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LCMS Puerto Rico – US Virgin Islands (PRUSVI) Version 
2020.6 Release Notes  
Any changes to the methods from LCMS version 2020.5 outlined below in this document will be reflected 
in this list   
 
• Computing platforms  

o No changes  
  

• Model calibration data  
o The sample design utilized land cover classes from Helmer et al. (2002) for stratification. 
o Since vegetation cover loss was very common of PRUSVI (largely due to damage from 

tropical cyclones), no vegetation cover loss stratum was included.  
o Due to a lack of available Landsat imagery over the region prior to 2000, PRUSVI outputs 

include model calibration data extending from 2000-2020.  
 

• Model predictor data  
o Landsat and Sentinel 2 data are taken from June 1 – May 31 for a given year (e.g. June 1, 

2020 – May 31, 2021 for mapping year 2020) (see Table 3).  
o Elevation data used over Puerto Rio are based on the Digital Elevation Models of Puerto Rico 

(Taylor et al. 2008) and the National Oceanic and Atmospheric Administration Digital 
Elevation Model over the US Virgin Islands (Love et al. 2014).  

o Landsat/Sentinel 2 Composites were not used directly as predictor variables.  
o CCDC chiSquareProbability parameter was changed from 0.99 to 0.95 and the 

minObservations was changed from 6 to 4.  
o Interpolated values from both LandTrendr and CCDC were included as predictor variables to 

allow for more complete maps (These areas can be removed by using the QA band 
described below).  

o Landsat thermal data were included as predictor variables.  
 

• Modeling (Supervised Classifications)  
o No changes  

 
• LCMS products  

o Ancillary information on the origin of the annual LCMS product output values are now 
provided as part of a QA bit layer. This layer includes whether an interpolated value was 
used to produce the LCMS output, the sensor, and the day of year the value came from.  
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Executive Summary 
The Landscape Change Monitoring System (LCMS) is a remote sensing-based system produced by the 
United States Department of Agriculture, Forest Service (USFS) for mapping and monitoring changes 
related to vegetation canopy cover, as well as land cover and land use. Data produced by LCMS extend 
from 1985 to the most recently completed growing year. LCMS is intended to provide a consistent 
monitoring method for applications including, but not limited to, post-disturbance monitoring, broad-
scale vegetation cover change, land cover and land use conversion trends monitoring, and sensitive 
habitat monitoring. 

This document details the methods employed to create all map products for LCMS version 2020.5. These 
methods will be revisited annually to ensure they reflect the best available science. Current methods 
involve utilizing Landsat and Sentinel 2 data in the Landsat-based detection of Trends in Disturbance and 
Recovery (LandTrendr) and Landsat data in the Continuous Change Detection and Classification (CCDC) 
temporal segmentation algorithms. Outputs from these algorithms are used as predictor variables in 
random forest models that are calibrated using training data from TimeSync. The broad categories of 
LCMS products are vegetation cover change, land cover, and land use.  

All LCMS products are freely available for download at the LCMS website. 

Users can interactively visualize and summarize the data at the LCMS Viewer.  

Background 
Our landscape is continually changing. Monitoring change in vegetation cover and conversion of land 
cover and land use is important for making data-driven land management decisions. The USFS has 
developed the Landscape Change Monitoring System (LCMS) to consistently monitor changes in 
vegetation cover, land cover, and land use across the United States from 1984 to present.  

The LCMS Science Team initially developed all LCMS methods (Cohen et al., 2018; Healey et al., 2018). 
This team evaluated the best available science about landscape change detection methods and provided 
guidance for the adapted operational LCMS methods employed by the LCMS Production Team described 
in this document.  

The Science Team and Production Team jointly re-evaluate the methods annually to ensure the mapping 
process is still based on the best available science. This document describes the methods used to create 
LCMS version 2020.5 products. The version naming convention is YYYY.v where “YYYY” denotes the 
most recent year mapped, and the “v” denotes the version of the methods used. We recreate all map 
products annually from 1985 to the most recent full growing season. Annual production ensures LCMS 
methods can be updated when appropriate and all maps will be produced in a consistent manner. 

LCMS mapping areas include all the United States and its territories. The first operational set of outputs, 
included in v2020.5, covers the conterminous United States (CONUS) and southeastern Alaska (SEAK). 
The v2020.6 covers Puerto Rico and the U.S. Virgin Islands. Future mapping efforts will extend to 
Hawaii. This document outlines methods used over Puerto Rico and the U.S. Virgin Islands. 

The core LCMS products are annual vegetation cover change, land cover, and land use raster maps. 
Vegetation cover change is broken into slow loss, fast loss, and gain. Since PRUSVI exhibited limited 
slow loss, a slow loss product was not produced. Change products are intended to address needs centered 
around monitoring variations in vegetation cover or water extent that may or may not result in a transition 

https://data.fs.usda.gov/geodata/rastergateway/LCMS/
https://apps.fs.usda.gov/lcms-viewer
https://www.fs.usda.gov/rmrs/groups/landscape-change-monitoring-system-lcms-science-team
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of land cover and/or land use. Land cover products can be used to meet more general land cover 
monitoring needs over time. Land use products can be used to monitor land use conversion patterns.   

Methods 
Computing platforms 
LCMS utilizes Google Earth Engine (GEE; Gorelick 2017) through an enterprise agreement between the 
USFS and Google, for all remote sensing raster data acquisition and processing. GEE is a parallel 
computing environment that provides access to many publicly available earth observation datasets, along 
with common data processing methods, and computing infrastructure to process these data. While GEE’s 
data processing methods are quite extensive, currently it cannot meet the breadth of methods available in 
common scientific computing platforms such as R and the Python package Scikit-Learn (Pedregosa et al., 
2011). Due to these limitations, we use Scikit-Learn for sample design, model predictor variable 
selection, and model validation. 

Model calibration data 
All supervised statistical models need a set of calibration data (dependent variable or training data), and 
predictor variables (independent variables) to train the model. The model is then applied to the predictor 
data where there are no calibration data. This section will outline how LCMS calibration data locations 
are selected and attributed. 

Model calibration data sample design 
The goal of a sample design is to efficiently sample the expected variability of the dependent variable. 
Since LCMS maps vegetation cover change, land cover, and land use, the sample design needs to account 
for expected variability in each of these categories across the US.  

Pilot projects we completed throughout the United States revealed that many of the classes, such as 
vegetation cover loss and impervious land cover, are relatively rare across the landscape. The simple 
random sample we initially used proved insufficient to capture an adequate proportion of these rare 
classes. To improve our sampling approach, we moved to a stratified random sample design following the 
guidance from Olofsson et al., (2014). Specifically, “The recommended allocation of sample size to the 
strata defined by the map classes is to increase the sample size for the rarer classes making the sample 
size per stratum more equitable than what would result from proportional allocation, but not pushing to 
the point of equal allocation.”   

Based on this guidance, the design first involves stratifying the landscape using land cover data from 
Helmer et al. (2002). Since vegetation cover loss was very common of PRUSVI (largely due to damage 
from tropical cyclones), no vegetation cover loss stratum was included. Final strata and their spatial 
extent are shown in Figure 1 for CONUS. 

  

https://scikit-learn.org/stable/
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Figure 1. – Map depicting strata used for the Land Change Monitoring System (LCMS) Puerto Rico U.S. Virgin Islands 
(PRUSVI) calibration/validation sample design. Final strata are listed below the map, with the percentage of total pixels 
represented by that stratum. 

 

We chose the strata shown in Table 1 to adequately sample rare classes that are of specific interest to 
LCMS applications and/or had high model error in LCMS pilot studies. This includes Non-Forested 
Wetland and Cloud Forest. Areas such as water and barren typically have low model error, and therefore 
we allocated fewer samples to those classes.  

The final sample size was 1,100 across PRUSVI. We started the final sample count with an allocation 
halfway between equal and proportional. We set a maximum value of 100 for PRUSVI respectively for 
each stratum. We then proportionally recursively allocated the remainder. Lastly, we set a fixed sample 
number of 30 for water and barren (because these are “easier”, less variable classes). We allocated the 
remaining samples across Non-Forested Wetland and Cloud Forest. Table 1 show the final sample counts 
by strata. 
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Table 1. – Final sample counts by strata for PRUSVI calibration sample. 

 

Calibration Data Collection 
We collected model calibration data using the TimeSync attribution tool (Cohen et al., 2010). TimeSync 
is a web-based application that allows users to look at a time series of Landsat images, along with 
available high-resolution images in Google Earth Pro and other ancillary data in the Ancillary Data 
Viewer web application, which is made at the Geospatial Technology and Applications Center (GTAC), 
to attribute yearly land cover, land use, and change process at each training point location (figure 2). Due 
to a lack of available Landsat imagery over the region prior to 2000, PRUSVI outputs include model 
calibration data extending from 2000-2020.  
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Figure 2. – Example of the TimeSync tool (top) and the Ancillary Data Viewer (bottom). These tools, along with Google Earth 
Pro, are used in unison to attribute change process, land cover, and land use for each year for each model calibration plot. 

 

LCMS TimeSync interpretation utilizes the Land Change Monitoring, Assessment, and Projection 
(LCMAP)/LCMS Joint Response Design. This response design provides a consistent method for 
attributing a common set of classes for change process, land cover, and land use (see supplementary 
materials in Pengra et al., 2020). The classes and their definitions are as follows:  

• Change process 
o FIRE: Land altered by fire, regardless of the cause of the ignition (natural or 

anthropogenic), severity, or land use. 
o HARVEST: Forest land where trees, shrubs or other vegetation have been severed or 

removed by anthropogenic means. Examples include clearcutting, salvage logging after 
fire or insect outbreaks, thinning and other forest management prescriptions (e.g., 
shelterwood/seedtree harvest). 

o MECHANICAL: Non-forest land where trees, shrubs or other vegetation has been 
mechanically severed or removed by chaining, scraping, brush sawing, bulldozing, or any 
other methods of non-forest vegetation removal. 

o STRUCTURAL DECLINE: Land where trees or other woody vegetation is physically 
altered by unfavorable growing conditions brought on by non-anthropogenic or non-
mechanical factors. This type of loss should generally create a trend in the spectral 
signal(s) (e.g., NDVI decreasing, Wetness decreasing; SWIR increasing; etc.), however 
the trend can be subtle. Structural decline occurs in woody vegetation environments, most 
likely from insects, disease, drought, acid rain, etc. Structural decline can include 
defoliation events that do not result in mortality such as in Gypsy moth and spruce 
budworm infestations which may recover within one or two years. 

o SPECTRAL DECLINE: A plot where the spectral signal shows a trend in one or more of 
the spectral bands or indices (e.g., NDVI decreasing, Wetness decreasing; SWIR 
increasing; etc.). Examples include cases where: a) non-forest/non-woody vegetation 
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shows a trend suggestive of decline (e.g. NDVI decreasing, Wetness decreasing; SWIR 
increasing; etc.); or b) woody vegetation shows a decline trend that is not related to the 
loss of woody vegetation, such as when mature tree canopies close resulting in increased 
shadowing, when species composition changes from conifer to hardwood, or when a dry 
period (as opposed to stronger, more acute drought) causes an apparent decline in vigor, 
but no loss of woody material or leaf area. 

o WIND/ICE: Land (regardless of use) where vegetation is altered by wind from 
hurricanes, tornados, storms, and other severe weather events including freezing rain 
from ice storms. 

o HYDROLOGY: Land where flooding has significantly altered woody cover or other land 
cover elements regardless of land use (e.g., new mixtures of gravel and vegetation in and 
around streambeds after a flood). 

o DEBRIS: Land (regardless of use) altered by natural material movement associated with 
landslides, avalanches, volcanos, debris flows, etc. 

o OTHER: Land (regardless of use) where the spectral trend or other supporting evidence 
suggests a disturbance or change event has occurred, but the definitive cause cannot be 
determined, or the type of change fails to meet any of the change process categories 
defined above. 

o GROWTH/RECOVERY: Land exhibiting an increase in vegetation cover due to growth 
and succession over one or more years. Applicable to any areas that may express spectral 
change associated with vegetation regrowth. In developed areas, growth can result from 
maturing vegetation and/or newly installed lawns and landscaping. In forests, growth 
includes vegetation growth from bare ground, as well as the over topping of intermediate 
and co-dominate trees and/or lower-lying grasses and shrubs. Growth/recovery segments 
recorded following forest harvest will likely transition through different land cover 
classes as the forest regenerates. For these changes to be considered growth/recovery, 
spectral values should closely adhere to an increasing trend line (e.g., a positive slope that 
would, if extended to ~20 years, be on the order of .10 units of NDVI) that persists for 
several years. 

• Land cover 
o TREES: Live or standing dead trees. 
o TALL SHRUBS (SEAK only): Shrubs > 1 m in height. 
o SHRUBS: Shrubs. 
o GRASS/FORB/HERBACEOUS: Perennial grasses, forbs, or other forms of herbaceous 

vegetation. 
o BARREN OR IMPERVIOUS: a) Bare soil exposed by disturbance (e.g., soil uncovered 

by mechanical clearing or forest harvest), as well as perennially barren areas such as 
deserts, playas, rock outcroppings (including minerals and other geologic materials 
exposed by surface mining activities), sand dunes, salt flats, and beaches. Roads made of 
dirt and gravel are also considered barren; or b) man-made materials that water cannot 
penetrate, such as paved roads, rooftops, and parking lots. 

o SNOW/ICE: Snow and/or ice. 
o WATER: Water. 

• Land use 
1. AGRICULTURE: Land used to produce food, fiber and fuels which is in either a vegetated or 

non-vegetated state. This includes but is not limited to cultivated and uncultivated croplands, hay 
lands, orchards, vineyards, confined livestock operations, and areas planted for production of 
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fruits, nuts or berries. Roads used primarily for agricultural use (i.e., not used for public transport 
from town to town) are considered agriculture land use. 

2. DEVELOPED:  Land covered by man-made structures (e.g., high density residential, 
commercial, industrial, mining or transportation), or a mixture of both vegetation (including 
trees) and structures (e.g., low density residential, lawns, recreational facilities, cemeteries, 
transportation and utility corridors, etc.), including any land functionally altered by human 
activity. 

3. FOREST: Land that is planted or naturally vegetated and that contains (or is likely to contain) 
10% or greater tree cover at some time during a near-term successional sequence. This may 
include deciduous, evergreen and/or mixed categories of natural forest, forest plantations, and 
woody wetlands. 

4. NON-FOREST WETLAND: Lands adjacent to or within a visible water table (either permanently 
or seasonally saturated) dominated by shrubs or persistent emergents. These wetlands may be 
situated shoreward of lakes, river channels, or estuaries; on river floodplains; in isolated 
catchments; or on slopes. They may also occur as prairie potholes, drainage ditches and stock 
ponds in agricultural landscapes and may also appear as islands in the middle of lakes or rivers. 
Other examples also include marshes, bogs, swamps, quagmires, muskegs, sloughs, fens, and 
bayous. 

5. OTHER: Lands which are perennially covered with snow and ice, water, salt flats and other 
undeclared classes. Glaciers and ice sheets or places where snow and ice obscure any other land 
cover call are included (assumed is the presence of permanent snow and ice). Water includes 
rivers, streams, canals, ponds, lakes, reservoirs, bays, or oceans. This assumes permanent water 
(which can be in some state of flux due to ephemeral changes brought on by climate or 
anthropogenic). 

6. RANGELAND/PASTURE: This class includes any area that is either a) rangeland, where 
vegetation is a mix of native grasses, shrubs, forbs and grass-like plants largely arising from 
natural factors and processes such as rainfall, temperature, elevation and fire, although limited 
management may include prescribed burning as well as grazing by domestic and wild herbivores; 
or b) pasture, where vegetation may range from mixed, largely natural grasses, forbs and herbs to 
more managed vegetation dominated by grass species that have been seeded and managed to 
maintain near monoculture. 

 
Calibration Data Finalization 
Since the classes listed above can be too detailed to model with remote sensing data, we bin (cross-walk) 
them into larger classes appropriate for the LCMS modeling methods. For PRUSVI, change processes are 
cross-walked into two final classes: 

• Fast Loss 
o Fire  
o Harvest 
o Mechanical 
o Wind/ice 
o Hydrology 
o Debris 
o Other 

• Gain 
o Growth/recovery 

Land cover requires a different cross-walking approach. All TimeSync plots have a primary land cover 
class that makes up the majority of the plot. Any additional land cover class that comprises 10% or more 
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of the plot is assigned as a secondary land cover class. Since a plot may have any number of secondary 
land cover classes, primary/secondary combinations of interest are modeled separately. We include any 
primary/secondary combination that is common along typical succession, focusing on pairings with a 
secondary class that is higher along the successional order. The expected land cover successional order is 
barren to grass/forb/herb, grass/forb/herb to shrub, and shrub to tree. With this in mind, the 
primary/secondary land cover combinations we model in LCMS are shown in Table 2. 

 

Table 2. – List of primary and secondary land cover classes modeled in LCMS. Successional classes are grouped and highlighted 
with italic font. The snow/ice and water classes are not modeled with any secondary land cover classes since they are not likely 
to be part of vegetation succession. 

Primary Secondary 
Trees NA 
Tall Shrubs  Trees 
Shrubs Trees 
Grass/forb/herb Trees 
Barren Trees 
Tall Shrubs NA 
Shrubs NA 
Grass/forb/herb Shrubs 
Barren Shrubs 
Grass/forb/herb NA 
Barren Grass/forb/herb 
Barren or 
Impervious 

NA 

We take the land use classes directly from the TimeSync plots: 

o Agriculture 
o Developed 
o Forest 
o Non-forest wetland 
o Other 
o Rangeland or pasture 

Model predictor data 
We use spectral information from Landsat and Sentinel-2 imagery and topographic information from the 
USGS National Elevation Dataset (NED) for modeling. Descriptions of each of these datasets are 
provided below. 

Remote sensing spectral data 

Data preparation 
LCMS uses United States Geological Survey (USGS) Collection 1 Tier 1 Landsat 4, 5, 7, and 8 and 
Sentinel-2a and -2b level 1C top of atmosphere reflectance data. We do not use surface reflectance data 
because the Sentinel-2 surface reflectance data available within GEE are terrain-corrected. This makes it 
difficult to utilize in unison with Landsat surface reflectance data that are not terrain-corrected. 

https://developers.google.com/earth-engine/datasets/catalog/landsat
https://developers.google.com/earth-engine/datasets/catalog/sentinel-2
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For cloud masking Landsat data, we apply the CFmask cloud masking algorithm (Foga et al., 2017), 
which is an implementation of Fmask 2.0 (Zhu and Woodcock 2012), as well as the cloudScore algorithm 
(Chastain et al., 2019). For cloud masking Sentinel-2 data, we utilize the s2Cloudless algorithm. We mask 
cloud shadows in both Landsat and Sentinel-2 using the Temporal Dark Outlier Mask (TDOM) method 
(Chastain et al., 2019). All remote sensing data preparation procedures can be accessed in the GTAC GEE 
data processing and visualization library (GTAC GEE Visualization Python Modules on PyPI, GTAC 
GEE Visualization Python Modules on GitHub).  

Annual compositing 
LCMS utilizes cloud/cloud shadow masked data as well as annual composites of these data to meet the 
needs of the temporal segmentation methods. Annual composite values are the geometric medoid of all 
values not masked as cloud or cloud shadow from a specified date range for each year. Due to persistent 
cloudiness in parts of Puerto Rico, such as El Yunque National Park, Landsat and Sentinel 2 data were 
collected from June 1 – May 31 for a given year (e.g., June 1, 2020 – May 31, 2021 for mapping year 
2020) (table 3). 

Table 3. – Dates used for annual compositing of Landsat and Sentinel-2 data. 

Study Area Pre Sentinel-
2 Start Date 

Pre Sentinel-2 
End Date 

Post Sentinel-2 
Start Date 

Post Sentinel-2 
End Date 

Puerto Rico June 1 May 31 June 1 May 31 

The geometric medoid is the value that minimizes the sum of the square difference between the median 
value of each band’s values. This ensures that the center-most value in a multi-dimensional feature space 
is chosen. The value from all bands is from the same observation date. The bands that we include in the 
feature space are green, red, near infrared (NIR), first shortwave infrared (SWIR1), and second shortwave 
infrared (SWIR2). We omit blue because it is more prone to atmospheric scattering and can 
inappropriately influence the medoid algorithm. Any pixel that does not have a cloud or cloud shadow 
free value for a given year is left as null and excluded from any map for that year. The 2020 composite 
images for PRUSVI are shown in figure 3 as an example.  

  

https://github.com/sentinel-hub/sentinel2-cloud-detector
https://pypi.org/project/geeViz/
https://github.com/gee-community/geeViz
https://github.com/gee-community/geeViz
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Figure 3. – Example of the 2020 composites used in the Land Change Monitoring System (LCMS). The red, green, and blue 
channels used in these composites are the second shortwave infrared (SWIR2), near infrared (NIR), and red bands, respectively. 
The top image shows both Puerto Rico (PR) and the U.S. Virgin Islands (USVI). The bottom image shows a zoomed in view over 
southern Puerto Rico.  

Temporal segmentation 
The goal of temporal segmentation is to identify periods of time that likely have similar land cover and/or 
change processes. Since different segmentation methods have advantages and disadvantages, LCMS 
utilizes the ensemble approach outlined in Cohen et al., (2018) and Healey et al., (2018). Currently, the 
operational version of LCMS utilizes LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018) and 
CCDC (Zhu and Woodcock 2014) to segment the prepared time series. LandTrendr requires a maximum 
of one observation per year (i.e., an annual composite, made from Landsat and Sentinel-2 data), while 
CCDC utilizes every available cloud and cloud shadow-free observation from the Landsat time series 
only.  

LandTrendr Methods 
LandTrendr iteratively breaks the time series of annual composites and returns a set of segments. Each 
segment has a start and end year and a start and end fitted value at the start and end vertices respectively 
(figure 4).  
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Figure 4. – Illustration from https://emapr.github.io/LT-GEE/ depicting how LandTrendr breaks a time series and the 
information that can be taken from the output. 

From this information, we assign each band/index for each year the following values: 

• Fitted value  
• Difference of that year’s fitted value from the fitted value of the start vertex 
• Difference from the start to end fitted value of the segment that year falls in 
• The duration of the segment that year falls in 
• The slope of the segment that year falls in 

LCMS uses the GEE version of LandTrendr outlined in Kennedy et al., (2018). The parameters that are 
used are the same as those in Kennedy et al., (2018) (table 4). 

https://emapr.github.io/LT-GEE/


 

Geospatial Technology and Applications Center GTAC-10252-RPT2 |  13 

Table 4. – LandTrendr parameters used 

Parameter Name Value Description 
maxSegments 6 Maximum number of segments 

to be fitted on the time series. 
spikeThreshold 0.9 Threshold for damping the 

spikes (1.0 means no 
dampening). 

vertexCountOvershoot 3 The initial model can overshoot 
the maxSegments + 1 vertices 
by this amount. Later, it will be 
pruned down to maxSegments + 
1. 

preventOneYearRecovery true Prevent segments that represent 
one-year recoveries. 

recoveryThreshold 0.25 If a segment has a recovery rate 
faster than 1/recoveryThreshold 
(in years), then the segment is 
disallowed. 

pvalThreshold 0.05 If the p-value of the fitted model 
exceeds this threshold, then the 
current model is discarded and 
another one is fitted using the 
Levenberg-Marquardt optimizer. 

bestModelProportion 1.25 Takes the model with most 
vertices that has a p-value that is 
at most this proportion away 
from the model with lowest p-
value. 

Further documentation of the LandTrendr method used can be found in the GEE reference 
documentation. 

CCDC Methods 
CCDC segments the time series by identifying outliers from a harmonic regression model. The idea is that 
different land cover and/or land use types have distinct seasonality signatures. A departure from the 
seasonality signature indicates a change (figure 5).  

  

https://developers.google.com/earth-engine/apidocs/ee-algorithms-temporalsegmentation-landtrendr
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Figure 5. – An example of how Continuous Change Detection and Classification (CCDC) segments a time series of data. The 
clear observations for band 5 (first shortwave infrared band for Land Change Monitoring System [LCMS]) are shown as dots, 
while the modeled value is shown as a blue line. Notice the dots depart from the typical values around 2008. CCDC then starts a 
new model following this departure when a new consistent seasonal pattern is re-established. (Source: Zhu and Woodcock 2014 
figure 21) 

Input data include all Landsat cloud and cloud shadow-free values. LCMS uses all cosine and sine 
coefficients from the first three harmonics (2π, 4π, and 6π; see Zhu and Woodcock 2014) from the CCDC 
outputs. We do not use the slope and intercept generated by CCDC. Instead, we use the predicted value 
based on the harmonic model on September 1 in place of the intercept (Figure 6), and the difference 
between that year and the previous year’s fitted values as the slope. This allows CCDC to work properly 
within the LCMS annual ensemble framework.  

The GEE version of CCDC is used for LCMS. The parameters used are shown in table 5. 

Table 5. – Continuous Change Detection and Classification (CCDC) parameters used. 

Parameter Name Value Description 
breakpointBands ["green","red","nir","swir1",

"swir2","NDVI"] 
The name or index of the bands to use for change 
detection. If unspecified, all bands are used. 

tmaskBands null The name or index of the bands to use for iterative 
TMask cloud detection. These are typically the green 
band and the SWIR2 band. If unspecified, TMask is not 
used. If specified, 'tmaskBands' must be included in 
'breakpointBands'. 

minObservations 4 The number of observations required to flag a change. 
chiSquareProbability 0.95 The chi-square probability threshold for change 

detection in the range of [0, 1] 
minNumOfYearsScaler 1.33 Factors of minimum number of years to apply new 

fitting. 
dateFormat 1 The time representation to use during fitting: 0 = jDays, 

1 = fractional years, 2 = unix time in milliseconds. The 
start, end and break times for each temporal segment will 
be encoded this way. 

lambda 0.002 Lambda for LASSO regression fitting. If set to 0, regular 
OLS is used instead of LASSO. 

maxIterations 25000 Maximum number of runs for LASSO regression 
convergence. If set to 0, regular OLS is used instead of 
LASSO. 

Further documentation of the CCDC methods used can be found in the GEE reference documentation. 

https://developers.google.com/earth-engine/apidocs/ee-algorithms-temporalsegmentation-ccdc
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Summary 
Visualizing how the medoid composites and fitted LandTrendr and CCDC values relate can be quite 
difficult. Figure 6 attempts to illustrate how these values relate for two example pixels. The pixel depicted 
in the left column shows a fire event, while the right column shows insect-related tree mortality.  

The first row shows the time series of the medoid composite values. Notice how each band relates to the 
other during the change events. The middle row shows the normalized burn ratio (NBR) (a vegetation 
index related to moisture levels) fitted CCDC output, along with the annualized CCDC value from 
September 1 for each year. Notice how CCDC finds a break for the fire example but shows a single long-
term declining trend of NBR for the insect-related mortality. The bottom row shows the annual values of 
NBR from the medoid composites, LandTrendr, and CCDC. This illustrates how all three directly relate 
to each other. Each is different, but not necessarily right or wrong. Both LandTrendr and CCDC reduce 
inter-annual noise but identify breaks at different points in time. These are all used in the random forest 
model outlined below to produce final LCMS products. 

  

 

  
Figure 6. – An example of predicted values from a pixel. The left column depicts a pixel with a fire event, while the right column 
depicts a pixel with insect-related tree mortality. The top row shows the raw spectral bands from the annual medoid composites. 
The second row shows the Continuous Change Detection and Classification (CCDC) output for the normalized burn ratio (NBR) 
vegetation index, as well as the annualized values used in the Land Change Monitoring System (LCMS). The bottom row shows 
the raw NBR, LandTrendr-fitted NBR, and CCDC-fitted NBR values on a single graph. This illustrates how these data 
complement each other as well as how they differ. 

Terrain data 
LCMS also uses terrain metrics to provide elevation, slope, aspect, and slope-position information to the 
model. The specific variables used are: 
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• Elevation 
• Sine (Aspect) 
• Cosine (Aspect) 
• Slope 
• Slope-position (circular kernel with 11 pixel window, 21 pixel window, and 41 pixel window) 

(Weiss 2001) 
 
The Digital Elevation Models of Puerto Rico (Taylor et al 2008) was used for Puerto Rico, and for USVI 
the National Oceanic and Atmospheric Administration Digital Elevation Model was used for USVI (Love 
et al. 2014). All resampling was performed using cubic convolution.  

Summary 
For PRUSVI, Landsat/Sentinel 2 Composites were not used directly as predictor variables. All other 
LandTrendr, CCDC and Terrain variables covered in this section are utilized in the methods outlined 
below. Table 6 shows a full list of all predictor variables considered for modeling (raw composites values 
not used). Not included in this list is Landsat thermal data that is used as a predictor variable in 2021.7 
modeling.  

 

Composites Terrain

Raw

LANDT
RENDR 
Fitted

LANDTR
ENDR 
Diff

LANDT
RENDR 
Dur

LANDT
RENDR 
Mag

LANDT
RENDR 
Slope

CCDC 
Fitted

CCDC 
Fitted 
Slope

CCDC 
COS 1

CCDC 
COS 2

CCDC 
COS 3

CCDC 
SIN 1

CCDC 
SIN 2

CCDC 
SIN 3 Raw

blue ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
green ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
red ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
nir ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
swir1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
swir2 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
NDVI ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
NBR ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
NDMI ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
NDSI ✔ ✔ ✔ ✔ ✔ ✔
brightness ✔ ✔ ✔ ✔ ✔ ✔
greenness ✔ ✔ ✔ ✔ ✔ ✔
wetness ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
brightness / 
greenness angle

✔ ✔ ✔ ✔ ✔ ✔

Elevation ✔
Slope ✔
cos(Aspect) ✔
sin(Aspect) ✔
TPI (11 pixel) ✔
TPI (21 pixel) ✔
TPI (41 pixel) ✔
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Table 6. – List of Land Change Monitoring System (LCMS) model predictor variables. Annual values are different for each year 
of the analysis period, while the single value terrain variables remain constant. Raw composites values were not used.  

Modeling (Supervised Classifications) 
All supervised classifications for LCMS utilize the random forest modeling method (Breiman 2001). 
Random forest randomly selects a subset of the predictor variables and training sites in many different 
classification and regression trees. Each of the many trees predicts a class, which are then aggregated and 
used to determine the final modeled class.  

LCMS utilizes the GEE instance of random forests called “smileRandomForest” for all raster-based 
classification. Local processing utilized for variable selection and map validation uses the 
sklearn.ensemble.RandomForestClassifier method. 
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LCMS uses a separate random forest model for each of the following products: 

• Change 
o Slow Loss 
o Fast Loss 
o Gain 
1. Land cover 
a. Trees 
b. Tall Shrubs & Trees Mix (SEAK only) 
c. Shrubs & Trees Mix 
d. Grass/Forb/Herb & Trees Mix 
e. Barren & Trees Mix 
f. Tall Shrubs (SEAK only) 
g. Shrubs 
h. Grass/Forb/ & Shrubs Mix 
i. Barren & Shrubs Mix 
j. Grass/Forb/Herb 
o Barren & Grass/Forb/Herb Mix 
o Barren or impervious 
o Snow or ice 
o Water 

• Land use 
o Agriculture 
o Developed 
o Forest 
o Non-forest wetland 
o Other 
o Rangeland or pasture 

 

Each of these products has an annual model output that is the proportion of trees within the random forest 
model that chose that class. For example, if the fast loss random forest model had a total of 100 
classification trees in it, and 45 of those trees chose “fast loss” and 65 chose “not fast loss” in 2005, that 
pixel would have a value of 0.45 in 2005. This model confidence, which can also be thought of as a 
probability, can have values between 0 and 1 and is available for each model for each year from 1985 to 
the most recent complete growing season. Figure 7 illustrates this concept in more detail. 

Predictor variable selection 
To reduce predictor variable co-variation and inclusion of variables that do not improve the model, we 
filter predictor variables in a two-step process. The first step involves filtering out any predictor pairs that 
have an r-squared greater than 0.95 (pandas.DataFrame.corr). The variable with the lowest mean r-
squared across all pairs is retained. The next step is a recursive feature elimination using a 5-fold grouped 
cross validation (sklearn.feature_selection.RFECV). We retain the variable combination with the highest 
accuracy for land use and land cover or highest ROC_AUC (Area Under the Receiver Operating 
Characteristic Curve) score for change. Interpolated values from both LandTrendr and CCDC were 
included as predictor variables to allow for more complete maps (These areas can be removed by using 
the QA band described below). 

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.corr.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html
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Model validation 
We determine an optimum model confidence threshold by assessing the precision and recall at every 
possible threshold (from 0-100) and selecting the threshold that maximizes both precision and recall. We 
then use this threshold in a stratified 5-fold cross validation following Stehman (2014) for each change, 
land cover, and land use model. We use the stratified random sample of 30 m by 30 m plot locations as 
the sample, and group training points by plot ID so that all training points from the same plot (but that 
occurred in different years) are always included in the same fold. 

Final output creation 
As explained in the previous sections, each class within the change, land cover, and land use products has 
a model confidence score, which represents the proportion of trees within the random forest model that 
classified a given pixel as that class for that model. Some examples of model confidence time series from 
individual pixels are shown in figure 7. For each year, the line with the highest confidence is the class that 
is chosen for the given LCMS product (change, land cover, and land use). For change classes, the line 
with the highest confidence must also have a value above that model’s threshold. This is done because the 
“Stable” class is not modeled explicitly. 

In figure 7, the pixel time series shown in the left column has been affected by a fire, while the pixel 
shown in the right column depicts long-term tree mortality from insects. The first, second, and third rows 
show the change, land cover, and land use time series, respectively. 

Beginning with the fire example, the change time series (first row, left column) shows that the fast loss 
model confidence peaks in the year of the fire (2012), to a value that exceeds the fast loss threshold of 
0.29. In the years following the fire (2013-2020), the gain model confidence rises to levels above the gain 
threshold of 0.29, as one might expect with growth and recovery following a fire. Complementing the 
change time series, the land cover time series (second row, left column) shows that the tree class had a 
very high model confidence for each year until the fire in 2012. Following the fire, the tree model 
confidence goes down, but it remains the most confident class. This often occurs when the trees are 
damaged or not all burned, but the understory burns. In the following years, we see the probability of 
grass/forb/herb & trees mix increase, most likely indicating that there are live trees in this pixel with 
grasses becoming more and more prevalent. Since a fire generally does not indicate a land use transition, 
the land use forest model’s confidence dips (third row, left column), but remains the highest.  

The time series of long-term tree mortality caused by beetles (right column), is quite different. In this 
case, the slow loss model confidence is elevated for about two decades (first row, right column). While 
the gain model confidence is elevated slightly during the second decade of this trend, the slow loss model 
remains the highest. Although there was indeed slow loss at this pixel, there was no transition of land 
cover or land use classes (second and third rows, right column). It is important to note that many instances 
of loss and gain do not result in a change of land cover or land use. 
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Figure 7. – Time series of Land Change Monitoring System raw modeled probabilities for each year for a fire (left column) and 
tree mortality due to beetles (right column). The first, second, and third rows of this figure show the change, land cover, and land 
use time series, respectively. The map product assumes the class with the highest confidence for each year. Notice that it is 
possible to have a change event without a change in land cover or land use. 

LCMS products 
We package the final LCMS deliverables in two ways: annual and summarized layers. For each product 
(change, land cover, and land use) we assemble annual maps, as discussed above. We only provide 
summary products for change since only change products can easily be summarized. Beyond providing 
the mode for land cover and land use products, summarizing them is rather difficult.  

To summarize the change layers, we use two methods: most recent and most probable. The most recent 
method chooses the year of the respective change class that occurred most recently, while the most 
probable method chooses the year of the respective change class with the highest model confidence. The 
former can be useful for applications that need to know the most recent year a given change class was 
present, while the latter is useful for applications that need to know when a given change event peaked.  
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For example, the time series of change model confidences, or probabilities, for a given pixel is shown in 
figure 8. 

 
Figure 8. – Land Change Monitoring System change model confidence values for a single pixel. 

The most recent change years for this example are: 

• Slow loss: 2012 
• Fast loss: 2013 
• Gain: 2020 

The most probable change years are: 

• Slow loss: 2011 
• Fast loss: 2013 
• Gain: 2015 

Slow loss is used for understanding in the examples above but was not produced in the PRUSVI change 
product since PRUSVI exhibited limited slow loss. Generally, the two summary methods differ most for 
long-term change processes, such as gain and slow loss. 

Ancillary information on the origin of the annual LCMS product output values is now provided as part of 
a QA bit layer. This layer includes whether an interpolated value was used to produce the LCMS output, 
the sensor, and the day of year the value came from.  The QA bits are as follows: 

• 1: Interpolated (0), not interpolated (1) 
• 2-6: Which sensor the pixel came from 

o 4 = Landsat 4 
o 5 = Landsat 5 
o 7 = Landsat 7 
o 8 = Landsat 8 
o 21 = Sentinel 2a 
o 22 = Sentinel 2b 

• 7-15: Which Julian day the pixel came from (1-365) 
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Bitwise operations can be leveraged to unpack the QA decimal numbers to valid pixel values for the non-
interpolated data, sensor, and Julian day (see metadata for more detailed method). Table 1 shows how the 
bits are used in the QA Bits output image. 

 

Table 7. – Table of how bits are used in the QA Bits output image.  

 

 

Useful Resources 
• LCMS Homepage 
• Pilot Product Description 
• LCMS Data Explorer 
• LCMS Data Downloader 
• ESRI Image Services 
• LCMS GEE Collection 
• LCMS Contact Information 

  

https://data.fs.usda.gov/geodata/rastergateway/LCMS/index.php
https://data.fs.usda.gov/geodata/LCMS/LCMS_R4_v2019-04_Descriptions.html
https://apps.fs.usda.gov/lcms-viewer/
https://data.fs.usda.gov/geodata/rastergateway/LCMS/index.php
https://apps.fs.usda.gov/fsgisx01/rest/services/RDW_LandscapeAndWildlife
https://developers.google.com/earth-engine/datasets/catalog/USFS_GTAC_LCMS_v2020-5
mailto:sm.fs.lcms@usda.gov
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