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AB-C Aboveground live Biomass in units of Mg C ha™! GLAS Geoscience Laser Altimeter System
ACCA Automated Cloud Cover Assessment GV Green Vegetation (unitless fraction, range 0-1)
AGLB Aboveground Live Forest Biomass in Mg dry HRG High-Resolution Geometric
weight ha™! HRV High-Resolution Visible
ASTER Advanced Spaceborne Thermal Emission and HRVIR High-Resolution Visible and Infrared
Reflection Radiometer HRS High-Resolution Stereoscopic
AVHRR Advanced Very High Resolution Radiometer IRMSS Infrared Multispectral Camera
AW FS Advanced Wide Field Sensor IRS Indian Resources Satellite
BRDF Bidirectional Reflectance Distribution Function INPE Instituto Nacional de Pesquisas Espaciais
BB-C Belowground live Biomass in units of Mg C ha™! LI-C Carbon content of forest floor litter in Mg C ha™!
CBERS China-Brazil Earth Resources Satellite LISS Linear Imaging Self-Scanner
CDM Clean Development Mechanism MERIS Medium-Resolution Imaging Spectrometer
DEM Digital Elevation Model MSS Multispectral Scanner
DW-C Dead Wood biomass in units of Mg C ha™! MVC Maximum-Value Compositing
ESTARFM Enhanced Spatial and Temporal Adaptive NDFI Normalized Difference Fraction Index (unitless,
Reflectance Fusion Model range —1 to 1)
ETM+ Enhanced Thematic Mapper Plus NDMI Normalized Difference Moisture Index
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NPV Non-Photosynthetic Vegetation (unitless fraction,
range 0-1)

Mg Megagram = 1 x 10° g = 1 metric ton

MAIAC Multi-Angle Implementation of Atmospheric
Correction for MODIS

MISR Multi-angle Imaging SpectroRadiometer

MODIS Moderate Resolution Imaging Spectroradiometer

MVC Maximum-Value Compositing

NDVI Normalized Difference Vegetation Index

NIR Near-Infrared

SMA Spectral Mixture Analysis

STARFM  Spatial and Temporal Adaptive Reflectance Fusion
Model

REDD+ Reducing Emissions from Deforestation and
Degradation, conservation of forest carbon stocks,
sustainable management of forests, or enhance-
ment of forest carbon stocks in developing
countries

SO-C Soil organic carbon in Mg C ha!

SPOT Satellite Pour I’Observation de la Terre

SWIR Shortwave Infrared

™ Thematic Mapper

UNFCCC  United Nations Framework Convention on
Climate Change

WIiFS Wide Field Sensor

14.1 Introduction

Tropical forests abound with regional and local endemic species
and house at least half of the species on earth, while covering
less than 7% of its land (Gentry, 1988; Wilson, 1988; as cited in
Skole and Tucker, 1993). Their clearing, burning, draining, and
harvesting can make slopes dangerously unstable, degrade water
resources, change local climate, or release to the atmosphere the
organic carbon (C) that they store in their biomass and soils as
greenhouse gases (GHGs). These forest disturbances accounted
for 19% or more of annual human-caused emissions of CO, to
the atmosphere from the years 2000 to 2010, and that level is
more than the global transportation sector, which accounted
for 14% of these emissions. Forest regrowth from disturbances
removes about half of the CO, emissions coming from the for-
est disturbances (Houghton, 2013; IPCC 2014). Another GHG of
concern when considering tropical forests is N,O released from
forest fires.

Tropical forests (including subtropical forests) occur where
hard frosts are absent at sea level (Holdridge, 1967), which
means low latitudes, and where the dominant plants are trees,
including palm trees, tall woody bamboos, and tree ferns. They
include former agricultural or other lands that are now under-
going forest succession (Faber-Langendoen et al., 2012). They
receive from <1000 mm year! of precipitation to more than
10 times that much as rainfall or fog condensation. Whether dry
or humid, tropical forests have far more species diversity than
temperate or boreal forests, and their role in earth’s atmospheric
GHG budgets is large.

Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

Multispectral satellite imagery, that is, remotely sensed
imagery with discrete bands ranging from visible to shortwave
infrared (SWIR) wavelengths, is the timeliest and most acces-
sible remotely sensed data for monitoring these forests. Given
this relevance, we summarize here how multispectral imagery
can help characterize tropical forest attributes of widespread
interest, particularly attributes that are relevant to GHG emis-
sion inventories and other forest C accounting: forest type, age,
structure, and disturbance type or intensity; the storage, degra-
dation, and accumulation of C in aboveground live tree biomass
(AGLB, in Mg dry weight ha™); the feedbacks between tropical
forest degradation and climate; and cloud screening and gap fill-
ing in imagery. In this chapter, the term biomass without further
specification is referring to AGLB.

14.2 Multispectral Imagery and REDD+

14.2.1 Greenhouse Gas Inventories
and Forest Carbon Offsets

Multispectral satellite imagery can provide crucial data to inven-
tories of forest GHG sinks and sources. Inventories of GHGs that
have forest components include national inventories for nego-
tiations related to the United Nations Framework Convention
on Climate Change (UNFCCC). The UNFCCC now includes a
vision of compensating countries for reducing greenhouse gas
emissions to the atmosphere from deforestation, degradation,
sustainable management of forests, or conservation or enhance-
ment of forest C stocks in developing countries (known as
REDD+). Inventories of GHG emissions for the UNFCCC Clean
Development Mechanism (CDM) may also include forests, and
there are other forest carbon offset programs.

Programs like REDD+ could help moderate earth’s climate.
They could also help conserve tropical forests and raise local
incomes, as long as countries make these latter goals a priority
in REDD+ planning. Compensation in REDD+ is for organic
carbon (C) stored in forest AGLB, dead wood, belowground live
biomass, soil organic matter, or litter, as long as the stored C is
“produced” by avoided GHG emissions, such as avoided defores-
tation or avoided degradation of forest C stores.

In forest C offsets, avoided emissions are estimated as the dif-
ference between net GHG emissions that would have occurred
without implementing change (the baseline case or business-as-
usual scenario) and actual net emissions that are reduced from
what they would have been without the management change (the
project case). Logging, burning, and fragmentation are examples
of disturbances that degrade forest C stores. Replacing conven-
tional logging with reduced impact logging reduces associated C
emissions and is an example of avoided C emissions. For subna-
tional projects such as those developed under voluntary carbon
markets or the CDM, leakage must also be subtracted. Leakage
refers net emissions that a carbon offset project displaces from
its location to elsewhere. Examples are deforestation or remov-
als of roundwood or fuelwood in a forest not far from the forest
where such activities have ceased for forest C credits.
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Many countries and organizations have officially proposed
that forest C stored by enrichment planting, or by forest growth
or regrowth on lands that were not forest before 1990, should
also be explicitly eligible for REDD+ compensation (Parker
et al., 2009). These latter activities, afforestation and reforesta-
tion, already dominate forest projects developed under the CDM.

14.2.2 Roles of Multispectral Imagery

The United Nations Intergovernmental Panel on Climate Change
(IPCC) provides guidelines for GHG emission inventories, includ-
ing for forest land (IPCC, 2006). Expanded methods based on
these guidelines include those from the Verified Carbon Standard
program (http://www.-c-s.org). Summaries of these guidelines
for communities seeking to certify carbon credits for voluntary
carbon markets are also available (e.g., Vickers et al., 2012). For
each stratum of each land use considered, changes in C stocks are
estimated on an annual basis as the net of changes in the C pools
as follows (in Mg C year™) (Equation 2.3, IPCC, 2006):

ACy = AC, ¢+ AC, ¢ + AChy ¢ + AC ;¢ + ACsq ¢ + AChy.¢
(14.1)

where

AC, is the carbon stock changes for a land-use stratum, for
example, a forest stratum, in Mg C year™!

ACgygscripr represents carbon stock changes for a given pool

Subscripts denote the following carbon pools in units of Mg
Cyear™:

AB-C is the aboveground live biomass carbon

BG-C is the belowground biomass carbon

DW-C is the dead wood carbon

LI-C is the litter carbon

SO-C is the soil organic carbon

HW-C is the harvested wood carbon

For forest GHG inventories for REDD+ and other programs,
multispectral satellite imagery can be used to estimate some of
the key variables for Equation 14.1:

1. Areas of forest strata (e.g., forest types, disturbance/degra-
dation classes, or management)

2. Baseline and ongoing rates of change in the areas of forest
strata

3. The AGLB and rates of C accumulation in young forests

4. Point estimates of forest C pools in AGLB with fine-
resolution imagery to supplement ground plot data

5. Potentially, forest AGLB if shown to be accurate for a
given landscape

6. Potentially, GHG emission factors for forest disturbances
if spectral indices of disturbance intensity can be cali-
brated to correlate well with associated GHG emissions
and remaining C pools

Monitoring forest extent over large scales is also crucial to this
forest C accounting, and multispectral satellite imagery is the

365

best data for this purpose, but this topic is covered in other chap-
ters of this book (Chapters 15, 17 through 19). Other chapters also
cover multispectral image fusion with radar to map forest AGLB
(e.g., Saatchi et al., 2011) or estimation of tropical forest biomass
with airborne lidar (e.g., Asner et al., 2012). Multi-angular image
data can also improve forest age mapping (Braswell et al., 2003).

When using the “stock-difference” method (IPCC, 2006) to
quantify the parameters in Equation 14.1, the total C pool for
each time period is estimated by multiplying the spatial density
of C by the area (in hectare) of the forest stratum. The change
in the C pool is estimated as the difference in C pools between
two time periods divided by the elapsed time in years (please
see Equation 2.5 in IPCC, 2006). In addition, in Equation 14.1,
belowground biomass is usually estimated as a fraction of
aboveground biomass with default values by ecological zone,
region, or country. Also, when the type of land use is forest, lit-
ter can often be ignored.

The average spatial density of carbon in live biomass, in
Mg C ha'l, is estimated from the average spatial density of the
dry weight of live biomass (in Mg ha') multiplied by the C frac-
tion of dry weight biomass. Typically, this C fraction is about
50% of dry weight mass. The IPCC (2006) has published default
values for average C fraction of dry weight wood biomass by
ecological zone. Dry weight is estimated with equations that
relate the size of the trees growing in a forest to their dry weight,
mainly as gauged by tree stem diameter and height. Then, the
estimated dry weights of all trees in a known area are summed.
Species-specific or regional equations are sometimes available.

14.3 Characteristics of
Multispectral Image Types

Multispectral satellite imagery is available at spatial resolu-
tions ranging from high (<5 m) to medium (5-100 m), to
coarse (>100 m) (e.g., Table 14.1). The data usually include
reflective bands covering the visible (blue, green, and red) and
near-infrared (NIR) wavelengths of the electromagnetic spec-
trum. Several other sensors include SWIR bands (e.g., Landsat
Thematic Mapper [TM] and subsequent Landsat sensors); the
sensors aboard the fourth and fifth missions of Satellite Pour
I’Observation de la Terre (SPOT 4 high-resolution visible and
infrared [HRVIR], SPOT 5 high-resolution geometric [HRG],
and the SPOT 4 and 5 Vegetation instruments); the Moderate
Resolution Imaging Spectroradiometer (MODIS), the Advanced
Wide Field Sensor (AWIiFS), and the Infrared Multispectral
Scanner Camera aboard the China-Brazil Earth Resources
Satellite series [CBERS].

Satellite launches in the years 1998-1999 greatly increased
the amount of imagery available for monitoring tropical for-
ests. These launches brought (1) the first public source of high-
spatial-resolution imagery (IKONOS, with <5-m pixels); (2) the
first medium-resolution imagery (5-100 m pixels) with some
degree of consistent global data collection (Landsat 7); (3) the
first medium-resolution imagery with fine-resolution panchro-
matic bands of 2.5-5 m (SPOT 4 and Landsat 7, respectively);
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TABLE 14.1 Multispectral Satellite Imagery Most Commonly Used to Characterize Tropical Forests
SatelliteRepeat/Revisit* Cycle,
Scene Size/Swath Width Distributed Spatial
Quantization Band Wavelength (um) Resolution (m) Approximate Active Dates
High resolution (<5 m)
IKONOS Panchromatic 0.45-0.90 1 September 24, 1999 to present
3- to 5-day revisit 1-Blue 0.445-0.516 4
11 x 11 km scenes 2-Green 0.506-0.595 4
11 bits 3-Red 0.632-0.698 4

4-Near-infrared 0.757-0.853 4
QuickBird Panchromatic 0.45-0.90 0.6 October 18, 2001 to present
2- to 6-day revisit 1-Blue 0.45-0.52 24
18 x 18 km Scenes 2-Green 0.52-0.60
11 bits 3-Red 0.63-0.69

4-Near-infrared 0.76-0.90
Medium resolution (5-100 m) with high-resolution panchromatic
SPOT 4 HRVIR; SPOT 5 HRG ~ Panchromatic 0.51-0.73 2.5 SPOT 4: March 24, 1998 to July 2013
2-3 days Revisit Panchromatic 0.51-0.73 5 SPOT 5: May 04, 2002 to present
60 x 60 km Green 0.50-0.59 10
8 bits Red 0.61-0.68 10

Near-infrared 0.78-0.89 10

Shortwave infrared 1.58-1.75 20
SPOT 1, 2,3 HRV Panchromatic 0.51-0.73 10 SPOT 1: February 22, 1986 to September 1990
1- to 3-day revisit Green 0.50-0.59 20 SPOT 2: January 22, 1990 to July 16, 2009—
60 km x 60 km Red 0.61-0.68 20 SPOT 3: September 26, 1993 to November 14, 1996
8 bits Near-infrared 0.78-0.89 20
Medium resolution (5-100 m)
Landsat MSS 1,2,3 (4,5) 4 (1)-Blue-green 0.5-0.6 60> Landsat 1: July 23, 1972 to January 06, 1978
16 days repeat 5 (2)-red 0.6-0.7 60° Landsat 2: January 22, 1975 to February 25, 1982
170 x 185 km 6 (3)-Near-infrared 0.7-0.8 60° Landsat 3: March 05, 1978 to March 31, 1983
4 bits 7 (4)-Near-infrared 0.8-1.1 60>
Landsat4 TM, 5TM, 7 ETM+  1-Blue 0.45-0.52 30 Landsat 4: July 17, 1982 to December 14, 1993
16 days Repeat 2-Green 0.52-0.60 30 Landsat 5: March 1, 1984 to January 2013
170 x 183 km 3-Red 0.63-0.69 30 Landsat 7: April 15, 1999
8 bits 4-Near-infrared 0.76-0.90 30

5-Shortwave infrared 1.55-1.75 30

6-Thermal (2 ETM+ bands) 10.40-12.50 14,5 120¢ (30)

L7 60¢ (30)

7-Shortwave infrared 2.08-2.35 30

8-Panchromatic (L7 only) 0.52-0.90 15
EO-1 ALL MS-1’-Coastal aerosol 0.433-0.453 30 November 21, 2000 to present
16-day repeat MS-1-Blue 0.45-0.515 30
37 x 42 km MS-2-Green 0.525-0.605 30
12 bits MS-3-Red 0.63-0.69 30

MS-4-Near-infrared 0.775-0.805 30

MS-4’-Near-infrared 0.845-0.89 30

MS-5’-Shortwave infrared 1.2-1.3 30

MS-5 1.55-1.75 30

MS-7 2.08-2.35 30

Panchromatic 0.48-0.69 10

(Continued)
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TABLE 14.1 (Continued) Multispectral Satellite Imagery Most Commonly Used to Characterize Tropical Forests
SatelliteRepeat/Revisit® Cycle,
Scene Size/Swath Width Distributed Spatial
Quantization Band Wavelength (um) Resolution (m) Approximate Active Dates
Landsat 8 1-Coastal aerosol 0.433-0.453 30 February 11, 2013—
16-day repeat 2-Blue 0.450-0.515 30
170 x 183 km 3-Green 0.525-0.600 30
12 bits 4-Red 0.630-0.680 30
5-Near-infrared 0.845-0.885 30
6-SWIR 1 1.560-1.660 30
7-SWIR 2 2.100-2.300 30
8-Panchromatic 0.500-0.680 15
9-Cirrus 1.360-1.390 30
10-Thermal infrared 1 10.60-11.19 100¢ (30)
11-Thermal infrared 2 11.50-12.51 100¢ (30)
Coarse resolution (>100 m)
Terra/Aqua MODIS! (7 of 36 1 0.620-0.670 250 Terra (EOS AM): August 12, 1999 to present
bands are shown)
1-day revisit 2 0.841-0.876 250 Aqua (EOS PM): May 04, 2002 to present
2330 km Swath Width 3 0.459-0.479 500
12 bits 4 0.545-0.565 500
5 1.230-1.250 500
6 1.628-1.652 500
7 2.105-2.155 500
SPOT 4,5 Vegetation 1, 24 0-Blue 0.43-0.47 1150 Aboard SPOT 4: March 24, 1998 to July 2013
1-day revisit 2-Red 0.61-0.68 1150 Aboard SPOT 5: May 04, 2002 to present
2250 km Swath Width 3-Near-infrared 0.78-0.89 1150
10 bits SWIR-Shortwave infrared 1.58-1.75 1150

@ Revisit cycles change with latitude.

b The original MSS pixel size of 79 x 57 m is now resampled to 60 m.
¢ Thermal infrared Landsat bands are now resampled to 30 m.

d For coarse-resolution sensors, resolution given is at nadir.

and (4) the first coarse-resolution imagery (>100 m pixels) dis-
tributed with higher-level preprocessing like atmospheric cor-
rection and cloud-minimized compositing (MODIS and SPOT
Vegetation). Before IKONOS, remotely sensed reference data
had to come from air photos that in many places were costly to
obtain and outdated.

The next big advances in tropical forest monitoring with satel-
lite imagery came in 2005-2008, when (1) Google, Inc. and the
producers of high-resolution imagery such as QuickBird and
IKONOS made high-resolution data viewable on Google Earth
for many sites, making reference data free and accessible for sub-
sets of project areas; and (2) the Brazilian National Institute for
Space Research (INPE) and the United States Geological Survey
(USGS) began to freely distribute Landsat and other imagery
with medium spatial resolution, making long, dense time series
of medium-resolution imagery available over large areas.

Other sources of multispectral imagery for monitoring
tropical forests over large areas that are not shown in Table
14.1, mainly to highlight them here, include the Japan-U.S.
Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) (aboard Terra). In addition to 15 m VNIR

bands, it has several SWIR and thermal bands with 30-90 m
spatial resolution. Data for Brazil and China and nearby areas
are also available from CBERS. The series of CBERS satel-
lites, 1, 2, and 2B, collected panchromatic to SWIR images
with medium spatial resolution (20-80 m, 113-120 km swath
width), and red and NIR images with coarse spatial resolution
(260 m, 890 km swath width) from 1999 to 2010 and missions
to collect with medium-resolution multispectral imagery with
a 5-day revisit cycle are scheduled. In the Indian Resources
Satellite (IRS) series, the Wide Field Sensor (WiFS) has a
740 km swath width, 188 m spatial resolution, and red and NIR
bands. More recently, the IRS-P6 satellite carries the AWiFS
instrument. AWiFS has 60 m pixels for green through SWIR
bands, a 740 km swath width, a 5-day revisit cycle, and a SWIR
band, combining advantages of imagery with medium and
coarse spatial resolutions. The later of the IRS series sensors
include data from Linear Imaging Self-Scanner (LISS) with
multispectral imagery with a 23.5 m spatial resolution. Ground
stations receiving data from CBERS and the IRS satellite series
have not covered all of the tropics. Fortunately, that situation
should gradually change.
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14.4 Preprocessing Imagery
to Address Clouds

14.4.1 Cloud Screening

We begin with cloud and cloud shadow screening, as this step is
crucial in the image processing chain for characterizing tropi-
cal forests. Clouds and their shadows obscure the ground and
contaminate temporal trends in reflectance. Automated systems
for processing large archives of satellite imagery are becoming
more common for natural resource applications and must screen
clouds. Clouds are composed of condensed water vapor that form
water droplets and scatter visible to NIR light, reducing direct
illumination on the surface below and forming a cloud shadow.
In multispectral satellite imagery, clouds are characterized by
a high albedo (Choi and Bindschadler, 2004), while their shad-
ows have lower reflectance than surrounding pixels. The easiest
solution to cloud contamination is to restrict analyses to cloud-
free imagery, which may include only dry season imagery for
tropical and coastal environments due to frequent cloud cover.
Alternatively, methods to screen cloud- and shadow-contami-
nated pixels can increase the number of observations available
(Figure 14.1). Increasing the number of available observations
in a time series may also improve the detection of land surface
change and reflectance trends.

Manual and semiautomated approaches to cloud screening
are undesirable for processing large numbers of images due to
the time-consuming nature of the work, which may depend not
only on analyst experience but also on image contrast. Several
automated approaches have been developed, but separat-
ing cloud and shadow from the land surface is not necessarily
220000 280000

340000 400000
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straightforward given the diversity of land surfaces coupled
with large variations in cloud and shadow optical properties
(Lyapustin et al., 2008; Zhu et al., 2012; Goodwin et al., 2013).
A summary of current approaches to cloud and shadow screen-
ing for Landsat TM/ETM+, SPOT, and MODIS sensors follows.

14.4.1.1 Landsat TM Imagery

The Landsat TM/ETM+ archives of countries with receiving sta-
tions now contain up to three decades of imagery (1984 to pres-
ent) with varying levels of cloud and cloud shadow contained
in the archive of images. The U.S. Geological Survey is working
with other countries to consolidate these archives through con-
sistent processing and distribution through its website (landsat.
usgs.gov). Image preprocessing by the Landsat program has
included the Automatic Cloud Cover Assessment (ACCA) algo-
rithms for both Landsat-5 TM and Landsat-7 ETM+ missions,
which use optical and thermal (ETM+ only) bands to identify
clouds (Irish, 2006). It is designed for reporting the percentage of
cloud cover over scenes rather than producing per-pixel masks.
Further modifications have also been tested for application to
Landsat 8 imagery (Scaramuzza et al., 2012), which includes a
new cirrus band (1.360-1.390 pum) that is sensitive to aerosol
loadings and should improve cloud detection. ACCA is designed
to limit the impacts of cloud and scene variability on threshold-
ing. The ETM+ ACCA incorporates two passes: one to conser-
vatively estimate “certain” cloud at the pixel level with a series
of spectral and thermal tests. The result is then used to derive
scene-based thermal thresholds for the second pass. The error
in scene-averaged cloud amount was estimated to be around
5% (Irish et al., 2006). Scaramuzza et al. (2012) validated the
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FIGURE 14.1
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Ilustration of cloud distribution spatially and temporally over tropical forests of north Queensland: (a) Landsat image (RGB: 542,

Path/Row: 96/71, and date July 02, 2007) and (b) percentage of observations classified as cloud between 1986 and 2012 (n = 445). Note: high cloud

fractions were not included in calculations.
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per-pixel classification of the ETM+ ACCA (pass 1) and found
a 79.9% agreement between reference and ACCA at the pixel
scale. Using a subset of the same reference set, Oreopoulos et al.
(2011) evaluated both per-pixel ACCA masks and a cloud detec-
tion algorithm modified from the MODIS Luo-Trishchenko-
Khlopenkov algorithm (Luo et al., 2008). Both ACCA and
the modified LTK showed greater than 90% agreement with
the reference, although like ACCA, the LTK had limited abil-
ity to detect thin cirrus clouds. Furthermore, ACCA has been
used as the starting point for further cloud masking (Choi and
Bindshadler, 2004; Roy et al., 2010; Scaramuzza et al., 2012).

Earlier studies have shown that several approaches work well
for classifying clouds and cloud shadows over particular path/
rows. One approach is image differencing based on image pairs
(Wang, 1999), while other studies have empirically defined
thresholds for cloud brightness and coldness in one or more
spectral/thermal bands, for example, Landsat TM Bands 1 and
6 (Martinuzzi et al., 2007); Bands 3 and 6 (Huang et al., 2010);
Bands 1, 3, 4, and 5 (Oreopoulos et al., 2011); and Bands 1, 4, 5,
and 6 (Helmer et al., 2012). The application of these methods to a
range of path/rows around the globe, however, remains untested
and may encounter issues due to spectral similarities among the
wide range of combinations of land surfaces and cloud/cloud
shadows.

The automated method that Huang et al. (2010) developed
to allow forest change detection in cloud-contaminated imag-
ery considers brightness and temperature thresholds for clouds
that are self-calibrated against forest pixels. It requires a digital
elevation model to normalize top of atmosphere brightness tem-
perature values and helps to project cloud shadow on the land
surface. Published validation data for this method are currently
limited to four U.S. images with forest and would benefit from
further calibration/validation.

Two additional automated approaches have recently been
published: Fmask (Function of mask) (Zhu and Woodcock,
2012) and a time series approach by Goodwin et al. (2013)
(Figure 14.2). Fmask integrates existing algorithms and metrics
with optical and thermal bands to separate contaminated pix-
els from land surface pixels. Fmask also considers contextual
information for mapping potential cloud shadow using a flood-
fill operation applied to the NIR band. Cloud shadows are then
identified by linking clouds with their shadow with solar/sensor
geometry and cloud height inferred from the thermal Landsat
TM Band 6. The results were validated with a global dataset and
were a significant improvement to ACCA with Fmask achieving
an overall, user’s, and producer’s accuracies of 96%, 89%, and
92%, respectively compared to 85%, 92%, and 72%, respectively
for ACCA.

The time series method uses temporal change to detect cloud
and cloud shadow (Goodwin et al. (2013)). It smoothes pixel
time series of land surface reflectance using minimum and
median filters and then locates outliers with multi-temporal
image differencing. Seeded region grow is applied to the dif-
ference layer using a watershed region grow algorithm to map
clusters of change pixels, with clumps smaller than 5 pixels
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removed to minimize classification speckle. This has the effect
of increasing the cloud/shadow detection rate while restricting
commission errors; smaller magnitudes of change associated
with cloud/cloud shadows are mapped only if they are in the
neighborhood of larger changes. Morphological dilation opera-
tions were applied to map a larger spatial extent of the cloud and
cloud shadow, while shadows were translated along the image
plane in the reverse solar azimuth direction to assess the overlap
with clouds and confirm the object is a shadow. A comparison
with Fmask showed that the time series method could screen
more cloud and cloud shadow than Fmask across Queensland,
Australia (cloud and cloud shadow producer’s accuracies were
8% and 12% points higher, respectively).

Several trade-offs exist between these two automated
approaches to cloud and shadow screening. The time series
method might detect more cloud and cloud shadow, yet Fmask
is more computationally efficient and practical for individual
images. At present, the time series method is processed using
entire time series for each Landsat path/row. For operational
systems processing many images, the computational overhead
of the time series approach could be worthwhile as it can detect
more cloud/shadow contamination. Locations with few cloud-
free observations per year and high land-use change are also less
desirable for a time series method. In the absence of an atmo-
spheric aerosol correction, pixels contaminated by smoke and
haze are more likely to be classified as cloud by the time series
method. Neither the Fmask nor the time series method nor
previous attempts adequately map high level, semitransparent
cirrus cloud (Figure 14.2d-f). New methods for Landsat 8 will
likely detect more cloud with the new band sensitive to cirrus
clouds. Both Fmask and the time series methods are highly con-
figurable allowing calibration for a localized region or a wider
application. Fmask has been calibrated using a global reference
set, while the time series approach was calibrated and tested
mainly for northeastern Australian conditions.

Although both methods have high accuracy, further improve-
ments could be made particularly to screening cloud shadow.
Removing the dependency of a link between cloud and shadow
would be a considerable advancement as clouds are often
missed or under/overmapped, causing the shadow test to fail.
Furthermore, adding thermal information to the time series
method has the potential to remove commission errors where
bright surfaces such as exposed soil are falsely classified as cloud.
Both methods use a series of rules to classify cloud and shadow
and have the flexibility to add new algorithms and criteria to
improve the detection of contaminated pixels.

14.4.1.2 SPOT Imagery

The spatial and spectral characteristics of SPOT (Satellite Pour
I’Observation de la Terre) have similarities to Landsat imagery,
with the first satellite launched in 1986 (SPOT 1), and similar
methods for screening cloud and cloud shadows should be use-
ful. The main exception is that SPOT lacks a thermal band,
which has been useful in discriminating clouds (e.g., ACCA).
However, only a limited number of studies have been published



370

Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

790000

800000

790000 800000

8320000
8320000
8320000

8310000
8310000
8310000

8300000
8300000
8300000

8290000
8290000
8290000

8280000

8280000
8280000

8320000
8320000
8320000

8290000 8300000 8310000
8290000 8300000 8310000
8300000 8310000

8290000

8280000
8280000

8280000

760000

() (b)

620000

770000 780000 790000 800000 760000 770000

630000 640000

620000

650000

780000

630000

790000 800000

760000

@]

770000 780000 790000 800000

640000

620000

650000 630000 640000 650000

8130000
8130000
8130000

8120000
8120000
8120000

8110000
8110000 8120
8110000

8100000
8100000
8100000

8130000
8130000
8130000

8110000 8120000
8110000 8120000
8120000

8110000

8100000
8100000
8100000

620000

620000 630000 640000 650000

(d) (e)

630000

620000

640000 650000 630000 640000 650000

FIGURE 14.2 Examples of Fmask and time series approaches to cloud and cloud shadow screening: (a) Landsat TM image, (b) TS classification,
(c) Fmask classification, (d) Landsat TM image, (e) TS classification, and (f) Fmask classification, (a—c) well-detected cumulus cloud and cloud
shadow (RGB: 542, Path/Row: 97/71, and date October 10, 1998) and (d-f) a complex example where both methods miss sections of cirrus cloud

(RGB: 542, Path/Row: 98/72, and date April 04, 2001).

on screening cloud and cloud shadow from SPOT data. SPOT is
a commercially operated sensor, and unlike Landsat TM/ETM+
and MODIS, scenes are typically purchased/tasked with limited
cloud cover or would otherwise prove cost prohibitive for many
vegetation applications. The New South Wales government of
Australia, for example, acquired 1850 images between 2004 and
2012, of which only 313 contain cloud with the maximum cloud
cover values <10% (Fisher, 2014).

Le Hégarat-Mascle and André (2009) used a Markov random
field framework that assumes that clouds are connected objects,
solar/sensor geometry is known, and shadow has a similar shape
to its corresponding cloud (excluding the influence of topogra-
phy). Potential cloud pixels were identified using a relationship
between green and SWIR bands; shadows were located using
cloud shape, orientation of shadow relative to cloud and SWIR
band reflectance, removing objects not part of a cloud-shadow
pair. The method was applied to 39 SPOT 4 HRVIR images over
West Africa with encouraging results. However, when applying
this method, Fisher (2014) found commission errors as bright

surfaces were frequently matched to dark surfaces that were not
cloud contaminated. They suggest first masking vegetation and
water bodies, then locating marker pixels for clouds and shad-
ows in the green-SWIR space and NIR bands, respectively, then
growing objects with the watershed transform. Sensor/solar
geometry and object size are also used to match clouds with
their shadows.

14.4.1.3 MODIS Imagery

MODIS has a standard cloud product, in contrast to SPOT or
until recently Landsat, which includes information on whether a
pixel is clear from cloud/shadow contamination. The cloud mask
is based on several per-pixel spectral tests and is produced at
250 m and 1 km spatial resolutions (Strabala, 2005). A validation
with active ground-based lidar/radar sensors showed an 85%
agreement with the MODIS cloud mask (Ackerman et al., 2008).

Recent research has found that time series information
can improve cloud detection in MODIS imagery (Lyapustin
et al,, 2008; Hilker et al., 2012). The cloud-screening method
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in multi-angle implementation of atmospheric correction, for
example, uses a dynamic clear-sky reference image and cova-
riance calculations, in addition to spectral and thermal tests,
to locate clouds over land (Lyapustin et al., 2008). In a tropical
Amazonian environment, Hilker et al., 2012 demonstrated that
this method was better at detecting clouds and increasing the
number of usable pixels than the standard product (MYD09GA),
which translated into more accurate patterns in NDVI.

14.4.2 Filling Cloud and Scan-Line Gaps

Cloud and cloud shadow screening removes contaminated
pixels from analyses but leaves missing data in the imagery
and derived products. The scan-line correction error affect-
ing Landsat 7 post-2003 also leaves gaps approximating 20% of
affected images (USGS, 2003). Data gaps in maps are aestheti-
cally unappealing, and the derivation of statistics is more dif-
ficult. As a result, approaches have been developed to fill data
gaps including temporal compositing and fusing imagery from
two different sensors.

A range of temporal compositing algorithms have been devel-
oped to minimize cloud contamination and noise (Dennison
etal., 2007; Flood, 2013). Compositing involves analyzing band/
metric values across a date range with an algorithm deciding
the pixel value most likely to be cloud/noise free. The choice
of algorithm may vary depending on the application and land-
cover type. Compositing algorithms have generally been applied
to high-temporal-frequency data such as MODIS and AVHRR;
however, methods for compositing imagery with a lower tem-
poral resolution have also been developed. For example, the
MOD 13 products use the maximum-value compositing algo-
rithm with NDVI as the metric in 16-day and monthly compos-
ites of MODIS imagery (Strabala, 2005). Landsat has similarly
been composited using a parametric weighting scheme (Griffiths
et al,, 2013). The result is an image that ideally is free from noise
or cloud that can be used as a product itself or the corresponding
pixels used to infill data gaps.

The fusion or blending of MODIS and Landsat offers another
approach to predict image pixel values within data gaps. These
methods integrate medium-spatial-resolution Landsat with
temporal trends in reflectance (e.g., seasonality) captured by
the higher temporal frequency of MODIS. Roy et al. (2008)
integrated the MODIS bidirectional reflectance distribution
function (BRDF)/albedo product and Landsat data to model
Landsat reflectance. They found that infrared bands were more
accurately predicted than visible wavelengths, probably in
response to greater atmospheric effects at shorter wavelengths.
The spatial and temporal adaptive reflectance fusion model
(STARFM) requires a MODIS-Landsat image pair captured on
the same day plus a MODIS image on the prediction date and
applies spatial weighting to account for reflectance outliers (Gao
et al,, 2006). Further algorithm development has produced an
enhanced STARFM (ESTARFM) method that was found to
improve predictions in heterogeneous landscapes (Zhu et al.,
2010). However, there are known limitations with blending
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or fusing Landsat and MODIS imagery. Solutions involving
MODIS will work only post-2000 when imagery was first cap-
tured and potentially 2002 onward where stable BRDF predic-
tions are needed (Roy et al., 2008). Furthermore, Emelyanova
etal. (2013) found that land-cover type and temporal and spatial
variances impact the fusion of MODIS and Landsat as well as the
choice of algorithm. Where the temporal variance of MODIS is
considerably less than the spatial variance of Landsat, blending
may not improve predictions.

Gap filling using Landsat imagery alone has also been per-
formed. Helmer and Ruefenacht (2005) developed a method for
predicting Landsat values using two Landsat images for change
detection. This method develops a relationship between uncon-
taminated pixels in an image pair with regression tree models,
and it then applies these models to predict the values in areas
with missing data in the target image. Additional images are
used in the same way to predict pixels in remaining cloud gaps.
Langner et al. (2014) segment such pairwise predictive models
according to forest type. Approaches using geostatistics have
also been developed. Pringle et al. (2009) use an image before
and after the target image in geostatistical interpolation to pre-
dict values in Landsat 7 SLC-off imagery. Based on their results,
they recommend images captured within weeks, rather than
months, of each other to limit temporal variance in a tropical
savanna environment. Zhu et al. (2012) also use geostatistics
with encouraging results to predict missing Landsat 7 SLC-off
data based on the Geostatistical Neighborhood Similar Pixel
Interpolator.

A potential limitation with gap filling is the introduction of
image noise or artifacts. This is because of differences in veg-
etation phenology, illumination, and atmospheric effects as gap-
filled imagery contains data from multiple dates and/or sensors.
These effects can be minimized by atmospheric and illumina-
tion corrections as well as methods that seek to balance the
distribution of pixel values such as histogram matching, linear
regression, or regression trees (Helmer and Ruefenacht, 2007).

14.5 Forest Biomass, Degradation,
and Regrowth Rates from
Multispectral Imagery

Studies have used multispectral imagery to map or estimate
some key inputs to the variables in Equation 14.1 (Section 14.2.2)
for forests: forest AGLB (in Mg dry weight haY, rates of C accu-
mulation in reforesting lands (in Mg dry weight ha-! year!), and
area or intensity of forest degradation or disturbance (in ha).
In addition, multispectral imagery is the most common satel-
lite imagery for mapping tropical forest types, which we discuss
in Section 14.6, and AGLB estimates are often more precise and
accurate if stratified by forest type.

In this section, we first review work that uses the spectral and
textural information in multispectral imagery of high spatial
resolution to estimate tropical forest AGLB. We then discuss
how the spectral information inherent to multiyear image time
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series has high sensitivity to the height, AGLB, and age of forests
that have established since about 10 years before the start of an
image sequence (so as early as 10 years before 1972 for Landsat
data), which we refer to here as young forests, allowing estimates
of biomass and C accumulation rates in reforested lands. Next,
we discuss how multispectral imagery from a single epoch of
medium- to coarse-spatial-resolution imagery has limited sensi-
tivity to tropical forest age or biomass. Section 14.5.3 focuses on
detecting tropical forest degradation at pixel and subpixel scales.

14.5.1 Tropical Forest Biomass from High-
Resolution Multispectral Imagery

When considering forest structure mapping, multispectral
imagery of high spatial resolution, with pixels <5 m, is distinct
from imagery with medium spatial resolution because the spa-
tial patterns of dominant and codominant tree crowns are vis-
ible. The possibility of detecting tree crown size suggests a way
to estimate AGLB by allometry between stem diameters, used
to estimate AGLB, and crown size (Asner et al., 2002; Couteron
et al., 2005; Palace et al., 2008). Automated crown delineation
in these images is more accurate than manual means, but both
methods overestimate the area of large crowns and underesti-
mate the frequency of understory and codominant trees (Asner
etal., 2002; Palace et al., 2008), such that biomass estimates from
crown delineation alone require adjustments.

A new technique, however, predicts the biomass of high-
biomass tropical forests with stand-level spatial patterns of tree
crowns in images with ~1 m or finer pixels. The new method first
applies two-dimensional Fourier transforms to subsets (samples)
of high-resolution panchromatic images, from which it produces
a dataset with a row for each sample of imagery and columns
that bin the outputs from the transform so that the columns in
each row together form a proxy for the distribution of crown
sizes discerned or “apparent” in each image sample. Principal
components transformation of this matrix yields axes that serve
as predictors in regression models of stand structural param-
eters, like basal area, AGLB, or “apparent” dominant crown size
(calculated by inversion) (Couteron et al., 2005; Barbier et al,,
2010; Ploton et al., 2011). Ploton et al. (2011) predicted forest bio-
mass ranging from ~100 to over 600 Mg ha™! in Western Ghats,
India, with IKONOS image extracts downloaded from Google
Earth Pro (0.6-0.7 m resolution). Their model explained 75% of
the variability in forest biomass. They estimated that the rela-
tive uncertainty in AGLB estimates that was due to the remote
sensing technique, of <15%, was similar to uncertainties asso-
ciated with estimating forest AGLB with lidar. With this new
technique, AGLB estimates from high-resolution imagery on
Google Earth could supplement ground- or lidar-based surveys.
The resulting increase in the number and density of AGLB esti-
mates for forests should better characterize the landscape-scale
spatial variability in AGLB and increase the precision of forest
C-pool estimates.

Related to the earlier work on AGLB are studies that have
characterized how gradients in the spatial patterns of tropical
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forest canopies correspond with climate. These gradients are
apparent in high-resolution imagery, and future changes in these
patterns could reflect and help monitor effects of global climate
change (Malhi and Romdn-Cuesta, 2008; Palace et al., 2008;
Barbier et al., 2010). Barbier et al. (2010), for example, showed
how dominant crown size and canopy size heterogeneity change
with climate and substrate across Amazonia.

14.5.2 Biomass, Age, and Rates of Biomass
Accumulation in Forest Regrowth

With a long time series of medium-resolution multispectral
images such as Landsat, key variables for GHG inventories (and
forest C accounting for REDD+) can be mapped and estimated
for young tropical forests, including area, age, height, AGLB,
and rates of biomass accumulation. Where an image time series
spans the age range of young forests, its spectral data can pre-
cisely estimate age, which is needed to estimate biomass accu-
mulation rates and can also help estimate the height or AGLB
of these forests. Helmer et al. (2009) estimated a landscape-level
rate of AGLB accumulation in Amazonian secondary forest by
regressing forest biomass estimates from the Geoscience Laser
Altimeter System (Figure 14.3) against remotely sensed forest
age (R-square = 0.60). The estimated landscape-level biomass
accumulation rate of 8.4 Mg ha™! year! agreed well with ground-
based studies. Forest age was mapped with an algorithm that
automatically processed a time series of Landsat MSS and TM
imagery (1975-2003) with self-calibrated thresholds that detect
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FIGURE 14.3 The average age of secondary forest pixels, as estimated
from automatic processing of a time series of Landsat MSS, TM, and
ETM+ imagery, in the 150 m window surrounding GLAS waveform
centers explained 60% of the variance in GLAS-estimated canopy
height and biomass (aboveground live biomass, AGLB, in Mg ha™! year™!
dry weight). The standard error of the slope and intercept are 1.4 and
13.2, respectively, for 26 observations.
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when secondary forests established on previously cleared land.
The technique mapped the extent of old-growth forest and age of
secondary forest with an overall accuracy of 88%. With the time
series, tropical secondary forest >28 years old was accurately dis-
tinguished from old-growth forest, even though it was spectrally
indistinct in the most recent Landsat scenes. This older second-
ary forest clearly stored less C than the old-growth forest, being
shorter and having much smaller average canopy diameters than
nearby old growth.

Forest height and AGLB are strongly related, and the height
or AGLB of young forests can be mapped with long time series
of Landsat images in tropical (Helmer et al., 2010) and temper-
ate (Li et al., 2011; Plugmacher et al., 2012; Ahmed et al.,, 2014)
regions. With a regression tree model based on the spectral data
from all of the images in a time series of cloud-gap-filled Landsat
imagery (1984-2005 with 1- to 5-year intervals), Helmer et al.
(2010) mapped the height (RMSE = 0.9 m, R-square = 0.84, range
0.6-7 m) and foliage height profiles of tropical semievergreen
forest (Figure 14.4). In contrast with mapping the height of old
forests, local-scale spatial variability in young forest structure
was mapped, because within-patch differences in disturbance
intensity and type, and subsequent forest recovery rate, were
reflected in the spectral data from the multiyear image stack.
This study also mapped forest disturbance type, age, and wet-
land forest type, with an overall accuracy of 88%, with a deci-
sion tree model of the entire time series of cloud-minimized
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composite images to better understand avian habitat. As a result,
the classification distinguished different agents of forest distur-
bance, including classes of cleared forests and forests affected by
escaped fire, and allowed estimation of rates of forest regrowth.
Forest age, vertical structure, and disturbance type explained
differences in woody species composition, including abundance
of forage species for an endangered Neotropical migrant bird,
Kirtland’s warbler Dendroica kirtlandii.

14.5.3 Limitations to Mapping Forest
Biomass or Age with One
Multispectral Image Epoch

14.5.3.1 Tropical Forest Biomass with
One Image Epoch

Forest biomass mapping with multispectral imagery empirically
predicts the AGLB of forested pixels with models that relate for-
est AGLB or height, from ground plots or lidar, to spectral bands,
spectral indices, or spectral texture variables. It remains a chal-
lenge (Song, 2013). Forest AGLB is usually estimated in units of
Mg dry weight ha™ (see Section 14.2). As more data on stand
species composition and species-specific wood densities become
available, maps of C storage in forest biomass, as in Asner et al.
(2013) and Michard et al. (2014), rather than forest biomass itself,
may become more common.

Time series of mosaics
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FIGURE 14.4 Tropical dry forest height and foliage height profiles were mapped from a time series of gap-filled Landsat and ALI imagery on the
island of Eleuthera, The Bahamas, substituting time for vertical canopy space. The time series was also used to map forest disturbance type and age.
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Medium- to coarse-spatial-resolution imagery from one epoch
is not that sensitive to small changes in the AGLB or C storage
in aboveground biomass of dense tropical forests. (By epoch, we
mean imagery from one date, one gap-filled, or composite image
composed of imagery from one to several years, or multiseason
imagery from 1 year.) This limited sensitivity appears in biomass
mapping models as high per pixel uncertainty that can manifest
itself in several ways:

1. Mapping models may explain a minority of variance in
reference data (i.e., regressions of predicted vs. observed
values have low coeflicients of determination or R-squared
values of less than 0.50) (e.g., Oza et al., 1996 for volume
of Indian deciduous forest; Steininger, 2000 for Bolivian
sites; Wijaya et al., 2010 in Indonesia).

2. Mapping models may both underestimate AGLB at high-
biomass sites and overestimate AGLB where biomass is
low (e.g., Baccini et al., 2008 for tropical Africa; Blackard
et al.,, 2008 for the United States including Puerto Rico;
Wijaya et al., 2010).

3. Spectral responses to AGLB may saturate at relatively
low levels of around 175 Mg C ha™l. For example, studies
indicate that stand-level multispectral responses saturate
at 150-170 Mg ha! for study sites in Brazilian Amazonia
(Steininger, 2000; Lu, 2005), ~180 Mg C ha™ in Panama
(Asner et al,, 2013), and 175 Mg ha™' across Uganda
(Avitabile et al., 2012). These saturation levels may be half
or less of the biomass of the most structurally complex or
old-growth tropical forests in humid lowlands. In many
landscapes, the relationship between multispectral data
and tropical forest AGLB may saturate at even lower levels.

4. Continental- to global-scale mapping models may not
capture gradients in AGLB and C pools that stem from
differences in forest allometry and average wood density
(Mitchard et al. (2014).

Despite per-pixel uncertainties, estimates of the total forest bio-
mass may be accurate when pixels are summed over large areas
that have a wide range of AGLB. This result could happen when
the average biomass of pixels covering a large area approaches the
mean of the ground or lidar data used to estimate the mapping
model. Estimates of total forest AGLB across tropical landscapes
can also be accurate if the landscapes that have few forest patches
with AGLB exceeds the levels where spectral response becomes
saturated (e.g., Avitabile et al. 2012).

Texture variables from SPOT 5 imagery may improve map-
ping models of AGLB, because SPOT 5 imagery has finer spa-
tial resolutions of 10-20 m compared with many other image
sources with medium spatial resolution (Table 14.1), but results
may still have relative errors of around 20% (Castillo-Santiago
et al.,, 2010). Exceptions may include Asian bamboo forests (Xu
etal., 2011) or low-biomass tropical forests.

Mapping models of tropical forest AGLB or height that rely on
multispectral imagery benefit from added predictors. Example pre-
dictors that may improve models include topography, forest type,

climate, soils, geology, or indicators of disturbance like tree canopy
cover (Helmer and Lefsky, 2006; Saatchi et al., 2007; Blackard et al.,
2008; Asner et al., 2009; Lefsky, 2010; Wijaya et al., 2010). After
including these predictors in mapping models, the variability in
the biomass mapped for undisturbed forests may reflect more of
the variability in AGLB that stems from regional- to landscape-
scale environmental gradients in attributes like rainfall. Maps of
these spatial patterns may be useful, but they may not reveal much
local-scale AGLB variation.

14.5.3.2 Tropical Forest Age with One Image Epoch

As with AGLB, multispectral imagery has limited sensitivity to
increasing forest age. Many studies show that spectral indices
that contrast the mid-infrared bands with the near-infrared or
visible bands are the most sensitive indices to tropical forest age,
height, and AGLB (e.g., Boyd et al.,, 1996; Helmer et al., 2000;
Steininger, 2000; Thenkabail et al., 2003; Helmer et al., 2010). For
example, with Landsat TM or ETM+ data, these indices include
the NIR/SWIR ratio, the tasseled cap wetness index (Crist and
Cicone, 1984; Huang et al., 2002), the wetness brightness differ-
ence index (WBDI) (Helmer et al., 2009), and the normalized
difference moisture index (NDMI) (also referred to as the nor-
malized difference structure index and the normalized differ-
ence infrared index). The WBDI and NDMI are calculated as
WBDI = TC Wetness — TC Brightness (14.2)

(NIRy; — SWIRys)
(NIRp, + SWIRys)

NDMI = (14.3)

However, lowland humid tropical forests recovering from pre-
vious clearing may become spectrally indistinct from mature
forests within 15-20 years (Boyd et al., 1996; Steininger, 2000),
though slower-growing tropical forests, like montane or dry for-
ests, can remain spectrally distinct longer (Helmer et al., 2000;
Viera et al., 2003). Only a handful of forest age classes can be
reliably distinguished in single-date multispectral imagery. Age
differences are blurred by differences in disturbance type and
intensity that affect regrowth rates and related spectral responses
during forest succession (Foody et al., 1996; Nelson et al., 2000;
Thenkabail et al., 2004; Arroyo-Mora et al., 2005), although age
explains more variability in rates of forest regrowth than does
disturbance type (Helmer et al., 2010; Omeja et al., 2012).

Recently logged forest has less biomass than old-growth for-
est, but it may become spectrally indistinct from mature forest
within a year or two (Asner et al., 2004a), which is another case
in which the forest canopy recovers faster than forest AGLB. In
a study in Sabah, Malaysia, conventional logging reduced forest
biomass by 67%, but reduced impact logging reduced it by 44%
(Pinard and Putz, 1996). In moist forests of Amazonia, AGLB
decreased by only 11%-15% after reduced impact logging (Miller
etal., 2011).

The youngest regenerating forest patches in landscapes usually
do not dominate pixels as large as those of coarse-spatial-resolution
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imagery like MODIS. The outcome is that maps from such imag-
ery have high error rates for secondary tropical forest. When mod-
eling pixel fractional cover of one or more young forest classes vs.
nonforest vs. old forest with MODIS, for example, secondary for-
est is modeled with the most bias and the least precision (Braswell
etal., 2003; Tottrup et al,. 2007). In Amazonia, the model R-square
values for the fraction of secondary forest cover were 0.35 for
MODIS data alone and 0.61 for MODIS plus MISR data. At the
spatial resolution of 1.1 km, corresponding to most of the MISR
bands, resulting maps overestimated secondary forest area by
26%. Converting fractional secondary forest cover to discrete
classes underestimated secondary forest area by 43% (Braswell
et al.,, 2003). Similarly, Carreiras et al. (2006) concluded that the
errors for decision tree classification of secondary forest with
SPOT 4 Vegetation across Amazonia were unacceptably high.

14.5.4 Detecting Tropical Forest Degradation
with Multispectral Imagery

Tropical forests suffer anthropogenic pressures that perturb
their structure and ecological functioning (Vitousek et al.,
1994). Human activities that disturb them range from plant
collection and human habitation to total deforestation. Many
of these forest disturbances can occur at fine spatial scales of
less than five to tens of meters, including forest fire (Aragdo and
Shimabukuro, 2010), recent logging (de Wasseige and Defourny,
2004; Asner et al., 2005; Sist and Ferreira, 2007), road networks
(Laporte et al., 2007; Laurance et al., 2009), mining (Peterson
and Heemskerk, 2001), and expanding agricultural frontiers
(Dubreuil et al., 2012). These human impacts appear like small
isolated objects within an ocean of greenness (Souza et al., 2003).
They appear as points (logging gaps), lines (roads, trails), both
points and lines (logging decks plus skid trails), and with min-
ing areas, both bare soil and pooled water are present.
Although these disturbances can be small, medium-resolution
remote sensing techniques can detect and quantify them within
homogeneous forest cover (Gond et al., 2004). Compared with
fine-scale imagery, images with pixels of 5-30 m have lower or
no cost while more frequently covering larger areas of tropical
forest. Consequently, medium-resolution imagery constitutes
an excellent tool for assessing logging activities in tropical for-
ests across large scales (Asner et al., 2005). Much work to detect
finely scaled disturbances of tropical forests uses pixel-level
spectra (Section 14.5.3.1). Other work models subpixel spectra
to derive continuous variables for monitoring fine-scale dis-
turbances, focusing on the degradation of forest C storage for
REDD+ programs and ecosystem models (Section 14.5.3.2).

14.5.4.1 Detecting Fine-Scale Forest
Degradation at the Pixel Level

Detecting small canopy gaps and skid trails that have been
open for less than 6 months is possible in French Guiana
with SPOT 5 HRG images (Gond and Guitet, 2009). The
technique developed is based on the local contrast between

375

a photosynthetically active surface (the forest) and one with
no or little photosynthetic activity (the gap itself). Using the
three main channels dedicated to vegetation identification (red
[0.61-0.68 um], near-infrared [0.79-0.89 um] and SWIR [1.58-
1.75 um] wavelengths), the contrast between forests and gap is
increased enough to be accurately depicted. The detection of
an undisturbed forest pixel is made by multiple thresholds on
the different reflectances. The advantage of standard remotely
sensed data like SPOT 4/5 or Landsat 5/7/8 is the possibil-
ity to detect the focused object automatically (Pithon et al.,
2013). The automatic processing makes the system operational
for tropical forest management and depends only on image
availability.

14.5.4.1.1 Road and Trail Detection

Road and trail detection is also a challenge for tropical forest
management. Opening, active, and abandoned road and trail
networks are a permanent landmark of tropical forest open-
ness and degradation (Laurance etal., 2009). Documenting this
dynamic is possible with the 30 years of medium-resolution
radiometer archives (Landsat and SPOT). In 2007, Laporte
et al. (2007) photo-interpreted Landsat imagery to map the
road and trail network across the forests of Central Africa to
show which forest areas are endangered by logging activity.
When displaying red, NIR, and SWIR channels in red, green,
and blue, active roads and trails are “brown”; abandoned roads
and trails are “green,” and intact tropical forests are “dark
green” (de et al., 2004). To automatically process the archives
for large areas, Bourbier et al. (2013) proposed a method for
using Landsat archive to allow tropical forest managers to
visualize the road and trail network dynamism at local (con-
cession) or national scales.

14.5.4.1.2 Mining Detection

Detecting mining activity is slightly different. In general,
detecting legal mining is not a real challenge because bare sur-
faces are prominent and easily mapped. When mining is illegal
in tropical forests, however, the bare surface is much smaller
and difficult to detect (Almeida-Filho and Shimabukuro, 2002).
The additional difficulty comes from the mobility of the ille-
gal miners. A recent abandoned mining site is detectable, but
the miners have left. Detecting active mining sites where min-
ers are illegally working is most critical to managers. To map
active mining sites in French Guiana, an automatic system
using SPOT 5 imagery from a local reception station has been
operational since 2008 (Gond et al., unpublished). The system
is based on detecting turbid waters resulting from debris wash-
ing. Again, the object “turbid water” sharply contrasts with its
environment, as with tropical forest vs. bare soil. Using red,
NIR, and SWIR channels, turbid water is detected by multiple
thresholds on reflectances. So far, the operational system has
processed over 1230 SPOT 5 images to ensure regular coverage
in space and time of illegal mining activity in French Guiana
(Joubert et al., 2012).
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14.5.4.2 Detecting Forest Degradation at the Subpixel
Level with Spectral Mixture Analysis

Forest degradation in the context of REDD+ can be defined as
a persistent reduction in carbon stocks or canopy cover caused
by sustained or high-impact disturbance. As a result, forest
degradation is often expressed as a complex, three-dimensional
change in forest structure related to the introduction of areas
of bare soil, piles of dead vegetation created by the residues and
collateral damage of removed trees and other plants, and areas
with standing dead or damaged tree trunks associated with
partial tree fall. Burned forests also leave surface fire scars,
indicated by patches of charred vegetation and bare ground
(Cochrane et al., 1999; Alencar et al., 2011). Much of tropical
forest degradation occurring around the world is driven by
selective logging and fires that escape into forests from neigh-
boring clearings. At the multispectral sensor resolution of
Landsat, SPOT, and MODIS, it is expected that forest degrada-
tion will be expressed in varying combinations of green veg-
etation (GV), soil, non-photosynthetic vegetation (NPV), and
shade within image pixels.

Spectral mixture analysis (SMA) models can be used to
decompose the mixture of GV, NPV, soil, and shade reflec-
tances into component fractions known as endmembers
(Adams et al., 1995). The SMA has been extensively used
throughout the world’s tropical forests to detect and map for-
est degradation (Asner et al.,, 2009a). For example, subpixel
fractional cover of soils derived from the SMA was used to
detect and map logging infrastructure including log land-
ings and logging roads (Souza and Barreto, 2000), while the
NPV fraction improved the detection of burned forests and of
logging damage areas (Cochrane and Souza, 1998; Cochrane
et al,, 1999). GV and shade enhance the detection of canopy
gaps created by tree fall (Asner et al., 2004b) and forest fires
(Morton et al., 2011).

SMA models usually assume that the image spectra are
formed by a linear combination of n pure spectra, or endmem-
bers (Adams et al., 1995), such that

Ry = ZFiRi'b +&p
o1

(14.4)
for
(14.5)

where
R, is the reflectance in band b
R;, is the reflectance for endmember i, in band b
F, is the fraction of endmember i
gy is the residual error for each band

The SMA model error is estimated for each image pixel by com-
puting the RMS error, given by

n 1/2
RMS = {nl ZSb}

b=1

(14.6)

As mentioned, in the case of degraded forests, the expected end-
members are GV, NPV, soil, and shade fractions. Including a
cloud endmember is also possible, which improves the detec-
tion and masking of clouds when mapping forest degradation
over large areas with long time series of imagery in the Amazon
region (Souza et al., 2013). To calibrate the model, the endmem-
bers can be obtained directly from the images (Small, 2004) or
from reflectance spectra acquired in the field with a handheld
spectrometer (Roberts et al., 2002). The advantage of obtain-
ing endmembers directly from images is that spatial and radio-
metric calibration between field and sensor observations is not
required. The SMA can be automated to make this technique
useful for mapping and monitoring large tropical forest regions.
A Monte Carlo unmixing technique using reference endmember
bundles was proposed for that purpose (Bateson et al., 2000), as
well as generic endmember spectral libraries (Souza et al., 2013).

14.5.4.3 Interpreting and Combining Subpixel
Endmember Fractions and Derived Indices

The SMA fractions can be combined into indices to further
accentuate areas of forest degradation. For example, the normal-
ized difference fraction index (NDFI) was developed to enhance
the detection of forest degradation by combining the detection
capability o