
Forest Service  
U.S. DEPARTMENT OF AGRICULTURE 

Geospatial Technology and Applications Center December 19, 2023 

National Land Cover Database Tree 
Canopy Cover Methods 

Version: 2021.4 

Mapping Areas: Conterminous United States; Coastal Alaska; Hawaii; and Puerto 

Rico and U.S. Virgin Islands  

  

Geospatial Technology and Applications Center (GTAC) 
125 S. State Street, Suite 7105, Salt Lake City, Utah 84138 

apps.fs.usda.gov/gtac/

Ian Housman 
Lead Technical Consultant 

Senior Remote Sensing Specialist 

RedCastle Resources, onsite contractor 

ian.housman@usda.gov 

Karen Schleeweis 
Science Team Lead 

Rocky Mountain Research Station, FIA 

karen.schleeweis@usda.gov 

Josh Heyer 
Production Lead 

Geospatial Specialist  

RedCastle Resources, onsite contractor 

joshua.heyer@usda.gov  

Bonnie Ruefenacht 
Production Lead 

Geospatial Programmer  

RedCastle Resources, onsite contractor 

bonnie.ruefenacht@usda.gov 

 

Stacie Bender 
Physical Science Information Specialist 

Resource Mapping, Inventory, and Monitoring 

(RMIM) 

stacie.bender@usda.gov 

Kevin Megown 
Program Leader 

Resource Mapping, Inventory, and Monitoring 

(RMIM) 

kevin.megown@usda.gov 

 

Wendy Goetz 

Project Contributor 

RedCastle Resources, onsite contractor 

wendy.goetz@usda.gov 

 

Seth Bogle 

Geospatial Project Manager 

RedCastle Resources, onsite contractor 

michael.bogle@usda.gov

  

https://apps.fs.usda.gov/gtac/
http://dx.doi.org/10.1016/j.rse.2010.07.008
mailto:karen.schleeweis@usda.gov
mailto:joshua.heyer@usda.gov
mailto:bonnie.ruefenacht@usda.gov
mailto:stacie.bender@usda.gov
mailto:haans.fisk@usda.gov
http://dx.doi.org/10.1016/j.rse.2017.11.015
mailto:michael.bogle@usda.gov


 

 

USDA Non-Discrimination Statement 

In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the 

USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited 

from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual 

orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political 

beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all 

bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident. 

Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, 

audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA's TARGET Center at (202) 720-2600 

(voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may 

be made available in languages other than English. 

To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found 

online at How to File a Program Discrimination Complaint and at any USDA office or write a letter addressed to USDA and 

provide in the letter all of the information requested in the form. To request a copy of the complaint form, call (866) 632-9992. 

Submit your completed form or letter to USDA by: (1) mail: U.S. Department of Agriculture, Office of the Assistant Secretary 

for Civil Rights, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410; (2) fax: (202) 690-7442; or (3) email: 

program.intake@usda.gov. 

USDA is an equal opportunity provider, employer, and lender.

Housman, I.W.; Schleeweis, K.; Heyer, J.P.; Ruefenacht, B.; Bender, S.; Megown, K.; Goetz, W.; Bogle, S. 2023. National 

Land Cover Database Tree Canopy Cover Methods v2021.4. GTAC-10268-RPT1. Salt Lake City, UT: U.S. Department of 

Agriculture, Forest Service, Geospatial Technology and Applications Center. 26 p. 

  

http://paperpile.com/b/VvvMPX/q8s8


 

 

Contents 

Executive Summary ................................................................................................................. 1 

Background .............................................................................................................................. 1 

Methods .................................................................................................................................... 2 

STUDY AREAS ........................................................................................................................................2 

COMPUTING PLATFORMS .........................................................................................................................3 

REFERENCE DATA ...................................................................................................................................3 

REFERENCE DATA COLLECTION ............................................................................................................................ 3 

REFERENCE DATA FILTERING................................................................................................................................ 4 

MODEL PREDICTOR DATA ........................................................................................................................6 

REMOTE SENSING SPECTRAL DATA ....................................................................................................................... 6 

TERRAIN DATA ................................................................................................................................................ 13 

CROPLAND DATA ............................................................................................................................................. 13 

SUMMARY ...................................................................................................................................................... 13 

MODELING ......................................................................................................................................... 14 

SCIENCE TCC PRODUCT MODELING .................................................................................................................... 14 

SCIENCE PRODUCTS .............................................................................................................................. 16 

NLCD TCC POST-PROCESSING METHODS ................................................................................................... 16 

SEPARATING URBAN AND NON-URBAN AREAS ..................................................................................................... 17 

NON-URBAN NON-TREE TCC MASKING .............................................................................................................. 17 

URBAN NON-TREE TCC MASKING ..................................................................................................................... 19 

TEMPORAL FILTERING....................................................................................................................................... 21 

MAP ERROR ASSESSMENT ...................................................................................................................... 22 

Useful Resources ....................................................................................................................23 

References ..............................................................................................................................24 

 



 

Geospatial Technology and Applications Center GTAC-10268-RPT1 |  1 

Executive Summary 
The National Land Cover Database (NLCD) Tree Canopy Cover (TCC) is a remote sensing-based map 

output produced by the United States Department of Agriculture, Forest Service (Forest Service). The 

2021 NLCD TCC release includes annual maps from 2011-2021 across the Conterminous United States 

(CONUS), coastal Alaska, Puerto Rico and the US Virgin Islands (PRUSVI), and Hawaii. Science TCC 

products are also available annually from 2008 to 2021. Science and NLCD TCC products can be used in 

many applications including monitoring forest health, post-disturbance recovery, urban canopy 

distribution, and carbon accounting.  

This document details the methods used to create the annual Science and NLCD TCC map products for 

TCC version 2021.4. A forthcoming manuscript will provide a more comprehensive summary of TCC 

2021.4 background, methods, and results. These methods will be revisited with each new release to 

ensure they reflect the best available science. Current methods utilize Google Earth Engine (GEE) to run 

the Landsat-based detection of Trends in Disturbance and Recovery (LandTrendr) temporal segmentation 

algorithm on annual composites of Landsat and Sentinel-2 imagery. The outputs from LandTrendr are 

used as predictor variables in random forest models that are calibrated outside GEE using Forest Service 

Forest Inventory and Analysis (FIA) photo-interpreted TCC data to make wall-to-wall TCC predictions 

on a pixel-wise basis.  

The main goal of this version of the production methods was to enable more frequent time steps, a longer 

temporal extent, and more coherent temporal signals in the TCC products. This goal was achieved by 

using GEE storage and compute capacity for image processing, and by incorporating time-series-based 

approaches already utilized by Forest Service programs like the Landscape Change Monitoring System 

(LCMS), while also ensuring the NLCD TCC product retains the level of quality expected of a product 

that is part of the NLCD suite. 

NLCD TCC products are freely available for download on the Multi-Resolution Land Characteristics 

(MRLC) consortium website. 

Annual Science TCC products are available for download on the FSGeodata Clearinghouse website. 

 

Background 
The Forest Service produces the NLCD TCC product as a member of the MRLC consortium (Wickham et 

al., 2014). The 2001 version of the NLCD TCC product was produced by the United States Geological 

Survey (USGS) (Homer et al., 2004). All subsequent releases have been produced by the Forest Service. 

This includes the 2011 and 2016 releases and the most recent 2021 release (Coulston et al., 2012; Yang et 

al., 2018). With each new NLCD TCC data release, previous datasets are superseded with the newest 

version for each map year. This follows protocols used for the NLCD Land Cover and Urban Impervious 

Cover datasets.  

All production methods are developed as a joint effort between the NLCD TCC Science Team under the 

Forest Inventory and Analysis (FIA) program and the NLCD TCC Production Team at the Geospatial 

Technology and Applications Center (GTAC). Methods are revisited and potentially changed with each 

new release. To allow for easy tracking of which product version you are using, all products and 

documentation will share the following naming convention: YYYY.v, where “YYYY” denotes the most 

recent year mapped, and the “v” denotes the version of the production methods used. Version 2021.4 is 

the first to employ this naming convention. 

https://www.mrlc.gov/data?f%5B0%5D=category%3ATree%20Canopy
https://www.mrlc.gov/data?f%5B0%5D=category%3ATree%20Canopy
https://data.fs.usda.gov/geodata/rastergateway/treecanopycover/index.php
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Annual nationwide mapping programs are becoming more common (Brown et al., 2020; Housman et al., 

2022). One goal of the TCC version 2021.4 release was to leverage Forest Service LCMS methods where 

appropriate. As a result, NLCD TCC now shares much of the same image inputs and image pre-

processing workflows used by the Forest Service LCMS. While annual NLCD TCC products are not yet 

being released by MRLC, annual NLCD TCC and Science TCC products (raw direct model outputs and 

per-pixel model standard deviation – also referred to as “standard error”) extending from 2008-2021 are 

being released by the Forest Service.  

Since NLCD TCC 2021.4 shares some methods with the 2016 NLCD TCC release and LCMS, this 

document will pull from the existing 2016 NLCD TCC methods documentation (Ruefenacht et al., 2022) 

as well as the LCMS methods documentation (Housman et al., 2022) when appropriate.  

NLCD TCC products cover the Conterminous United States (CONUS), and outside-CONUS (OCONUS) 

mapping areas Coastal Alaska, Puerto Rico and US Virgin Islands (PRUSVI), and Hawaii. CONUS 

products will be released spring 2023, with the other study areas following in summer/fall 2023. The 

NLCD and Science TCC product suite includes 30 m spatial resolution maps of percent tree canopy cover 

from 2008-2021.  

Methods 

Study Areas 
The 2021 TCC product suite extends across CONUS, coastal Alaska, Hawaii, and PRUSVI (figure 1).  

 

Figure 1.—Depiction of the tree canopy cover study areas for CONUS, coastal Alaska, Hawaii, and Puerto Rico and the US 

Virgin Islands (PRUSVI). 
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All study areas except coastal Alaska match those of NLCD land cover and urban impervious cover 

products, produced by USGS. Specifically, CONUS consists of the 48 contiguous states and some 

surrounding water. Hawaii is limited to the eight major islands: Ni’hau, Kaua’i, O’ahu, Moloka’i, Lāna’i, 

Kaho’olawe, Maui, and Hawai’i. The Puerto Rico portion of PRUSVI consists of Puerto Rico, Culebra, 

Vieques, and Mona, while the US Virgin Islands portion of PRUSVI consists of St. Croix, St. Thomas, 

and St. John. Coastal Alaska includes a 219,000 km2 region of southeast and south-central coastal Alaska 

(figure 1).  

Computing Platforms 
NLCD TCC utilizes Google Earth Engine (GEE; Gorelick et al., 2017) for all remote sensing raster data 

acquisition and processing through an enterprise agreement between the Forest Service and Google. GEE 

is a parallel computing environment that provides access to many publicly available earth observation 

datasets, along with common data processing methods and computing infrastructure to process these data.  

To maintain confidentiality of the reference data locations collected over the FIA sample grid (Bechtold 

and Patterson 2005), we use R (R Core Team, 2010) and the Python package Scikit-Learn (Pedregosa et 

al., 2011) on local compute resources at GTAC to extract predictor data over reference locations, build 

the random forest TCC models, and compute model and map error. 

Reference Data 

Reference Data Collection 
Reference data were collected using high-resolution imagery and the Canopy Cover Tool, developed by 

the Forest Service as an ArcMap™ extension (Goeking et al., 2012; figure 2). To compute a plot’s 

estimated tree canopy cover percentage, a grid of 109 dots (with a spacing of 26.25 feet) are placed within 

a 144-foot radius circle that is centered on the plot. These 109 dots are rotated 15 degrees to avoid 

following linear anthropomorphic features in cardinal directions. Photo interpreters indicate whether the 

dot falls upon tree canopy or not and the percent tree canopy cover is calculated for the plot. Interpreters 

also assigned a confidence level in their photo interpretations for each plot. The plot locations used for 

reference data collection were located on the FIA grid (Reams et al., 2005).  

https://scikit-learn.org/stable/
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Figure 2. Depiction of the Canopy Cover tool used to develop tree canopy cover reference data. 

For this project, tree canopy is defined as: 

• Tree – live tally trees, saplings and seedlings – where tally trees are all species listed in the FIA 

Master Tree Species List. This list is updated and archived according to the FIA field guide. 

• Canopy – The vertically-projected polygon described by the outline of the foliage, ignoring any 

normal spaces occurring between the leaves of plants (Daubenmire, 1959), and ignoring overlap 

among multiple layers of a species. 

Percent tree canopy cover is then defined as: 

• The percent of systematically arranged points (109 total) within a 144-foot radius circle centered 

on an FIA plot that fall over tree canopy (defined above). 

 

Reference Data Filtering 
To minimize error in the CONUS and OCONUS reference data, we omitted any plot for the following 

reasons: 

• Low interpreter confidence 

• Spectrally unstable (possible change) 

• LCMS Change (Loss or Gain) 

• Plot fell over an ocean waterbody 

• No cloud or cloud shadow-free spectral information available 

• Reference TCC > 0 where manual image interpretation indicated TCC = 0 

https://www.fia.fs.usda.gov/library/field-guides-methods-proc/index.php
https://www.fia.fs.usda.gov/library/field-guides-methods-proc/index.php
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Of the 63,010 FIA CONUS plots, the final number of plots included as reference data was 55,356 (table 

1). These plots were then randomly divided into model calibration (70%) and map error assessment (30%) 

groups.  

For coastal Alaska, tree canopy cover data was photo-interpreted over 2,035 FIA plots. Plots over 

offshore water or that received a low confidence score by the photo-interpreter, were discarded. The final 

number of plots used as reference data were 1,397 (table 1). These plots were randomly divided into 

model calibration (80%) and map error assessment (20%) groups. 

For Hawaii, tree canopy cover was photo-interpreted over 1,284 FIA plots. For map error assessment, a 

random set of 325 non-FIA plots were photo-interpreted.  

For PRUSVI, 1,965 FIA plots were available.  We omitted plots for the following reasons:  

• Outside of PRUSVI NLCD study area 

• Experimental plots 

• Low interpreter confidence 

• Reference TCC = 0 where manual image interpretation indicated TCC > 0 

To increase the total number of reference points in PRUSVI, we intensified the FIA grid to add 381 

points. The final number of plots used as reference data were 980 (table 1). For map error assessment, a 

random set of 324 non-FIA plots were photo-interpreted. 

 

Table 1. FIA plots were removed from reference data due to low photo-interpretation quality scores, duplicate or experimental 

plots, locations over oceans or unavailable data, unstable spectral data, inaccurate zero canopy photo-interpretation (PI), and 

PI that spectrally changed according to LCMS change data between 2009-2012 (within +- 1 year of NAIP PI acquisition 

window). The following tables show the number of plots removed and the final number of plots used as reference data. 

CONUS   

FIA PI reason for removal Number of PI removed PI Count 

All FIA Plots  63,010 

Removed previously 476  

Low photo-interpretation quality scores 1,972  

Duplicates 703  

Ocean or unavailable spectral data 20  

Spectrally unstable 47  

QA of zero canopy PI called canopy  260  

LCMS Change (Loss or Gain) 2009-2012 4,176  

Final number of PI plots used  55,356 

 

Coastal Alaska   

FIA PI reason for removal Number of PI removed PI Count 

All FIA Plots  2,035 

Low photo-interpretation quality scores 184  

Ocean or unavailable spectral data 454  

Final number of PI plots used  1,397 

 

 

PRUSVI   

FIA PI reason for removal Number of PI removed PI Count 

All FIA Plots  1,965 

Outside PRUSVI 1,233  

Experimental plots 126  

Low photo-interpretation quality scores 1  
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Disagreement with zero canopy cover and imagery 6  

Intensified plots added  381 

Final number of PI plots used  980 

   

Hawaii   

FIA PI reason for removal Number of PI removed PI Count 

All FIA Plots  1,709 

Non-FIA Plots 325  

Low photo-interpretation quality scores 100  

Final number of PI plots used  1,284 

 

Model Predictor Data 
Our model predictor data consists of Landsat and Sentinel-2 imagery fitted by the LandTrendr temporal 

segmentation algorithm, topographic information from the USGS 3-Dimensional Elevation Product 

(3DEP), and the USDA Cropland Data Layer. Descriptions of each of these datasets are provided below. 

Remote Sensing Spectral Data 

Data Preparation 

We use United States Geological Survey (USGS) Collection 2 Tier 1 Level 1 Landsat 4, 5, 7, 8, and 9 and 

Sentinel-2a and 2b level 1C top of atmosphere reflectance data, as available in GEE fall 2022. We do not 

use surface reflectance data because the Sentinel-2 surface reflectance data available within GEE are 

terrain-corrected, which makes it difficult to use with Landsat surface reflectance data that are not terrain-

corrected. 

For cloud masking Landsat data, we apply the CFmask cloud and cloud shadow masking algorithm (Foga 

et al., 2017), which is an implementation of Fmask 2.0 (Zhu and Woodcock, 2012), as well as the 

cloudScore algorithm (Chastain et al., 2019). For cloud masking Sentinel-2 data, we utilize the 

s2Cloudless algorithm (Zupanc, 2017) outputs available through GEE. We mask cloud shadows in both 

Landsat and Sentinel-2 using the Temporal Dark Outlier Mask (TDOM) method (Chastain et al., 2019). 

All remote sensing data preparation procedures can be accessed in the GTAC GEE data processing and 

visualization library: 

• GeeViz Module on PyPI  

• GeeViz Module on GitHub   

Annual Compositing 

We utilize annual composites of the masked Landsat and Sentinel-2 data as inputs for LandTrendr. 

Annual composite values are the geometric medoid of all values not masked as cloud or cloud shadow 

from a specified date range for each year. Due to differences in data availability and seasonality, we adapt 

the date window range across different modeling regions (table 2).  

Table 2. Dates used for annual compositing of Landsat and Sentinel-2 data. 

Study 

Area 

Pre-Sentinel-2 

Start Date 

Pre-Sentinel-2 

End Date 

Post-Sentinel-2 

Start Date 

Post-Sentinel-2 

End Date 

CONUS June 1 September 30 July 1 September 1 

Coastal AK June 15 September 15 June 15 September 15 

PRUSVI June 1 May 31  June1  May 31 

HI January 1 December 31 January 1 December 31 

https://pypi.org/project/geeViz/
https://github.com/gee-community/geeViz
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The geometric medoid is the value that minimizes the sum of the square difference between the median 

value of each band’s values (Flood et al., 2013). This ensures that the center-most value in a multi-

dimensional feature space is chosen. The value from all bands is from the same observation date. The 

bands that we include in the feature space are green, red, near infrared (NIR), first shortwave infrared 

(SWIR1), and second shortwave infrared (SWIR2). We omit the blue band because it is more prone to 

atmospheric scattering and can inappropriately influence the medoid algorithm. Any pixel that does not 

have a cloud or cloud shadow free value for a given year is left as null and excluded from the composite 

for that year. The 2020 composite images for CONUS and coastal Alaska are shown in figure 3 as an 

example.  

  



 

Geospatial Technology and Applications Center GTAC-10268-RPT1 |  8 
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Figure 3. Example of the 2020 composites used in NLCD TCC. The red, green, and blue channels used in these composites are 

the second shortwave infrared (SWIR2), near infrared (NIR), and red bands, respectively. The top image shows all study areas. 

The following images show CONUS, coastal Alaska, Hawaii, and PRUSVI study areas from top to bottom respectively. 

With the workflow outlined above, two separate sets of annual composite series from 1984 to 2022 are 

created. The first set includes Landsat 7 from 1999-2002 when the scanline corrector worked properly. In 

May 2003, the Landsat 7 scanline corrector failed, introducing a stripe of missing data throughout all 

images. This first set does not include any Landsat 7 data with scanline correction striping. The second set 

utilizes Landsat 7 from 1999-2015 both with and without the scanline correction striping artifact. To 

minimize scanline correction striping artifacts, only SWIR1, SWIR2, normalized difference vegetation 

index (NDVI), normalized burn ratio (NBR), normalized difference moisture index (NDMI), and tasseled 

cap brightness are used. Note that the first set is different from those used for LCMS and it is used for 

CONUS, coastal AK, and PRUSVI study areas. Hawaii lacked sufficient Landsat 5 imagery to create 

composites from 2003-2013 without Landsat 7. 

Temporal Segmentation 

The goal of temporal segmentation is to identify periods of time that likely have similar vegetation cover 

and/or change processes. We use LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018) to segment 

both sets of prepared composite image time series. LandTrendr requires a maximum of one observation 

per year (i.e., an annual composite, made from Landsat and Sentinel-2 data).  

LandTrendr Methods 

LandTrendr iteratively breaks the time series of annual composites and returns a set of segments. Each 

segment has a start and end year, and a start and end fitted value at the start and end vertices respectively 

(figure 4). From this information, we assign each band/index for each year the fitted value. 
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Figure 4. Illustration from the LandTrendr Google Earth Engine (GEE) Guide depicting how LandTrendr breaks a time series 

and the information that can be taken from the output. 

We use the GEE version of LandTrendr outlined in Kennedy et al. (2018). The parameters that are used 

are the same as those in Kennedy et al. (2018) (table 3). Further documentation of the LandTrendr method 

used can be found in the GEE documentation. 

 

https://emapr.github.io/LT-GEE/
https://developers.google.com/earth-engine/apidocs/ee-algorithms-temporalsegmentation-landtrendr
https://emapr.github.io/LT-GEE/
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Table 3. LandTrendr parameters we used in temporal segmentation. 

 

Summary 

Figure 5 illustrates how one of our predictor variables (the normalized burn ratio (NBR)) is segmented by 

LandTrendr for two example pixels. The pixel depicted in the top chart shows a fire event, while the 

bottom chart shows insect-related tree mortality. The dark green line is the raw composite NBR value, 

while the lighter green line represents the fitted values we use in our models. Only the 2011 fitted 

LandTrendr values were used for model calibration, while all respective years were used for model 

application. 

  

Parameter Name Value Description 

maxSegments 6 Maximum number of segments to be fitted on 

the time series. 

spikeThreshold 0.9 Threshold for damping the spikes (1.0 means no 

dampening). 

vertexCountOvershoot 3 The initial model can overshoot the 

maxSegments + 1 vertices by this amount. 

Later, it will be pruned down to maxSegments + 

1. 

preventOneYearRecovery true Prevent segments that represent one-year 

recoveries. 

recoveryThreshold 0.25 If a segment has a recovery rate faster than 

1/recoveryThreshold (in years), then the 

segment is disallowed. 

pvalThreshold 0.05 If the p-value of the fitted model exceeds this 

threshold, then the current model is discarded 

and another one is fitted using the Levenberg-

Marquardt optimizer. 

bestModelProportion 1.25 Takes the model with most vertices that has a p-

value that is at most this proportion away from 

the model with lowest p-value. 
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Figure 5. An example of raw medoid composite and LandTrendr fitted NBR values for a single pixel. The pixel depicted in the top 

chart shows a fire event, while the bottom chart shows insect-related tree mortality. 

Terrain Data 
We use terrain metrics to provide elevation, slope, and aspect, information to the model. The specific 

variables used are: 

• Elevation 

• Aspect 

• Sine (Aspect) 

• Cosine (Aspect) 

• Slope 

 

For all study areas, the 10 m USGS 3D Elevation Program (U.S. Geological Survey, 2019) was used. All 

resampling from 10 m to 30 m spatial resolution was performed using cubic convolution.  

Cropland Data 
For CONUS, we also use the USDA National Agricultural Statistics Service (NASS) Cropland Data 

Layer (CDL) cropland layers to help inform the model on locations of agricultural areas (Lin et al., 2022). 

For each CONUS model year (2008-2021), binary agriculture data are produced by classifying all non-

tree CDL crops as agriculture, and everything else non-agriculture. No cropland layers were used for the 

OCONUS. 

Summary 
All variables covered in this section are utilized in the methods outlined below. Table 4 shows a full list 

of all predictor variables considered for modeling. 
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Table 4. List of NLCD TCC model predictor variables. This table depicts both annual values, which are different for each year of 

the analysis period, and static terrain values, which remain constant. Sets 1 and 2 both include the following sensors: Landsat 4, 

Landsat 5, Landsat 7, Landsat 8, Landsat 9, Sentinel 2a and Sentinel 2b. 

Predictor Variables 
Set 1: 

(No Landsat 7 after 2002) 

Set 2: 

(Includes Landsat 7 until 2015) 

Spectral Bands   

blue  ✓  

green ✓  

red  ✓  

NIR ✓  

SWIR1  ✓ ✓ 

SWIR2 ✓ ✓ 

Indices/Transformations   

NDVI ✓  

NBR ✓ ✓ 

NDMI ✓ ✓ 

NDSI ✓ ✓ 

brightness ✓ ✓ 

greenness  ✓  

wetness ✓  

brightness/ greenness angle ✓ ✓ 

Ag   

Cropland Data Layer (CDL)       ✓ (CONUS only) NA 

Terrain (static)   

Elevation ✓ NA 

Slope ✓ NA 

cosine(Aspect) ✓ NA 

sine(Aspect) ✓ NA 

 

Modeling  

Science TCC Product Modeling 
NLCD TCC utilizes the random forest modeling method (Breiman, 2001). Random forest randomly 

selects a subset of the predictor variables and training sites in many different regression trees. Each of the 

trees predicts a TCC value, the mean of which is used as the final modeled TCC value.  

We utilize the GEE instance of random forests called “smileRandomForest” for all raster-based 

regression. To meet requirements to protect the confidentiality of the FIA reference data locations, all 

predictor data extraction and model calibration was performed locally using the 

sklearn.ensemble.RandomForestClassifier method. Calibrated models were then uploaded to GEE for 

application to the raster predictor stack.  

Due to its size and wide variety of ecotones, CONUS modeling was broken up into fifty-four 480x480 km 

tiles. For each tile, a unique random forest model was built using 2011 fitted LandTrendr, 2011 CDL, and 
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terrain data. All reference data that were part of the 70 percent available for model calibration that 

intersected tiles within a 5x5 window around the center tile were used to train the random forest model. 

That model was then applied to the center tile. Figure 6 illustrates how the moving window approach 

covered CONUS. A moving window approach was not used for the OCONUS. For each OCONUS 

mapping area one random forest model was trained and applied.  

 

 

Figure 6. Illustration of 5x5 480x480 km moving window modeling method. This frame illustrates the adjacent tiles in red where 

training data were pulled from, and the yellow tile in the center the model was then applied to. The raw Science 2011 TCC map 

is depicted as it is predicted for this tile. Note this animation uses a web Mercator projection which is not an equal area 

projection, so the equal area square tiles appear distorted. An animated illustration of this moving window method is available 

here: https://storage.googleapis.com/tcc-graphics/TCC_Tile_Animation.gif  

These models were built on relationships between 2011 reference data and 2011 predictor data. Temporal 

fitting and segmenting algorithms (i.e., LandTrendr) vastly improve the signal to noise ratio in time-series 

built with Landsat and Sentinel-2 data. It has generally been accepted that radiometric normalization 

enables the spatial and temporal transfer of models, built with a limited subset of training data, to predict 

over additional years or locations that were not used in model calibration (Powell et al., 2010; Hansen and 

Loveland, 2012; Moisen et al., 2016; Vogeler et al., 2018; Potapov et al., 2022). Following this logic, we 

applied the 2011 model to predict TCC from 2008 to 2021. The last year of the image time series fitted by 

LandTrendr (2022) was not used to predict, as the last year can have more errors. 

While each pixel has a mean predicted TCC value for each year, it also has a standard deviation of the 

predicted values from all regression trees (we refer to this as standard error). The utility of the standard 

error is limited since it does not account for the actual model error or the variability of that model error. 

To provide a depiction of the variability of expected model error we simulated a model error statistic 

referred to as tau, following guidance from Coulston et al. (2016). For CONUS, tau percentiles were 

simulated for each of the 54 tiles, and for OCONUS tau percentiles were simulated for the mapping area. 

The intent of tau is to provide a measure of model uncertainty. The implementation is designed to 

https://storage.googleapis.com/tcc-graphics/TCC_Tile_Animation.gif
https://storage.googleapis.com/tcc-graphics/TCC_Tile_Animation.gif
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normalize pixel-wise standard error by the simulated variance of model error. Bootstrap resampling is 

used to parameterize many random forest models, in which the observed and predicted values are retained 

for the ~ 37 percent holdout (typical in bootstrap sampling with replacement). Those held out pairs of 

observations and predictions represent a type of error assessment that can be used to define the prediction 

and error of new observations. In theory, the distribution of these pairwise bootstrapped holdouts can be 

used to build intervals to help evaluate the uncertainty or confidence around future predictions in the TCC 

distribution space. These tau distributions are translated to tables and provided as part of the Science TCC 

products. 

Science Products 
Science products consist of the mean and standard deviation (also referred to as standard error throughout 

the documentation of this release) of the TCC values the regression trees within the random forest model 

predicted (figure 7), along with the tau tables for each of the 54CONUS  models and for each OCONUS 

model. These outputs are available annually from 2008-2021 through the Forest Service TCC distribution 

website.  

This output is useful for anyone who prefers to introduce their own post-processing workflow and/or who 

needs a depiction of pixel-wise model error and model uncertainty. 

 

Figure 7. Example of a pixel of the raw Science TCC output. Notice values will bounce around a little each year. This pixel was 

initially a healthy forest, followed by a long period of gradual decline of TCC from 2015-2020. Then in late summer 2020 (2021 

mapped year), this area experienced a wildfire. 

NLCD TCC Post-Processing Methods 
A post-processing workflow was developed to create the final NLCD TCC products. The main workflow 

steps were: 

• For non-urban areas: 

o Mask implausible TCC values that should be 0% TCC 

o Mask small clumps of trees 

• For urban areas: 

https://data.fs.usda.gov/geodata/rastergateway/treecanopycover/index.php
https://data.fs.usda.gov/geodata/rastergateway/treecanopycover/index.php
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o Mask areas with low TCC and high model uncertainty and simulated error in urban areas 

• For all mapping areas, filter out small inter-annual fluctuations that could confound 

interpretations of change common in the time series of predicted TCC values. 

Separating Urban and Non-Urban Areas 
Our first goal was to mask areas with predicted TCC values greater than 0 that were likely 0. To mitigate 

masking highly fragmented tree canopy cover common in urban settings, we separated urban and non-

urban areas. We used 2018 TIGER U.S. Census Block data, and the LCMS land use developed class as 

our urban mask.  

Non-Urban Non-Tree TCC Masking 
For all non-urban areas, we first created a mask annually to mitigate errors related to false positive 

(TCC>0%), and salt and pepper errors from tiny groups of trees or single trees in the landscape, which are 

harder to characterize accurately. For a given year’s TCC output, we used the following mask primitives: 

• 3 year moving window of LCMS non-tree class mode 

o Any pixel where the mode of a 3-year window (+/- 1 year from year of interest) was any 

of the non-tree LCMS classes (any class without a tree as a primary or secondary sub-

class). 

• Crop mask  

o NASS CDL non-tree crop areas for the given year of interest for CONUS.  

o No data were used to identify non-tree crop in the OCONUS.  

• Water mask 

o NLCD (2019 release) land cover water data from the closest year available to the year of 

interest for CONUS.  

o For coastal Alaska and PRUSVI the annual LCMS Landcover product water class. 

o For Hawaii the JRC Yearly Water Classification History, v1.4 (Jean-Francois Pekel et al., 

2016).  

 

Any LCMS tree pixel that fell over CDL non-tree crop (CONUS only) or water in respective water masks 

(all study areas) was recoded to non-tree. A minimum mapping unit, defined as tree clumps greater than 4 

pixels (30x30 m) in size, using queen’s case of adjacency (9 neighbor), was used to identify salt and 

pepper type tree clumps outside of urban areas in the LCMS tree mask. Any clump of tree pixels less than 

or equal to 4 pixels was recoded to non-tree; however, non-tree clumps less than or equal to 4 pixels were 

not recoded to tree. 

TCC pixels that intersected non-tree pixels in the non-urban non-tree mask, were set to 0% TCC (figure 8; 

figure 9). For coastal Alaska, trees found in the LCMS Land Cover tall shrub class were omitted from the 

initial LCMS non-tree masks. The 78th tau percentile was used to separate treed from non-treed pixels in 

the LCMS Landcover tall shrub class in coastal Alaska.  
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Figure 8. An example pixel where the non-urban non-tree mask filter was applied. As all years fell within the non-urban non-tree 

mask, the TCC values in the Science TCC product were set to 0 in the NLCD TCC product. 
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Figure 9. Example area illustrating the results of the non-urban not-tree minimum mapping unit filter. The top image shows high 

resolution satellite imagery for context. The middle image shows the Science TCC product. The bottom image shows the NLCD 

TCC product. Notice how many agriculture and wetland areas had somewhat high TCC values in the raw Science TCC product. 

These are then all set to 0 in this filtering step. 

Urban Non-Tree TCC Masking 
For urban areas, as defined above, we used a different routine to filter unplausible false positive TCC 

values. No minimum mapping unit over a tree mask was used as part of the urban filter routine. First, we 

applied the same agriculture (CONUS only) and water masks (all mapping areas) used for each year in 

the non-urban masking routine. Next, we used the simulated model error statistic referred to as tau, 

following guidance from Coulston et al. (2016; see Modeling section above) to identify pixels 

insignificantly different from 0% TCC. This method simulates a distribution of error values from our 

reference data. For the different study areas different tau percentile values were chosen. The tau 

percentiles chosen were the 87th percentile value for the CONUS, 70th percentile value for coastal Alaska, 

90th percentile for PRUSVI, and the 90th percentile for Hawaii. This value generally balanced 

commission and omission of masking non-tree areas in visual exploration of different percentile values. 

This tau percentile value is then multiplied by the standard deviation (also referred to as standard error in 

our documentation) of the TCC regression trees’ predicted values. Urban pixels were assigned to 0% TCC 

as follows (figure 10): 

(𝑚𝑒𝑎𝑛(𝑇𝐶𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) − (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑇𝐶𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) ∗ 𝑡𝑎𝑢)) ≤ 0 → 0%𝑇𝐶𝐶 
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Figure 10. Urban area example from Utah, illustrating the impact of the urban low confidence filtering step. The top image 

shows high resolution satellite imagery for context. The middle image shows the mean TCC predictions. The bottom image shows 
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the filtered and masked NLCD TCC product. Notice how many higher density developed areas had somewhat high TCC values in 

the unfiltered TCC product. These are then all set to 0 in this filtering step. 

Temporal Filtering 
Last, we remove small inter-annual changes by only allowing for changes greater than +/-10% TCC each 

year, starting with a 2008-2010 median value. This filtering step can have positive and negative impacts 

on the final outputs, as illustrated in figure 11, but simplifies the potential use of NLCD TCC outputs for 

change detection.  

 

Figure 11. Comparison of the Science TCC and NLCD TCC outputs illustrating the impact of the temporal filtering routines 

applied. This filter is designed to prohibit any inter-annual change less than +/-10% TCC in the final NLCD TCC products. The 

top example illustrates the type of small inter-annual change common in the Science outputs converted to a steady signal after 

the filtering routine is applied. The bottom example is selected from a location that experienced a wildfire. In this second 

example, the filtering routine does result in the elimination of the slight decline in TCC prior to the fire year (2019).  
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This post-processing workflow was applied to 2011, 2013, 2016, 2019, and 2021 Science TCC outputs to 

produce the final NLCD TCC product suite. The NLCD TCC will now match 54 percent of the years of 

the USGS NLCD products, an improvement from only a 20 percent match for the 2016 release. 

Map Error Assessment 
We conducted an independent error assessment over the 2011 NLCD TCC v2021.4 map output. For 

CONUS, 30 percent of our response data was withheld from model calibration to be used for assessing 

error. Our 2011 CONUS FIA reference data had varying spatial densities (due to different reporting needs 

from FIA data, different re-measurement frequencies (Reams et al., 2005), and our own filtering process 

(table 1)). To account for this, we estimated the area weight of each plot by computing Thiessen polygons 

for each plot centroid (figure 12). To avoid extremely large weights for edge plots, any plot on the edge 

assumed the average of the weight of neighboring non-edge plots' polygon weights.  

 

Figure 12. Fuzzed plot locations for an area with their computed Thiessen polygons shown in light gray. The area of each 

polygon around each plot was then used to weight the plot. This way a plot in a lower density area would receive a higher 

weight. 

We then computed the weighted root mean squared error (RMSE) and mean absolute error (MAE) using 

the response TCC value as the truth, and the final NLCD TCC 2011 map value at the pixel coincident 

with the subplot center of the actual FIA plot location. The 2011 CONUS-wide NLCD TCC map RMSE 

is 13 percent TCC and the MAE is 8 percent TCC. 

For coastal Alaska, 20 percent of our response data was withheld from model calibration to be used to 

assess error. Since all the FIA data collected for coastal Alaska occurred on the same FIA grid system, the 

spatial density was sufficiently consistent to negate the need for the Thiessen polygon-based weighting 

method used in CONUS.  The RMSE was computed directly using the holdout photo-interpreted TCC 

calls and the predicted TCC values. The RMSE for coastal Alaska was 19 percent. 
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For Hawaii and PRUSVI, an independent random sample of 325 and 324 plots were used to calculated 

RMSE, respectively.  The RMSE for PRUSVI was 21 percent and the RMSE for Hawaii was 21 percent. 

Useful Resources 
• NLCD TCC Downloads 

• Raw Science TCC Downloads 

• ESRI Image Services  

• TCC Contact Information 

 

  

https://www.mrlc.gov/data?f%5B0%5D=category%3ATree%20Canopy
https://data.fs.usda.gov/geodata/rastergateway/treecanopycover/index.php
https://apps.fs.usda.gov/fsgisx01/rest/services/RDW_LandscapeAndWildlife
mailto:SM.FS.TCC@usda.gov
mailto:SM.FS.TCC@usda.gov
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