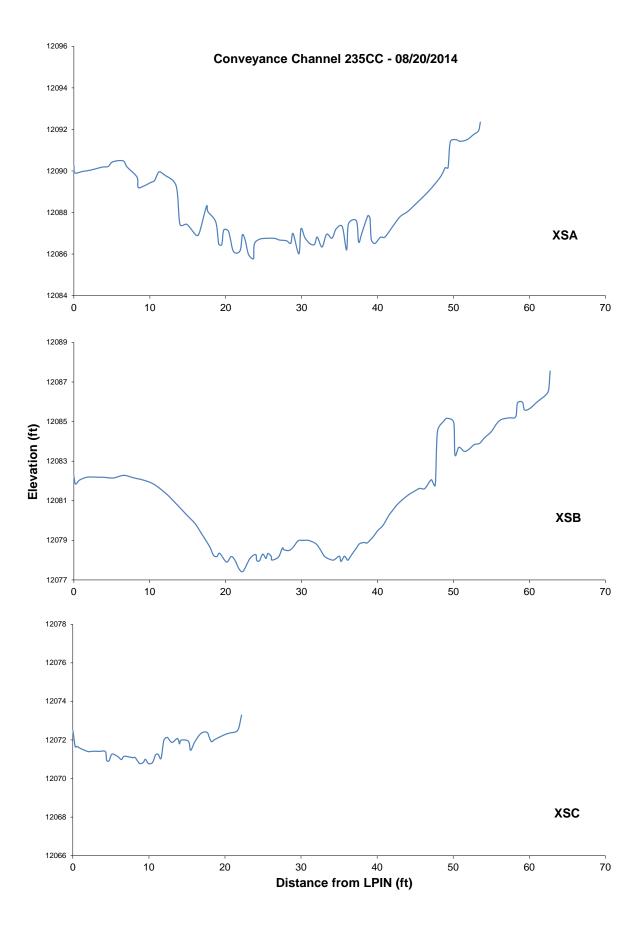


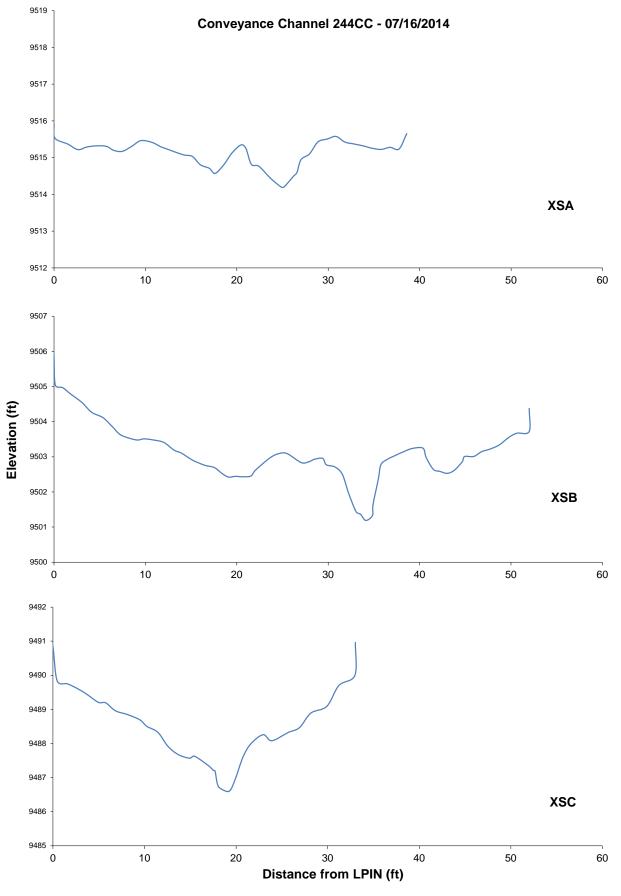




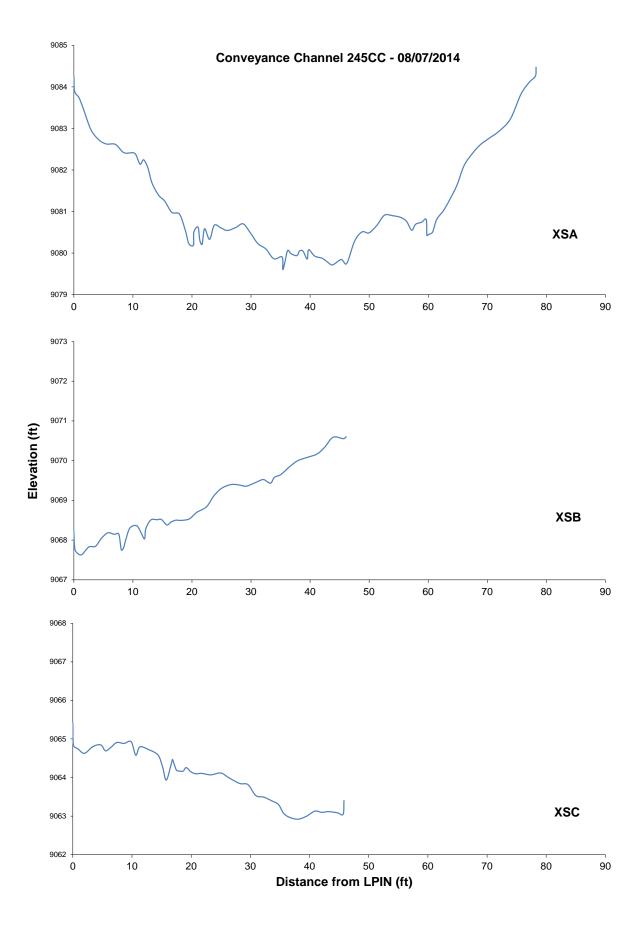



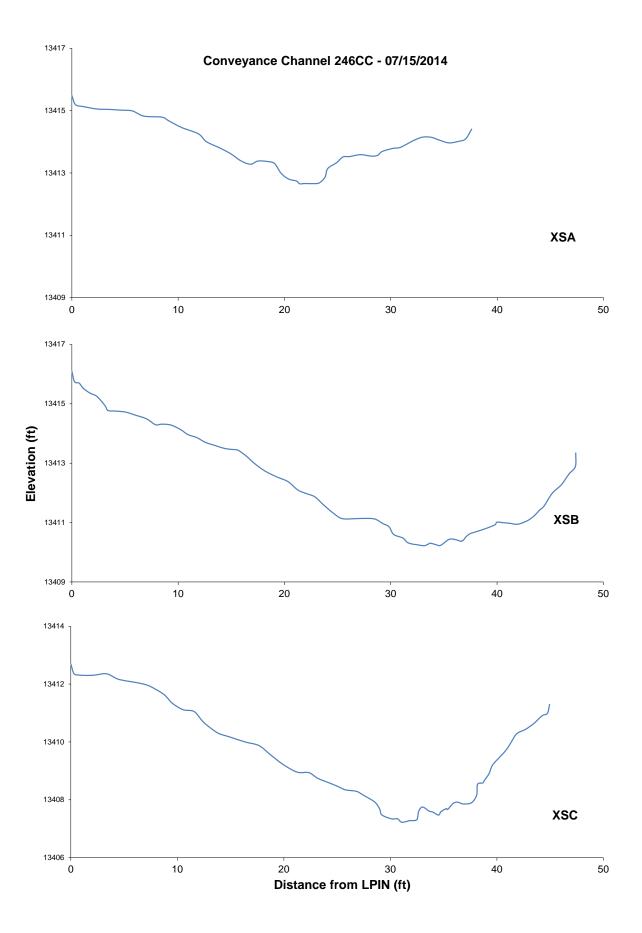



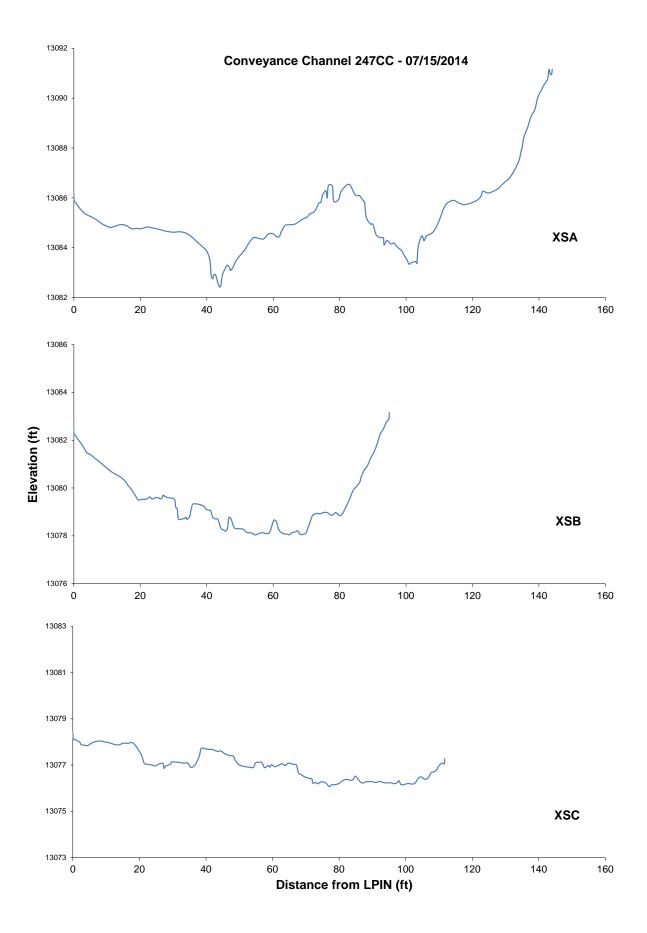



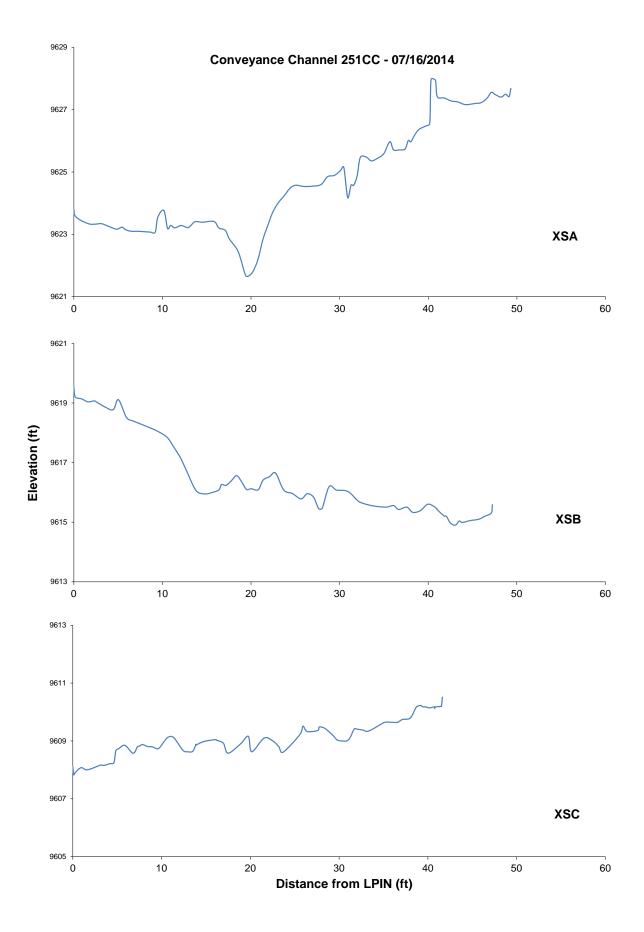


## 

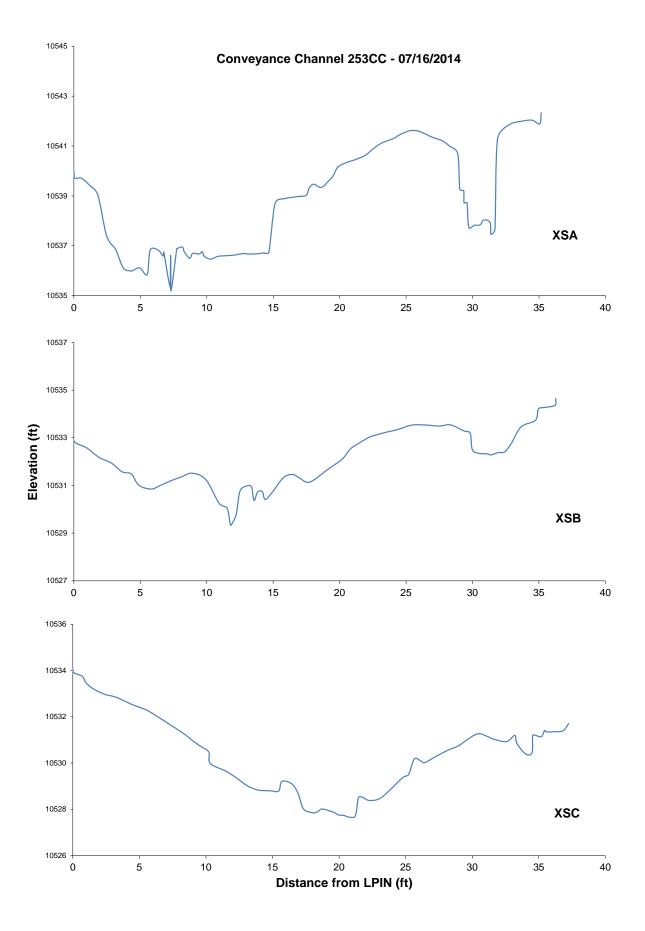


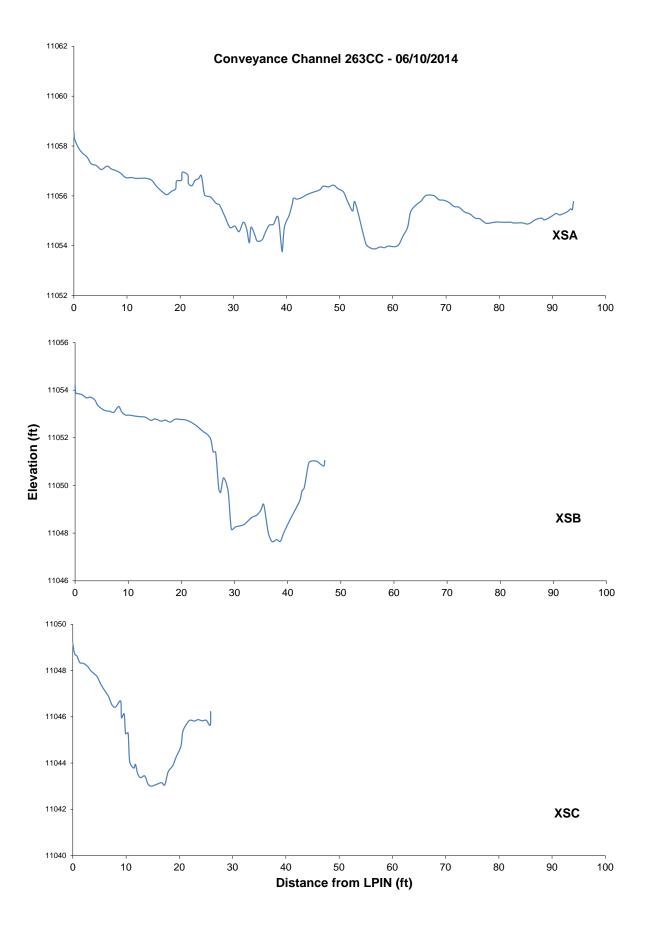


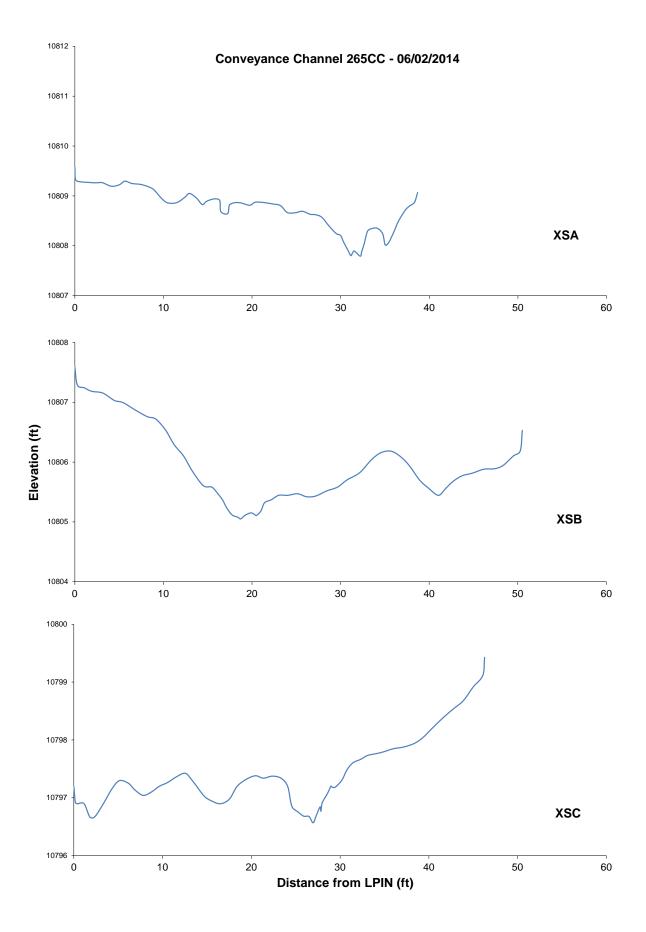











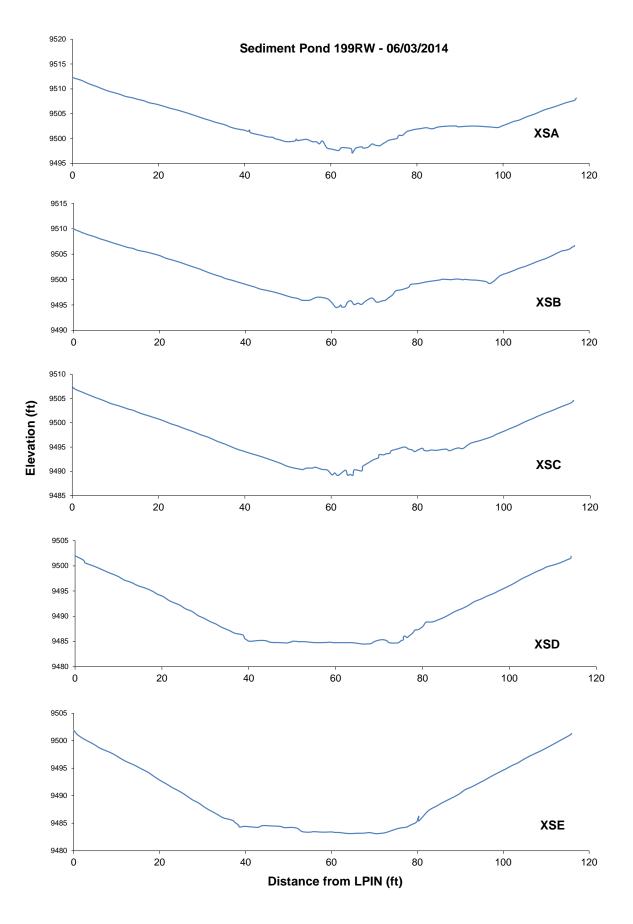


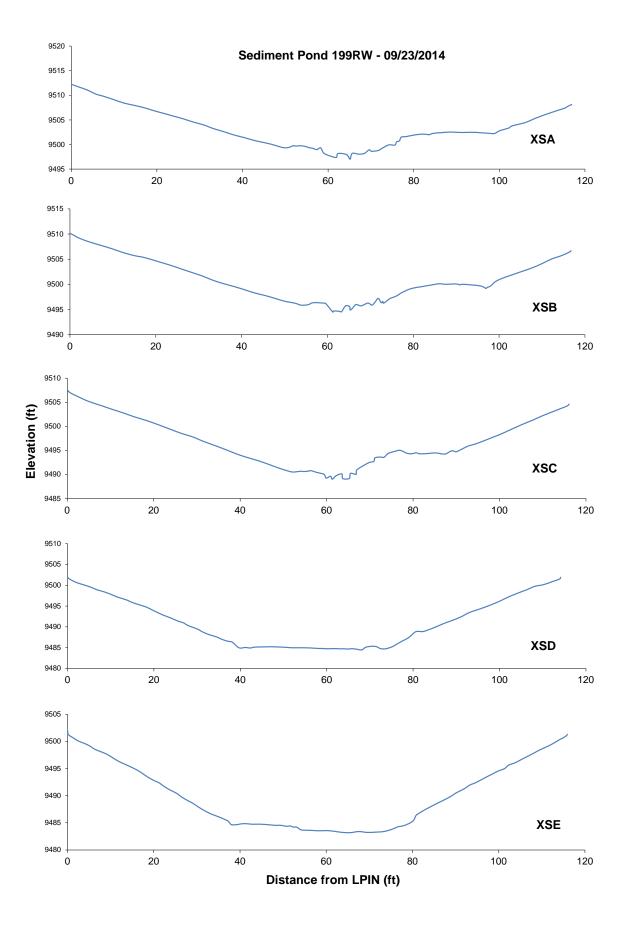

Appendix J

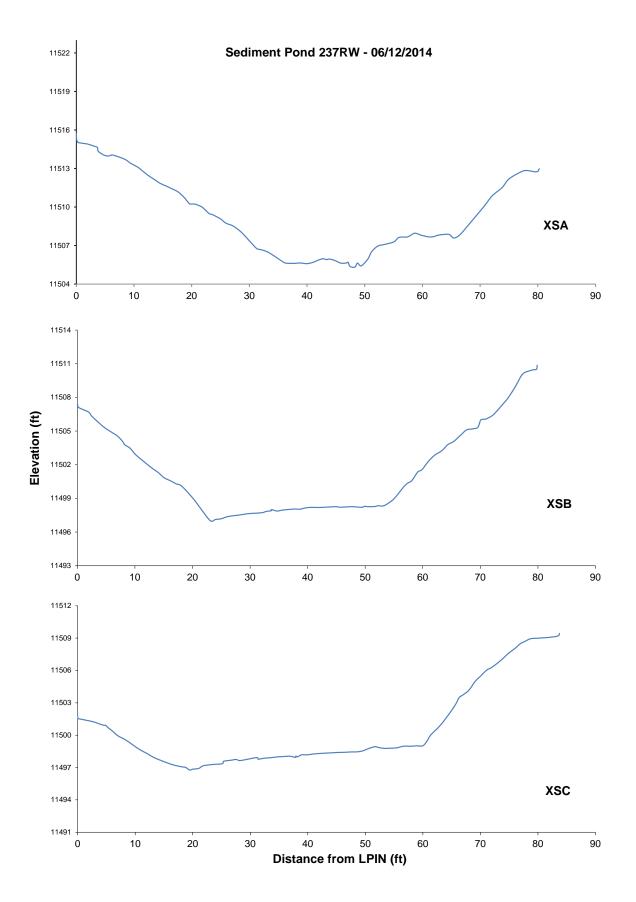
### Rock Weir and Sediment Pond

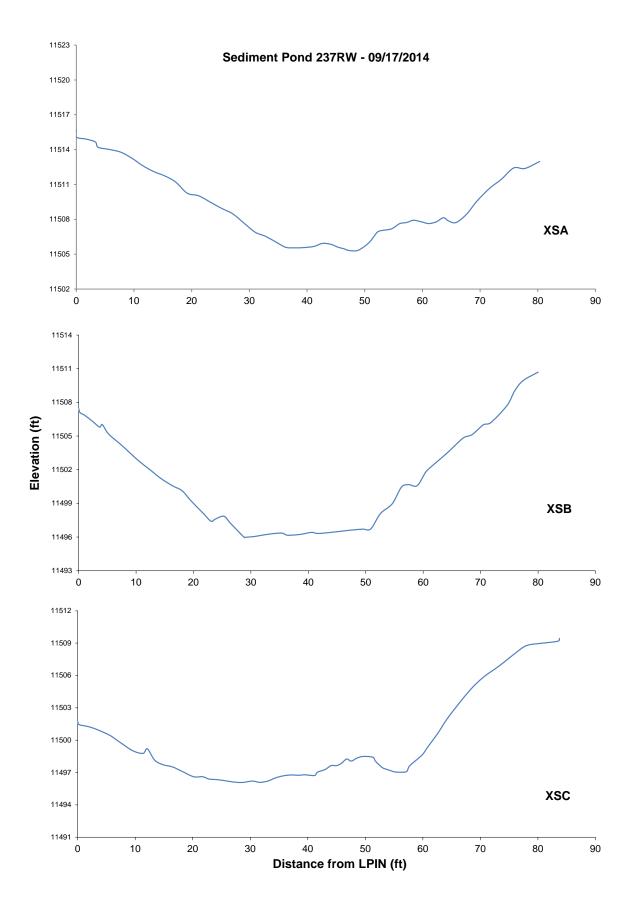
Site Visit Dates Sediment Accumulation and Cross Section Graphs

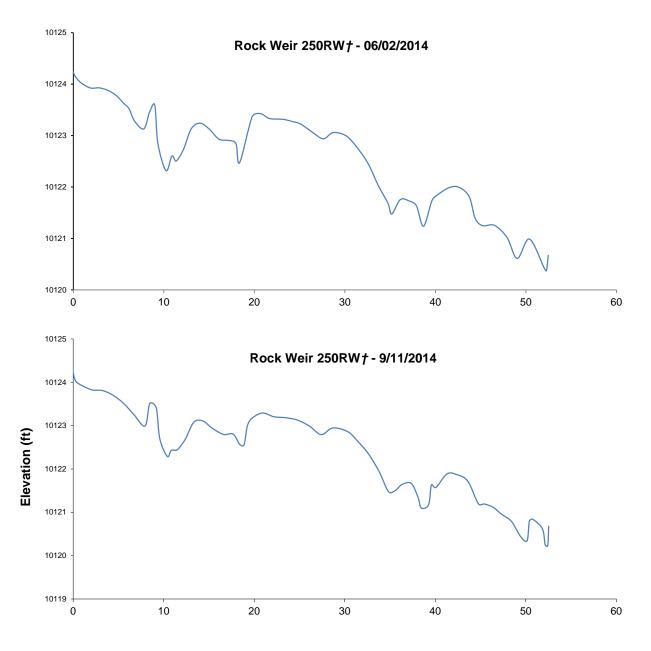
Site ID						Si	te Visi	t Date	s of R	ock W	eir Silt	Fence	s on P	ikes P	eak, 20	014				
Site ID	5/19	5/20	5/29	5/30	6/4	6/16	6/17	6/30	7/8	7/16	7/17	8/11	8/27	9/8	9/10	9/11	9/15	9/17	9/22	9/29
002RW	Х				Х		Х	Х	Х		Х	Х	Х		Х		Х			
003RW	Х				Х		Х	Х	Х		Х	Х	Х		Х		Х			
006RW	Х	Х	Х	Х	Х		Х	Х	Х		Х	Х	Х		Х		Х			
008RW	Х		Х	Х	Х		Х	Х	Х		Х	Х	Х		Х		Х		Х	
009RA	Х	Х	Х		Х		Х		Х		Х	Х	Х	Х			Х		Х	
161RW	Х	Х			Х		Х		Х		Х		Х			Х	Х			
162RW	Х	Х			Х		Х		Х	Х	Х	Х	Х				Х		Х	
176RW	Х		Х	Х	Х		Х		Х	Х	Х	Х	Х				Х	Х		
178RW	Х				Х		Х										Х			
179RW	Х				Х		Х										Х			
180RW	Х				Х		Х										Х			
181RW	Х				Х		Х										Х			
200RW	Х				Х	Х	Х		Х		Х	Х	Х				Х			Х
201RW	Х				Х		Х		Х		Х		Х				Х	Х		
202RW	Х	Х			Х		Х		Х	Х	Х		Х			Х	Х			


### Site Visit Dates of Rock Weir Silt Fences, Pikes Peak 2014

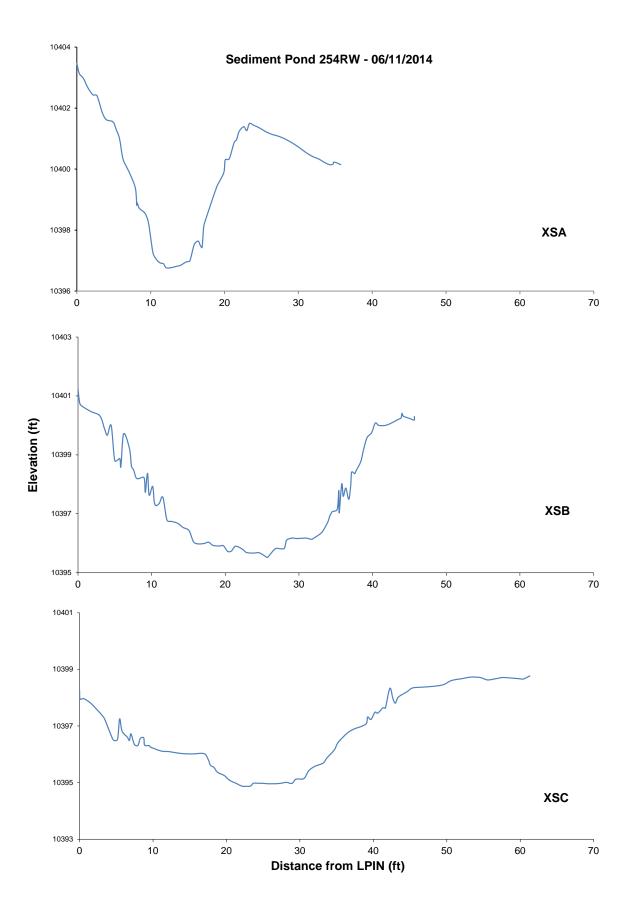

Site ID	Location	Date	Volume (ft ³ )	Grab Sample
162RW	Silt Fence	5/19/14	0.13	Yes
202RW	Silt Fence	5/21/14	0.13	Yes
162RW	Silt Fence	7/17/14	0.07	Yes
176RW	Silt Fence	7/17/14	0.07	Yes
202RW	Silt Fence	9/11/14	0.13	Yes

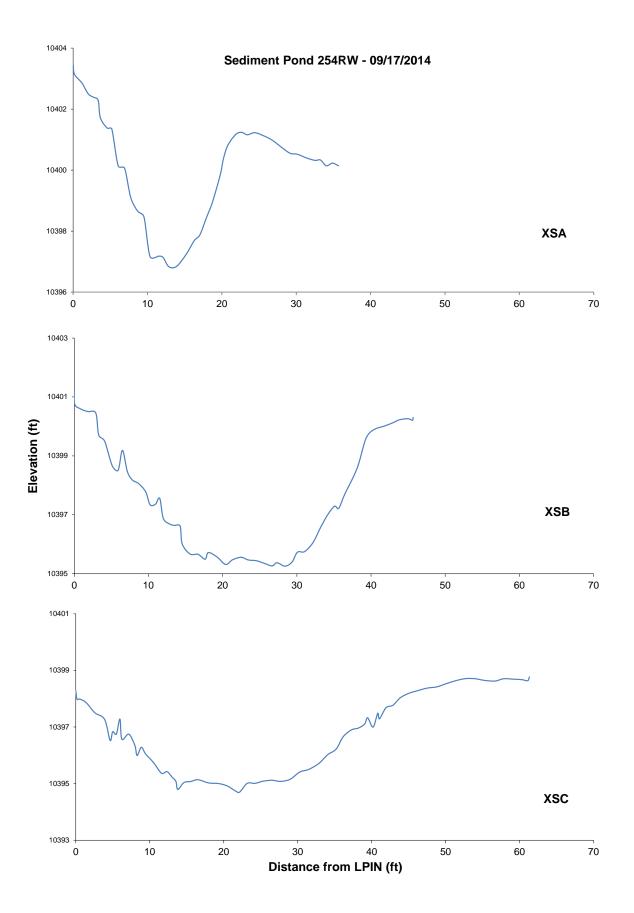

Sediment Accumulation in Rock Weir Silt Fences, Pikes Peak 2014

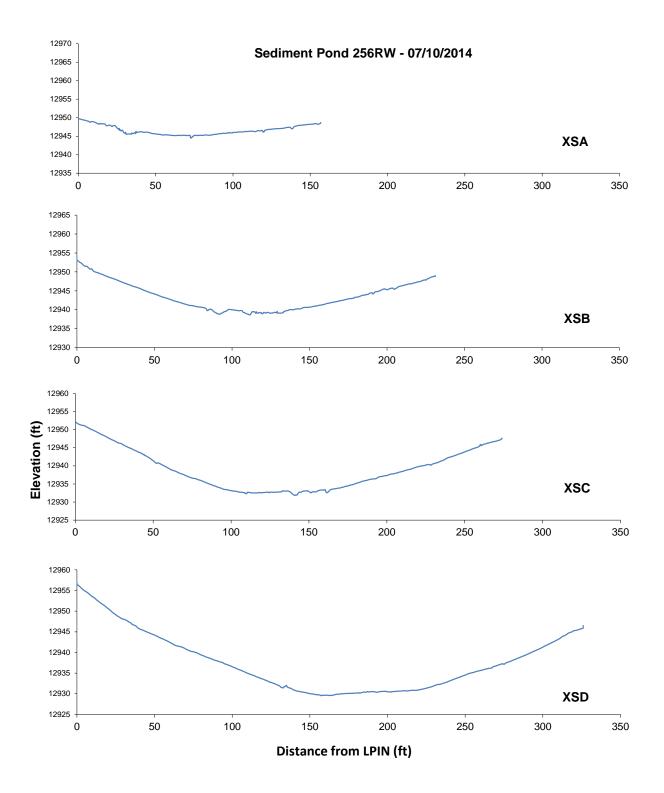

		Sur	vey1	Survey 2					
Site ID	Area (sq		Average		Average	Elevation	Volume		
Sile ID	ft)	Date	Elevation	Date	Elevation	Change	Change		
			(ft)		(ft)	(ft)	$(ft^3)$		
002RW	1679	6/17/14	8998.03	9/10/14	8997.99	-0.04	-62.91		
003RW	521	6/17/14	8991.26	9/10/14	8991.18	-0.08	-43.50		
006RW	798	5/30/14	8997.20	9/10/14	8997.11	-0.09	-70.64		
008RW	1044	5/29/14	9499.14	9/22/14	9498.96	-0.19	-194.56		
009RA	905	5/29/14	9695.90	9/8/14	9695.70	-0.21	-186.39		
152RW	817	6/9/14	9791.88	9/25/14	9791.67	-0.22	-176.15		
153RW	1568	6/5/14	9523.48	9/23/14	9523.40	-0.08	-124.21		
161RW	263	5/20/14	9504.96	9/11/14	9504.59	-0.37	-96.58		
162RW	130	5/20/14	9512.14	9/22/14	9511.91	-0.23	-29.55		
176RW	372	5/30/14	10193.77	9/17/14	10193.81	0.04	16.16		
200RW	412	6/16/14	9194.71	9/29/14	9194.67	-0.04	-15.85		
201RW	183	6/17/14	9588.68	9/17/14	9588.47	-0.21	-38.44		
202RW	179	5/20/14	9690.20	9/11/14	9689.68	-0.52	-93.63		
233RW	359	5/30/14	11902.50	9/17/14	11902.14	-0.36	-129.72		
239RW	381	7/21/14	12799.10						
241RW	1015	7/21/14	12551.78						
250RW	598	6/2/14	10117.57	9/11/14	10117.40	-0.18	-105.87		
252RW	448	5/30/14	10524.88						

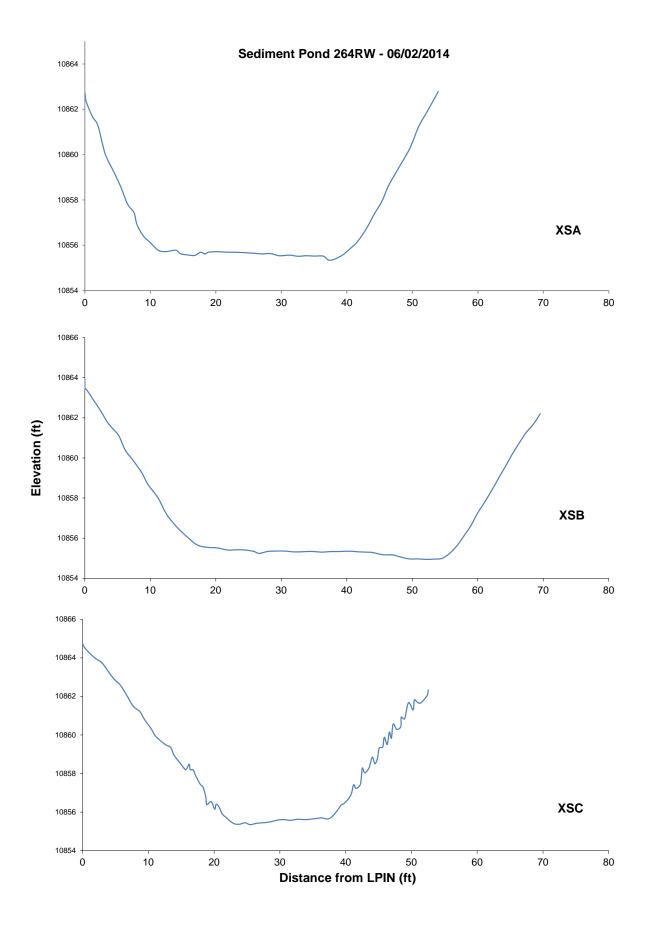

Rock Weir Sediment Accumulation Values, Pikes Peak 2014

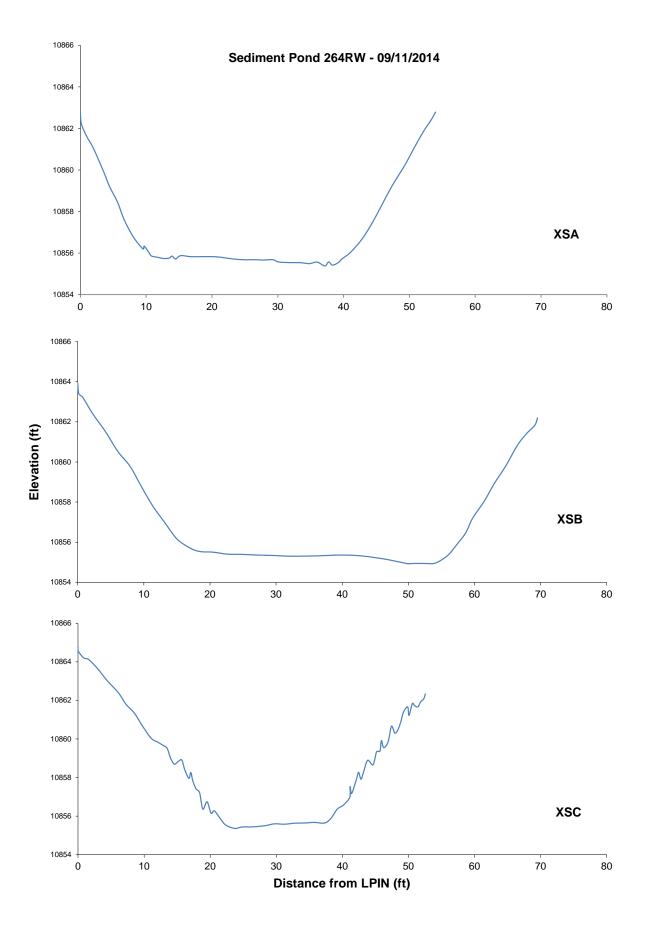






† Cross section placed on cut slope above rock weir



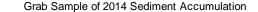


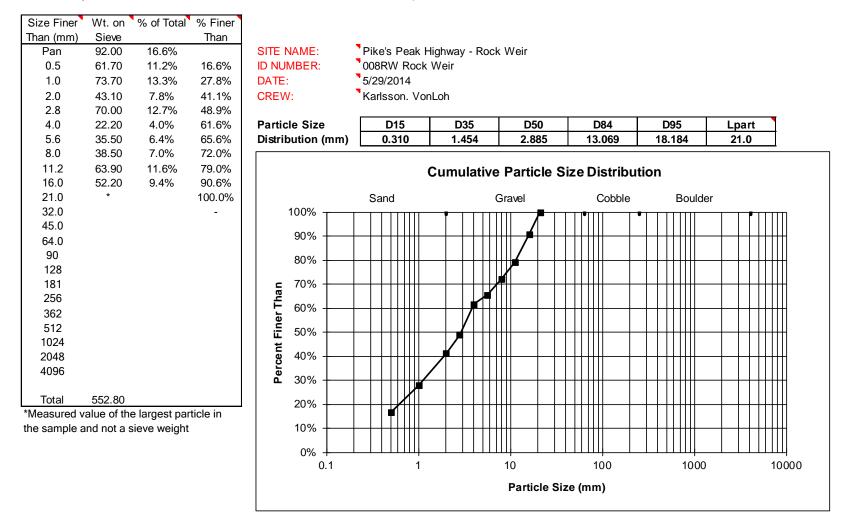






# Appendix K

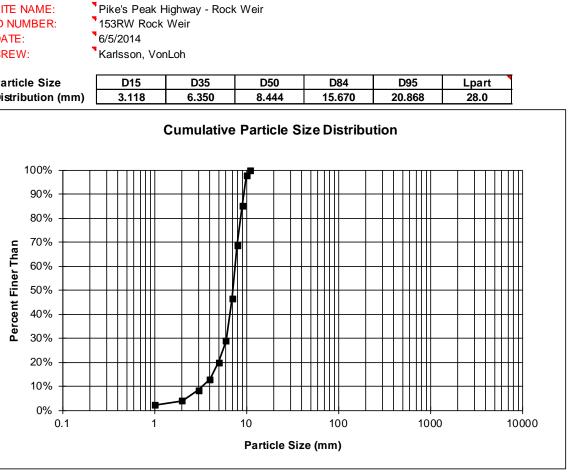

### Rock Weir and Sediment Pond


# Particle Size Distribution Summary and Graphs

	Particle Size Distribution (mm)–Grab Samples 2014							
Site Name	ID	Date	D15	D35	D50	D84	D95	D100
Pikes Peak Highway - Rock Weir	008RW - Rock Weir	5/29/2014	0.310	1.454	2.885	13.069	18.184	21.0
Pikes Peak Highway - Rock Weir	153RW - Rock Weir	6/5/2014	3.118	6.350	8.444	15.670	20.868	28.0
Pikes Peak Highway - Rock Weir	199RW - Sed Pond	6/3/2014	0.034	0.549	1.318	4.243	8.585	13.0
Pikes Peak Highway - Rock Weir	241RW - Rock Weir	7/21/2014	0.110	0.969	1.606	4.850	14.415	18.0
Pikes Peak Highway - Rock Weir	250RW - Rock Weir	9/11/2014	0.150	1.443	3.119	12.067	17.126	22.0
Pikes Peak Highway - Rock Weir	256RW - Sed Pond	7/10/2014	0.093	1.320	2.668	7.275	14.488	29.0

### Summary of Rock Weir and Silt Fence Particle Size Distribution from Sieve Analysis of Grab Samples, Pikes Peak 2014

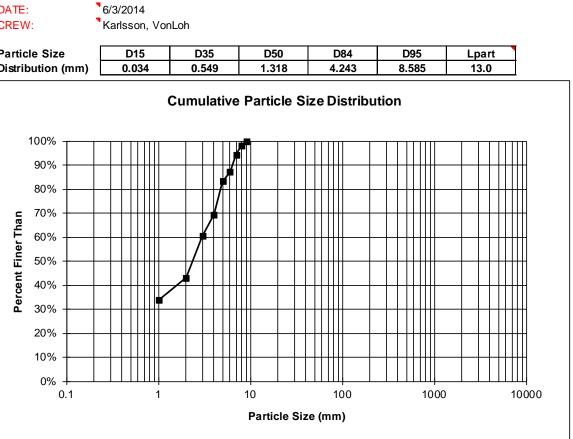




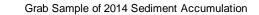



COMMENTS:

Grab Sample of 2014 Sediment Accumulation

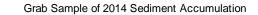

Size Finer	Wt. on	% of Total	% Finer	
Than (mm)	Sieve		Than	
Pan	13.40	2.2%		SI
0.5	10.70	1.7%	2.2%	ID
1.0	27.20	4.4%	3.9%	DA
2.0	28.50	4.6%	8.3%	CR
2.8	44.30	7.1%	12.8%	
4.0	54.70	8.8%	20.0%	Pa
5.6	109.50	17.6%	28.8%	Dis
8.0	138.70	22.3%	46.4%	
11.2	100.60	16.2%	68.7%	
16.0	79.10	12.7%	84.9%	
22.4	14.40	2.3%	97.7%	
28.0	*		100.0%	
45.0			-	
64.0				
90				
128				
181				
256				
362				
512				
1024				
2048				
4096				
Total	621.10			
*Measured va		• •	ticle in	
the sample a	nd not a s	sieve weight		








Size Finer	Wt. on	% of Total	% Finer					
Than (mm)	Sieve		Than					
Pan	242.50	33.7%		SITE I	NAME:	Pike's Peak H	lighway - Rock	Weir
0.5	67.50	9.4%	33.7%	ID NU	MBER:	199RW Sedin	nent Pond	
1.0	123.90	17.2%	43.1%	DATE	:	6/3/2014		
2.0	65.30	9.1%	60.4%	CREV	<b>/</b> :	Karlsson, Vor	hLoh	
2.8	99.80	13.9%	69.4%					
4.0	27.30	3.8%	83.3%	Partic	le Size	D15	D35	D5
5.6	51.00	7.1%	87.1%	Distril	oution (mn	n) 0.034	0.549	1.3
8.0	26.50	3.7%	94.2%					
11.2	15.00	2.1%	97.9%				Cumulative	Partie
13.0	*		100.0%					
22.4			-					
32.0					100% T			
45.0					000/		_	TH
64.0					90%			
90					80%		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
128								
181				L L	70% +		─┼ ┼┢╋┼┼┼	
256				That	60%			
362				e	00 % T		<b>/</b> [ ] ] [	
512				Li I	50%		//	
1024				- E				
2048				Percent Finer Than	40% +	-+ +++++++++++++/	∕ᠮ┼┼┼	
4096				Je.	30% -			
				-	00 /0			
Total	718.80				20% –			
*Measured v		• ·			100/			
the sample a	ind not a s	leve weight			10% +			
					0%			



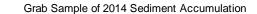




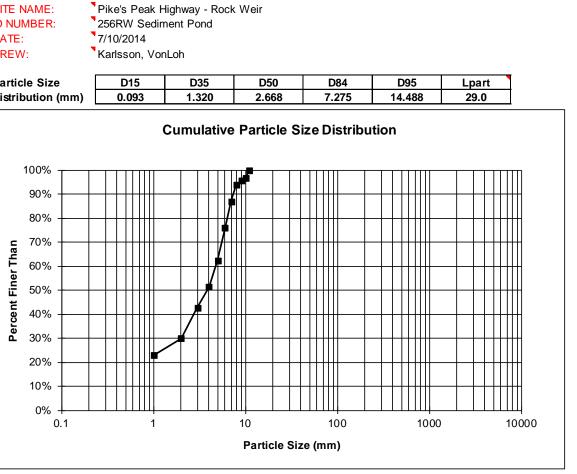

Size Finer Wt. on % of Total % Finer							
Than (mm) Sieve Than		_					
		Pike's Peak H		Weir			
0.5 77.80 13.9% 21.8%		241RW Rock	Weir				
1.0 118.10 21.0% 35.6% [		7/21/2014					
2.0 58.50 10.4% 56.6% (	CREW:	Karlsson, Vor	Loh				
2.8 82.30 14.7% 67.1%							
4.0 22.40 4.0% 81.7% <b>F</b>	Particle Size	D15	D35	D50	D84	D95	Lpart
	Distribution (mm)	0.110	0.969	1.606	4.850	14.415	18.0
8.0 13.60 2.4% 91.0%							
11.2 12.60 2.2% 93.4%			Cumulative	Particle S	ize Distribu	tion	
16.0 24.40 4.3% 95.7%							
18.0 * 100.0%							
32.0 -	100%						
45.0	90%						
64.0	90 %						
90	80%						
128			/				
181	<b>g</b> 70%						
256	Ψ _{60%}						
362	40% Line June June June June June June June Ju		_ <b>∳</b>				
512	iii 50%		/				
1024	t , , , ,		/				
2048	<b>b</b> 40%						
4096	<b>a</b> 30%		$\angle$				
Total 561.70	20%	<u> </u>					
*Measured value of the largest particle in	100/						
the sample and not a sieve weight	10%						
	0%						
	0.1	1		10	100	1000	
				Particle Siz			






Lpart

22.0


10000

Size Finer	Wt. on	% of Total	% Finer								
Than (mm)	Sieve		Than			_					
Pan	155.90	19.9%				Pike's Pea		ay - Roc	k Weir		
0.5	64.90	8.3%	19.9%			250RW Ro	ck Weir				
1.0	99.80	12.8%	28.2%	DATE		9/11/2014					
2.0	48.90	6.3%	41.0%	CREV	V:	Karlsson, V	/onLoh				
2.8	70.60	9.0%	47.3%								
4.0	60.20	7.7%	56.3%		cle Size	D15		D35	D50	D84	D95
5.6	64.70	8.3%	64.0%	Distri	bution (mm)	0.150	1	.443	3.119	12.067	17.126
8.0	71.70	9.2%	72.3%								
11.2	95.30	12.2%	81.5%				Cum	ulative	e Particle	Size Distribu	tion
16.0	49.70	6.4%	93.6%								
22.0	*		100.0%								
32.0			-		100%			1111			
45.0					90%						
64.0					30 /8						
90					80%		+ $+$	++++		+++++++++++++++++++++++++++++++++++++++	
128											
181				an	70%						
256				<u>۲</u>	60%			╷╷╹			
362				ler				∭			
512				Percent Finer Than	50%			┼┟┼		+++++++++++++++++++++++++++++++++++++++	
1024 2048				t	40%						
2048 4096				5	40 %			$\tau$			
4096				Бе	30%		╞╴┛┫	++++		+++++++++++++++++++++++++++++++++++++++	
Total	781.70										
*Measured va		e largest na	rticle in		20%		<b>#</b>				
the sample a					10%			$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$			
the sumple u	na not a s	sieve weigin			0%						
					0.1		1		10	100	100
									Particle S	ize (mm)	





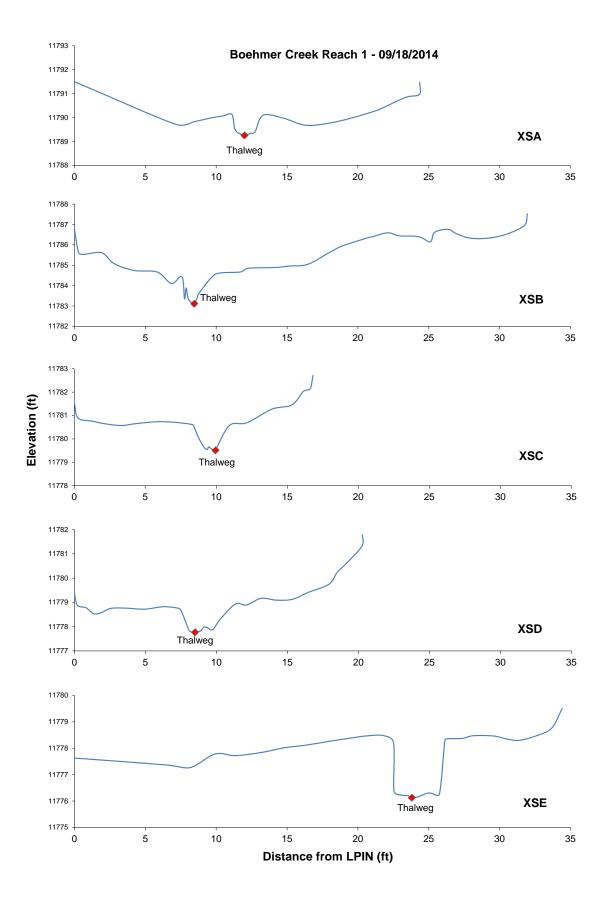
Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	166.20	23.0%		SITE N	NAME:
0.5	49.90	6.9%	23.0%	ID NU	MBER:
1.0	92.90	12.8%	29.9%	DATE	:
2.0	61.80	8.5%	42.7%	CREW	<b>/</b> :
2.8	80.60	11.1%	51.2%		
4.0	98.20	13.6%	62.4%	Partic	le Size
5.6	79.60	11.0%	75.9%	Distrik	oution (
8.0	49.10	6.8%	86.9%		
11.2	12.90	1.8%	93.7%		
16.0	8.80	1.2%	95.5%		
22.4	23.80	3.3%	96.7%		
29.0	*		100.0%		100% -
45.0			-		000/
64.0					90% -
90					80% -
128					
181				L L	70% -
256				Th	60% -
362				er.	60 % -
512				Li I	50% -
1024				E E	
2048				Ce l	40% -
4096				Percent Finer Than	30% -
					50 /0
Total	723.80				20% -
*Measured va		0 1	ticle in		100/
the sample a		10% -			

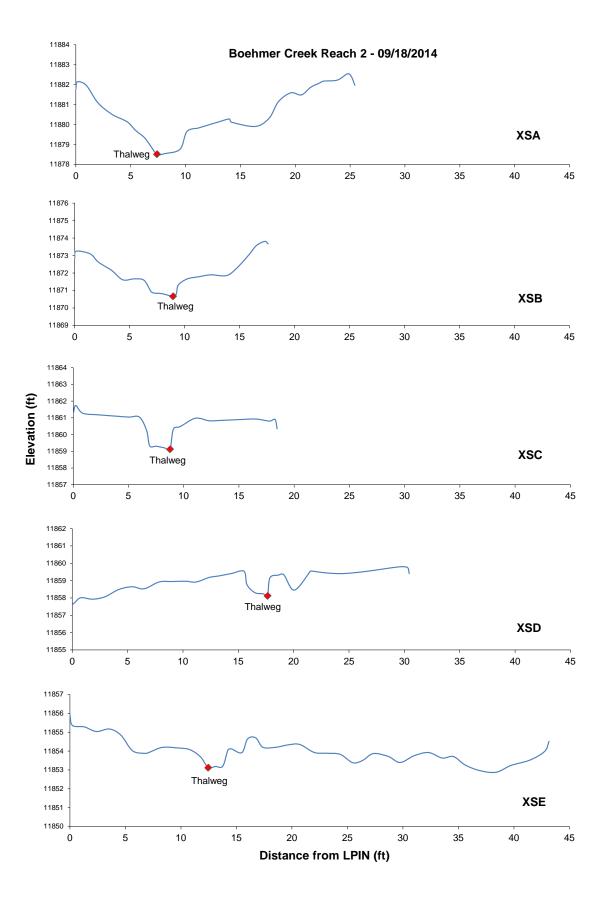


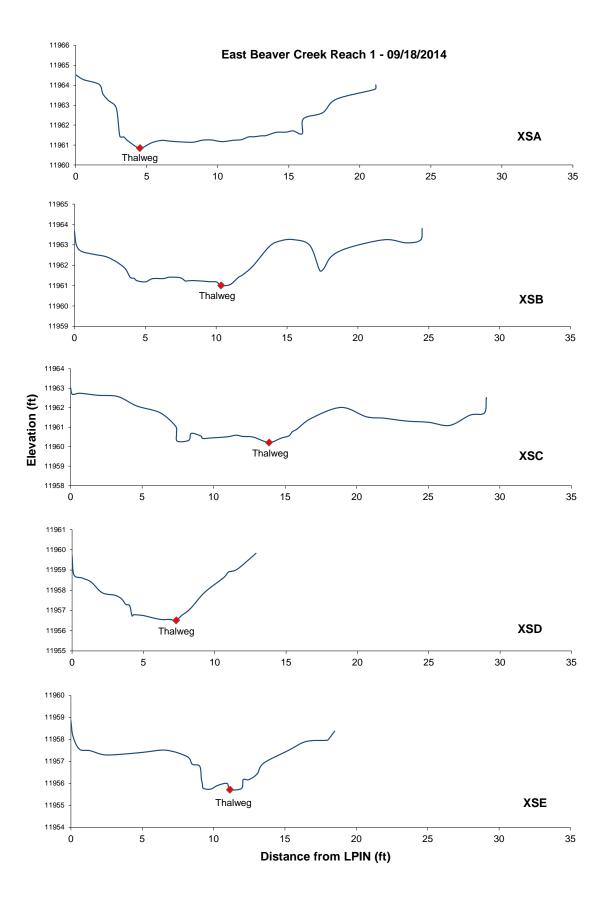
Appendix L

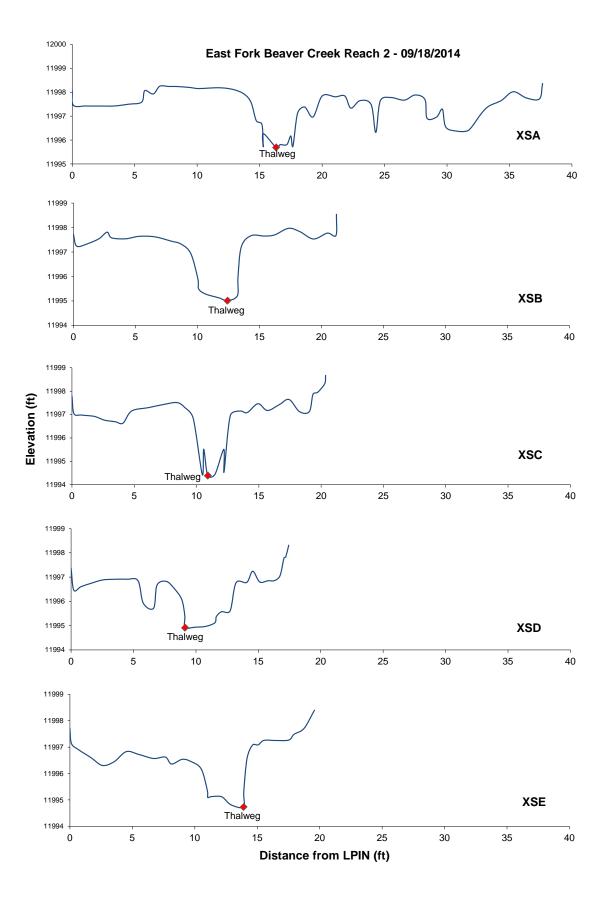
## Sediment Pond

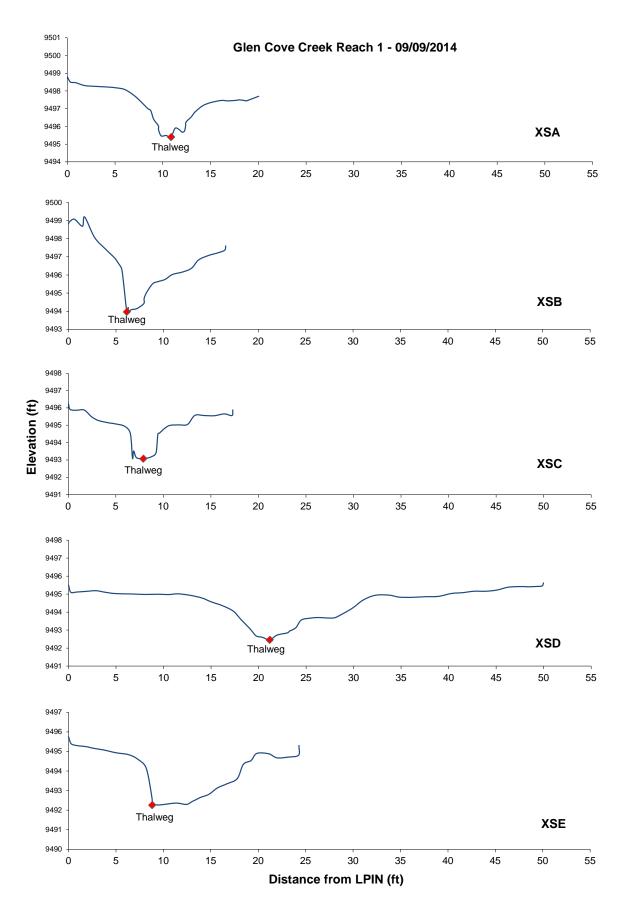
# Suspended Sediment Data

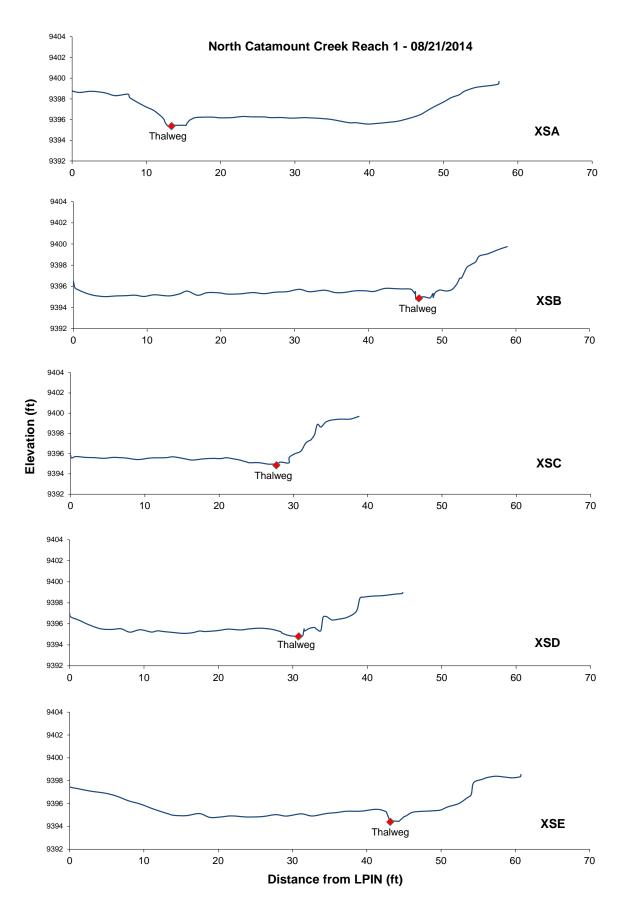

Pikes Peak 2014									
Site ID	Date	Volume of Sample (L)	Dried Sediment Weight (mg)	Sediment Sample Total (mg/L)					
199RW Entrance Culvert	05/30/14	0.94	98.7	105.0					
199RW Above Sed Pond	05/30/14	1.03	96.4	93.6					
199RW Exit Culvert	05/30/14	0.99	86.3	87.2					
199RW Entrance Culvert	07/08/14	0.96	653.8	681.0					
199RW Above Sed Pond	07/08/14	0.96	597.8	622.7					
199RW Exit Culvert	07/08/14	1.00	99.1	99.1					
199RW Entrance Culvert	07/13/14	0.90	35.1	39.0					
199RW Above Sed Pond	07/13/14	1.07	52.3	50.4					
199RW Exit Culvert	07/13/14	0.96	60.8	63.3					
199RW Entrance Culvert	07/16/14	1.05	1717.4	1635.6					
199RW Above Sed Pond	07/16/14	0.97	2427.9	2503.0					
199RW Exit Culvert	07/16/14	0.91	616.7	677.7					
199RW Entrance Culvert	09/22/14	1.00	25.5	25.5					
199RW Above Sed Pond	09/22/14	0.93	18.1	19.6					
199RW Exit Culvert	09/22/14	0.99	4.6	4.6					
237RW Entrance Culvert	05/30/14	0.91	1041.5	1144.5					
237RW Exit Culvert	05/30/14	0.86	237.3	275.9					
237RW Entrance Culvert	06/11/14	0.98	447.5	456.6					
237RW Exit Culvert	06/11/14	1.00	399.9	399.9					
237RW Entrance Culvert	07/08/14	1.05	241.3	229.8					
237RW Exit Culvert	07/08/14	1.04	66.5	63.9					
237RW Entrance Culvert	07/13/14	0.95	3944.4	4152.0					
237RW Exit Culvert	07/13/14	1.06	43.5	41.0					
237RW Entrance Culvert	07/10/14	1.10	948.4	862.1					
237RW Exit Culvert	07/10/14	1.00	118.1	118.1					
237RW Entrance Culvert	07/15/14	0.53	254.7	478.7					
237RW Exit Culvert	07/15/14	0.59	90.3	153.1					
262RW Entrance Culvert	05/30/14	1.00	176.9	176.9					
262RW Above Sed Pond	05/30/14	1.00	186.6	186.6					
262RW Exit Culvert	05/30/14	1.03	124.6	120.9					
262RW Entrance Culvert	06/11/14	1.06	202.5	191.0					
262RW Above Sed Pond	06/11/14	1.02	265.5	260.3					
262RW Exit Culvert	06/11/14	1.00	5.6	5.6					
262RW Entrance Culvert	07/08/14	1.05	4615.4	4395.6					
262RW Above Sed Pond	07/08/14	1.05	2970.5	2829.0					
262RW Exit Culvert	07/08/14	1.00	1147.5	1147.5					
262RW Entrance Culvert	07/13/14	1.01	923.4	914.3					
262RW Above Sed Pond	07/13/14	0.93	930.6	100.6					
262RW Exit Culvert	07/13/14	1.02	169.0	165.7					
262RW Entrance Culvert	07/15/14	0.96	147.5	153.6					
262RW Above Sed Pond	07/15/14	0.94	169.4	180.2					
262RW Exit Culvert	07/15/14	0.95	31.9	33.6					
262RW Entrance Culvert	09/10/14	0.93	5.7	6.1					
262RW Above Sed Pond	09/10/14	1.00	6.1	6.1					
262RW Exit Culvert	09/10/14	1.00	6.1	5.9					
	03/10/14	1.04	0.1	5.5					

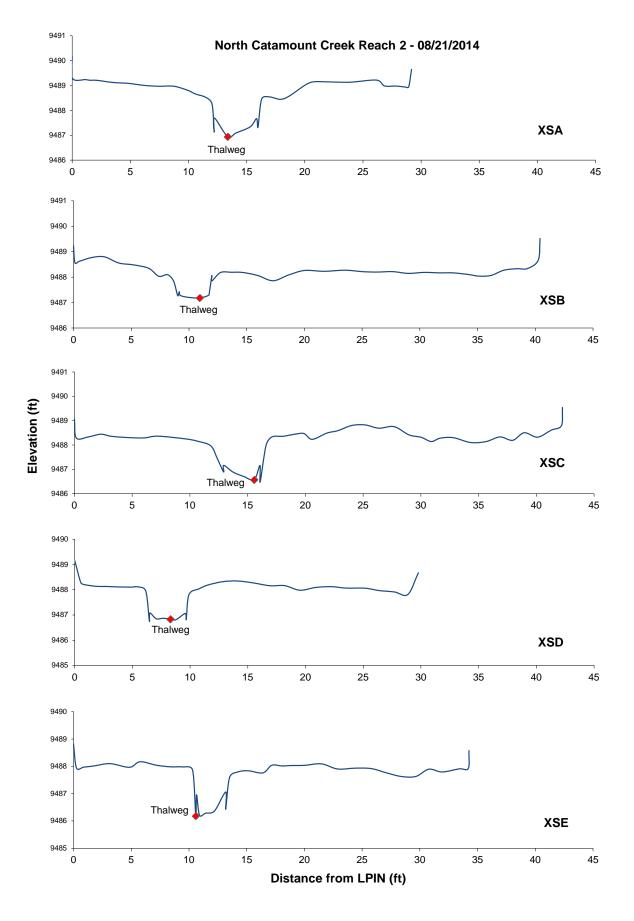

Summary of Sediment Pond Suspended Sediment Analysis of Grab Samples, Pikes Peak 2014

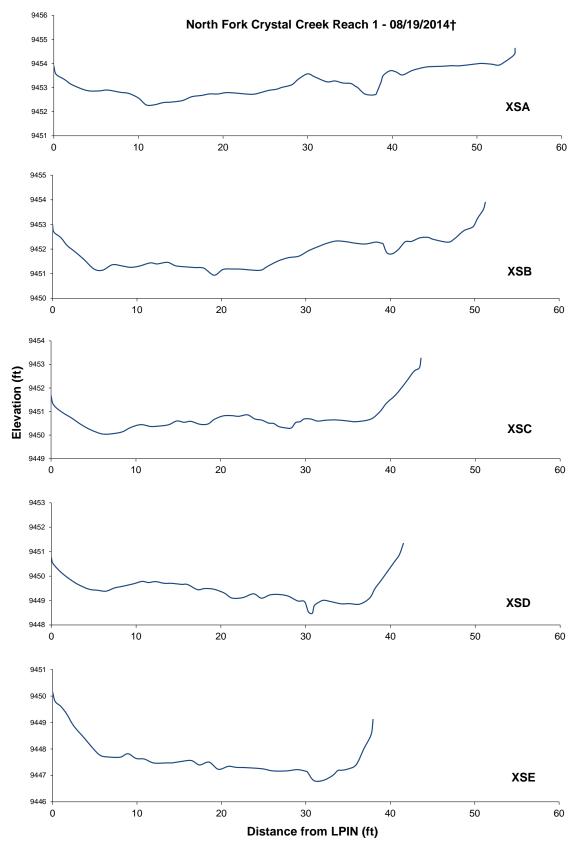

Appendix M


Stream Channel

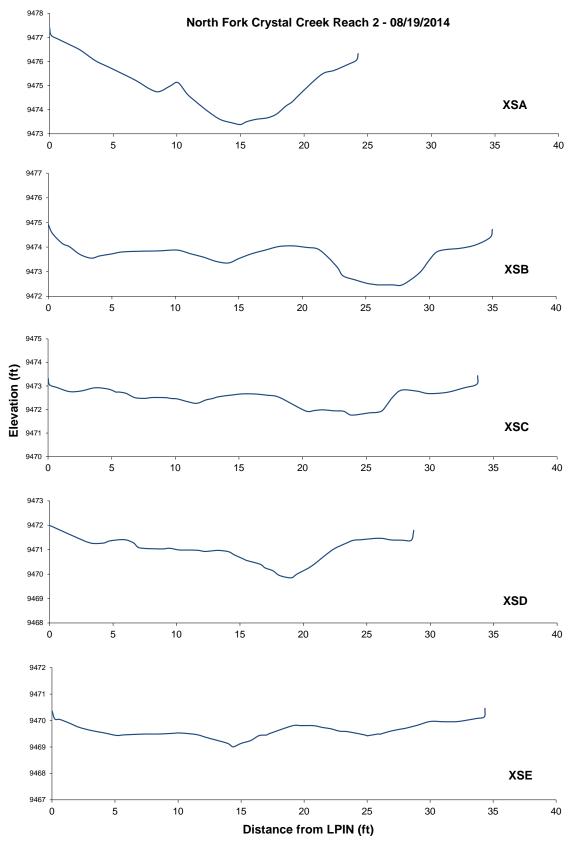

**Cross Section Graphs** 



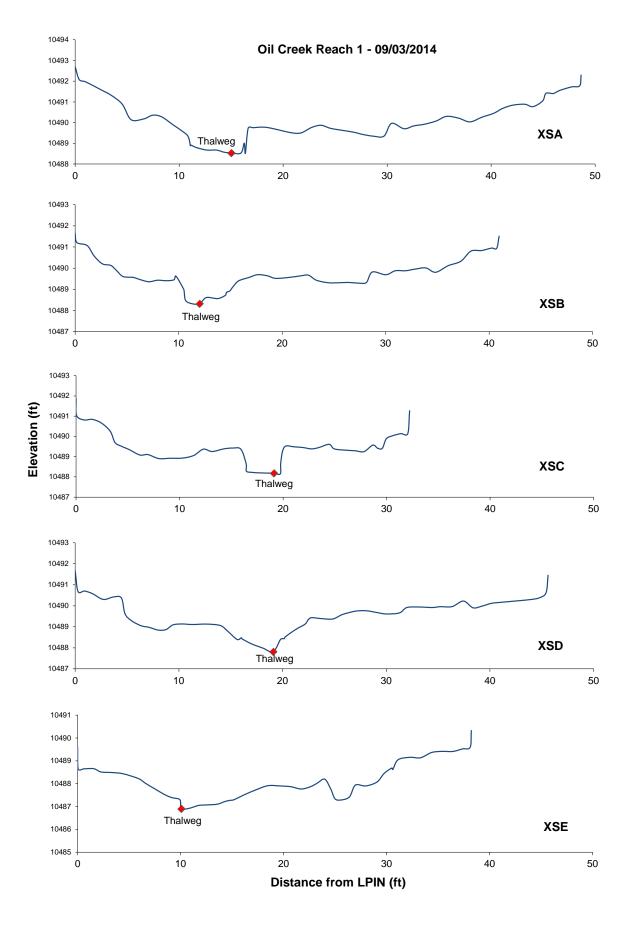



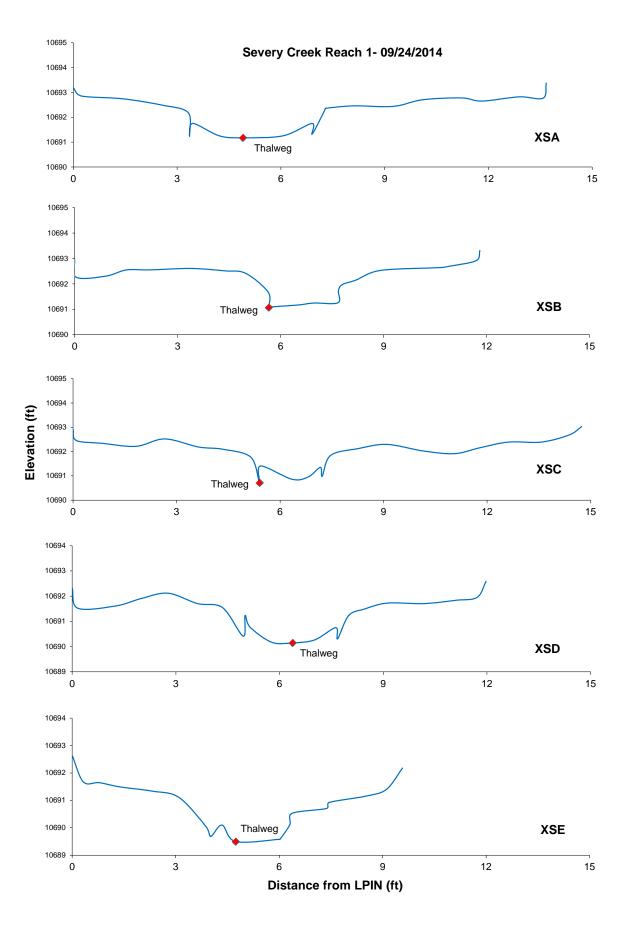



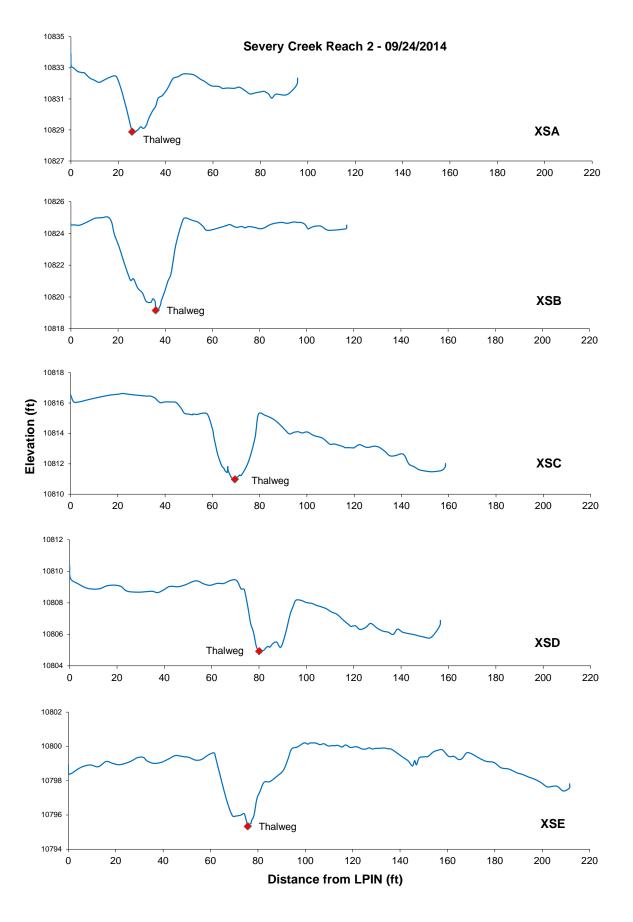


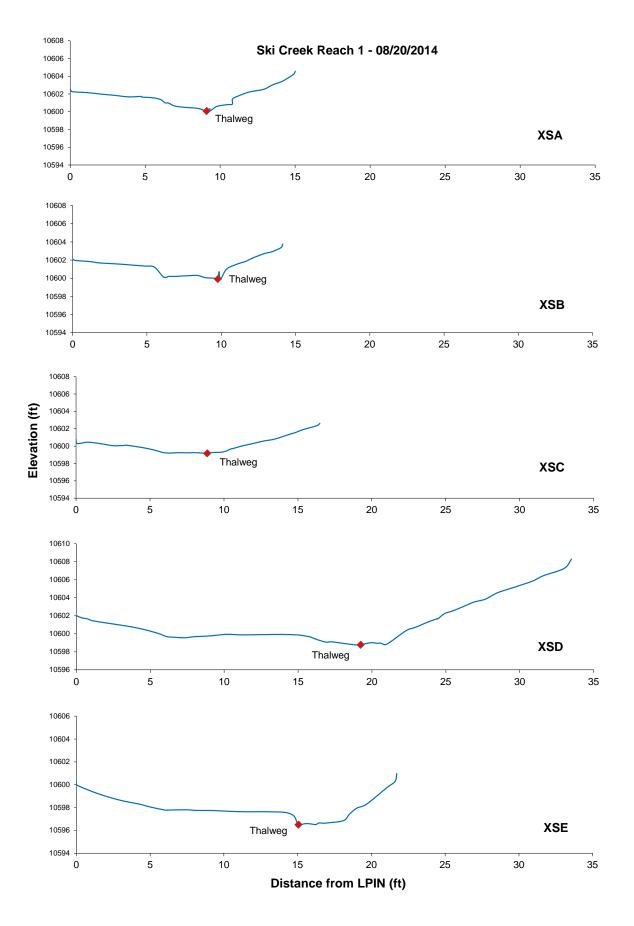



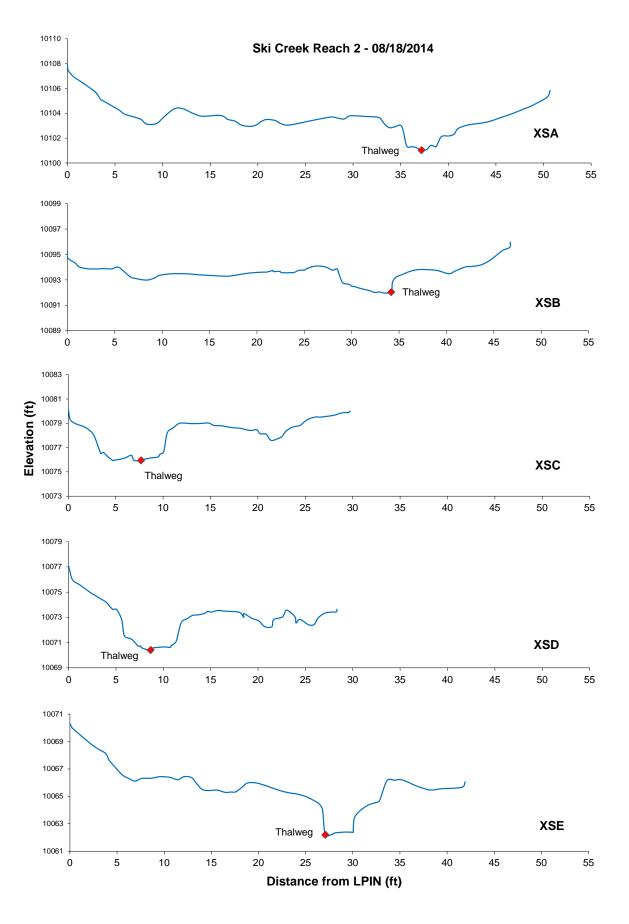


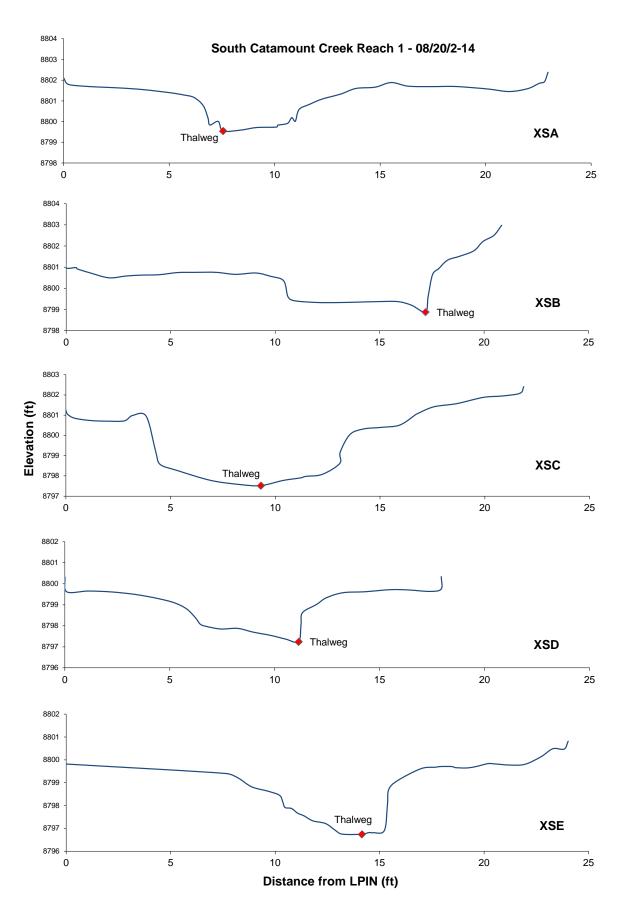



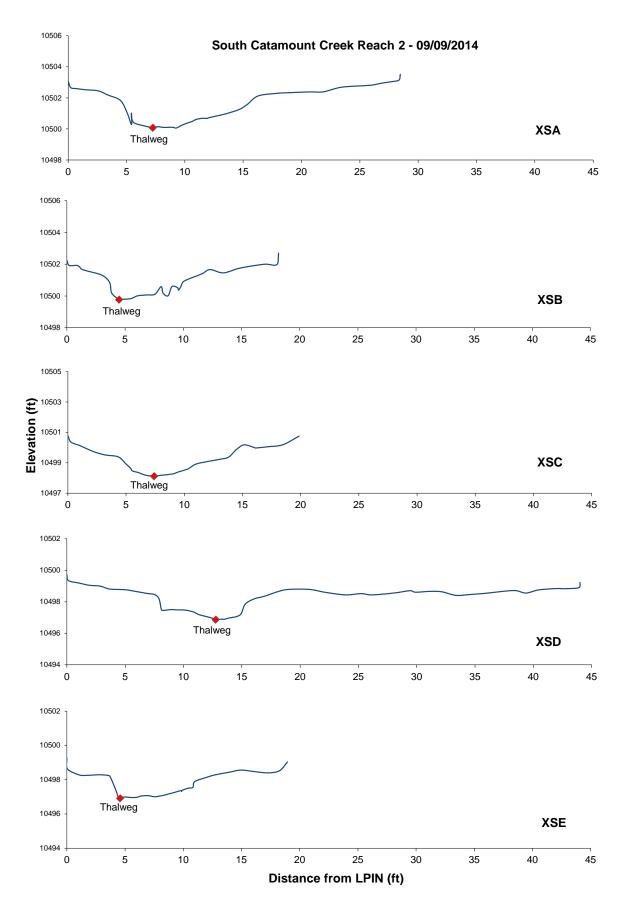



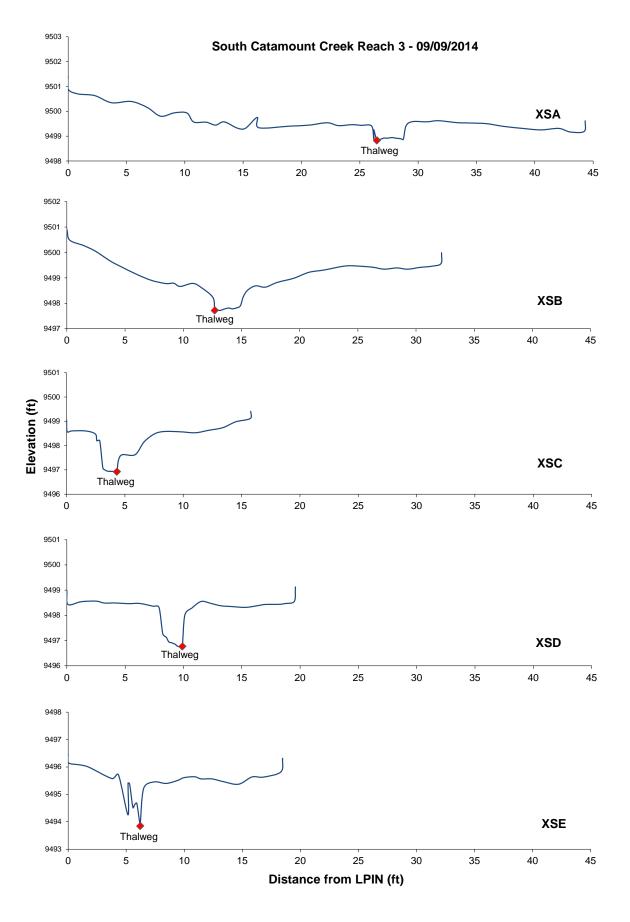


*†Thalweg not surveyed as stream bed is dry.* 

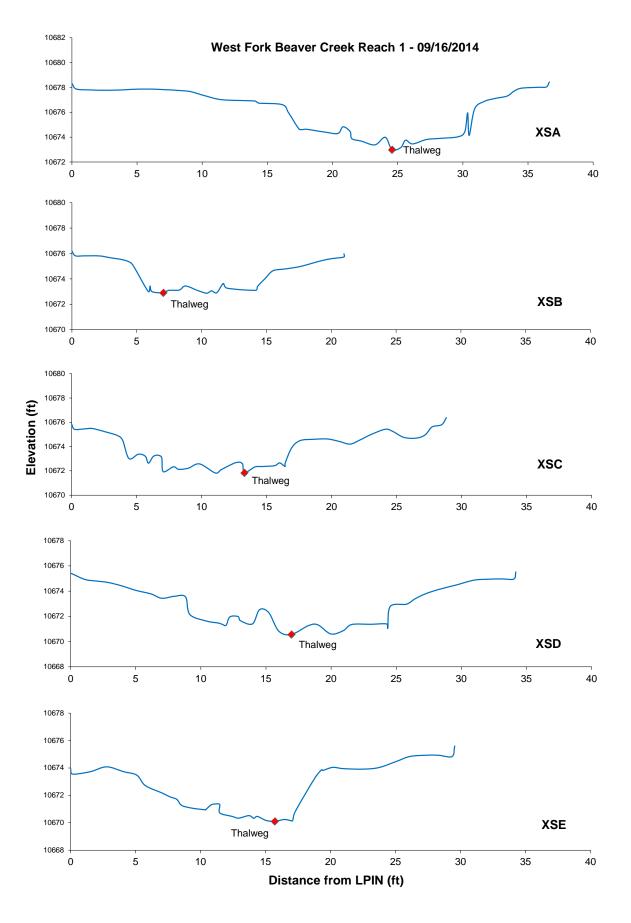


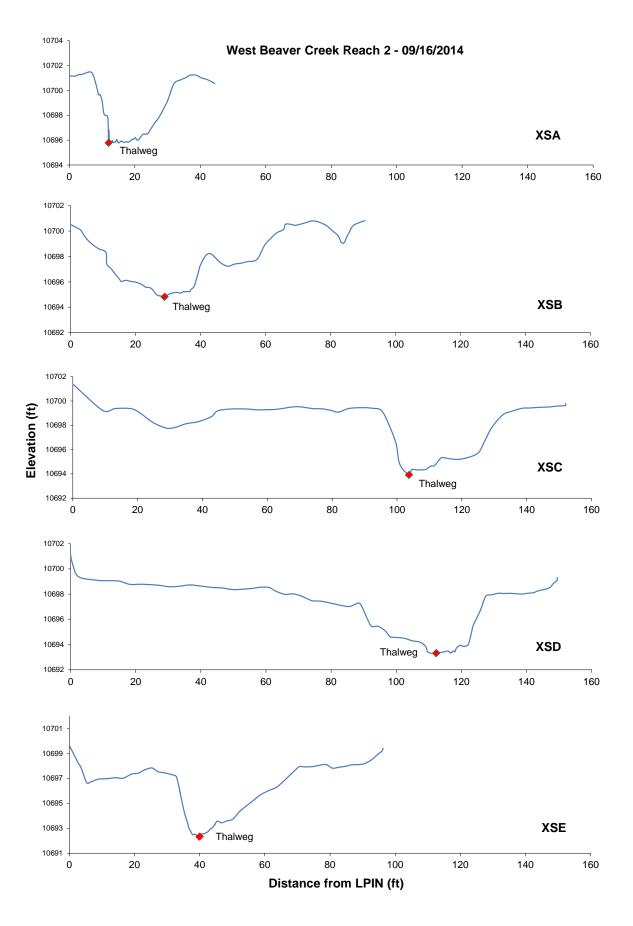


†Thalweg not surveyed as stream bed is dry.














Appendix N

# Stream Pebble Count

# Particle Size Distribution Graphs

2014

COMMENTS:

Particle Size	# in Size	% of	% Finer
(mm)	Class	Total	Than
<0.062	15	5.0%	
0.062 - 0.125	0	0.0%	5%
0.125 - 0.25	11	3.7%	9%
0.255	0	0.0%	9%
0.5 - 1.0	16	5.3%	14%
1 - 2	26	8.7%	23%
2 - 4	33	11.0%	34%
4 - 6	29	9.7%	43%
6 - 8	37	12.3%	56%
8 - 12	30	10.0%	66%
12 - 16	27	9.0%	75%
16 - 24	18	6.0%	81%
24 - 32	14	4.7%	85%
32 - 48	10	3.3%	89%
48 - 64	6	2.0%	91%
64 - 96	13	4.3%	95%
96 - 128	7	2.3%	97%
128 - 192	5	1.7%	99%
192 - 256	2		100%
256 - 384	1		100%
384 - 512			
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	300.00		

STREAM NAME: Pikes Peak Highway - Boehmer Creek Reach 1 BHMR1 ID NUMBER: 9/18/2014 DATE: Karlsson, VonLoh CREW: **Particle Size** D15 D35 D50 D84 D95 Lpart Distribution (mm) 1.083 4.230 29.475 96.000 270.0 7.009 **Cumulative Particle Size Distribution** Silt/Clay Sand Gravel Cobble Boulder 100% 90% 80% 70% Percent Finer Than 60% 50% ľ 40% 30% 20% 10% 0% -0.01 0.1 1 10 100 1000 10000

Particle Size (mm)

COMMENTS:

0.01

0.1

Particle Size	# in Size	% of	% Finer
(mm)	Class	Total	Than
<0.062	20	6.7%	
0.062 - 0.125	0	0.0%	7%
0.125 - 0.25	9	3.0%	10%
0.255	0	0.0%	10%
0.5 - 1.0	17	5.7%	15%
1 - 2	20	6.7%	22%
2 - 4	38	12.7%	35%
4 - 6	22	7.3%	42%
6 - 8	35	11.7%	54%
8 - 12	20	6.7%	60%
12 - 16	19	6.3%	67%
16 - 24	21	7.0%	74%
24 - 32	18	6.0%	80%
32 - 48	12	4.0%	84%
48 - 64	5	1.7%	85%
64 - 96	18	6.0%	91%
96 - 128	11	3.7%	95%
128 - 192	8	2.7%	98%
192 - 256	3		99%
256 - 384	3		100%
384 - 512	1		100%
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	300.00		

^{Pike's} Peak Highway - Boehmer Creek Reach 2 STREAM NAME: BHMR2 ID NUMBER: 9/18/2014 DATE: CREW: Karlsson, VonLoh **Particle Size** D15 D35 D50 D84 D95 Lpart Distribution (mm) 0.960 4.074 7.308 50.843 128.000 410.0 **Cumulative Particle Size Distribution** Silt/Clay Sand Gravel Cobble Boulder 100% 90% 80% 70% Percent Finer Than 60% 50% Ι 40% 30% 20% 10% 0% -

10

Particle Size (mm)

100

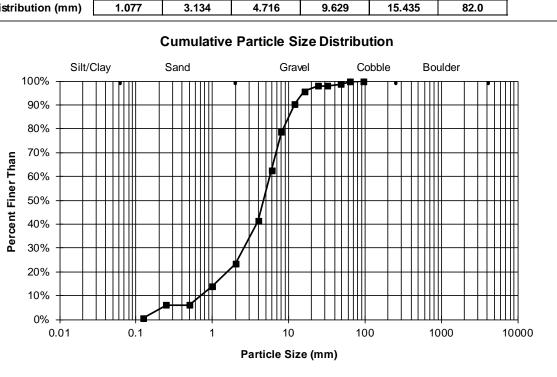
1000

10000

1

COMMENTS:

Particle Size	# in Size	% of	% Finer
(mm)	Class	Total	Than
<0.062	4	1.3%	
0.062 - 0.125	0	0.0%	1%
0.125 - 0.25	11	3.7%	5%
0.255	0	0.0%	5%
0.5 - 1.0	31	10.3%	15%
1 - 2	19	6.3%	22%
2 - 4	31	10.3%	32%
4 - 6	27	9.0%	41%
6 - 8	21	7.0%	48%
8 - 12	33	11.0%	59%
12 - 16	22	7.3%	66%
16 - 24	33	11.0%	77%
24 - 32	11	3.7%	81%
32 - 48	15	5.0%	86%
48 - 64	6	2.0%	88%
64 - 96	15	5.0%	93%
96 - 128	4	1.3%	94%
128 - 192	6	2.0%	96%
192 - 256	10		100%
256 - 384	1		100%
384 - 512			
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	300.00		

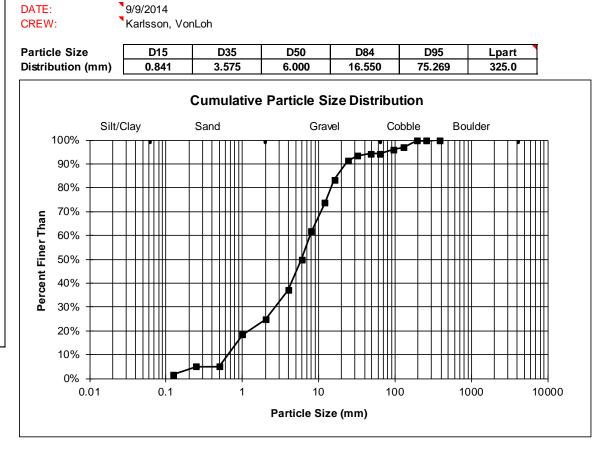

STREAM NAME:Pikes Peak Highway - East Fork Beaver Creek Reach 1ID NUMBER:EBVR1DATE:9/18/2014CREW:Karlsson, VonLoh



COMMENTS:

Particle Size	# in Size	% of	% Finer
(mm)	Class	Total	Than
<0.062	2	0.7%	
0.062 - 0.125	0	0.0%	1%
0.125 - 0.25	16	5.3%	6%
0.255	0	0.0%	6%
0.5 - 1.0	24	8.0%	14%
1 - 2	28	9.3%	23%
2 - 4	54	18.0%	41%
4 - 6	64	21.3%	63%
6 - 8	48	16.0%	79%
8 - 12	35	11.7%	90%
12 - 16	16	5.3%	96%
16 - 24	7	2.3%	98%
24 - 32	0	0.0%	98%
32 - 48	2	0.7%	99%
48 - 64	3	1.0%	100%
64 - 96	1	0.3%	100%
96 - 128			
128 - 192			
192 - 256			
256 - 384			
384 - 512			
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	300.00		

^{Pikes} Peak Highway - East Fork Beaver Creek Reach 2 STREAM NAME: EBVR2 ID NUMBER: 9/18/2014 DATE: CREW: Karlsson, VonLoh **Particle Size** D15 D35 D50 D84 D95 Distribution (mm) 1.077 3.134 4.716 9.629

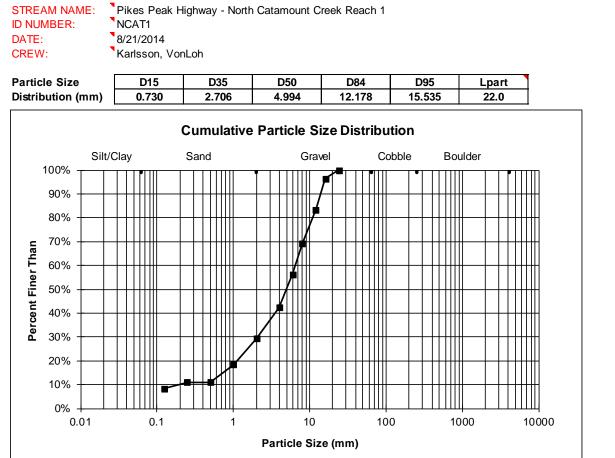



Lpart

#### COMMENTS:

Reach established upstream from confluence with South Catamount Creek because of the transbasin diversion installed in Ski Creek

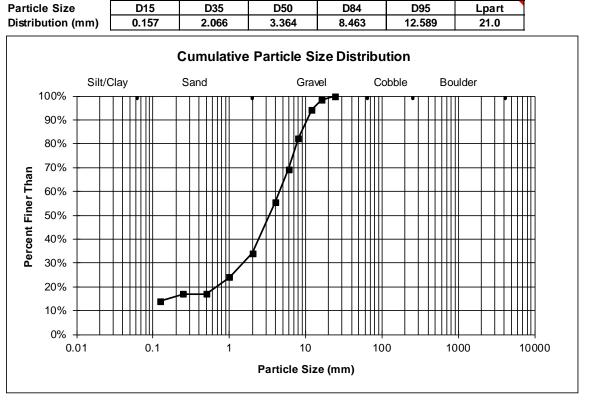
STREAM NAME: Pikes Peak Highway - Glen Cove Creek Reach 1 ID NUMBER: GLEN1




Particle Size	# in Size	% of	% Finer
(mm)	Class	Total	Than
<0.062	5	1.7%	
0.062 - 0.125	0	0.0%	2%
0.125 - 0.25	10	3.3%	5%
0.255	0	0.0%	5%
0.5 - 1.0	40	13.3%	18%
1 - 2	19	6.3%	25%
2 - 4	37	12.3%	37%
4 - 6	39	13.0%	50%
6 - 8	35	11.7%	62%
8 - 12	36	12.0%	74%
12 - 16	29	9.7%	83%
16 - 24	24	8.0%	91%
24 - 32	6	2.0%	93%
32 - 48	3	1.0%	94%
48 - 64	0	0.0%	94%
64 - 96	5	1.7%	96%
96 - 128	3	1.0%	97%
128 - 192	8	2.7%	100%
192 - 256	0	0.0%	100%
256 - 384	1	0.3%	100%
384 - 512			
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	300.00		

COMMENTS:

ERO Study Site


Particle Size	# in Size	% of	% Finer
(mm)	Class	Total	Than
<0.062	25	8.3%	
0.062 - 0.125	0	0.0%	8%
0.125 - 0.25	8	2.7%	11%
0.255	0	0.0%	11%
0.5 - 1.0	22	7.3%	18%
1 - 2	33	11.0%	29%
2 - 4	39	13.0%	42%
4 - 6	42	14.0%	56%
6 - 8	39	13.0%	69%
8 - 12	42	14.0%	83%
12 - 16	39	13.0%	96%
16 - 24	11	3.7%	100%
24 - 32			
32 - 48			
48 - 64			
64 - 96			
96 - 128			
128 - 192			
192 - 256			
256 - 384			
384 - 512			
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	300.00		



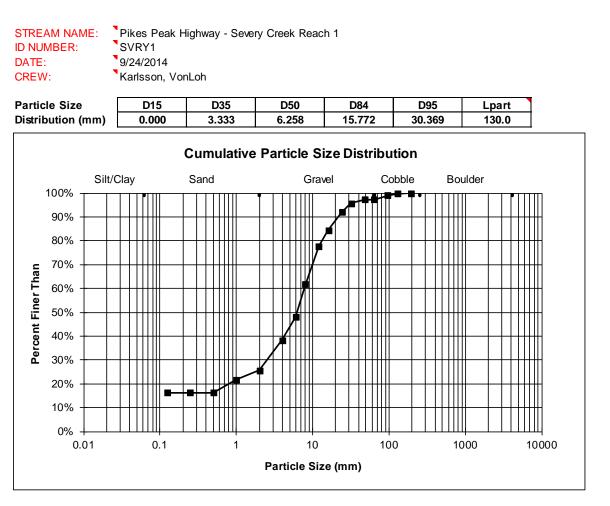
COMMENTS:

Particle Size	# in Size	% of	% Finer
(mm)	Class	Total	Than
<0.062	42	14.0%	
0.062 - 0.125	0	0.0%	14%
0.125 - 0.25	9	3.0%	17%
0.255	0	0.0%	17%
0.5 - 1.0	21	7.0%	24%
1 - 2	30	10.0%	34%
2 - 4	64	21.3%	55%
4 - 6	42	14.0%	69%
6 - 8	39	13.0%	82%
8 - 12	36	12.0%	94%
12 - 16	12	4.0%	98%
16 - 24	5	1.7%	100%
24 - 32			
32 - 48			
48 - 64			
64 - 96			
96 - 128			
128 - 192			
192 - 256			
256 - 384			
384 - 512			
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	300.00		

STREAM NAME:Pikes Peak Highway - North Catamount Creek Reach 2ID NUMBER:NCAT2DATE:8/21/2014CREW:Karlsson, VonLohParticle SizeD15D35D50D84

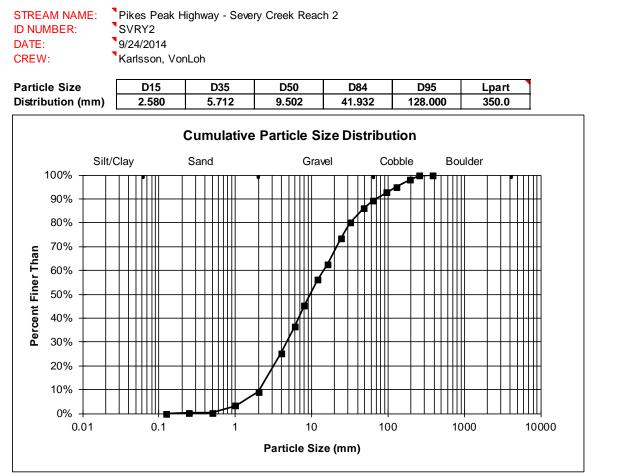


COMMENTS:


Particle Size	# in Size	% of	% Finer
(mm)	Class	Total	Than
< 0.062	27	9.0%	
0.062 - 0.125	0	0.0%	9%
0.125 - 0.25	4	1.3%	10%
0.255	0	0.0%	10%
0.5 - 1.0	23	7.7%	18%
1 - 2	12	4.0%	22%
2 - 4	20	6.7%	29%
4 - 6	25	8.3%	37%
6 - 8	32	10.7%	48%
8 - 12	37	12.3%	60%
12 - 16	39	13.0%	73%
16 - 24	38	12.7%	86%
24 - 32	24	8.0%	94%
32 - 48	10	3.3%	97%
48 - 64	3	1.0%	98%
64 - 96	0	0.0%	98%
96 - 128	3	1.0%	99%
128 - 192	3	1.0%	100%
192 - 256			
256 - 384			
384 - 512			
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	300.00		

[•] Pikes Peak Highway - Oil Creek Reach 1 STREAM NAME: OILC1 ID NUMBER: 9/3/2014 DATE: Karlsson, VonLoh CREW: Particle Size D15 D35 D50 D84 D95 Lpart Distribution (mm) 0.762 5.444 8.638 22.753 37.635 190.0 **Cumulative Particle Size Distribution** Silt/Clay Sand Gravel Cobble Boulder 100% 90% 80% 70% Percent Finer Than 60% 50% 40% X 30% 20% 10% 0% -0.01 10 100 1000 10000 0.1 1 Particle Size (mm)

COMMENTS:

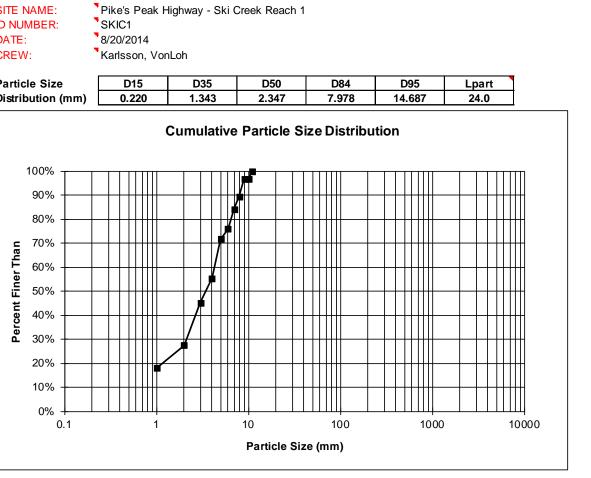

ERO Reach in wetland

Particle Size	# in Size	% of	% Finer
(mm)	Class	Total	Than
<0.062	49	16.3%	
0.062 - 0.125	0	0.0%	16%
0.125 - 0.25	0	0.0%	16%
0.255	0	0.0%	16%
0.5 - 1.0	16	5.3%	22%
1 - 2	12	4.0%	26%
2 - 4	38	12.7%	38%
4 - 6	29	9.7%	48%
6 - 8	41	13.7%	62%
8 - 12	48	16.0%	78%
12 - 16	20	6.7%	84%
16 - 24	23	7.7%	92%
24 - 32	11	3.7%	96%
32 - 48	5	1.7%	97%
48 - 64	0	0.0%	97%
64 - 96	5	1.7%	99%
96 - 128	2	0.7%	100%
128 - 192	1	0.3%	100%
192 - 256			
256 - 384			
384 - 512			
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	300.00		



COMMENTS:

Particle Size	# in Size	% of	% Finer
(mm)	Class	Total	Than
<0.062	0	0.0%	
0.062 - 0.125	0	0.0%	0%
0.125 - 0.25	1	0.3%	0%
0.255	0	0.0%	0%
0.5 - 1.0	9	3.0%	3%
1 - 2	17	5.7%	9%
2 - 4	49	16.3%	25%
4 - 6	33	11.0%	36%
6 - 8	27	9.0%	45%
8 - 12	33	11.0%	56%
12 - 16	18	6.0%	62%
16 - 24	33	11.0%	73%
24 - 32	20	6.7%	80%
32 - 48	18	6.0%	86%
48 - 64	10	3.3%	89%
64 - 96	10	3.3%	93%
96 - 128	7	2.3%	95%
128 - 192	9	3.0%	98%
192 - 256	5		100%
256 - 384	1		100%
384 - 512			
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	300.00		



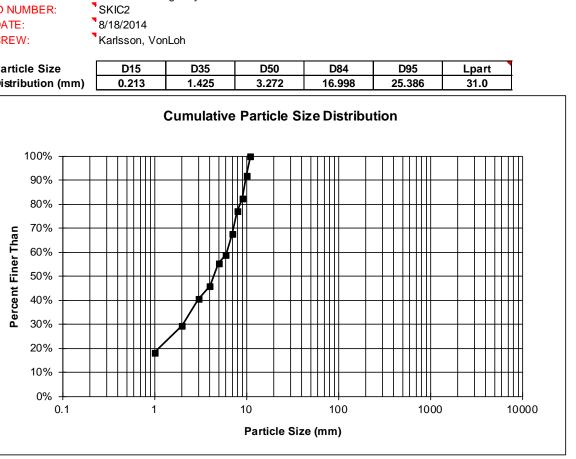

## Sieve Analysis Worksheet



Bar Sample taken 10' downstream from Cross Section D

1	Size Finer	Wt. on	% of Total	0/ Finar			
			% 01 10181				
	Than (mm)	Sieve		Than			
	Pan	83.40	18.1%		SIT		
	0.5	43.60	9.4%	18.1%	ID N		
	1.0	81.40	17.6%	27.5%	DA		
	2.0	47.30	10.2%	45.1%	CR		
	2.8	75.50	16.3%	55.4%			
	4.0	19.30	4.2%	71.7%	Par		
	5.6	37.70	8.2%	75.9%	Dis		
	8.0	24.90	5.4%	84.1%			
	11.2	33.70	7.3%	89.5%			
	16.0	0.00	0.0%	96.8%			
	22.4	15.00	3.2%	96.8%			
	24.0	*		100.0%			
	45.0			-			
	64.0						
	90						
	128						
	181						
	256						
	362						
	512						
	1024						
	2048						
	4096						
	Total	461.80					
	*Measured va	alue of the	e largest part	ticle in			
	the sample and not a sieve weight						

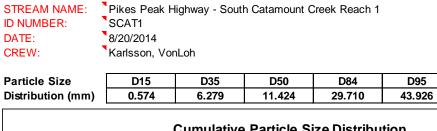


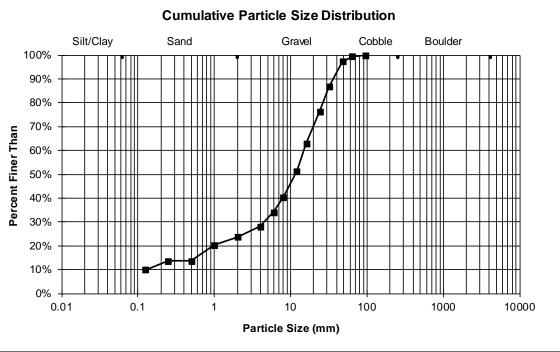

## Sieve Analysis Worksheet



Bar Sample taken 6' upstream from Cross Section A left bank

[•] Pikes Peak Highway - Ski Creek Reach 2


Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	139.60	18.2%		SITE	NAME:
0.5	85.60	11.2%	18.2%	ID NU	MBER:
1.0	84.90	11.1%	29.3%	DATE	:
2.0	42.10	5.5%	40.4%	CREV	V:
2.8	72.00	9.4%	45.9%		
4.0	26.90	3.5%	55.3%	Partic	cle Size
5.6	66.70	8.7%	58.8%	Distri	bution (
8.0	72.20	9.4%	67.5%		
11.2	41.30	5.4%	76.9%		
16.0	73.60	9.6%	82.3%		
22.4	62.40	8.1%	91.9%		
31.0	*		100.0%		100% -
45.0			-		000/
64.0					90% -
90					80% -
128					0070
181				E E	70% -
256				Finer Than	c00/
362				er '	60% -
512				, Č	50% -
1024				L F	
2048				Gel	40% -
4096				Percent	30% -
				<b>–</b>	30% -
Total	767.30				20% -
*Measured va		• •	icle in		
the sample a	nd not a s	sieve weight			10% -




COMMENTS:

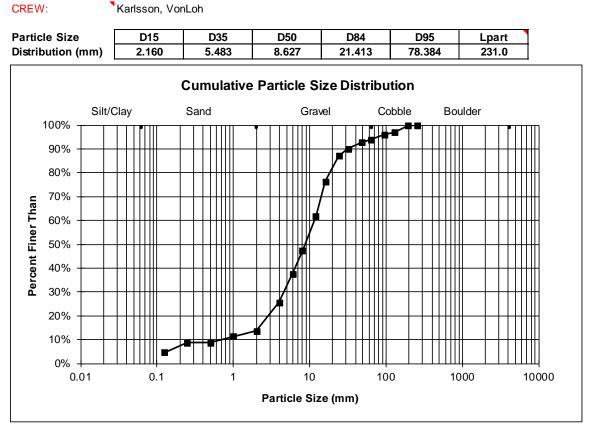
ERO Study Site. Located 1500 ft upstream from parking area.

	# in Size	% of	% Finer
(mm)	Class	Total	Than
< 0.062	30	10.0%	
0.062 - 0.125	0	0.0%	10%
0.125 - 0.25	11	3.7%	14%
0.255	0	0.0%	14%
0.5 - 1.0	20	6.7%	20%
1 - 2	10	3.3%	24%
2 - 4	13	4.3%	28%
4 - 6	18	6.0%	34%
6 - 8	19	6.3%	40%
8 - 12	33	11.0%	51%
12 - 16	35	11.7%	63%
16 - 24	40	13.3%	76%
24 - 32	31	10.3%	87%
32 - 48	32	10.7%	97%
48 - 64	6	2.0%	99%
64 - 96	2	0.7%	100%
96 - 128			
128 - 192			
192 - 256			
256 - 384			
384 - 512			
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	300.00		





Lpart


83.0

COMMENTS:

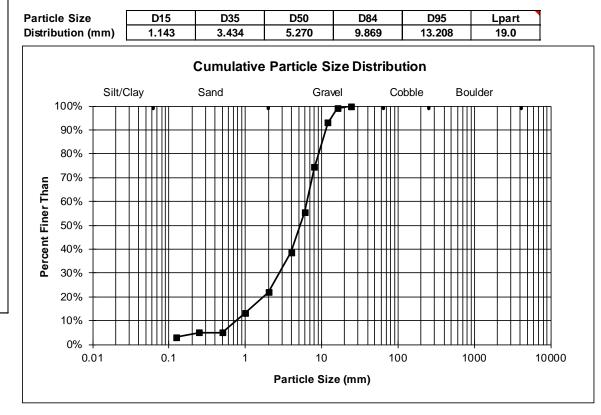
Particle Size	# in Size	% of	% Finer
(mm)	Class	Total	Than
<0.062	14	4.7%	
0.062 - 0.125	0	0.0%	5%
0.125 - 0.25	12	4.0%	9%
0.255	0	0.0%	9%
0.5 - 1.0	8	2.7%	11%
1 - 2	7	2.3%	14%
2 - 4	36	12.0%	26%
4 - 6	36	12.0%	38%
6 - 8	29	9.7%	47%
8 - 12	43	14.3%	62%
12 - 16	44	14.7%	76%
16 - 24	32	10.7%	87%
24 - 32	9	3.0%	90%
32 - 48	8	2.7%	93%
48 - 64	4	1.3%	94%
64 - 96	6	2.0%	96%
96 - 128	3	1.0%	97%
128 - 192	8	2.7%	100%
192 - 256	1	0.3%	100%
256 - 384			
384 - 512			
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	300.00		

Pikes Peak Highway - South Catamount Creek Reach 2 STREAM NAME: SCAT2 ID NUMBER: 9/9/2014 DATE:

Karlsson, VonLoh



Particle Size # in Size

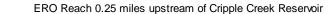

#### COMMENTS:

CREW:

Reach established upstream from confluence with Glen Cove Creek because of the transbasin diversion installed in Ski Creek

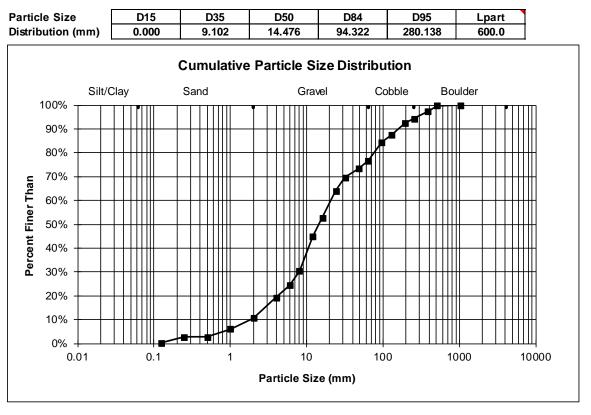
STREAM NAME:	Pikes Peak Highway - South Catamount Creek Reach 3
ID NUMBER:	SCAT3
DATE:	9/9/2014

Karlsson, VonLoh




(mm) Class Total Than < 0.062 9 3.0% 0.062 - 0.125 0 0.0% 3% 0.125 - 0.25 6 2.0% 5% 0.25 - .5 0 0.0% 5% 0.5 - 1.0 25 8.3% 13% 1 - 2 8.7% 22% 26 2 - 4 16.7% 39% 50 4 - 6 50 16.7% 55% 6 - 8 57 19.0% 74% 8 - 12 56 18.7% 93% 12 - 16 18 6.0% 99% 16 - 24 3 1.0% 100% 24 - 32 32 - 48 48 - 64 64 - 96 96 - 128 128 - 192 192 - 256 256 - 384 384 - 512 512 - 1024 1024 - 2048 2044 - 4096 Total 300.00

% of

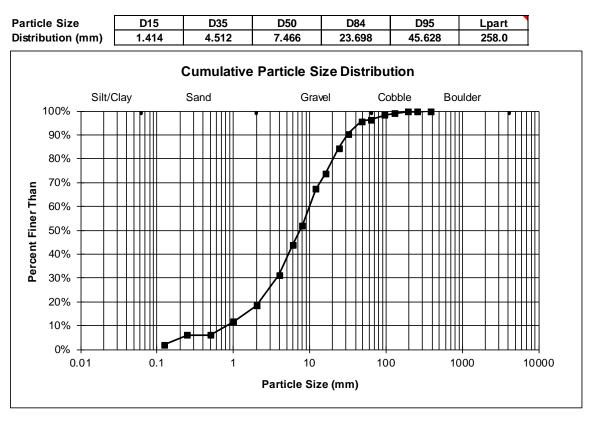

% Finer

COMMENTS:



Particle Size	# in Size	% of	% Finer
(mm)	Class	Total	Than
<0.062	1	0.3%	
0.062 - 0.125	0	0.0%	0%
0.125 - 0.25	7	2.3%	3%
0.255	0	0.0%	3%
0.5 - 1.0	10	3.3%	6%
1 - 2	14	4.7%	11%
2 - 4	26	8.7%	19%
4 - 6	15	5.0%	24%
6 - 8	18	6.0%	30%
8 - 12	44	14.7%	45%
12 - 16	23	7.7%	53%
16 - 24	34	11.3%	64%
24 - 32	17	5.7%	70%
32 - 48	11	3.7%	73%
48 - 64	10	3.3%	77%
64 - 96	23	7.7%	84%
96 - 128	9	3.0%	87%
128 - 192	15	5.0%	92%
192 - 256	6		94%
256 - 384	9		97%
384 - 512	7		100%
512 - 1024	1		100%
1024 - 2048			
2044 - 4096			
Total	300.00		

STREAM NAME:Pikes Peak Highway - West Fork Beaver Creek Reach 1ID NUMBER:WBVR1DATE:9/16/2014CREW:Karlsson, VonLoh




#### Pebble Count Worksheet

COMMENTS:

Particle Size		% of	% Finer
(mm)	Class	Total	Than
<0.062	6	2.0%	
0.062 - 0.125	0	0.0%	2%
0.125 - 0.25	12	4.0%	6%
0.255	0	0.0%	6%
0.5 - 1.0	17	5.7%	12%
1 - 2	20	6.7%	18%
2 - 4	39	13.0%	31%
4 - 6	37	12.3%	44%
6 - 8	25	8.3%	52%
8 - 12	46	15.3%	67%
12 - 16	19	6.3%	74%
16 - 24	32	10.7%	84%
24 - 32	18	6.0%	90%
32 - 48	16	5.3%	96%
48 - 64	2	0.7%	96%
64 - 96	6	2.0%	98%
96 - 128	2	0.7%	99%
128 - 192	2	0.7%	100%
192 - 256	0		100%
256 - 384	1		100%
384 - 512			
512 - 1024			
1024 - 2048			
2044 - 4096			
Total	300.00		



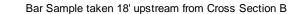


Appendix O

# Stream Bar Sample

# Particle Size Distribution Summary and Graphs

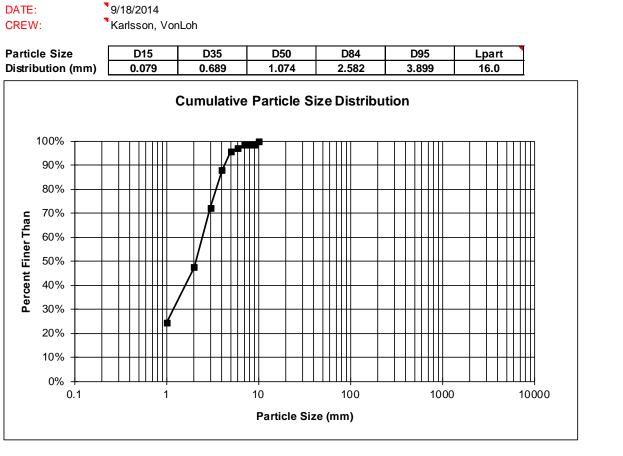
Site Name	Site ID	Date	Particle Size Distribution (mm)–Grab Sample					
Site Name	Sile ID	Dale	D15	D35	D50	D84	D95	D100
Boehmer Creek Reach 1	BHMR1	9/18/2014	0.034	0.509	0.630	1.063	1.681	5.0
Boehmer Creek Reach 2	BHMR2	9/18/2014	0.079	0.689	1.074	2.582	3.899	16.0
East Fork Beaver Creek Reach 1	EBVR1	9/18/2014	1.581	3.192	3.989	8.846	18.270	25.0
East Fork Beaver Creek Reach 2	EBVR2	9/18/2014	2.851	3.785	5.325	8.248	10.755	12.0
Glen Cove Creek Reach 1	GLEN1	9/9/2014	1.005	2.758	4.349	11.398	16.831	20.0
North Catamount Creek Reach 1	NCAT1	8/21/2014	0.654	1.380	2.095	4.773	7.351	13.0
North Catamount Creek Reach 2	NCAT2	8/21/2014	1.285	3.680	6.151	11.512	16.279	20.0
Oil Creek Reach 1	OILC1	9/3/2014	2.541	4.926	6.849	14.713	23.651	32.0
Severy Creek Reach 1	SVRY1	9/24/2014	0.510	1.393	2.361	6.561	10.289	13.0
Severy Creek Reach 2	SVRY2	9/24/2014	0.723	2.155	3.471	13.607	24.764	32.0
Ski Creek Reach 1	SKIC1	8/20/2014	0.220	1.343	2.347	7.978	14.687	24.0
Ski Creek Reach 2	SKIC2	8/18/2014	0.213	1.425	3.272	16.998	25.386	31.0
South Catamount Creek Reach 1	SCAT1	8/20/2014	0.084	0.995	3.794	15.505	23.141	29.0
South Catamount Creek Reach 2	SCAT2	9/9/2014	1.685	6.889	11.105	19.684	22.381	32.0
South Catamount Creek Reach 3	SCAT3	9/9/2014	20.890	7.509	8.268	9.435	11.899	12.0
West Fork Beaver Creek Reach 1	WBVR1	9/16/2014	0.806	2.805	3.815	10.514	14.634	21.0
West Fork Beaver Creek Reach 2	WBVR2	9/16/2014	0.538	1.858	3.124	7.886	15.839	19.0


Summary of Stream Channel Particle Size Distribution from Sieve Analysis of Bar Samples, Pikes Peak 2014

# COMMENTS: ERO Reach on Colorado Springs Utilities South Slope Watershed

Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	266.70	33.7%		SITE N	NAME
0.5	386.00	48.8%	33.7%	ID NU	MBE
1.0	131.60	16.6%	82.5%	DATE	:
2.0	4.60	0.6%	99.2%	CREW	<b>/</b> :
2.8	1.30	0.2%	99.7%		
4.0	0.70	0.1%	99.9%	Partic	le Si
5.0	*		100.0%	Distrik	outio
8.0			-		
11.2					
16.0					
22.4					
29.0					100%
45.0			-		000
64.0					90%
90					80%
128					
181				L L	70%
256				Th	60%
362				e.	00%
512				Li I	50%
1024				E E	
2048				e	40%
4096				Percent Finer Than	30%
					30 /
Total	790.90				20%
*Measured va			ticle in		
the sample a	nd not a s	sieve weight			10%

1E: [•] Pikes Peak Highway - Boehmer Creek Reach 1 ER: BHMR1 9/18/2014 Karlsson, VonLoh D15 D35 D50 D84 Size D95 Lpart 0.034 on (mm) 0.509 0.630 1.063 1.681 5.0 **Cumulative Particle Size Distribution** % % % % % % % % % % 0% -0.1 10 100 1000 1 10000 Particle Size (mm)

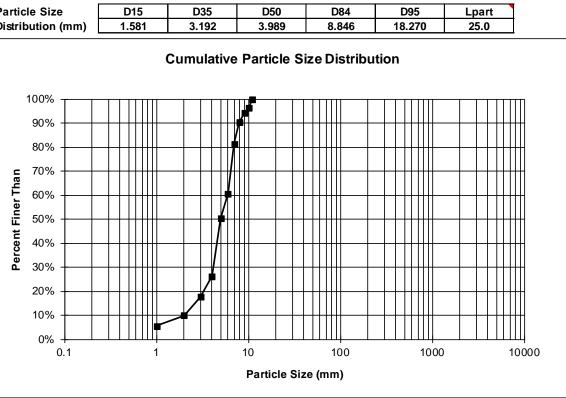




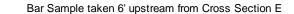

[•] Pikes Peak Highway - Boehmer Creek Reach 2

BHMR2

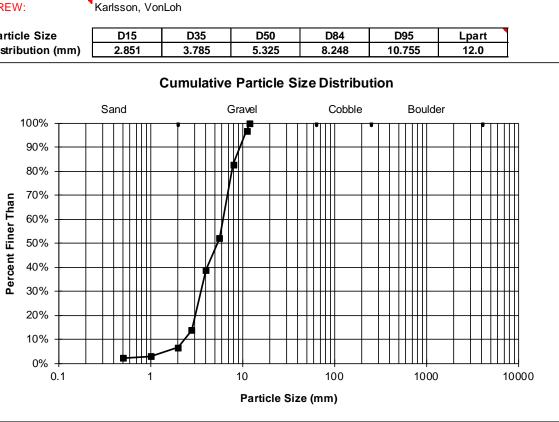
Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	139.90	24.3%		SITE N	NAME:
0.5	133.90	23.2%	24.3%	ID NU	MBER:
1.0	142.90	24.8%	47.5%	DATE	:
2.0	89.40	15.5%	72.2%	CREW	/:
2.8	45.20	7.8%	87.7%		
4.0	9.30	1.6%	95.6%	Partic	le Size
5.6	6.60	1.1%	97.2%	Distrib	oution (
8.0	1.60	0.3%	98.3%		
11.2	0.00	0.0%	98.6%		
16.0	8.10	1.4%	98.6%		
16.0	*		100.0%		
29.0			-		100% -
45.0					90% -
64.0					90 % -
90					80% -
128					
181				an	70% -
256				μË	60% -
362				er	00 /0
512				Fin	50% -
1024				Ĕ	10.07
2048				ခ်	40% -
4096				Percent Finer Than	30% -
Total	576.90		tiolo in		20% -
*Measured va the sample a		10% -			



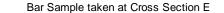



Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	31.70	5.5%		SITE N	NAME:
0.5	25.70	4.4%	5.5%	ID NUI	MBER:
1.0	44.30	7.7%	9.9%	DATE:	
2.0	49.60	8.6%	17.6%	CREW	/:
2.8	138.70	24.0%	26.2%		
4.0	60.70	10.5%	50.2%	Partic	le Size
5.6	119.20	20.6%	60.7%	Distrik	oution (
8.0	51.70	8.9%	81.3%		
11.2	22.50	3.9%	90.3%		
16.0	12.20	2.1%	94.2%		
22.4	21.50	3.7%	96.3%		
25.0	*		100.0%		100% -
45.0			-		000/
64.0					90% -
90					80% -
128					
181				L L L	70% -
256				Finer Than	60% -
362					00 % -
512				L	50% -
1024				t t	
2048				ē	40% -
4096				Percent	30% -
	577.80			-	50 /0
Total		20% -			
*Measured v		100/			
the sample a		10% -			


Pikes Peak Highway - East Fork Beaver Creek Reach EBVR1 9/18/2014 Karlsson, VonLoh

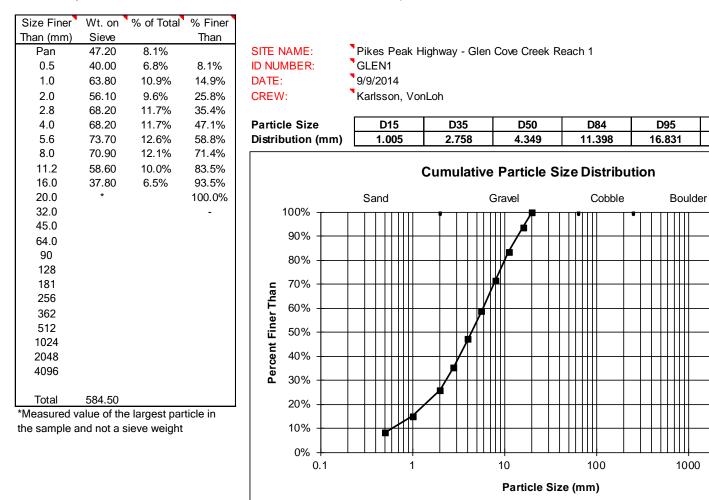




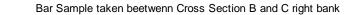



Size Finer	Wt. on	% of Total	% Finer						
Than (mm)	Sieve		Than						
Pan	8.20	2.2%		SITE	NAME:	Pikes Peak F	lighway - East	Fork Beaver C	Creek Reach 2
0.5	2.50	0.7%	2.2%	ID NU	JMBER:	EBVR2			
1.0	13.90	3.7%	2.9%	DATE	:	9/18/2014			
2.0	26.70	7.1%	6.6%	CREV	N:	Karlsson, Vo	nLoh		
2.8	94.00	25.2%	13.7%						
4.0	48.80	13.1%	38.9%	Partie	cle Size	D15	D35	D50	D84
5.6	115.00	30.8%	52.0%	Distri	bution (mm)	2.851	3.785	5.325	8.248
8.0	52.10	13.9%	82.7%						
11.2	12.40	3.3%	96.7%				Cumulative	Particle Si	ize Distribut
12.0	*		100.0%						
22.4			-			Sand	(	Gravel	Cobble
32.0					100%				
45.0					000/				
64.0					90%				
90					80%				
128									
181				L L	70%				
256				Thá	60%		<i> </i>		
362				er.	00 %				
512				Lin	50%				
1024				- E					
2048				e	40%				
4096				Percent Finer Than	30%				
				1 "	50 /8				
Total	373.60				20%		<u> </u>		
*Measured v		• •			100/		🖌		
the sample a	nd not a	sieve weight			10% +				
					0%	<u>││</u> ∳┼┼∳∕			
					0.1	1		10	100









Lpart

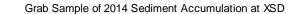
20.0

10000





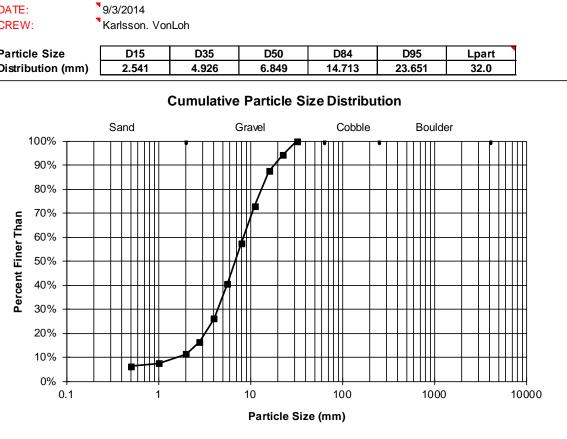



Size Finer		% of Total	% Finer								
Than (mm)	Sieve	0.00/	Than				0-1				
Pan	38.40	9.6%	0.00/	SITE NAME:	Pikes Peak H NCAT1	ighway - Nortr	Catamount C	Treek Reach 1			
0.5	55.00	13.8%	9.6%								
1.0	98.90	24.8%	23.4%	DATE:	8/21/2014						
2.0	49.80	12.5%	48.3%	CREW:	Karlsson, Von	Loh					
2.8	64.70	16.2%	60.8%								
4.0	52.90	13.3%	77.0%	Particle Size	D15	D35	D50	D84	D95	Lpart	
5.6	24.50	6.2%	90.3%	Distribution (mm)	0.654	1.380	2.095	4.773	7.351	13.0	
8.0	11.60	2.9%	96.5%								
9.0	2.50		99.4%		(	Cumulative	Particle S	Size Distribu	tion		
13.0	*		100.0%								
22.4			-	40000	Sand	(	Gravel	Cobble	Boulder		
32.0				100%					•		
45.0				90%			TILLI				
64.0											
90				80%	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	<u> </u>		+++++++			
128				700/							
181				<b>G</b> 70%							
256				Ĕ 60% —		, ∎					
362				Jei		/					
512 1024				<b>5</b> 0%	$\left  \right  \left  \left  \right  \left  \right  \left  \right  \left  \left  \left  \right  \left  \right  \left  \left $	<b>_ ∦</b>		++++++	++++++++	<del></del>	
2048				<b>t</b> 40%		/					
4096				8 40 /0		/					
4090				<b>å</b> 30% –	/			+++++++			
Total	398.30										
*Measured v		e largest par	ticle in	20%						+++++++++++++++++++++++++++++++++++++++	
the sample a				10%							
		sieve worgin			▏▕▕▕▕▔▕▕▌						
				0% +							I
				0.1	1		10	100	1000	100	000
							Particle Si	ze (mm)			



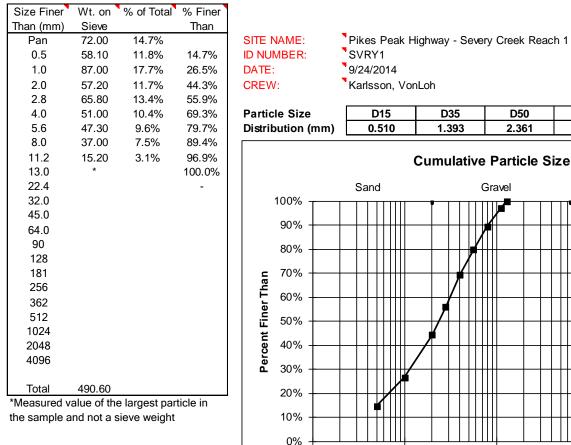


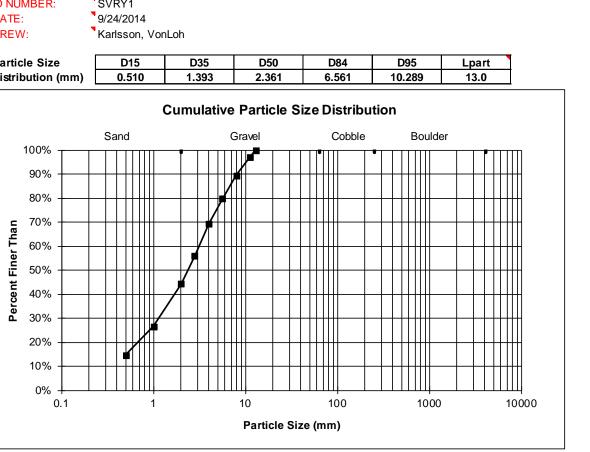
Size Finer		% of Total									
Than (mm)	Sieve		Than		-						
Pan	36.70	9.6%			Pikes Peak Hi	ghway - North	Catamount C	creek Reach 2			
0.5	13.70	3.6%	9.6%		NCAT2						
1.0	19.80	5.2%	13.1%		8/21/2014						
2.0	17.40	4.5%	18.3%	CREW:	Karlsson, Von	Loh					
2.8	61.00	15.9%	22.8%		·						
4.0	25.20	6.6%	38.7%	Particle Size	D15	D35	D50	D84	D95	Lpart	
5.6	68.80	17.9%	45.3%	Distribution (mm)	1.285	3.680	6.151	11.512	16.279	20.0	
8.0	76.40	19.9%	63.2%								
11.2	44.00	11.5%	83.1%		C	Cumulative	Particle S	ize Distribu	tion		
16.0	20.80	5.4%	94.6%								
20.0	*		100.0%		Sand	(	Gravel	Cobble	Boulde		
32.0			-	100%					• • • • • • • • • • • • • • • • • • • •		Π
45.0				90%			🏓				
64.0				90 /0			Z				
90				80%			╢┦┛				H
128											
181				<b>G</b> 70%							Ħ
256				40%							
362						<u>          / / / / / / / / / / / / / / /</u>					
512				50%		<u> </u>					H
1024				t 1001							
2048				a 40%		╶┤╴╎⋰┝┥┤┤┤					Ħ
4096				<b>a</b> 30%		//////					H
Tatal	000.00										
Total	383.80		diala in	20%						+ + + + + + + + + + + + + + + + + + + +	H
*Measured v		• •		10%							
the sample a	nu not a s	sieve weight		10 %							Π
				0%							Ц
				0.1	1		10	100	1000	10	0000
							Particle Siz	ze (mm)			






[•] Pike's Peak Highway - Oil Creek Reach 1


OILC1

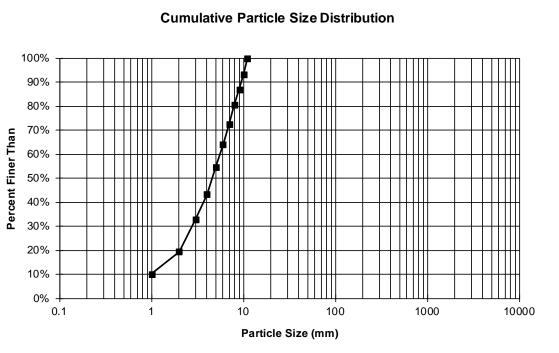

Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	54.80	6.2%		SITE I	NAME:
0.5	11.40	1.3%	6.2%	ID NU	MBER:
1.0	34.10	3.9%	7.5%	DATE	:
2.0	44.50	5.1%	11.4%	CREV	V:
2.8	83.80	9.5%	16.5%		
4.0	128.20	14.6%	26.0%	Partic	le Size
5.6	147.30	16.7%	40.6%	Distril	bution (
8.0	137.50	15.6%	57.3%		
11.2	127.50	14.5%	72.9%		
16.0	58.90	6.7%	87.4%		
22.4	51.90	5.9%	94.1%		
32.0			100.0%		100% -
45.0					000/
64.0					90% -
90					80% -
128					
181				L L	70% -
256				Τh	60% -
362				e	00 /8 -
512				Finer Than	50% -
1024				t l	
2048				9	40% -
4096				Percent	30% -
	879.90				00 /0
Total		20% -			
*Measured va the sample a		10% -			
















Size Finer	Wt. on	% of Total	% Finer			
Than (mm)	Sieve		Than			
Pan	58.80	10.1%		SIT	TE I	NA
0.5	54.00	9.3%	10.1%	ID	NU	ME
1.0	77.80	13.3%	19.3%	DA	TE	
2.0	61.50	10.5%	32.7%	CR	EΝ	/:
2.8	65.90	11.3%	43.2%			
4.0	55.40	9.5%	54.5%	Ра	rtic	le
5.6	49.40	8.5%	64.0%	Dis	strik	out
8.0	46.30	7.9%	72.4%			
11.2	38.70	6.6%	80.4%			
16.0	35.20	6.0%	87.0%			
22.4	40.60	7.0%	93.0%			
32.0	*		100.0%			10
45.0			-			~
64.0						9
90						8
128						Ŭ
181					S	7
256					Гhа	~
362					er]	6
512					Ľ.	5
1024					Ę	
2048					ē	4
4096					Percent Finer Than	2
					а.	3
Total	583.60					2
*Measured va		0 1	ticle in			
the sample a			1			

[•] Pike's Peak Highway - Severy Creek Reach 2 TE NAME: SVRY2 NUMBER: 9/20/2012 Karlsson, VonLoh article Size D15 D35 D50 D84 stribution (mm) 0.723 2.155 3.471 13.607



D95

24.764

Lpart

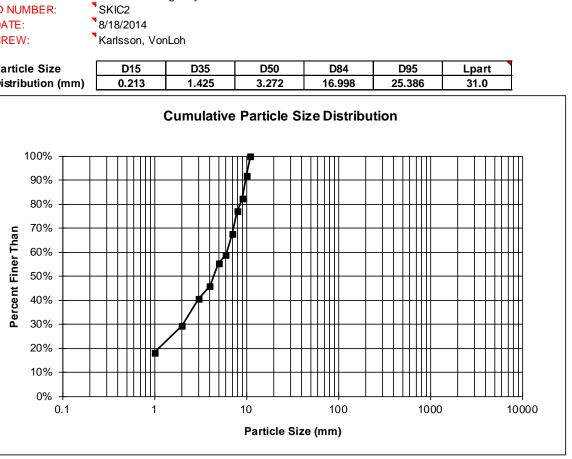
32.0





[•] Pike's Peak Highway - Ski Creek Reach 1

Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	83.40	18.1%		SITE I	NAME:
0.5	43.60	9.4%	18.1%	ID NU	MBER:
1.0	81.40	17.6%	27.5%	DATE	:
2.0	47.30	10.2%	45.1%	CREV	V:
2.8	75.50	16.3%	55.4%		
4.0	19.30	4.2%	71.7%	Partic	le Size
5.6	37.70	8.2%	75.9%	Distril	bution (
8.0	24.90	5.4%	84.1%		
11.2	33.70	7.3%	89.5%		
16.0	0.00	0.0%	96.8%		
22.4	15.00	3.2%	96.8%		
24.0	*		100.0%		100% -
45.0			-		90% -
64.0					90% -
90					80% -
128					
181				an	70% -
256				μË	60% -
362				er	00 /8 -
512				Finer Than	50% -
1024				t	
2048				8	40% -
4096				Percent	30% -
	461.80				00 /0
Total		20% -			
*Measured va the sample a		10% -			
and sumple a		10 /0			


SKIC1 NUMBER: 8/20/2014 ATE: Karlsson, VonLoh REW: article Size D15 D35 D50 D84 D95 Lpart stribution (mm) 0.220 1.343 2.347 7.978 14.687 24.0 **Cumulative Particle Size Distribution** 100% 90% 80% 70% Percent Finer Than 60% 50% 40% 30% 20% 10% 0% 0.1 10 1 100 1000 10000 Particle Size (mm)

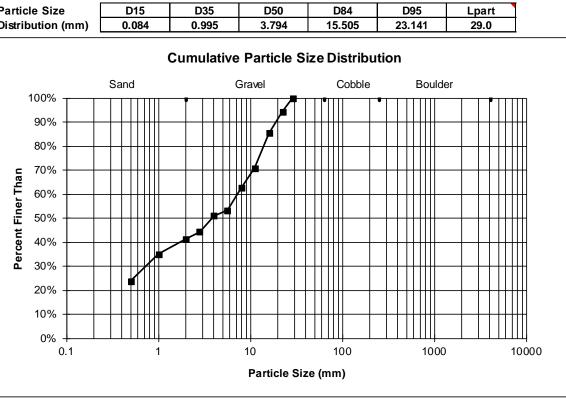



Bar Sample taken 6' upstream from Cross Section A left bank

[•] Pikes Peak Highway - Ski Creek Reach 2

Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	139.60	18.2%		SITE	NAME:
0.5	85.60	11.2%	18.2%	ID NU	MBER:
1.0	84.90	11.1%	29.3%	DATE	:
2.0	42.10	5.5%	40.4%	CREV	V:
2.8	72.00	9.4%	45.9%		
4.0	26.90	3.5%	55.3%	Partic	le Size
5.6	66.70	8.7%	58.8%	Distri	bution (
8.0	72.20	9.4%	67.5%		
11.2	41.30	5.4%	76.9%		
16.0	73.60	9.6%	82.3%		
22.4	62.40	8.1%	91.9%		
31.0	*		100.0%		100% -
45.0			-		000/
64.0					90% -
90					80% -
128					
181				L L	70% -
256				Τh	60% -
362				e	00 /8 -
512				Li I	50% -
1024				t l	
2048				8	40% -
4096				Percent Finer Than	30% -
				-	00 /0
Total	767.30				20% -
*Measured va		400/			
the sample a		10% -			





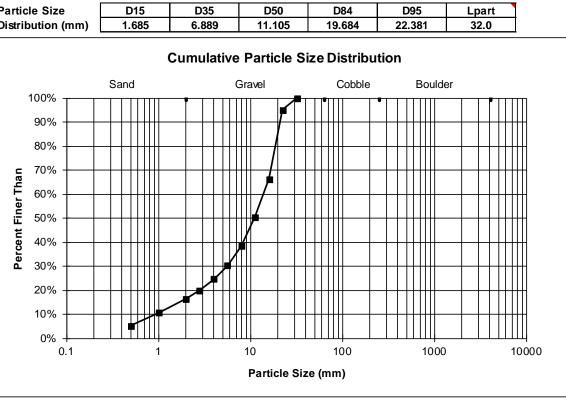



Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve		Than		
Pan	149.10	23.7%		SITE I	NAME:
0.5	71.70	11.4%	23.7%	ID NU	MBER:
1.0	38.70	6.1%	35.1%	DATE	:
2.0	19.80	3.1%	41.2%	CREW	/:
2.8	41.50	6.6%	44.4%		
4.0	14.30	2.3%	51.0%	Partic	le Size
5.6	58.80	9.3%	53.2%	Distrik	oution (
8.0	52.10	8.3%	62.6%		
11.2	90.60	14.4%	70.9%		
16.0	56.70	9.0%	85.3%		
22.4	36.00	5.7%	94.3%		
29.0	*		100.0%		100% -
45.0			-		90% -
64.0					90 % -
90					80% -
128					
181				an	70% -
256				μ	60% -
362				er	00 /0
512				Fin	50% -
1024				Ĕ	
2048				ခို	40% -
4096				Percent Finer Than	30% -
Tatal	000.00				
Total *Measured va	629.30	o largest par	ticle in		20% -
the sample a		0 1			10% -
		s.s.rs noight			

Pikes Peak Highway - South Catamount Creek Reach 1 SCAT1 8/20/2014

Karlsson, VonLoh

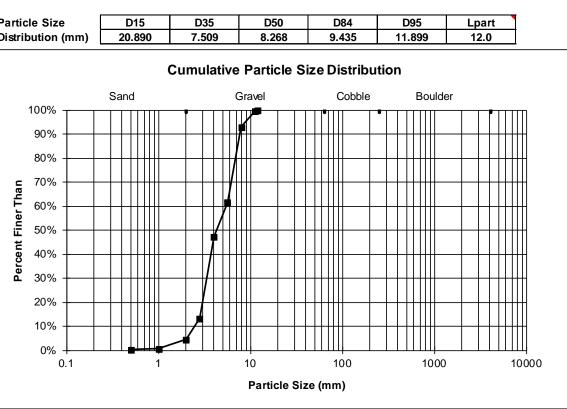




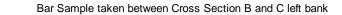



Size Finer	Wt. on	% of Total	% Finer		
Than (mm)	Sieve	,	Than		
Pan	37.90	5.2%		SITE I	NAME:
0.5	40.10	5.5%	5.2%	ID NU	MBER:
1.0	42.00	5.7%	10.7%	DATE	:
2.0	25.90	3.5%	16.4%	CREV	V:
2.8	34.10	4.7%	20.0%		
4.0	41.80	5.7%	24.6%	Partic	le Size
5.6	58.50	8.0%	30.4%	Distril	bution (
8.0	87.30	11.9%	38.4%		
11.2	116.50	15.9%	50.3%		
16.0	210.70	28.8%	66.2%		
22.4	36.00	4.9%	95.1%		
32.0	*		100.0%		100% -
45.0			-		000/
64.0					90% -
90					80% -
128					
181				an	70% -
256				Τh	60% -
362				er	00 /8 -
512				Li I	50% -
1024				ť	
2048				ဗ	40% -
4096				Percent Finer Than	30% -
<b>-</b> / /					0070
Total	730.80		tiolo in		20% -
*Measured va the sample a		• •			10% -
and sumple a		sove weight			1070

Pikes Peak Highway - South Catamount Creek Reach 2 SCAT2 9/9/2014


Karlsson, VonLoh

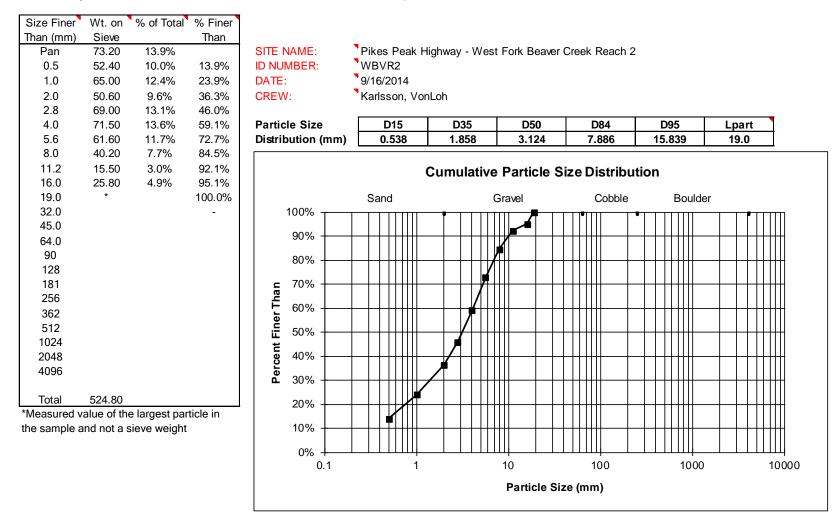







Than (mm)	Sieve		Than							
Pan	1.10	0.2%		SITE	NAME:	Pike's Peak H	lighway - Sout	h Catamount (	Creek Reac	h 3
0.5	2.70	0.5%	0.2%	ID NU	MBER:	SCAT3				
1.0	20.70	3.8%	0.7%	DATE		9/9/2014				
2.0	47.80	8.7%	4.5%	CREV		Karlsson, Von	Loh			
2.8	187.10	34.1%	13.2%							
4.0	77.80	14.2%	47.3%	Partic	cle Size	D15	D35	D50	D84	
5.6	172.00	31.4%	61.5%	Distri	bution (mm)	20.890	7.509	8.268	9.435	
8.0	35.40	6.5%	92.9%							
11.2	3.70	0.7%	99.3%			(	Cumulative	Particle S	ize Distri	buti
12.0	*		100.0%				- unitalitie			
22.4			-			Sand	(	Gravel	Cobbl	le
28.0					100%					_ <b>_</b> •
45.0					000/					
64.0					90%			///////////////////////////////////////		
90					80%					$\perp$
128							<u> </u>			
181				L L	70%		<u> </u>			+
256				Percent Finer Than	60%					
362				e.	00 %					
512				L II	50%		<u>     /  /   </u>			—
1024				t l			🕇			
2048				e e	40%	<del></del>	<u> </u>			+
4096				er	30%					
				<b>–</b>	30 /8					
Total	548.30				20%		/ _ / / / _ / _ / _ / _			—
*Measured va		• ·								
	nd not a si	ieve weight			10%		/	+++ + + + +		+
ine sample a	nu not a s	lovo molgin								








Size Finer		% of Total									
Than (mm)	Sieve	0.404	Than								
Pan	73.20	9.1%	<b>A</b> 444	SITE NAME:	Pikes Peak H	lighway - West	Fork Beaver	Creek Reach 1			
0.5	69.30	8.6%	9.1%	ID NUMBER:	WBVR1						
1.0	80.30	10.0%	17.7%	DATE:	9/16/2014						
2.0	58.70	7.3%	27.6%	CREW:	Karlsson, Vor	hLoh					
2.8	140.30	17.4%	34.9%								r
4.0	47.80	5.9%	52.3%	Particle Size	D15	D35	D50	D84	D95	Lpart	
5.6	99.10	12.3%	58.2%	Distribution (mm)	0.806	2.805	3.815	10.514	14.634	21.0	
8.0	133.70	16.6%	70.5%								
11.2	84.80	10.5%	87.1%			Cumulative	Particle S	ize Distribu	tion		
16.0	19.10	2.4%	97.6%								
21.0	*		100.0%		Sand	(	Gravel	Cobble	Boulder		
30.0			-	100% T			╷╷╴┏╴╄╴╷╴		•		Π
45.0				90%							Ш
64.0				5070			🗯				
90				80%	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		₩ +			<del>_}_}}</del>	₩
128							$\mathbf{N}$				
181				<b>E</b> 70%			▛ᡰ▎▁▕▎▕			+ + + + + + + + + + + + + + + + + + + +	Ħ
256				f 60%							Ш
362				Jei							
512				50%	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	<del>─┼┊<b>╀</b>┼┼</del>				<del></del>	₩
1024				<b>t</b> 4000		/					
2048				40%						+ + + + + + + + + + + + + + + + + + + +	Ħ
4096				<b>e</b> 30% –							Щ
Tatal	000.00					∕┦					
Total *Measured v	806.30		rtiolo in	20% –	╎╴╎╎╎╢╽					++++++	₩
				10%							
the sample a	inu not a s	sieve weight		10 %							$\square$
				0% +							Щ
				0.1	1		10	100	1000	1	0000
							Particle Si	ze (mm)			







Appendix P

# **Riparian Vegetation Summary**

Site ID	Date	Camera	Cross Section and Pin to Pin Distance in (ft)	Bar Sample	Bank	Bank Distance from LPIN (ft)	Camera Distance from LPIN (ft)	Percent Cover	Comments
				Downstream					
BHMR1	09/18/2014	Olympus Stylus 400	A (24.36)	from XSE	Left	11.2	14.0	30	Grass, Sedge, Forb
BHMR1		Olympus Stylus 400	A		Right	13.4	10.5	35	Grass, Sedge
BHMR1		Olympus Stylus 400	B (31.95)		Left	6.5	10.8	20	Grass, Sedge, Forb
BHMR1		Olympus Stylus 400	В		Right	9.9	5.8	20	Grass, Sedge
BHMR1		Olympus Stylus 400	C (16.81)		Left	8.2	13.0	15	Grass, Sedge, Forb
BHMR1		Olympus Stylus 400	С		Right	11.8	7.5	20	Sedge, Forb
BHMR1		Olympus Stylus 400	D (20.28)		Left	7.4	11.0	25	Grass, Sedge, Forb
BHMR1		Olympus Stylus 400	D		Right	10.6	7.0	25	Grass, Sedge, Forb
BHMR1		Olympus Stylus 400	E (34.42)		Left	21.8	27.0	35	Sedge, Forb
BHMR1		Olympus Stylus 400	E		Right	27.6	22.5	30	Grass, Sedge
BHMR2 BHMR2 BHMR2 BHMR2 BHMR2 BHMR2 BHMR2	9/18/2014	Olympus Stylus 400 Olympus Stylus 400 Olympus Stylus 400 Olympus Stylus 400 Olympus Stylus 400 Olympus Stylus 400 Olympus Stylus 400	A (25.43) A B (17.59) B C (18.46) C D (30.44)	10' downstream from XSE	Left Right Left Right Left Right Left	6.0 10.0 6.9 10.0 6.0 9.4 15.5	11.0 6.0 10.0 6.0 10.0 6.0 19.0	15 20 25 20 20 15 25	Sedge, Forb Sedge, Forb Grass, Sedge, Forb Grass, Sedge, Forb Sedge, Forb, Shrub Sedge, Forb Grass, Sedge, Forb
BHMR2		Olympus Stylus 400	D		Right	18.6	15.0	30	Sedge
BHMR2		Olympus Stylus 400	E (43.02)		Left	11.0	16.0	15	Sedge, Forb
BHMR2		Olympus Stylus 400	E		Right	14.7	11.5	20	Sedge
EBVR1	09/18/2014	Olympus Stylus 400	A (20.70)	2' downstream from XSB right bank	Left	1.3	5.0	0	Rock
EBVR1		Olympus Stylus 400	A		Right	17.1	16.6	5	Grass, Sedge, Shrub
EBVR1		Olympus Stylus 400	B (24.53)		Left	3.0	5.0	20	Grass, Sedge, Forb
EBVR1		Olympus Stylus 400	B (2 1100)		Right	13.5	9.0	35	Grass, Forb

# **Riparian Vegetation Summary, Pikes Peak 2014**

Site ID	Date	Camera	Cross Section and Pin to Pin Distance in (ft)	Bar Sample	Bank	Bank Distance from LPIN (ft)	Camera Distance from LPIN (ft)	Percent Cover	Comments
EBVR1		Olympus Stylus 400	C (29.05)		Left	6.8	11.0	30	Grass, Sedge, Forb
EBVR1		Olympus Stylus 400	С		Right	17.0	12.0	15	Moss, Sedge, Shrub
EBVR1		Olympus Stylus 400	D (12.77)		Left	3.5	6.0	45	Moss, Forb, Shrub
EBVR1		Olympus Stylus 400	D		Right	9.0	5.0	40	Moss, Forb, Shrub
EBVR1		Olympus Stylus 400	E (18.48)		Left	8.3	11.0	35	Moss, Forb, Shrub
EBVR1		Olympus Stylus 400	E		Right	13.6	10.0	75	Moss, Shrub
EBVR2	9/18/2014	Olympus Stylus 400	A (37.63)	5' upstream from XSE left bank	Left	14.3	20.0	25	Grass, Sedge
EBVR2	3/10/2014	Olympus Stylus 400	A (37.03)	Dalik	Right	20.0	16.0	30	Grass, Sedge
EBVR2		Olympus Stylus 400	B (21.24)		Left	9.2	15.0	25	Grass, Sedge, Forb
EBVR2		Olympus Stylus 400	B (21.24)		Right	14.3	11.0	25	Grass, Sedge, Forb
EBVR2		Olympus Stylus 400	C (20.46)		Left	9.2	13.0	15	Grass, Sedge, Forb
EBVR2		Olympus Stylus 400	C (20.40)		Right	13.4	11.0	20	Grass, Sedge, Forb
EBVR2		Olympus Stylus 400	D (17.45)		Left	7.7	12.5	15	Grass, Sedge, Forb
EBVR2		Olympus Stylus 400	D (17:43)		Right	13.2	10.0	15	Grass, Forb
EBVR2		Olympus Stylus 400	E (19.66)		Left	9.8	14.0	20	Grass, Sedge, Forb
EBVR2		Olympus Stylus 400	E		Right	14.6	11.0	20	Sedge
GLEN1	9/09/2014	Olympus Stylus 400	A (20.03)	Downstream from XSE right bank	Left	9.0	12.0	25	Moss, Grass, Sedge, Forb, Shrub
GLEN1		Olympus Stylus 400	A		Right	13.0	8.5	75	Moss, Sedge, Forb, Shrub, Tree
GLEN1		Olympus Stylus 400	B(16.57)		Left	6.3	9.5	5	Grass, Sediment
GLEN1		Olympus Stylus 400	В		Right	9.0	5.7	15	Grass, Forb, Shrub
GLEN1		Olympus Stylus 400	C (17.31)		Left	5.9	9.9	15	Sedge, Shrub
GLEN1		Olympus Stylus 400	С		Right	9.6	6.0	30	Grass, Sedge
GLEN1		Olympus Stylus 400	D (49.99)		Left	18.5	23.0	10	Moss, Grass, Shrub, Tree
GLEN1		Olympus Stylus 400	D		Right	24.0	20.0	15	Grass, Sedge, Forb
GLEN1		Olympus Stylus 400	E (24.29)		Left	8.0	16.5	20	Sedge, Forb, Shrub
GLEN1		Olympus Stylus 400	E		Right	14.7	12.0	10	Grass, Forb

Site ID	Date	Camera	Cross Section and Pin to Pin Distance in (ft)	Bar Sample	Bank	Bank Distance from LPIN (ft)	Camera Distance from LPIN (ft)	Percent Cover	Comments
				XSC right					
NCAT1	8/21/2014	Olympus Stylus 400	A (57.53)	bank	Left	12.0	17.0	15	Grass, Sedge, Forb
NCAT1		Olympus Stylus 400	A		Right	16.5	12.0	20	Grass, Sedge, Forb
NCAT1		Olympus Stylus 400	B (58.83)		Left	46.0	50.0	35	Grass, Sedge
NCAT1		Olympus Stylus 400	В		Right	50.5	47.0	35	Grass, Sedge, Shrub
NCAT1		Olympus Stylus 400	C (38.85)		Left	16.7	21.5	35	Grass, Sedge, Shrub
NCAT1		Olympus Stylus 400	С		Right	30.3	26.0	20	Grass, Sedge, Forb,
NCAT1		Olympus Stylus 400	D (44.77)		Left	28.5	30.0	45	Sedge, Forb, Shrub
NCAT1		Olympus Stylus 400	D		Right	32.5	29.3	50	Sedge, Shrub
NCAT1		Olympus Stylus 400	E (60.78)		Left	42.8	47.0	35	Grass, Sedge, Shrub
NCAT1		Olympus Stylus 400	E		Right	45.5	41.0	35	Moss, Grass, Sedge
				6' upstream from XSB					
NCAT2	8/21/2014	Olympus Stylus 400	A (29.17)	right bank	Left	12.0	16.5	30	Sedge, Forb, Shrub
NCAT2		Olympus Stylus 400	A		Right	16.2	12.0	30	Sedge, Forb, Shrub
NCAT2		Olympus Stylus 400	B (40.59)		Left	8.8	13.0	30	Sedge, Forb
NCAT2		Olympus Stylus 400	В		Right	11.8	8.0	25	Grass, Sedge, Forb, Shrub
NCAT2		Olympus Stylus 400	C (42.34)		Left	11.5	17.0	25	Grass, Sedge, Forb
NCAT2		Olympus Stylus 400	С		Right	16.4	11.5	30	Grass, Sedge, Forb
NCAT2		Olympus Stylus 400	D (29.78)		Left	6.0	10.5	35	Sedge, Forb, Shrub
NCAT2		Olympus Stylus 400	D		Right	9.7	5.0	25	Sedge, Forb
NCAT2		Olympus Stylus 400	E (34.25)		Left	10.0	15.0	50	Moss, Grass, Sedge, Forb, Shrub
NCAT2		Olympus Stylus 400	E		Right	13.1	2.5	25	Sedge, Forb
NCRY1	8/19/2014	Olympus Stylus 400	A (54.53)	None collected	Left	35.5	39.0	15	Grass, Sedge, Forb
NCRY1		Olympus Stylus 400	A		Right	38.5	36.0	10	Grass, Forb, Tree
NCRY1		Olympus Stylus 400	B (51.31)		Left	38.8	42.0	25	Moss, Grass, Forb, Tree
NCRY1		Olympus Stylus 400	B		Right	41.5	38.0	15	Grass, Shrub
NCRY1		Olympus Stylus 400	C (43.61)		Left	26.3	29.0	75	Moss, Grass, Forb, Tree
NCRY1		Olympus Stylus 400	C		Right	28.7	25.0	80	Moss, Grass, Forb, Tree
NCRY1		Olympus Stylus 400	D (41.53)		Left	29.6	32.8	15	Grass, Forb

Site ID	Date	Camera	Cross Section and Pin to Pin Distance in (ft)	Bar Sample	Bank	Bank Distance from LPIN (ft)	Camera Distance from LPIN (ft)	Percent Cover	Comments
NCRY1		Olympus Stylus 400	D		Right	31.5	29.5	10	Moss, Grass, Forb
NCRY1		Olympus Stylus 400	E (37.98)		Left	30.0	33.7	40	Grass
NCRY1		Olympus Stylus 400	E		Right	34.3	31.0	90	Moss, Grass, Forb
NCRY2	8/19/2014	Olympus Stylus 400	A (24.23)	None collected	Left	10.5	15.5	20	Moss, Grass, Forb
NCRY2		Olympus Stylus 400	A		Right	20.6	15.0	10	Grass, Forb
NCRY2		Olympus Stylus 400	B (35.00)		Left	21.4	25.0	10	Moss, Forb
NCRY2		Olympus Stylus 400	В		Right	30.5	26.0	10	Moss, Forb
NCRY2		Olympus Stylus 400	C (33.82)		Left	19.3	24.0	30	Grass, Forb
NCRY2		Olympus Stylus 400	С		Right	27.4	23.0	20	Moss, Grass, Forb
NCRY2		Olympus Stylus 400	D (28.71)		Left	14.5	18.3	5	Grass, Tree
NCRY2		Olympus Stylus 400	D		Right	22.9	19.3	0	Sediment
NCRY2		Olympus Stylus 400	E (34.35)		Left	5.3	7.1	5	Grass, Tree
NCRY2		Olympus Stylus 400	E		Right	18.4	15.6	60	Moss, Grass, Tree
	0/2/2044	Obreaus Status 400	A (42.05)	8' downstream from XSD	1.04	40.5	40 F	20	Mass Cross Codes Forth
OILC1	9/3/2014	Olympus Stylus 400	A (43.95)	right bank	Left	10.5	13.5	30	Moss, Grass, Sedge, Forb
OILC1 OILC1		Olympus Stylus 400	A		Right	16.6 9.8	14.0 12.0	25 20	Sedge, Shrub
OILC1		Olympus Stylus 400 Olympus Stylus 400	B (41.34) B		Left Right	9.8	12.0	20 5	Grass, Sedge Grass, Sedge
OILC1		Olympus Stylus 400	C (32.67)		Left	16.2	19.0	15	Sedge
OILC1		Olympus Stylus 400	C (32.07)		Right	20.0	13.0	40	Sedge
OILC1		Olympus Stylus 400	D (33.98)		Left	13.9	18.0	<del>4</del> 0	Grass, Sedge, Sediment
OILC1		Olympus Stylus 400	D (00:00)		Right	21.0	17.5	30	Sedge
OILC1		Olympus Stylus 400	E (38.35)		Left	8.9	12.0	45	Grass, Sedge, Shrub
OILC1		Olympus Stylus 400	E (66.66)		Right	15.6	11.0	55	Moss, Sedge
SCAT1	8/20/2014	Olympus Stylus 400	A (22.96)	XSA <> XSB left bank	Left	6.4	11.5	25	Moss, Grass, Forb
SCAT1 SCAT1	5,20,2014	Olympus Stylus 400	A (22.30)		Right	11.2	8.9	85	Moss, Grass, Forb, Shrub
SCAT1		Olympus Stylus 400	B (20.83)		Left	10.5	14.0	75	Moss, Grass, Forb, Tree

Site ID	Date	Camera	Cross Section and Pin to Pin Distance in (ft)	Bar Sample	Bank	Bank Distance from LPIN (ft)	Camera Distance from LPIN (ft)	Percent Cover	Comments
SCAT1		Olympus Stylus 400	В		Right	18.3	14.0	25	Moss, Fungi, Grass, Forb
SCAT1		Olympus Stylus 400	C (21.86)		Left	4.0	10.0	10	Moss, Grass, Forb, Tree
SCAT1		Olympus Stylus 400	С		Right	13.7	9.6	20	Grass, Forb
SCAT1		Olympus Stylus 400	D (18.12)		Left	5.5	12.0	35	Moss, Fungi, Grass, Forb
SCAT1		Olympus Stylus 400	D		Right	11.7	6.0	70	Moss, Grass, Forb
SCAT1		Olympus Stylus 400	E (24.02)		Left	10.0	16.0	25	Moss, Grass, Forb, Shrub
SCAT1		Olympus Stylus 400	E		Right	15.5	10.0	75	Moss, Fungi, Grass, Forb, Shrub
SCAT2	9/9/2014	Olympus Stylus 400	A (28.57)	4' downstream from XSE	Left	4.2	9.0	35	Moss, Grass, Sedge, Forb
SCAT2		Olympus Stylus 400	A		Right	15.0	9.5	20	Moss, Grass, Tree
SCAT2		Olympus Stylus 400	B (17.05)		Left	3.0	7.0	5	Sedge, Forb, Tree
SCAT2		Olympus Stylus 400	В		Right	11.3	7.0	25	Moss, Forb
SCAT2		Olympus Stylus 400	C (19.81)		Left	4.0	6.0	30	Moss, Grass, Forb
SCAT2		Olympus Stylus 400	C		Right	13.2	9.0	10	Moss, Grass
SCAT2		Olympus Stylus 400	D (38.50)		Left	7.6	11.0	25	Moss, Grass, Forb
SCAT2		Olympus Stylus 400	D		Right	15.4	12.7	30	Moss, Grass, Forb, Tree
SCAT2		Olympus Stylus 400	E (18.95)		Left	3.3	7.0	25	Moss, Grass, Forb
SCAT2		Olympus Stylus 400	E		Right	11.2	8.0	35	Moss, Grass, Forb
00470			A (44.00)	Downstream from XSA		00.0	00.4		
SCAT3	9/9/2014	Olympus Stylus 400	A (44.32)	right bank	Left	26.0	29.4	20	Moss, Grass, Sedge, Forb
SCAT3		Olympus Stylus 400	A		Right	29.0	25.2	35	Moss, Grass, Forb
SCAT3		Olympus Stylus 400	B (32.19)		Left	12.3	16.0	25	Moss, Grass, Tree
SCAT3		Olympus Stylus 400	B		Right	15.5	12.7	25	Grass, Sedge, Forb
SCAT3		Olympus Stylus 400	C (15.79)		Left	2.6	6.8	40	Moss, Grass, Forb
SCAT3		Olympus Stylus 400	C		Right	6.2	3.1	30	Moss, Grass, Sedge, Forb
SCAT3		Olympus Stylus 400	D (19.60)		Left	8.0	11.6	30	Grass, Forb
SCAT3		Olympus Stylus 400	D		Right	10.0	8.1	30	Grass, Forb
SCAT3		Olympus Stylus 400	E (18.48)		Left	4.6	8.2	35	Grass, Forb, Shrub

Site ID	Date	Camera	Cross Section and Pin to Pin Distance in (ft)	Bar Sample	Bank	Bank Distance from LPIN (ft)	Camera Distance from LPIN (ft)	Percent Cover	Comments
SCAT3		Olympus Stylus 400	E		Left	6.5	3.8	20	Grass, Forb
SKIC1	8/20/2014	Olympus Stylus 400	A (15.04)	5' downstream from XSC	Left	6.2	8.0	25	Moss, Grass, Forb
SKIC1 SKIC1	0/20/2014	Olympus Stylus 400	A (13.04)		Right	11.1	8.5	40	Moss, Grass, Forb
SKIC1		Olympus Stylus 400	B (14.15)		Left	5.1	7.0	40 5	Moss, Glass, Forb
SKIC1 SKIC1		Olympus Stylus 400	B (14.13)		Right	10.5	7.5	15	Moss, Forb
SKIC1 SKIC1		Olympus Stylus 400	C (16.60)		Left	4.1	9.0	35	Moss, Forb
SKIC1 SKIC1		Olympus Stylus 400	C (18.60)		Right	11.0	9.0 7.0	30	Moss, Grass, Forb, Tree
SKIC1 SKIC1		Olympus Stylus 400	D (33.57)		Left	16.0	19.5	55	Moss, Grass, Forb, Tree Moss, Grass, Forb
SKIC1 SKIC1		Olympus Stylus 400	D (33.57)		Right	23.2	19.5	5	Moss, Grass, Forb
SKIC1 SKIC1		Olympus Stylus 400	E (21.78)		Left	14.5	19.5	35	Moss, Grass, Forb
		, , ,	· · · ·						, ,
SKIC1		Olympus Stylus 400	E		Right	19.2	15.0	60	Moss, Grass, Forb
				6' upstream from XSA left					
SKIC2	8/20/2014	Olympus Stylus 400	A (50.70)	bank	Left	32.8	36.0	20	Moss, Grass, Forb, Shrub
SKIC2		Olympus Stylus 400	A		Right	40.7	35.0	35	Moss, Grass, Forb, Tree
SKIC2		Olympus Stylus 400	B (46.73)		Left	28.5	35.5	40	Moss
SKIC2		Olympus Stylus 400	В		Right	34.5	32.5	10	Moss, Grass, Forb, Shrub
SKIC2		Olympus Stylus 400	C (29.76)		Left	2.6	6.0	20	Moss, Grass, Forb, Shrub
SKIC2		Olympus Stylus 400	С		Right	10.6	7.0	5	Forb
SKIC2		Olympus Stylus 400	D (28.31)		Left	4.3	11.0	25	Moss, Forb
SKIC2		Olympus Stylus 400	D		Right	12.5	8.0	5	Grass, Forb
SKIC2		Olympus Stylus 400	E (41.90)		Left	24.9	31.0	25	Lichen, Moss, Grass, Forb
SKIC2		Olympus Stylus 400	E		Right	31.1	26.0	5	Moss, Grass
SVRY1	9/24/2014	Olympus Stylus 400	A (13.70)	Upstream from XSA	Left	2.0	7.0	35	Grass, Sedge, Forb
SVRY1		Olympus Stylus 400	A		Right	7.8	4.0	25	Grass, Sedge, Forb
SVRY1		Olympus Stylus 400	B (11.83)		Left	5.0	8.0	20	Sedge, Forb, Shrub
SVRY1		Olympus Stylus 400	В		Right	5.0	5.0	25	Sedge, Shrub
SVRY1		Olympus Stylus 400	C (14.82)		Left	4.9	8.0	35	Sedge, Forb, Shrub

Site ID	Date	Camera	Cross Section and Pin to Pin Distance in (ft)	Bar Sample	Bank	Bank Distance from LPIN (ft)	Camera Distance from LPIN (ft)	Percent Cover	Comments
SVRY1		Olympus Stylus 400	С		Right	7.8	5.0	20	Sedge, Forb, Shrub
SVRY1		Olympus Stylus 400	D (12.09)		Left	4.6	8.0	30	Grass, Sedge, Forb, Shrub
SVRY1		Olympus Stylus 400	D		Right	8.6	4.0	80	Moss, Grass, Forb, Shrub
SVRY1		Olympus Stylus 400	E (9.57)		Left	2.7	7.0	45	Grass, Sedge, Shrub
SVRY1		Olympus Stylus 400	E		Right	6.6	4.0	80	Moss, Grass, Sedge
SVRY2	09/24/2014	Olympus Stylus 400	A (95.72)	Downstream from XSE	Left	20.2	28.0	0	Sediment
SVRY2		Olympus Stylus 400	A		Right	37.0	32.0	0	Sediment
SVRY2		Olympus Stylus 400	B (116.96)		Left	29.5	35.0	0	Sediment
SVRY2		Olympus Stylus 400	В		Right	48.0	41.0	0	Sediment
SVRY2		Olympus Stylus 400	C (158.61)		Left	59.2	65.0	0	Sediment
SVRY2		Olympus Stylus 400	С		Right	79.5	73.0	0	Sediment
SVRY2		Olympus Stylus 400	D (156.58)		Left	74.8	79.0	0	Sediment
SVRY2		Olympus Stylus 400	D		Right	91.5	87.0	0	Sediment
SVRY2		Olympus Stylus 400	E (211.52)		Left	62.5	72.0	0	Sediment
SVRY2		Olympus Stylus 400	E		Right	81.5	71.0	0	Sediment
WBVR1	9/16/2014	Olympus Stylus 400	A (36.64)	XSD <> XSE left bank	Left	15.9	20.0	15	Moss, Grass, Shrub
WBVR1		Olympus Stylus 400	A		Right	31.0	27.0	5	Grass, Shrub
WBVR1		Olympus Stylus 400	B (20.98)		Left	4.3	10.0	20	Grass, Forb, Shrub
WBVR1		Olympus Stylus 400	В		Right	15.5	11.0	10	Grass, Shrub
WBVR1		Olympus Stylus 400	C (28.83)		Left	3.8	9.0	70	Moss, Shrub
WBVR1		Olympus Stylus 400	С		Right	17.0	11.0	25	Grass, Shrub
WBVR1		Olympus Stylus 400	D (34.18)		Left	9.0	14.0	30	Grass, Shrub
WBVR1		Olympus Stylus 400	D		Right	25.0	20.0	15	Grass, Shrub
WBVR1		Olympus Stylus 400	E (29.56)		Left	6.0	12.0	60	Grass, Forb, Shrub
WBVR1		Olympus Stylus 400	E		Right	20.0	16.0	20	Moss, Grass, Shrub
WBVR2	9/16/2014	Olympus Stylus 400	A (44.40)	XSB <> XSC left bank	Left	7.5	16.0	35	Moss, Shrub
WBVR2		Olympus Stylus 400	A		Right	25.0	19.0	5	Grass, Sedge
WBVR2		Olympus Stylus 400	B (90.60)		Left	14.0	21.0	5	Grass, Shrub

Site ID	Date	Camera	Cross Section and Pin to Pin Distance in (ft)	Bar Sample	Bank	Bank Distance from LPIN (ft)	Camera Distance from LPIN (ft)	Percent Cover	Comments
WBVR2		Olympus Stylus 400	В		Right	42.3	37.0	0	Sediment
WBVR2		Olympus Stylus 400	C (151.93)		Left	100.5	107.0	5	Grass
WBVR2		Olympus Stylus 400	С		Right	126.0	119.0	25	Grass, Shrub
WBVR2		Olympus Stylus 400	D (149.43)		Left	97.0	108.0	0	Sediment
WBVR2		Olympus Stylus 400	D		Right	127.5	123.0	0	Sediment
WBVR2		Olympus Stylus 400	E (96.25).		Left	32.2	38.0	35	Moss, Grass, Shrub, Tree
WBVR2		Olympus Stylus 400	E		Right	54.5	43.0	0	Sediment