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Acronyms and Definitions

AB-C	 Aboveground	live	Biomass	in	units	of	Mg	C	ha−1

ACCA	 Automated	Cloud	Cover	Assessment
AGLB	 	Aboveground	 Live	 Forest	 Biomass	 in	 Mg	 dry	

weight	ha−1

ASTER	 	Advanced	 Spaceborne	 Thermal	 Emission	 and	
Reflection	Radiometer

AVHRR	 Advanced	Very	High	Resolution	Radiometer
AWiFS	 Advanced	Wide	Field	Sensor
BRDF	 Bidirectional	Reflectance	Distribution	Function
BB-C	 Belowground	live	Biomass	in	units	of	Mg	C	ha−1

CBERS	 China–Brazil	Earth	Resources	Satellite
CDM	 Clean	Development	Mechanism
DEM	 Digital	Elevation	Model
DW-C	 Dead	Wood	biomass	in	units	of	Mg	C	ha−1

ESTARFM	 	Enhanced	 Spatial	 and	 Temporal	 Adaptive	
Reflectance	Fusion	Model

ETM+	 Enhanced	Thematic	Mapper	Plus

Fmask	 Function	of	Mask
GHG	 Greenhouse	Gas
GLAS	 Geoscience	Laser	Altimeter	System
GV	 Green	Vegetation	(unitless	fraction,	range	0–1)
HRG	 High-Resolution	Geometric
HRV	 High-Resolution	Visible
HRVIR	 High-Resolution	Visible	and	Infrared
HRS	 High-Resolution	Stereoscopic
IRMSS	 Infrared	Multispectral	Camera
IRS	 Indian	Resources	Satellite
INPE	 Instituto	Nacional	de	Pesquisas	Espaciais
LI-C	 Carbon	content	of	forest	floor	litter	in	Mg	C	ha−1

LISS	 Linear	Imaging	Self-Scanner
MERIS	 Medium-Resolution	Imaging	Spectrometer
MSS	 Multispectral	Scanner
MVC	 Maximum-Value	Compositing
NDFI	 	Normalized	 Difference	 Fraction	 Index	 (unitless,	

range	−1	to	1)
NDMI	 Normalized	Difference	Moisture	Index
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NPV	 	Non-Photosynthetic	Vegetation	(unitless	fraction,	
range	0–1)

Mg	 Megagram	=	1	×	106	g	=	1	metric	ton
MAIAC	 	Multi-Angle	 Implementation	 of	 Atmospheric	

Correction	for	MODIS
MISR	 Multi-angle	Imaging	SpectroRadiometer
MODIS	 Moderate	Resolution	Imaging	Spectroradiometer
MVC	 Maximum-Value	Compositing
NDVI	 Normalized	Difference	Vegetation	Index
NIR	 Near-Infrared
SMA	 Spectral	Mixture	Analysis
STARFM	 	Spatial	and	Temporal	Adaptive	Reflectance	Fusion	

Model
REDD+	 	Reducing	 Emissions	 from	 Deforestation	 and	

Degradation,	conservation	of	forest	carbon	stocks,	
sustainable	 management	 of	 forests,	 or	 enhance-
ment	 of	 forest	 carbon	 stocks	 in	 developing	
countries

SO-C	 Soil	organic	carbon	in	Mg	C	ha−1

SPOT	 Satellite	Pour	l’Observation	de	la	Terre
SWIR	 Shortwave	Infrared
TM	 Thematic	Mapper
UNFCCC	 	United	 Nations	 Framework	 Convention	 on	

Climate	Change
WiFS	 Wide	Field	Sensor

14.1  Introduction

Tropical	forests	abound	with	regional	and	local	endemic	species	
and	house	at	 least	half	of	 the	 species	on	earth,	while	covering	
less	than	7%	of	its	land	(Gentry,	1988;	Wilson,	1988;	as	cited	in	
Skole	and	Tucker,	1993).	Their	clearing,	burning,	draining,	and	
harvesting	can	make	slopes	dangerously	unstable,	degrade	water	
resources,	change	local	climate,	or	release	to	the	atmosphere	the	
organic	carbon	(C)	that	they	store	in	their	biomass	and	soils	as	
greenhouse	gases	(GHGs).	These	forest	disturbances	accounted	
for	19%	or	more	of	annual	human-caused	emissions	of	CO2	to	
the	 atmosphere	 from	 the	 years	 2000	 to	 2010,	 and	 that	 level	 is	
more	 than	 the	 global	 transportation	 sector,	 which	 accounted	
for	14%	of	these	emissions.	Forest	regrowth	from	disturbances	
removes	about	half	of	the	CO2	emissions	coming	from	the	for-
est	disturbances	(Houghton,	2013;	IPCC	2014).	Another	GHG	of	
concern	when	considering	tropical	forests	is	N2O	released	from	
forest	fires.

Tropical	 forests	 (including	 subtropical	 forests)	 occur	 where	
hard	 frosts	 are	 absent	 at	 sea	 level	 (Holdridge,	 1967),	 which	
means	 low	latitudes,	and	where	the	dominant	plants	are	 trees,	
including	palm	trees,	tall	woody	bamboos,	and	tree	ferns.	They	
include	former	agricultural	or	other	lands	that	are	now	under-
going	 forest	 succession	 (Faber-Langendoen	 et  al.,	 2012).	 They	
receive	 from	 <1000  mm	 year−1	 of	 precipitation	 to	 more	 than	
10 times	that	much	as	rainfall	or	fog	condensation.	Whether	dry	
or	humid,	 tropical	 forests	have	far	more	species	diversity	 than	
temperate	or	boreal	forests,	and	their	role	in	earth’s	atmospheric	
GHG	budgets	is	large.

Multispectral	 satellite	 imagery,	 that	 is,	 remotely	 sensed	
imagery	with	discrete	bands	ranging	from	visible	to	shortwave	
infrared	 (SWIR)	wavelengths,	 is	 the	 timeliest	 and	most	acces-
sible	 remotely	 sensed	 data	 for	 monitoring	 these	 forests.	 Given	
this	 relevance,	we	 summarize	here	how	multispectral	 imagery	
can	 help	 characterize	 tropical	 forest	 attributes	 of	 widespread	
interest,	particularly	attributes	that	are	relevant	to	GHG	emis-
sion	inventories	and	other	forest	C	accounting:	forest	type,	age,	
structure,	and	disturbance	type	or	intensity;	the	storage,	degra-
dation,	and	accumulation	of	C	in	aboveground	live	tree	biomass	
(AGLB,	in	Mg	dry	weight	ha−1);	the	feedbacks	between	tropical	
forest	degradation	and	climate;	and	cloud	screening	and	gap	fill-
ing	in	imagery.	In	this	chapter,	the	term	biomass	without	further	
specification	is	referring	to	AGLB.

14.2  Multispectral Imagery and REDD+

14.2.1   Greenhouse Gas Inventories 
and Forest Carbon Offsets

Multispectral	satellite	imagery	can	provide	crucial	data	to	inven-
tories	of	forest	GHG	sinks	and	sources.	Inventories	of	GHGs	that	
have	 forest	 components	 include	 national	 inventories	 for	 nego-
tiations	 related	 to	 the	 United	 Nations	 Framework	 Convention	
on	Climate	Change	(UNFCCC).	The	UNFCCC	now	includes	a	
vision	of	 compensating	countries	 for	 reducing	greenhouse	 gas	
emissions	 to	 the	 atmosphere	 from	 deforestation,	 degradation,	
sustainable	management	of	forests,	or	conservation	or	enhance-
ment	 of	 forest	 C	 stocks	 in	 developing	 countries	 (known	 as	
REDD+).	Inventories	of	GHG	emissions	for	the	UNFCCC	Clean	
Development	Mechanism	(CDM)	may	also	include	forests,	and	
there	are	other	forest	carbon	offset	programs.

Programs	like	REDD+	could	help	moderate	earth’s	climate.	
They	 could	 also	 help	 conserve	 tropical	 forests	 and	 raise	 local	
incomes,	as	long	as	countries	make	these	latter	goals	a	priority	
in	 REDD+	 planning.	 Compensation	 in	 REDD+	 is	 for	 organic	
carbon	(C)	stored	in	forest	AGLB,	dead	wood,	belowground	live	
biomass,	soil	organic	matter,	or	litter,	as	long	as	the	stored	C	is	
“produced”	by	avoided	GHG	emissions,	such	as	avoided	defores-
tation	or	avoided	degradation	of	forest	C	stores.

In	forest	C	offsets,	avoided	emissions	are	estimated	as	the	dif-
ference	between	net	GHG	emissions	that	would	have	occurred	
without	implementing	change	(the	baseline case	or	business-as-
usual scenario)	and	actual	net	emissions	that	are	reduced	from	
what	they	would	have	been	without	the	management	change	(the	
project case).	Logging,	burning,	and	fragmentation	are	examples	
of	disturbances	that	degrade	forest	C	stores.	Replacing	conven-
tional	logging	with	reduced	impact	logging	reduces	associated	C	
emissions	and	is	an	example	of	avoided	C	emissions.	For	subna-
tional	projects	such	as	those	developed	under	voluntary	carbon	
markets	or	the	CDM,	leakage must	also	be	subtracted.	Leakage	
refers	net	emissions	that	a	carbon	offset	project	displaces	from	
its	location	to	elsewhere.	Examples	are	deforestation	or	remov-
als	of	roundwood	or	fuelwood	in	a	forest	not	far	from	the	forest	
where	such	activities	have	ceased	for	forest	C	credits.
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Many	 countries	 and	 organizations	 have	 officially	 proposed	
that	forest	C	stored	by	enrichment	planting,	or	by	forest	growth	
or	 regrowth	 on	 lands	 that	 were	 not	 forest	 before	 1990,	 should	
also	 be	 explicitly	 eligible	 for	 REDD+	 compensation	 (Parker	
et al.,	2009).	These	 latter	activities,	afforestation	and	reforesta-
tion,	already	dominate	forest	projects	developed	under	the	CDM.

14.2.2  Roles of Multispectral Imagery

The	United	Nations	Intergovernmental	Panel	on	Climate	Change	
(IPCC)	provides	guidelines	for	GHG	emission	inventories,	includ-
ing	 for	 forest	 land	 (IPCC,	 2006).	 Expanded	 methods	 based	 on	
these	guidelines	include	those	from	the	Verified	Carbon	Standard	
program	 (http://www.v-c-s.org).	 Summaries	 of	 these	 guidelines	
for	communities	seeking	to	certify	carbon	credits	for	voluntary	
carbon	markets	are	also	available	(e.g.,	Vickers	et al.,	2012).	For	
each	stratum	of	each	land	use	considered,	changes	in	C	stocks	are	
estimated	on	an	annual	basis	as	the	net	of	changes	in	the	C	pools	
as	follows	(in	Mg	C	year−1)	(Equation	2.3,	IPCC,	2006):

	ΔCLU	=	ΔCAB-C	+	ΔCBB-C	+	ΔCDW-C	+	ΔCLI-C	+	ΔCSO-C	+	ΔCHW-C	
(14.1)

where
ΔCLU	is	the	carbon	stock	changes	for	a	land-use	stratum,	for	

example,	a	forest	stratum,	in	Mg	C	year−1

ΔCSUBSCRIPT	represents	carbon	stock	changes	for	a	given	pool
Subscripts	denote	the	following	carbon	pools	in	units	of	Mg	

C	year−1:
AB-C	is	the	aboveground	live	biomass	carbon
BG-C	is	the	belowground	biomass	carbon
DW-C	is	the	dead	wood	carbon
LI-C	is	the	litter	carbon
SO-C	is	the	soil	organic	carbon
HW-C	is	the	harvested	wood	carbon

For	forest	GHG	inventories	for	REDD+	and	other	programs,	
multispectral	satellite	imagery	can	be	used	to	estimate	some	of	
the	key	variables	for	Equation	14.1:

	 1.	 Areas	of	forest	strata	(e.g.,	forest	types,	disturbance/degra-
dation	classes,	or	management)

	 2.	 Baseline	and	ongoing	rates	of	change	in	the	areas	of	forest	
strata

	 3.	 The	AGLB	and	rates	of	C	accumulation	in	young	forests
	 4.	 Point	 estimates	 of	 forest	 C	 pools	 in	 AGLB	 with	 fine-	

resolution	imagery	to	supplement	ground	plot	data
	 5.	 Potentially,	 forest	 AGLB	 if	 shown	 to	 be	 accurate	 for	 a	

given	landscape
	 6.	 Potentially,	GHG	emission	factors	for	forest	disturbances	

if	 spectral	 indices	 of	 disturbance	 intensity	 can	 be	 cali-
brated	 to	 correlate	 well	 with	 associated	 GHG	 emissions	
and	remaining	C	pools

Monitoring	forest	extent	over	large	scales	is	also	crucial	to	this	
forest	 C	 accounting,	 and	 multispectral	 satellite	 imagery	 is	 the	

best	data	for	this	purpose,	but	this	topic	is	covered	in	other	chap-
ters	of	this	book	(Chapters	15,	17	through	19).	Other	chapters	also	
cover	multispectral	image	fusion	with	radar	to	map	forest	AGLB	
(e.g.,	Saatchi	et al.,	2011)	or	estimation	of	tropical	forest	biomass	
with	airborne	lidar	(e.g.,	Asner	et al.,	2012).	Multi-angular	image	
data	can	also	improve	forest	age	mapping	(Braswell	et al.,	2003).

When	 using	 the	 “stock-difference”	 method	 (IPCC,	 2006)	 to	
quantify	 the	parameters	 in	Equation	14.1,	 the	 total	C	pool	 for	
each	time	period	is	estimated	by	multiplying	the	spatial	density	
of	C	by	the	area	(in	hectare)	of	 the	forest	stratum.	The	change	
in	the	C	pool	is	estimated	as	the	difference	in	C	pools	between	
two	 time	 periods	 divided	 by	 the	 elapsed	 time	 in	 years	 (please	
see	Equation	2.5	in	IPCC,	2006).	In	addition,	in	Equation	14.1,	
belowground	 biomass	 is	 usually	 estimated	 as	 a	 fraction	 of	
aboveground	 biomass	 with	 default	 values	 by	 ecological	 zone,	
region,	or	country.	Also,	when	the	type	of	land	use	is	forest,	lit-
ter	can	often	be	ignored.

The	 average	 spatial	 density	 of	 carbon	 in	 live	 biomass,	 in	
Mg	C	ha−1,	 is	estimated	from	the	average	spatial	density	of	the	
dry	weight	of	live	biomass	(in	Mg	ha−1)	multiplied	by	the	C	frac-
tion	 of	 dry	 weight	 biomass.	 Typically,	 this	 C	 fraction	 is	 about	
50%	of	dry	weight	mass.	The	IPCC	(2006)	has	published	default	
values	 for	 average	 C	 fraction	 of	 dry	 weight	 wood	 biomass	 by	
ecological	 zone.	 Dry	 weight	 is	 estimated	 with	 equations	 that	
relate	the	size	of	the	trees	growing	in	a	forest	to	their	dry	weight,	
mainly	as	gauged	by	 tree	 stem	diameter	and	height.	Then,	 the	
estimated	dry	weights	of	all	trees	in	a	known	area	are	summed.	
Species-specific	or	regional	equations	are	sometimes	available.

14.3   Characteristics of 
Multispectral Image Types

Multispectral	 satellite	 imagery	 is	 available	 at	 spatial	 resolu-
tions	 ranging	 from	 high	 (<5	 m)	 to	 medium	 (5–100	 m),	 to	
coarse	 (>100	 m)	 (e.g.,	 Table	 14.1).	 The	 data	 usually	 include	
reflective	bands	covering	the	visible	(blue,	green,	and	red)	and	
near-infrared	 (NIR)	 wavelengths	 of	 the	 electromagnetic	 spec-
trum.	Several	other	sensors	include	SWIR	bands	(e.g.,	Landsat	
Thematic	 Mapper	 [TM]	 and	 subsequent	 Landsat	 sensors);	 the	
sensors	 aboard	 the	 fourth	 and	 fifth	 missions	 of	 Satellite	 Pour	
l’Observation	 de	 la	 Terre	 (SPOT	 4	 high-resolution	 visible	 and	
infrared	 [HRVIR],	 SPOT	 5	 high-resolution	 geometric	 [HRG],	
and	 the	SPOT	4	and	5	Vegetation	 instruments);	 the	Moderate	
Resolution	Imaging	Spectroradiometer	(MODIS),	the	Advanced	
Wide	 Field	 Sensor	 (AWiFS),	 and	 the	 Infrared	 Multispectral	
Scanner	 Camera	 aboard	 the	 China–Brazil	 Earth	 Resources	
Satellite	series	[CBERS].

Satellite	 launches	 in	 the	 years	 1998–1999	 greatly	 increased	
the	 amount	 of	 imagery	 available	 for	 monitoring	 tropical	 for-
ests.	These	launches	brought	(1)	the	first	public	source	of	high-
spatial-resolution	imagery	(IKONOS,	with	<5-m	pixels);	(2)	the	
first	 medium-resolution	 imagery	 (5–100	 m	 pixels)	 with	 some	
degree	 of	 consistent	 global	 data	 collection	 (Landsat	 7);	 (3)	 the	
first	medium-resolution	imagery	with	fine-resolution	panchro-
matic	bands	of	2.5–5	m	(SPOT	4	and	Landsat	7,	 respectively);	

AQ1

AQ2

AQ3
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Table 14.1 Multispectral	Satellite	Imagery	Most	Commonly	Used	to	Characterize	Tropical	Forests

SatelliteRepeat/Revisita	Cycle,	
Scene	Size/Swath	Width	
Quantization	 Band	 Wavelength	(µm)	

Distributed	Spatial	
Resolution	(m)	 Approximate	Active	Dates	

High resolution (<5 m)
IKONOS Panchromatic 0.45–0.90 1 September	24,	1999	to	present
3-	to	5-day	revisit 1-Blue 0.445–0.516 4
11	×	11 km	scenes 2-Green 0.506–0.595 4
11 bits 3-Red 0.632–0.698 4

4-Near-infrared 0.757–0.853 4
QuickBird Panchromatic 0.45–0.90 0.6 October	18,	2001	to	present
2-	to	6-day	revisit 1-Blue 0.45–0.52 2.4
18	×	18 km	Scenes 2-Green 0.52–0.60
11 bits 3-Red 0.63–0.69

4-Near-infrared 0.76–0.90

Medium resolution (5–100 m) with high-resolution panchromatic
SPOT	4	HRVIR;	SPOT	5	HRG Panchromatic 0.51–0.73 2.5 SPOT	4:	March	24,	1998	to	July	2013
2–3 days	Revisit Panchromatic 0.51–0.73 5 SPOT	5:	May	04,	2002	to	present
60	×	60 km Green 0.50–0.59 10
8 bits Red 0.61–0.68 10

Near-infrared 0.78–0.89 10
Shortwave	infrared 1.58–1.75 20

SPOT	1,	2,	3	HRV Panchromatic 0.51–0.73 10 SPOT	1:	February	22,	1986	to	September	1990
1-	to	3-day	revisit Green 0.50–0.59 20 SPOT	2:	January	22,	1990	to	July	16,	2009—
60 km	×	60 km Red 0.61–0.68 20 SPOT	3:	September	26,	1993	to	November	14,	1996
8 bits Near-infrared 0.78–0.89 20

Medium resolution (5–100 m)
Landsat	MSS	1,2,3	(4,5) 4	(1)-Blue–green 0.5–0.6 60b Landsat	1:	July	23,	1972	to	January	06,	1978
16 days	repeat 5	(2)-red 0.6–0.7 60b Landsat	2:	January	22,	1975	to	February	25,	1982
170	×		185 km 6	(3)-Near-infrared 0.7–0.8 60b Landsat	3:	March	05,	1978	to	March	31,	1983
4 bits 7	(4)-Near-infrared 0.8–1.1 60b

Landsat	4	TM,	5	TM,	7	ETM+ 1-Blue 0.45–0.52 30 Landsat	4:	July	17,	1982	to	December	14,	1993
16 days	Repeat 2-Green 0.52–0.60 30 Landsat	5:	March	1,	1984	to	January	2013
170	×		183 km 3-Red 0.63–0.69 30 Landsat	7:	April	15,	1999
8 bits 4-Near-infrared 0.76–0.90 30

5-Shortwave	infrared 1.55–1.75 30
6-Thermal	(2	ETM+	bands) 10.40–12.50 L4,5	120c	(30)

L7	60c	(30)
7-Shortwave	infrared 2.08–2.35 30
8-Panchromatic	(L7	only) 0.52–0.90 15

EO-1	ALI MS-1’-Coastal	aerosol 0.433–0.453 30 November	21,	2000	to	present
16-day	repeat MS-1-Blue 0.45–0.515 30
37	×	42 km MS-2-Green 0.525–0.605 30
12 bits MS-3-Red 0.63–0.69 30

MS-4-Near-infrared 0.775–0.805 30
MS-4’-Near-infrared 0.845–0.89 30
MS-5’-Shortwave	infrared 1.2–1.3 30
MS-5 1.55–1.75 30
MS-7 2.08–2.35 30
Panchromatic 0.48–0.69 10

(continued )

K22130_C014.indd   366 4/2/2015   2:35:43 PM



367Characterizing Tropical Forests with Multispectral Imagery

and	(4) the	first	coarse-resolution	imagery	(>100	m	pixels)	dis-
tributed	 with	 higher-level	 preprocessing	 like	 atmospheric	 cor-
rection	and	cloud-minimized	compositing	(MODIS	and	SPOT	
Vegetation).	 Before	 IKONOS,	 remotely	 sensed	 reference	 data	
had	to	come	from	air	photos	that	in	many	places	were	costly	to	
obtain	and	outdated.

The	next	big	advances	in	tropical	forest	monitoring	with	satel-
lite	imagery	came	in	2005–2008,	when	(1)	Google,	Inc.	and	the	
producers	 of	 high-resolution	 imagery	 such	 as	 QuickBird	 and	
IKONOS	made	high-resolution	data	viewable	on	Google	Earth	
for	many	sites,	making	reference	data	free	and	accessible	for	sub-
sets	of	project	areas;	and	(2)	the	Brazilian	National	Institute	for	
Space	Research	(INPE)	and	the	United	States	Geological	Survey	
(USGS)	 began	 to	 freely	 distribute	 Landsat	 and	 other	 imagery	
with	medium	spatial	resolution,	making	long,	dense	time	series	
of	medium-resolution	imagery	available	over	large	areas.

Other	 sources	 of	 multispectral	 imagery	 for	 monitoring	
tropical	 forests	 over	 large	 areas	 that	 are	 not	 shown	 in	 Table	
14.1,	 mainly	 to	 highlight	 them	 here,	 include	 the	 Japan–U.S.	
Advanced	 Spaceborne	 Thermal	 Emission	 and	 Reflection	
Radiometer	(ASTER)	(aboard	Terra).	In	addition	to	15	m	VNIR	

bands,	 it	has	several	SWIR	and	thermal	bands	with	30–90	m	
spatial	resolution.	Data	for	Brazil	and	China	and	nearby	areas	
are	 also	 available	 from	 CBERS.	 The	 series	 of	 CBERS	 satel-
lites,	 1,	 2,	 and	 2B,	 collected	 panchromatic	 to	 SWIR	 images	
with	medium	spatial	resolution	(20–80	m,	113–120 km	swath	
width),	and	red	and	NIR	images	with	coarse	spatial	resolution	
(260	m,	890 km	swath	width)	from	1999	to	2010	and	missions	
to	collect	with	medium-resolution	multispectral	imagery	with	
a	 5-day	 revisit	 cycle	 are	 scheduled.	 In	 the	 Indian	 Resources	
Satellite	 (IRS)	 series,	 the	 Wide	 Field	 Sensor	 (WiFS)	 has	 a	
740 km	swath	width,	188	m	spatial	resolution,	and	red	and	NIR	
bands.	 More	 recently,	 the	 IRS-P6	 satellite	 carries	 the	 AWiFS	
instrument.	AWiFS	has	60	m	pixels	 for	green	 through	SWIR	
bands,	a	740 km	swath	width,	a	5-day	revisit	cycle,	and	a	SWIR	
band,	 combining	 advantages	 of	 imagery	 with	 medium	 and	
coarse	 spatial	 resolutions.	 The	 later	 of	 the	 IRS	 series	 sensors	
include	 data	 from	 Linear	 Imaging	 Self-Scanner	 (LISS)	 with	
multispectral	imagery	with	a	23.5	m	spatial	resolution.	Ground	
stations	receiving	data	from	CBERS	and	the	IRS	satellite	series	
have	not	covered	all	of	the	tropics.	Fortunately,	that	situation	
should	gradually	change.

Table 14.1 (continued ) Multispectral	Satellite	Imagery	Most	Commonly	Used	to	Characterize	Tropical	Forests

SatelliteRepeat/Revisita	Cycle,	
Scene	Size/Swath	Width	
Quantization	 Band	 Wavelength	(µm)	

Distributed	Spatial	
Resolution	(m)	 Approximate	Active	Dates	

Landsat	8 1-Coastal	aerosol 0.433–0.453 30 February	11,	2013—
16-day	repeat 2-Blue 0.450–0.515 30
170	×	183 km 3-Green 0.525–0.600 30
12 bits 4-Red 0.630–0.680 30

5-Near-infrared 0.845–0.885 30
6-SWIR	1 1.560–1.660 30
7-SWIR	2 2.100–2.300 30
8-Panchromatic 0.500–0.680 15
9-Cirrus 1.360–1.390 30
10-Thermal	infrared	1 10.60–11.19 100c	(30)
11-Thermal	infrared	2 11.50–12.51 100c	(30)

coarse resolution (>100 m)
Terra/Aqua	MODISd	(7	of	36	

bands	are	shown)
1 0.620–0.670 250 Terra	(EOS	AM):	August	12,	1999	to	present

1-day	revisit 2 0.841–0.876 250 Aqua	(EOS	PM):	May	04,	2002	to	present
2330 km	Swath	Width 3 0.459–0.479 500
12 bits 4 0.545–0.565 500

5 1.230–1.250 500
6 1.628–1.652 500
7 2.105–2.155 500

SPOT	4,5	Vegetation	1,	2d 0-Blue 0.43–0.47 1150 Aboard	SPOT	4:	March	24,	1998	to	July	2013
1-day	revisit 2-Red 0.61–0.68 1150 Aboard	SPOT	5:	May	04,	2002	to	present
2250 km	Swath	Width 3-Near-infrared 0.78–0.89 1150
10 bits SWIR-Shortwave	infrared 1.58–1.75 1150

a	Revisit	cycles	change	with	latitude.
b	The	original	MSS	pixel	size	of	79	×	57	m	is	now	resampled	to	60	m.
c	 Thermal	infrared	Landsat	bands	are	now	resampled	to	30	m.
d	For	coarse-resolution	sensors,	resolution	given	is	at	nadir.
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14.4   Preprocessing Imagery 
to Address Clouds

14.4.1  Cloud Screening

We	begin	with	cloud	and	cloud	shadow	screening,	as	this	step	is	
crucial	 in	the	 image	processing	chain	for	characterizing	tropi-
cal	 forests.	Clouds	and	 their	 shadows	obscure	 the	ground	and	
contaminate	temporal	trends	in	reflectance.	Automated	systems	
for	processing	 large	archives	of	satellite	 imagery	are	becoming	
more	common	for	natural	resource	applications	and	must	screen	
clouds.	Clouds	are	composed	of	condensed	water	vapor	that	form	
water	droplets	and	scatter	visible	 to	NIR	light,	reducing	direct	
illumination	on	the	surface	below	and	forming	a	cloud	shadow.	
In	 multispectral	 satellite	 imagery,	 clouds	 are	 characterized	 by	
a	high	albedo	(Choi	and	Bindschadler,	2004),	while	their	shad-
ows	have	lower	reflectance	than	surrounding	pixels.	The	easiest	
solution	to	cloud	contamination	is	to	restrict	analyses	to	cloud-
free	 imagery,	 which	 may	 include	 only	 dry	 season	 imagery	 for	
tropical	and	coastal	environments	due	to	frequent	cloud	cover.	
Alternatively,	 methods	 to	 screen	 cloud-	 and	 shadow-contami-
nated	pixels	can	increase	the	number	of	observations	available	
(Figure	 14.1).	 Increasing	 the	 number	 of	 available	 observations	
in	a	time	series	may	also	improve	the	detection	of	land	surface	
change	and	reflectance	trends.

Manual	 and	 semiautomated	 approaches	 to	 cloud	 screening	
are	undesirable	 for	processing	 large	numbers	of	 images	due	to	
the	time-consuming	nature	of	the	work,	which	may	depend	not	
only	on	analyst	experience	but	also	on	image	contrast.	Several	
automated	 approaches	 have	 been	 developed,	 but	 separat-
ing	cloud	and	shadow	from	the	 land	surface	 is	not	necessarily	

straightforward	 given	 the	 diversity	 of	 land	 surfaces	 coupled	
with	 large	 variations	 in	 cloud	 and	 shadow	 optical	 properties	
(Lyapustin	et al.,	2008;	Zhu	et al.,	2012;	Goodwin	et al.,	2013).	
A summary	of	current	approaches	to	cloud	and	shadow	screen-
ing	for	Landsat	TM/ETM+,	SPOT,	and	MODIS	sensors	follows.

14.4.1.1  Landsat TM Imagery

The	Landsat	TM/ETM+	archives	of	countries	with	receiving	sta-
tions	now	contain	up	to	three	decades	of	imagery	(1984	to	pres-
ent)	 with	 varying	 levels	 of	 cloud	 and	 cloud	 shadow	 contained	
in	the	archive	of	images.	The	U.S.	Geological	Survey	is	working	
with	other	countries	to	consolidate	these	archives	through	con-
sistent	processing	and	distribution	through	its	website	(landsat.
usgs.gov).	 Image	 preprocessing	 by	 the	 Landsat	 program	 has	
included	the	Automatic	Cloud	Cover	Assessment	(ACCA)	algo-
rithms	for	both	Landsat-5	TM	and	Landsat-7	ETM+	missions,	
which	use	optical	and	 thermal	 (ETM+	only)	bands	 to	 identify	
clouds	(Irish,	2006).	It	is	designed	for	reporting	the	percentage	of	
cloud	cover	over	scenes	rather	than	producing	per-pixel	masks.	
Further	 modifications	 have	 also	 been	 tested	 for	 application	 to	
Landsat	8	 imagery	 (Scaramuzza	et al.,	2012),	which	 includes	a	
new	 cirrus	 band	 (1.360–1.390  µm)	 that	 is	 sensitive	 to	 aerosol	
loadings	and	should	improve	cloud	detection.	ACCA	is	designed	
to	limit	the	impacts	of	cloud	and	scene	variability	on	threshold-
ing.	The	ETM+	ACCA	incorporates	two	passes:	one	to	conser-
vatively	estimate	“certain”	cloud	at	the	pixel	 level	with	a	series	
of	spectral	and	thermal	 tests.	The	result	 is	 then	used	to	derive	
scene-based	 thermal	 thresholds	 for	 the	 second	pass.	The	error	
in	 scene-averaged	 cloud	 amount	 was	 estimated	 to	 be	 around	
5%	 (Irish	 et  al.,	 2006).	 Scaramuzza	 et  al.	 (2012)	 validated	 the	
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Figure 14.1 Illustration	of	cloud	distribution	spatially	and	temporally	over	tropical	forests	of	north	Queensland:	(a)	Landsat	image	(RGB:	542,	
Path/Row:	96/71,	and	date	July	02,	2007)	and	(b)	percentage	of	observations	classified	as	cloud	between	1986	and	2012	(n =	445).	Note:	high	cloud	
fractions	were	not	included	in	calculations.
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per-pixel	classification	of	the	ETM+	ACCA	(pass	1)	and	found	
a	 79.9%	 agreement	 between	 reference	 and	 ACCA	 at	 the	 pixel	
scale.	Using	a	subset	of	the	same	reference	set,	Oreopoulos	et al.	
(2011)	evaluated	both	per-pixel	ACCA	masks	and	a	cloud	detec-
tion	 algorithm	 modified	 from	 the	 MODIS	 Luo–Trishchenko–
Khlopenkov	 algorithm	 (Luo	 et  al.,	 2008).	 Both	 ACCA	 and	
the	 modified	 LTK	 showed	 greater	 than	 90%	 agreement	 with	
the	 reference,	 although	 like	 ACCA,	 the	 LTK	 had	 limited	 abil-
ity	 to	detect	 thin	cirrus	clouds.	Furthermore,	ACCA	has	been	
used	as	the	starting	point	for	further	cloud	masking	(Choi	and	
Bindshadler,	2004;	Roy	et al.,	2010;	Scaramuzza	et al.,	2012).

Earlier	studies	have	shown	that	several	approaches	work	well	
for	classifying	clouds	and	cloud	shadows	over	particular	path/
rows.	One	approach	is	image	differencing	based	on	image	pairs	
(Wang,	 1999),	 while	 other	 studies	 have	 empirically	 defined	
thresholds	 for	 cloud	 brightness	 and	 coldness	 in	 one	 or	 more	
spectral/thermal	bands,	for	example,	Landsat	TM	Bands	1	and	
6	(Martinuzzi	et al.,	2007);	Bands	3	and	6	(Huang	et al.,	2010);	
Bands	1,	3,	4,	and	5	(Oreopoulos	et al.,	2011);	and	Bands	1,	4,	5,	
and	6	(Helmer	et al.,	2012).	The	application	of	these	methods	to	a	
range	of	path/rows	around	the	globe,	however,	remains	untested	
and	may	encounter	issues	due	to	spectral	similarities	among	the	
wide	 range	 of	 combinations	 of	 land	 surfaces	 and	 cloud/cloud	
shadows.

The	 automated	 method	 that	 Huang	 et  al.	 (2010)	 developed	
to	 allow	 forest	 change	 detection	 in	 cloud-contaminated	 imag-
ery	considers	brightness	and	temperature	thresholds	for	clouds	
that	are	self-calibrated	against	forest	pixels.	It	requires	a	digital	
elevation	model	to	normalize	top	of	atmosphere	brightness	tem-
perature	values	and	helps	to	project	cloud	shadow	on	the	 land	
surface.	Published	validation	data	for	this	method	are	currently	
limited	to	four	U.S.	images	with	forest	and	would	benefit	from	
further	calibration/validation.

Two	 additional	 automated	 approaches	 have	 recently	 been	
published:	 Fmask	 (Function	 of	 mask)	 (Zhu	 and	 Woodcock,	
2012)	 and	 a	 time	 series	 approach	 by	 Goodwin	 et  al.	 (2013)	
(Figure	14.2).	Fmask	integrates	existing	algorithms	and	metrics	
with	optical	and	 thermal	bands	 to	separate	contaminated	pix-
els	 from	 land	 surface	 pixels.	 Fmask	 also	 considers	 contextual	
information	for	mapping	potential	cloud	shadow	using	a	flood-
fill	operation	applied	to	the	NIR	band.	Cloud	shadows	are	then	
identified	by	linking	clouds	with	their	shadow	with	solar/sensor	
geometry	and	cloud	height	 inferred	 from	the	 thermal	Landsat	
TM	Band	6.	The	results	were	validated	with	a	global	dataset	and	
were	a	significant	improvement	to	ACCA	with	Fmask	achieving	
an	 overall,	 user’s,	 and	 producer’s	 accuracies	 of	 96%,	 89%,	 and	
92%,	respectively	compared	to	85%,	92%,	and	72%,	respectively	
for	ACCA.

The	time	series	method	uses	temporal	change	to	detect	cloud	
and	 cloud	 shadow	 (Goodwin	 et  al.	 (2013)).	 It	 smoothes	 pixel	
time	 series	 of	 land	 surface	 reflectance	 using	 minimum	 and	
median	 filters	 and	 then	 locates	 outliers	 with	 multi-temporal	
image	 differencing.	 Seeded	 region	 grow	 is	 applied	 to	 the	 dif-
ference	 layer	using	a	watershed	region	grow	algorithm	to	map	
clusters	 of	 change	 pixels,	 with	 clumps	 smaller	 than	 5	 pixels	

removed	to	minimize	classification	speckle.	This	has	the	effect	
of	increasing	the	cloud/shadow	detection	rate	while	restricting	
commission	 errors;	 smaller	 magnitudes	 of	 change	 associated	
with	 cloud/cloud	 shadows	 are	 mapped	 only	 if	 they	 are	 in	 the	
neighborhood	of	larger	changes.	Morphological	dilation	opera-
tions	were	applied	to	map	a	larger	spatial	extent	of	the	cloud	and	
cloud	 shadow,	 while	 shadows	 were	 translated	 along	 the	 image	
plane	in	the	reverse	solar	azimuth	direction	to	assess	the	overlap	
with	clouds	and	confirm	the	object	is	a	shadow.	A	comparison	
with	 Fmask	 showed	 that	 the	 time	 series	 method	 could	 screen	
more	cloud	and	cloud	shadow	than	Fmask	across	Queensland,	
Australia	 (cloud	 and	 cloud	 shadow	 producer’s	 accuracies	 were	
8%	and	12%	points	higher,	respectively).

Several	 trade-offs	 exist	 between	 these	 two	 automated	
approaches	 to	 cloud	 and	 shadow	 screening.	 The	 time	 series	
method	might	detect	more	cloud	and	cloud	shadow,	yet	Fmask	
is	 more	 computationally	 efficient	 and	 practical	 for	 individual	
images.	 At	 present,	 the	 time	 series	 method	 is	 processed	 using	
entire	 time	 series	 for	 each	 Landsat	 path/row.	 For	 operational	
systems	 processing	 many	 images,	 the	 computational	 overhead	
of	the	time	series	approach	could	be	worthwhile	as	it	can	detect	
more	 cloud/shadow	 contamination.	 Locations	 with	 few	 cloud-
free	observations	per	year	and	high	land-use	change	are	also	less	
desirable	for	a	time	series	method.	In	the	absence	of	an	atmo-
spheric	 aerosol	 correction,	 pixels	 contaminated	 by	 smoke	 and	
haze	are	more	likely	to	be	classified	as	cloud	by	the	time	series	
method.	 Neither	 the	 Fmask	 nor	 the	 time	 series	 method	 nor	
previous	 attempts	 adequately	 map	 high	 level,	 semitransparent	
cirrus	cloud	(Figure	14.2d–f).	New	methods	for	Landsat	8	will	
likely	detect	more	cloud	with	 the	new	band	sensitive	 to	cirrus	
clouds.	Both	Fmask	and	the	time	series	methods	are	highly	con-
figurable	allowing	calibration	for	a	 localized	region	or	a	wider	
application.	Fmask	has	been	calibrated	using	a	global	reference	
set,	 while	 the	 time	 series	 approach	 was	 calibrated	 and	 tested	
mainly	for	northeastern	Australian	conditions.

Although	both	methods	have	high	accuracy,	further	improve-
ments	 could	 be	 made	 particularly	 to	 screening	 cloud	 shadow.	
Removing	the	dependency	of	a	link	between	cloud	and	shadow	
would	 be	 a	 considerable	 advancement	 as	 clouds	 are	 often	
missed	 or	 under/overmapped,	 causing	 the	 shadow	 test	 to	 fail.	
Furthermore,	 adding	 thermal	 information	 to	 the	 time	 series	
method	 has	 the	 potential	 to	 remove	 commission	 errors	 where	
bright	surfaces	such	as	exposed	soil	are	falsely	classified	as	cloud.	
Both	methods	use	a	series	of	rules	to	classify	cloud	and	shadow	
and	 have	 the	 flexibility	 to	 add	 new	 algorithms	 and	 criteria	 to	
improve	the	detection	of	contaminated	pixels.

14.4.1.2  SPOT Imagery

The	spatial	and	spectral	characteristics	of	SPOT	(Satellite	Pour	
l’Observation	de	la	Terre)	have	similarities	to	Landsat	imagery,	
with	 the	 first	 satellite	 launched	 in	 1986	 (SPOT	 1),	 and	 similar	
methods	for	screening	cloud	and	cloud	shadows	should	be	use-
ful.	 The	 main	 exception	 is	 that	 SPOT	 lacks	 a	 thermal	 band,	
which	 has	 been	 useful	 in	 discriminating	 clouds	 (e.g.,	 ACCA).	
However,	only	a	limited	number	of	studies	have	been	published	

K22130_C014.indd   369 4/2/2015   2:35:45 PM



370 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

on	screening	cloud	and	cloud	shadow	from	SPOT	data.	SPOT	is	
a	commercially	operated	sensor,	and	unlike	Landsat	TM/ETM+	
and	MODIS,	scenes	are	typically	purchased/tasked	with	limited	
cloud	cover	or	would	otherwise	prove	cost	prohibitive	for	many	
vegetation	 applications.	 The	 New	 South	 Wales	 government	 of	
Australia,	for	example,	acquired	1850	images	between	2004	and	
2012,	of	which	only	313	contain	cloud	with	the	maximum	cloud	
cover	values	<10%	(Fisher,	2014).

Le	Hégarat-Mascle	and	André	(2009)	used	a	Markov	random	
field	framework	that	assumes	that	clouds	are	connected	objects,	
solar/sensor	geometry	is	known,	and	shadow	has	a	similar	shape	
to	its	corresponding	cloud	(excluding	the	influence	of	topogra-
phy).	Potential	cloud	pixels	were	identified	using	a	relationship	
between	 green	 and	 SWIR	 bands;	 shadows	 were	 located	 using	
cloud	shape,	orientation	of	shadow	relative	to	cloud	and	SWIR	
band	reflectance,	removing	objects	not	part	of	a	cloud–shadow	
pair.	The	method	was	applied	to	39	SPOT	4	HRVIR	images	over	
West	Africa	with	encouraging	results.	However,	when	applying	
this	 method,	 Fisher	 (2014)	 found	 commission	 errors	 as	 bright	

surfaces	were	frequently	matched	to	dark	surfaces	that	were	not	
cloud	contaminated.	They	suggest	first	masking	vegetation	and	
water	bodies,	then	locating	marker	pixels	for	clouds	and	shad-
ows	in	the	green–SWIR	space	and	NIR	bands,	respectively,	then	
growing	 objects	 with	 the	 watershed	 transform.	 Sensor/solar	
geometry	 and	 object	 size	 are	 also	 used	 to	 match	 clouds	 with	
their	shadows.

14.4.1.3  MODIS Imagery

MODIS	has	a	 standard	cloud	product,	 in	contrast	 to	SPOT	or	
until	recently	Landsat,	which	includes	information	on	whether	a	
pixel	is	clear	from	cloud/shadow	contamination.	The	cloud	mask	
is	 based	 on	 several	 per-pixel	 spectral	 tests	 and	 is	 produced	 at	
250	m	and	1 km	spatial	resolutions	(Strabala,	2005).	A	validation	
with	 active	 ground-based	 lidar/radar	 sensors	 showed	 an	 85%	
agreement	with	the	MODIS	cloud	mask	(Ackerman	et al.,	2008).

Recent	 research	 has	 found	 that	 time	 series	 information	
can	 improve	 cloud	 detection	 in	 MODIS	 imagery	 (Lyapustin	
et  al.,	 2008;	 Hilker	 et  al.,	 2012).	 The	 cloud-screening	 method	
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Figure 14.2 Examples	of	Fmask	and	time	series	approaches	to	cloud	and	cloud	shadow	screening:	(a)	Landsat	TM	image,	(b)	TS	classification,	
(c)	Fmask	classification,	(d)	Landsat	TM	image,	(e)	TS	classification,	and	(f)	Fmask	classification,	(a–c)	well-detected	cumulus	cloud	and	cloud	
shadow	(RGB:	542,	Path/Row:	97/71,	and	date	October	10,	1998)	and	(d–f)	a	complex	example	where	both	methods	miss	sections	of	cirrus	cloud	
(RGB:	542,	Path/Row:	98/72,	and	date	April	04,	2001).
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in	 multi-angle	 implementation	 of	 atmospheric	 correction,	 for	
example,	 uses	 a	 dynamic	 clear-sky	 reference	 image	 and	 cova-
riance	 calculations,	 in	 addition	 to	 spectral	 and	 thermal	 tests,	
to	locate	clouds	over	land	(Lyapustin	et al.,	2008).	In	a	tropical	
Amazonian	environment,	Hilker	et al.,	2012	demonstrated	that	
this	 method	 was	 better	 at	 detecting	 clouds	 and	 increasing	 the	
number	of	usable	pixels	than	the	standard	product	(MYD09GA),	
which	translated	into	more	accurate	patterns	in	NDVI.

14.4.2  Filling Cloud and Scan-Line Gaps

Cloud	 and	 cloud	 shadow	 screening	 removes	 contaminated	
pixels	 from	 analyses	 but	 leaves	 missing	 data	 in	 the	 imagery	
and	 derived	 products.	 The	 scan-line	 correction	 error	 affect-
ing	Landsat	7	post-2003	also	leaves	gaps	approximating	20%	of	
affected	 images	(USGS,	2003).	Data	gaps	 in	maps	are	aestheti-
cally	 unappealing,	 and	 the	 derivation	 of	 statistics	 is	 more	 dif-
ficult.	As	a	 result,	 approaches	 have	been	developed	 to	fill	data	
gaps	including	temporal	compositing	and	fusing	imagery	from	
two	different	sensors.

A	range	of	temporal	compositing	algorithms	have	been	devel-
oped	 to	 minimize	 cloud	 contamination	 and	 noise	 (Dennison	
et al.,	2007;	Flood,	2013).	Compositing	involves	analyzing	band/
metric	 values	 across	 a	 date	 range	 with	 an	 algorithm	 deciding	
the	 pixel	 value	 most	 likely	 to	 be	 cloud/noise	 free.	 The	 choice	
of	algorithm	may	vary	depending	on	the	application	and	land-
cover	type.	Compositing	algorithms	have	generally	been	applied	
to	high-temporal-frequency	data	such	as	MODIS	and	AVHRR;	
however,	 methods	 for	 compositing	 imagery	 with	 a	 lower	 tem-
poral	 resolution	 have	 also	 been	 developed.	 For	 example,	 the	
MOD	 13	 products	 use	 the	 maximum-value	 compositing	 algo-
rithm	with	NDVI	as	the	metric	in	16-day	and	monthly	compos-
ites	of	MODIS	 imagery	 (Strabala,	2005).	Landsat	has	 similarly	
been	composited	using	a	parametric	weighting	scheme	(Griffiths	
et al.,	2013).	The	result	is	an	image	that	ideally	is	free	from	noise	
or	cloud	that	can	be	used	as	a	product	itself	or	the	corresponding	
pixels	used	to	infill	data	gaps.

The	fusion	or	blending	of	MODIS	and	Landsat	offers	another	
approach	to	predict	image	pixel	values	within	data	gaps.	These	
methods	 integrate	 medium-spatial-resolution	 Landsat	 with	
temporal	 trends	 in	 reflectance	 (e.g.,	 seasonality)	 captured	 by	
the	 higher	 temporal	 frequency	 of	 MODIS.	 Roy	 et  al.	 (2008)	
integrated	 the	 MODIS	 bidirectional	 reflectance	 distribution	
function	 (BRDF)/albedo	 product	 and	 Landsat	 data	 to	 model	
Landsat	reflectance.	They	found	that	infrared	bands	were	more	
accurately	 predicted	 than	 visible	 wavelengths,	 probably	 in	
response	to	greater	atmospheric	effects	at	shorter	wavelengths.	
The	 spatial	 and	 temporal	 adaptive	 reflectance	 fusion	 model	
(STARFM)	requires	a	MODIS–Landsat	image	pair	captured	on	
the	same	day	plus	a	MODIS	image	on	the	prediction	date	and	
applies	spatial	weighting	to	account	for	reflectance	outliers	(Gao	
et  al.,	 2006).	 Further	 algorithm	 development	 has	 produced	 an	
enhanced	 STARFM	 (ESTARFM)	 method	 that	 was	 found	 to	
improve	 predictions	 in	 heterogeneous	 landscapes	 (Zhu	 et  al.,	
2010).	 However,	 there	 are	 known	 limitations	 with	 blending	

or	 fusing	 Landsat	 and	 MODIS	 imagery.	 Solutions	 involving	
MODIS	will	work	only	post-2000	when	imagery	was	first	cap-
tured	and	potentially	2002	onward	where	stable	BRDF	predic-
tions	 are	 needed	 (Roy	 et  al.,	 2008).	 Furthermore,	 Emelyanova	
et al.	(2013)	found	that	land-cover	type	and	temporal	and	spatial	
variances	impact	the	fusion	of	MODIS	and	Landsat	as	well	as	the	
choice	of	algorithm.	Where	the	temporal	variance	of	MODIS	is	
considerably	less	than	the	spatial	variance	of	Landsat,	blending	
may	not	improve	predictions.

Gap	 filling	 using	 Landsat	 imagery	 alone	 has	 also	 been	 per-
formed.	Helmer	and	Ruefenacht	(2005)	developed	a	method	for	
predicting	Landsat	values	using	two	Landsat	images	for	change	
detection.	This	method	develops	a	relationship	between	uncon-
taminated	pixels	in	an	image	pair	with	regression	tree	models,	
and	 it	 then	applies	 these	models	 to	predict	 the	values	 in	areas	
with	 missing	 data	 in	 the	 target	 image.	 Additional	 images	 are	
used	in	the	same	way	to	predict	pixels	in	remaining	cloud	gaps.	
Langner	et al.	 (2014)	segment	such	pairwise	predictive	models	
according	 to	 forest	 type.	 Approaches	 using	 geostatistics	 have	
also	been	developed.	Pringle	 et al.	 (2009)	use	an	 image	before	
and	after	the	target	image	in	geostatistical	interpolation	to	pre-
dict	values	in	Landsat	7	SLC-off	imagery.	Based	on	their	results,	
they	 recommend	 images	 captured	 within	 weeks,	 rather	 than	
months,	of	 each	other	 to	 limit	 temporal	variance	 in	a	 tropical	
savanna	 environment.	 Zhu	 et  al.	 (2012)	 also	 use	 geostatistics	
with	encouraging	results	 to	predict	missing	Landsat	7	SLC-off	
data	 based	 on	 the	 Geostatistical	 Neighborhood	 Similar	 Pixel	
Interpolator.

A	potential	 limitation	with	gap	filling	is	the	introduction	of	
image	 noise	 or	 artifacts.	 This	 is	 because	 of	 differences	 in	 veg-
etation	phenology,	illumination,	and	atmospheric	effects	as	gap-
filled	imagery	contains	data	from	multiple	dates	and/or	sensors.	
These	effects	 can	 be	 minimized	 by	atmospheric	 and	 illumina-
tion	 corrections	 as	 well	 as	 methods	 that	 seek	 to	 balance	 the	
distribution	of	pixel	values	such	as	histogram	matching,	linear	
regression,	or	regression	trees	(Helmer	and	Ruefenacht,	2007).

14.5   Forest Biomass, Degradation, 
and Regrowth Rates from 
Multispectral Imagery

Studies	 have	 used	 multispectral	 imagery	 to	 map	 or	 estimate	
some	key	inputs	to	the	variables	in	Equation	14.1	(Section	14.2.2)	
for	forests:	forest	AGLB	(in	Mg	dry	weight	ha−1),	rates	of	C	accu-
mulation	in	reforesting	lands	(in	Mg	dry	weight	ha−1	year−1),	and	
area	 or	 intensity	 of	 forest	 degradation	 or	 disturbance	 (in	 ha).	
In	 addition,	 multispectral	 imagery	 is	 the	 most	 common	 satel-
lite	imagery	for	mapping	tropical	forest	types,	which	we	discuss	
in	Section	14.6,	and	AGLB	estimates	are	often	more	precise	and	
accurate	if	stratified	by	forest	type.

In	this	section,	we	first	review	work	that	uses	the	spectral	and	
textural	 information	 in	 multispectral	 imagery	 of	 high	 spatial	
resolution	 to	 estimate	 tropical	 forest	 AGLB.	 We	 then	 discuss	
how	the	spectral	information	inherent	to	multiyear	image	time	
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series	has	high	sensitivity	to	the	height,	AGLB,	and	age	of	forests	
that	have	established	since	about	10 years	before	the	start	of	an	
image	sequence	(so	as	early	as	10 years	before	1972	for	Landsat	
data),	which	we	refer	to	here	as	young forests,	allowing	estimates	
of	biomass	and	C	accumulation	rates	in	reforested	lands.	Next,	
we	 discuss	 how	 multispectral	 imagery	 from	 a	 single	 epoch	 of	
medium-	to	coarse-spatial-resolution	imagery	has	limited	sensi-
tivity	to	tropical	forest	age	or	biomass.	Section	14.5.3	focuses	on	
detecting	tropical	forest	degradation	at	pixel	and	subpixel	scales.

14.5.1   Tropical Forest Biomass from High-
Resolution Multispectral Imagery

When	 considering	 forest	 structure	 mapping,	 multispectral	
imagery	of	high	spatial	resolution,	with	pixels	≤5	m,	is	distinct	
from	imagery	with	medium	spatial	resolution	because	the	spa-
tial	patterns	of	dominant	and	codominant	tree	crowns	are	vis-
ible.	The	possibility	of	detecting	tree	crown	size	suggests	a	way	
to	 estimate	 AGLB	 by	 allometry	 between	 stem	 diameters,	 used	
to	estimate	AGLB,	and	crown	size	(Asner	et al.,	2002;	Couteron	
et  al.,	 2005;	Palace	et  al.,	 2008).	Automated	crown	delineation	
in	these	images	is	more	accurate	than	manual	means,	but	both	
methods	overestimate	 the	area	of	 large	crowns	and	underesti-
mate	the	frequency	of	understory	and	codominant	trees	(Asner	
et al.,	2002;	Palace	et al.,	2008),	such	that	biomass	estimates	from	
crown	delineation	alone	require	adjustments.

A	 new	 technique,	 however,	 predicts	 the	 biomass	 of	 high-
biomass	tropical	forests	with	stand-level	spatial	patterns	of	tree	
crowns	in	images	with	~1	m	or	finer	pixels.	The	new	method	first	
applies	two-dimensional	Fourier	transforms	to	subsets	(samples)	
of	high-resolution	panchromatic	images,	from	which	it	produces	
a	dataset	with	a	 row	 for	 each	 sample	of	 imagery	and	columns	
that	bin	the	outputs	from	the	transform	so	that	the	columns	in	
each	 row	 together	 form	 a	 proxy	 for	 the	 distribution	 of	 crown	
sizes	 discerned	 or	 “apparent”	 in	 each	 image	 sample.	 Principal	
components	transformation	of	this	matrix	yields	axes	that	serve	
as	 predictors	 in	 regression	 models	 of	 stand	 structural	 param-
eters,	like	basal	area,	AGLB,	or	“apparent”	dominant	crown	size	
(calculated	 by	 inversion)	 (Couteron	 et  al.,	 2005;	 Barbier	 et  al.,	
2010;	Ploton	et al.,	2011).	Ploton	et al.	(2011)	predicted	forest	bio-
mass	ranging	from	~100	to	over	600	Mg	ha−1	in	Western	Ghats,	
India,	with	IKONOS	image	extracts	downloaded	 from	Google	
Earth	Pro	(0.6–0.7	m	resolution).	Their	model	explained	75%	of	
the	 variability	 in	 forest	 biomass.	 They	 estimated	 that	 the	 rela-
tive	uncertainty	in	AGLB	estimates	that	was	due	to	the	remote	
sensing	 technique,	of	<15%,	was	 similar	 to	uncertainties	asso-
ciated	 with	 estimating	 forest	 AGLB	 with	 lidar.	 With	 this	 new	
technique,	 AGLB	 estimates	 from	 high-resolution	 imagery	 on	
Google	Earth	could	supplement	ground-	or	lidar-based	surveys.	
The	resulting	increase	in	the	number	and	density	of	AGLB	esti-
mates	for	forests	should	better	characterize	the	landscape-scale	
spatial	variability	in	AGLB	and	increase	the	precision	of	forest	
C-pool	estimates.

Related	 to	 the	 earlier	 work	 on	 AGLB	 are	 studies	 that	 have	
characterized	 how	 gradients	 in	 the	 spatial	 patterns	 of	 tropical	

forest	 canopies	 correspond	 with	 climate.	 These	 gradients	 are	
apparent	in	high-resolution	imagery,	and	future	changes	in	these	
patterns	could	reflect	and	help	monitor	effects	of	global	climate	
change	 (Malhi	 and	 Román-Cuesta,	 2008;	 Palace	 et  al.,	 2008;	
Barbier	et al.,	2010).	Barbier	et al.	 (2010),	 for	example,	 showed	
how	dominant	crown	size	and	canopy	size	heterogeneity	change	
with	climate	and	substrate	across	Amazonia.

14.5.2   Biomass, Age, and Rates of Biomass 
Accumulation in Forest Regrowth

With	 a	 long	 time	 series	 of	 medium-resolution	 multispectral	
images	such	as	Landsat,	key	variables	for	GHG	inventories	(and	
forest	C	accounting	for	REDD+)	can	be	mapped	and	estimated	
for	 young	 tropical	 forests,	 including	 area,	 age,	 height,	 AGLB,	
and	rates	of	biomass	accumulation.	Where	an	image	time	series	
spans	the	age	range	of	young	forests,	 its	spectral	data	can	pre-
cisely	estimate	age,	which	 is	needed	to	estimate	biomass	accu-
mulation	rates	and	can	also	help	estimate	 the	height	or	AGLB	
of	these	forests.	Helmer	et al.	(2009)	estimated	a	landscape-level	
rate	of	AGLB	accumulation	in	Amazonian	secondary	forest	by	
regressing	 forest	biomass	estimates	 from	the	Geoscience	Laser	
Altimeter	 System	 (Figure	 14.3)	 against	 remotely	 sensed	 forest	
age	 (R-square	 =	 0.60).	 The	 estimated	 landscape-level	 biomass	
accumulation	rate	of	8.4	Mg	ha−1	year−1	agreed	well	with	ground-
based	 studies.	 Forest	 age	 was	 mapped	 with	 an	 algorithm	 that	
automatically	processed	a	time	series	of	Landsat	MSS	and	TM	
imagery	(1975–2003)	with	self-calibrated	thresholds	that	detect	
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Figure 14.3 The	average	age	of	secondary	forest	pixels,	as	estimated	
from	automatic	processing	of	a	 time	series	of	Landsat	MSS,	TM,	and	
ETM+	 imagery,	 in	 the	 150	 m	 window	 surrounding	 GLAS	 waveform	
centers	 explained	 60%	 of	 the	 variance	 in	 GLAS-estimated	 canopy	
height	and	biomass	(aboveground	live	biomass,	AGLB,	in	Mg	ha−1	year−1	
dry	weight).	The	standard	error	of	the	slope	and	intercept	are	1.4	and	
13.2,	respectively,	for	26	observations.
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when	secondary	forests	established	on	previously	cleared	land.	
The	technique	mapped	the	extent	of	old-growth	forest	and	age	of	
secondary	forest	with	an	overall	accuracy	of	88%.	With	the	time	
series,	tropical	secondary	forest	>28 years	old	was	accurately	dis-
tinguished	from	old-growth	forest,	even	though	it	was	spectrally	
indistinct	in	the	most	recent	Landsat	scenes.	This	older	second-
ary	forest	clearly	stored	less	C	than	the	old-growth	forest,	being	
shorter	and	having	much	smaller	average	canopy	diameters	than	
nearby	old	growth.

Forest	height	and	AGLB	are	strongly	related,	and	the	height	
or	AGLB	of	young	forests	can	be	mapped	with	long	time	series	
of	Landsat	images	in	tropical	(Helmer	et al.,	2010)	and	temper-
ate	(Li	et al.,	2011;	Plugmacher	et al.,	2012;	Ahmed	et al.,	2014)	
regions.	With	a	regression	tree	model	based	on	the	spectral	data	
from	all	of	the	images	in	a	time	series	of	cloud-gap-filled	Landsat	
imagery	 (1984–2005	with	1-	 to	5-year	 intervals),	Helmer	et al.	
(2010)	mapped	the	height	(RMSE	=	0.9	m,	R-square	=	0.84,	range	
0.6–7	 m)	 and	 foliage	 height	 profiles	 of	 tropical	 semievergreen	
forest	(Figure	14.4).	In	contrast	with	mapping	the	height	of	old	
forests,	 local-scale	 spatial	 variability	 in	 young	 forest	 structure	
was	 mapped,	 because	 within-patch	 differences	 in	 disturbance	
intensity	 and	 type,	 and	 subsequent	 forest	 recovery	 rate,	 were	
reflected	 in	 the	 spectral	 data	 from	 the	 multiyear	 image	 stack.	
This	 study	also	mapped	 forest	disturbance	 type,	age,	and	wet-
land	forest	type,	with	an	overall	accuracy	of	88%,	with	a	deci-
sion	 tree	 model	 of	 the	 entire	 time	 series	 of	 cloud-minimized	

composite	images	to	better	understand	avian	habitat.	As	a	result,	
the	classification	distinguished	different	agents	of	forest	distur-
bance,	including	classes	of	cleared	forests	and	forests	affected	by	
escaped	fire,	and	allowed	estimation	of	rates	of	forest	regrowth.	
Forest	 age,	 vertical	 structure,	 and	 disturbance	 type	 explained	
differences	in	woody	species	composition,	including	abundance	
of	 forage	 species	 for	 an	 endangered	 Neotropical	 migrant	 bird,	
Kirtland’s	warbler	Dendroica kirtlandii.

14.5.3   Limitations to Mapping Forest 
Biomass or Age with One 
Multispectral Image Epoch

14.5.3.1   Tropical Forest Biomass with 
One Image Epoch

Forest	biomass	mapping	with	multispectral	imagery	empirically	
predicts	the	AGLB	of	forested	pixels	with	models	that	relate	for-
est	AGLB	or	height,	from	ground	plots	or	lidar,	to	spectral	bands,	
spectral	indices,	or	spectral	texture	variables.	It	remains	a	chal-
lenge	(Song,	2013).	Forest	AGLB	is	usually	estimated	in	units	of	
Mg	 dry	 weight	 ha−1	 (see	 Section	 14.2).	 As	 more	 data	 on	 stand	
species	composition	and	species-specific	wood	densities	become	
available,	maps	of	C	storage	in	forest	biomass,	as	in	Asner	et al.	
(2013)	and	Michard	et al.	(2014),	rather	than	forest	biomass	itself,	
may	become	more	common.
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Figure 14.4 Tropical	dry	forest	height	and	foliage	height	profiles	were	mapped	from	a	time	series	of	gap-filled	Landsat	and	ALI	imagery	on	the	
island	of	Eleuthera,	The	Bahamas,	substituting	time	for	vertical	canopy	space.	The	time	series	was	also	used	to	map	forest	disturbance	type	and	age.
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Medium-	to	coarse-spatial-resolution	imagery	from	one	epoch	
is	not	that	sensitive	to	small	changes	in	the	AGLB	or	C	storage	
in	aboveground	biomass	of	dense	tropical	forests.	(By	epoch,	we	
mean	imagery	from	one	date,	one	gap-filled,	or	composite	image	
composed	of	imagery	from	one	to	several	years,	or	multiseason	
imagery	from	1	year.)	This	limited	sensitivity	appears	in	biomass	
mapping	models	as	high	per	pixel	uncertainty	that	can	manifest	
itself	in	several	ways:

	 1.	 Mapping	 models	 may	 explain	 a	 minority	 of	 variance	 in	
reference	data	(i.e.,	 regressions	of	predicted	vs.	observed	
values	have	low	coefficients	of	determination	or	R-squared	
values	of	less	than	0.50)	(e.g.,	Oza	et al.,	1996	for	volume	
of	Indian	deciduous	forest;	Steininger,	2000	for	Bolivian	
sites;	Wijaya	et al.,	2010	in	Indonesia).

	 2.	 Mapping	models	may	both	underestimate	AGLB	at	high-
biomass	 sites	 and	 overestimate	 AGLB	 where	 biomass	 is	
low	(e.g.,	Baccini	et al.,	2008	for	tropical	Africa;	Blackard	
et  al.,	 2008	 for	 the	 United	 States	 including	 Puerto	 Rico;	
Wijaya	et al.,	2010).

	 3.	 Spectral	 responses	 to	 AGLB	 may	 saturate	 at	 relatively	
low	levels	of	around	175	Mg	C	ha−1.	For	example,	studies	
indicate	that	stand-level	multispectral	responses	saturate	
at	150–170	Mg	ha−1	for	study	sites	in	Brazilian	Amazonia	
(Steininger,	2000;	Lu,	2005),	~180	Mg	C	ha−1	 in	Panama	
(Asner	 et  al.,	 2013),	 and	 175	 Mg	 ha−1	 across	 Uganda	
(Avitabile	et al.,	2012).	These	saturation	levels	may	be	half	
or	less	of	the	biomass	of	the	most	structurally	complex	or	
old-growth	 tropical	 forests	 in	humid	 lowlands.	 In	many	
landscapes,	 the	 relationship	 between	 multispectral	 data	
and	tropical	forest	AGLB	may	saturate	at	even	lower	levels.

	 4.	 Continental-	 to	 global-scale	 mapping	 models	 may	 not	
capture	 gradients	 in	 AGLB	 and	 C	 pools	 that	 stem	 from	
differences	in	forest	allometry	and	average	wood	density	
(Mitchard	et al.	(2014).

Despite	per-pixel	uncertainties,	estimates	of	the	total	forest	bio-
mass	may	be	accurate	when	pixels	are	summed	over	large	areas	
that	have	a	wide	range	of	AGLB.	This	result	could	happen	when	
the	average	biomass	of	pixels	covering	a	large	area	approaches	the	
mean	of	the	ground	or	lidar	data	used	to	estimate	the	mapping	
model.	Estimates	of	total	forest	AGLB	across	tropical	landscapes	
can	also	be	accurate	if	the	landscapes	that	have	few	forest	patches	
with	AGLB	exceeds	the	levels	where	spectral	response	becomes	
saturated	(e.g.,	Avitabile	et al.	2012).

Texture	variables	 from	SPOT	5	 imagery	may	 improve	map-
ping	models	of	AGLB,	because	SPOT	5	 imagery	has	finer	spa-
tial	 resolutions	 of	 10–20	 m	 compared	 with	 many	 other	 image	
sources	with	medium	spatial	resolution	(Table	14.1),	but	results	
may	still	have	relative	errors	of	around	20%	(Castillo-Santiago	
et al.,	2010).	Exceptions	may	include	Asian	bamboo	forests	(Xu	
et al.,	2011)	or	low-biomass	tropical	forests.

Mapping	models	of	tropical	forest	AGLB	or	height	that	rely	on	
multispectral	imagery	benefit	from	added		predictors.	Example	pre-
dictors	that	may	improve	models	include	topography,	forest	type,	

climate,	soils,	geology,	or	indicators	of	disturbance	like	tree	canopy	
cover	(Helmer	and	Lefsky,	2006;	Saatchi	et al.,	2007;	Blackard	et al.,	
2008;	Asner	et al.,	2009;	Lefsky,	2010;	Wijaya	et al.,	2010).	After	
including	these	predictors	 in	mapping	models,	 the	variability	 in	
the	biomass	mapped	for	undisturbed	forests	may	reflect	more	of	
the	variability	 in	AGLB	that	 stems	 from	regional-	 to	 landscape-
scale	environmental	gradients	in	attributes	like	rainfall.	Maps	of	
these	spatial	patterns	may	be	useful,	but	they	may	not	reveal	much	
local-scale	AGLB	variation.

14.5.3.2  Tropical Forest Age with One Image Epoch

As	with	AGLB,	multispectral	imagery	has	limited	sensitivity	to	
increasing	 forest	 age.	 Many	 studies	 show	 that	 spectral	 indices	
that	contrast	the	mid-infrared	bands	with	the	near-infrared	or	
visible	bands	are	the	most	sensitive	indices	to	tropical	forest	age,	
height,	 and	AGLB	(e.g.,	Boyd	et  al.,	 1996;	Helmer	et  al.,	 2000;	
Steininger,	2000;	Thenkabail	et al.,	2003;	Helmer	et al.,	2010).	For	
example,	with	Landsat	TM	or	ETM+	data,	these	indices	include	
the	NIR/SWIR	ratio,	the	tasseled	cap	wetness	index	(Crist	and	
Cicone,	1984;	Huang	et al.,	2002),	the	wetness	brightness	differ-
ence	 index	 (WBDI)	 (Helmer	 et  al.,	 2009),	 and	 the	 normalized	
difference	moisture	index	(NDMI)	(also	referred	to	as	the	nor-
malized	 difference	 structure	 index	 and	 the	 normalized	 differ-
ence	infrared	index).	The	WBDI	and	NDMI	are	calculated	as

	 WBDI	=	TC	Wetness	–	TC	Brightness	 (14.2)

	
NDMI

NIR SWIR

NIR  SWIR
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+( )
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However,	 lowland	humid	 tropical	 forests	 recovering	 from	pre-
vious	 clearing	 may	 become	 spectrally	 indistinct	 from	 mature	
forests	within	15–20 years	(Boyd	et al.,	1996;	Steininger,	2000),	
though	slower-growing	tropical	forests,	like	montane	or	dry	for-
ests,	can	remain	spectrally	distinct	longer	(Helmer	et al.,	2000;	
Viera	et al.,	 2003).	Only	a	handful	of	 forest	age	classes	can	be	
reliably	distinguished	in	single-date	multispectral	imagery.	Age	
differences	 are	 blurred	 by	 differences	 in	 disturbance	 type	 and	
intensity	that	affect	regrowth	rates	and	related	spectral	responses	
during	forest	succession	(Foody	et al.,	1996;	Nelson	et al.,	2000;	
Thenkabail	et al.,	2004;	Arroyo-Mora	et al.,	2005),	although	age	
explains	more	variability	 in	rates	of	 forest	regrowth	than	does	
disturbance	type	(Helmer	et al.,	2010;	Omeja	et al.,	2012).

Recently	logged	forest	has	less	biomass	than	old-growth	for-
est,	but	it	may	become	spectrally	indistinct	from	mature	forest	
within	a	year	or	two	(Asner	et al.,	2004a),	which	is	another	case	
in	which	the	forest	canopy	recovers	faster	than	forest	AGLB.	In	
a	study	in	Sabah,	Malaysia,	conventional	logging	reduced	forest	
biomass	by	67%,	but	reduced	impact	logging	reduced	it	by	44%	
(Pinard	 and	Putz,	 1996).	 In	moist	 forests	of	Amazonia,	AGLB	
decreased	by	only	11%–15%	after	reduced	impact	logging	(Miller	
et al.,	2011).

The	youngest	regenerating	forest	patches	in	landscapes	usually	
do	not	dominate	pixels	as	large	as	those	of	coarse-spatial-resolution	
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imagery	like	MODIS.	The	outcome	is	that	maps	from	such	imag-
ery	have	high	error	rates	for	secondary	tropical	forest.	When	mod-
eling	pixel	fractional	cover	of	one	or	more	young	forest	classes	vs.	
nonforest	vs.	old	forest	with	MODIS,	for	example,	secondary	for-
est	is	modeled	with	the	most	bias	and	the	least	precision	(Braswell	
et al.,	2003;	Tottrup	et al,.	2007).	In	Amazonia,	the	model	R-square	
values	 for	 the	 fraction	 of	 secondary	 forest	 cover	 were	 0.35	 for	
MODIS	data	alone	and	0.61	 for	MODIS	plus	MISR	data.	At	 the	
spatial	resolution	of	1.1 km,	corresponding	to	most	of	the	MISR	
bands,	 resulting	 maps	 overestimated	 secondary	 forest	 area	 by	
26%.	 Converting	 fractional	 secondary	 forest	 cover	 to	 discrete	
classes	 underestimated	 secondary	 forest	 area	 by	 43%	 (Braswell	
et al.,	2003).	Similarly,	Carreiras	et al.	(2006)	concluded	that	the	
errors	 for	 decision	 tree	 classification	 of	 secondary	 forest	 with	
SPOT	4	Vegetation	across	Amazonia	were	unacceptably	high.

14.5.4   Detecting Tropical Forest Degradation 
with Multispectral Imagery

Tropical	 forests	 suffer	 anthropogenic	 pressures	 that	 perturb	
their	 structure	 and	 ecological	 functioning	 (Vitousek	 et  al.,	
1994).	 Human	 activities	 that	 disturb	 them	 range	 from	 plant	
collection	 and	 human	 habitation	 to	 total	 deforestation.	 Many	
of	 these	 forest	 disturbances	 can	 occur	 at	 fine	 spatial	 scales	 of	
less	than	five	to	tens	of	meters,	including	forest	fire	(Aragão	and	
Shimabukuro,	2010),	recent	logging	(de	Wasseige	and	Defourny,	
2004;	Asner	et al.,	2005;	Sist	and	Ferreira,	2007),	road	networks	
(Laporte	 et  al.,	 2007;	 Laurance	 et  al.,	 2009),	 mining	 (Peterson	
and	 Heemskerk,	 2001),	 and	 expanding	 agricultural	 frontiers	
(Dubreuil	et al.,	2012).	These	human	impacts	appear	like	small	
isolated	objects	within	an	ocean	of	greenness	(Souza	et al.,	2003).	
They	appear	as	points	(logging	gaps),	 lines	(roads,	 trails),	both	
points	and	lines	(logging	decks	plus	skid	trails),	and	with	min-
ing	areas,	both	bare	soil	and	pooled	water	are	present.

Although	these	disturbances	can	be	small,	medium-	resolution	
remote	sensing	techniques	can	detect	and	quantify	them	within	
homogeneous	forest	cover	(Gond	et al.,	2004).	Compared	with	
fine-scale	imagery,	images	with	pixels	of	5–30	m	have	lower	or	
no	cost	while	more	frequently	covering	larger	areas	of	tropical	
forest.	 Consequently,	 medium-resolution	 imagery	 constitutes	
an	excellent	tool	for	assessing	logging	activities	in	tropical	for-
ests	across	large	scales	(Asner	et al.,	2005).	Much	work	to	detect	
finely	 scaled	 disturbances	 of	 tropical	 forests	 uses	 pixel-level	
spectra	 (Section	14.5.3.1).	Other	work	models	 subpixel	 spectra	
to	 derive	 continuous	 variables	 for	 monitoring	 fine-scale	 dis-
turbances,	 focusing	 on	 the	 degradation	 of	 forest	 C	 storage	 for	
REDD+	programs	and	ecosystem	models	(Section	14.5.3.2).

14.5.4.1   Detecting Fine-Scale Forest 
Degradation at the Pixel Level

Detecting	 small	 canopy	 gaps	 and	 skid	 trails	 that	 have	 been	
open	 for	 less	 than	 6  months	 is	 possible	 in	 French	 Guiana	
with	 SPOT	 5	 HRG	 images	 (Gond	 and	 Guitet,	 2009).	 The	
technique	 developed	 is	 based	 on	 the	 local	 contrast	 between	

a	 photosynthetically	 active	 surface	 (the	 forest)	 and	 one	 with	
no	or	 little	photosynthetic	activity	 (the	gap	 itself).	Using	 the	
three	main	channels	dedicated	to	vegetation	identification	(red	
[0.61–0.68	µm],	near-infrared	[0.79–0.89	µm]	and	SWIR	[1.58–
1.75	µm]	wavelengths),	the	contrast	between	forests	and	gap	is	
increased	enough	 to	be	accurately	depicted.	The	detection	of	
an	undisturbed	forest	pixel	is	made	by	multiple	thresholds	on	
the	different	reflectances.	The	advantage	of	standard	remotely	
sensed	 data	 like	 SPOT	 4/5	 or	 Landsat	 5/7/8	 is	 the	 possibil-
ity	 to	 detect	 the	 focused	 object	 automatically	 (Pithon	 et  al.,	
2013).	The	automatic	processing	makes	the	system	operational	
for	 tropical	 forest	 management	 and	 depends	 only	 on	 image	
availability.

14.5.4.1.1  Road and Trail Detection
Road	and	trail	detection	is	also	a	challenge	for	tropical	forest	
management.	Opening,	active,	and	abandoned	road	and	trail	
networks	 are	 a	 permanent	 landmark	 of	 tropical	 forest	 open-
ness	and	degradation	(Laurance	et al.,	2009).	Documenting	this	
dynamic	 is	 possible	 with	 the	 30  years	 of	 medium-	resolution	
radiometer	 archives	 (Landsat	 and	 SPOT).	 In	 2007,	 Laporte	
et  al.	 (2007)	 photo-interpreted	 Landsat	 imagery	 to	 map	 the	
road	and	trail	network	across	the	forests	of	Central	Africa	to	
show	 which	 forest	 areas	 are	 endangered	 by	 logging	 activity.	
When	displaying	red,	NIR,	and	SWIR	channels	in	red,	green,	
and	blue,	active	roads	and	trails	are	“brown”;	abandoned	roads	
and	 trails	 are	 “green,”	 and	 intact	 tropical	 forests	 are	 “dark	
green”	(de	et al.,	2004).	To	automatically	process	the	archives	
for	 large	 areas,	 Bourbier	 et  al.	 (2013)	 proposed	 a	 method	 for	
using	 Landsat	 archive	 to	 allow	 tropical	 forest	 managers	 to	
visualize	the	road	and	trail	network	dynamism	at	 local	(con-
cession)	or	national	scales.

14.5.4.1.2  Mining Detection
Detecting	 mining	 activity	 is	 slightly	 different.	 In	 general,	
detecting	legal	mining	is	not	a	real	challenge	because	bare	sur-
faces	are	prominent	and	easily	mapped.	When	mining	is	illegal	
in	 tropical	 forests,	 however,	 the	 bare	 surface	 is	 much	 smaller	
and	difficult	to	detect	(Almeida-Filho	and	Shimabukuro,	2002).	
The	 additional	 difficulty	 comes	 from	 the	 mobility	 of	 the	 ille-
gal	miners.	A	recent	abandoned	mining	site	 is	detectable,	but	
the	miners	have	left.	Detecting	active	mining	sites	where	min-
ers	are	 illegally	working	 is	most	critical	 to	managers.	To	map	
active	 mining	 sites	 in	 French	 Guiana,	 an	 automatic	 system	
using	SPOT	5	imagery	from	a	local	reception	station	has	been	
operational	since	2008	(Gond	et al.,	unpublished).	The	system	
is	based	on	detecting	turbid	waters	resulting	from	debris	wash-
ing.	Again,	the	object	“turbid	water”	sharply	contrasts	with	its	
environment,	 as	 with	 tropical	 forest	 vs.	 bare	 soil.	 Using	 red,	
NIR,	and	SWIR	channels,	turbid	water	is	detected	by	multiple	
thresholds	 on	 reflectances.	 So	 far,	 the	 operational	 system	 has	
processed	over	1230	SPOT	5	images	to	ensure	regular	coverage	
in	space	and	time	of	 illegal	mining	activity	 in	French	Guiana	
(Joubert	et al.,	2012).
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14.5.4.2   Detecting Forest Degradation at the Subpixel 
Level with Spectral Mixture Analysis

Forest	degradation	in	the	context	of	REDD+	can	be	defined	as	
a	persistent	reduction	in	carbon	stocks	or	canopy	cover	caused	
by	 sustained	 or	 high-impact	 disturbance.	 As	 a	 result,	 forest	
degradation	is	often	expressed	as	a	complex,	three-dimensional	
change	in	forest	structure	related	to	the	introduction	of	areas	
of	bare	soil,	piles	of	dead	vegetation	created	by	the	residues	and	
collateral	damage	of	removed	trees	and	other	plants,	and	areas	
with	 standing	 dead	 or	 damaged	 tree	 trunks	 associated	 with	
partial	 tree	 fall.	 Burned	 forests	 also	 leave	 surface	 fire	 scars,	
indicated	 by	 patches	 of	 charred	 vegetation	 and	 bare	 ground	
(Cochrane	et al.,	1999;	Alencar	et al.,	2011).	Much	of	 tropical	
forest	 degradation	 occurring	 around	 the	 world	 is	 driven	 by	
selective	logging	and	fires	that	escape	into	forests	from	neigh-
boring	 clearings.	 At	 the	 multispectral	 sensor	 resolution	 of	
Landsat,	SPOT,	and	MODIS,	it	is	expected	that	forest	degrada-
tion	 will	 be	 expressed	 in	 varying	 combinations	 of	 green	 veg-
etation	(GV),	 soil,	non-photosynthetic	vegetation	(NPV),	and	
shade	within	image	pixels.

Spectral	 mixture	 analysis	 (SMA)	 models	 can	 be	 used	 to	
decompose	 the	 mixture	 of	 GV,	 NPV,	 soil,	 and	 shade	 reflec-
tances	 into	 component	 fractions	 known	 as	 endmembers	
(Adams	 et  al.,	 1995).	 The	 SMA	 has	 been	 extensively	 used	
throughout	the	world’s	tropical	forests	to	detect	and	map	for-
est	 degradation	 (Asner	 et  al.,	 2009a).	 For	 example,	 subpixel	
fractional	 cover	 of	 soils	 derived	 from	 the	 SMA	 was	 used	 to	
detect	 and	 map	 logging	 infrastructure	 including	 log	 land-
ings	and	 logging	roads	 (Souza	and	Barreto,	2000),	while	 the	
NPV	fraction	improved	the	detection	of	burned	forests	and	of	
logging	damage	areas	(Cochrane	and	Souza,	1998;	Cochrane	
et al.,	1999).	GV	and	shade	enhance	 the	detection	of	canopy	
gaps	created	by	tree	fall	(Asner	et al.,	2004b)	and	forest	fires	
(Morton	et al.,	2011).

SMA	 models	 usually	 assume	 that	 the	 image	 spectra	 are	
formed	by	a	linear	combination	of	n	pure	spectra,	or	endmem-
bers	(Adams	et al.,	1995),	such	that
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where
Rb	is	the	reflectance	in	band	b
Ri,b	is	the	reflectance	for	endmember	i,	in	band	b
Fi	is	the	fraction	of	endmember	i
εb is	the	residual	error	for	each	band

The	SMA	model	error	is	estimated	for	each	image	pixel	by	com-
puting	the	RMS	error,	given	by
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As	mentioned,	in	the	case	of	degraded	forests,	the	expected	end-
members	 are	 GV,	 NPV,	 soil,	 and	 shade	 fractions.	 Including	 a	
cloud	 endmember	 is	 also	 possible,	 which	 improves	 the	 detec-
tion	and	masking	of	clouds	when	mapping	forest	degradation	
over	large	areas	with	long	time	series	of	imagery	in	the	Amazon	
region	(Souza	et al.,	2013).	To	calibrate	the	model,	the	endmem-
bers	can	be	obtained	directly	from	the	images	(Small,	2004)	or	
from	reflectance	spectra	acquired	in	the	field	with	a	handheld	
spectrometer	 (Roberts	 et  al.,	 2002).	 The	 advantage	 of	 obtain-
ing	endmembers	directly	from	images	is	that	spatial	and	radio-
metric	calibration	between	field	and	sensor	observations	is	not	
required.	 The	 SMA	 can	 be	 automated	 to	 make	 this	 technique	
useful	for	mapping	and	monitoring	large	tropical	forest	regions.	
A	Monte	Carlo	unmixing	technique	using	reference	endmember	
bundles	was	proposed	for	that	purpose	(Bateson	et al.,	2000),	as	
well	as	generic	endmember	spectral	libraries	(Souza	et al.,	2013).

14.5.4.3   Interpreting and Combining Subpixel 
Endmember Fractions and Derived Indices

The	 SMA	 fractions	 can	 be	 combined	 into	 indices	 to	 further	
accentuate	areas	of	forest	degradation.	For	example,	the	normal-
ized	difference	fraction	index	(NDFI)	was	developed	to	enhance	
the	detection	of	forest	degradation	by	combining	the	detection	
capability	of	individual	fractions	(Souza	et al.,	2005).	The	NDFI	
values	 range	 from	 −1	 to	 1.	 For	 intact	 forests,	 NDFI	 values	 are	
expected	to	be	high	(i.e.,	about	1)	due	to	the	combination	of	high	
GVshade	(i.e.,	high	GV	and	canopy	shade)	and	low	NPV	and	soil	
values.	As	forest	becomes	degraded,	the	NPV	and	soil	fractions	
are	expected	to	increase,	lowering	NDFI	values	relative	to	intact	
forest.	Bare	soil	areas	will	produce	NDFI	value	of	−1	because	of	
the	absence	of	GV.

Another	approach	to	SMA	allows	for	uncertainty	in	the	end-
member	 reflectance	 spectra	 used	 for	 decomposing	 each	 pixel	
into	constituent	cover	types.	Referred	to	as	endmember	bundles	
(Bateson	et al.,	2000),	SMA	with	spectral	endmember	variabil-
ity	provides	a	means	to	estimate	GV,	NPV,	soil,	and	shade	frac-
tions	with	quantified	uncertainty	 in	each	 image	pixel.	Using	a	
Monte	Carlo	approach,	Asner	and	Heidebrecht	(2002)	developed	
automated	 SMA	 procedures	 that	 have	 subsequently	 been	 used	
to	map	forest	degradation	due	to	logging	or	understory	fire	in	a	
wide	variety	of	tropical	regions	(e.g.,	Alencar	et al.,	2011;	Carlson	
et al.,	2012;	Allnutt	et al.,	2013;	Bryan	et al.,	2013).

Several	mapping	algorithms	based	on	spatial	and	contextual	
classifiers,	decision	trees,	and	change	detection	have	also	been	
applied	 to	SMA	results	 to	better	map	forest	degradation	using	
Landsat,	 SPOT,	 and	 MODIS	 imagery.	 These	 techniques	 are	
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discussed	 elsewhere	 (Asner	 et  al.,	 2009b;	 Souza	 and	 Siqueira,	
2013).	Additionally,	 large	area	mapping	and	estimates	of	forest	
degradation	 in	 the	 Amazon	 region	 have	 also	 been	 conducted	
using	these	techniques	(Asner	et al.,	2005;	Souza	et al.,	2013).

14.6   Mapping Tropical Forest Types 
with Multispectral Imagery

14.6.1   Forest Types as Strata for REDD+ 
and Other C Accounting

Maps	of	 forest	 type	are	critical	 to	 tropical	 forest	management,	
including	 for	REDD+	and	other	GHG	inventories.	When	esti-
mating	 tropical	 forest	 AGLB	 and	 other	 C	 stores	 with	 existing	
inventory	 ground	 plots	 or	 lidar	 data,	 the	 estimates	 are	 gener-
ally	 stratified	by	 forest	 type	 (Asner,	2009;	Helmer	et  al.,	 2009;	
Salimon	et al.,	2011).	When	designing	forest	inventories	or	lidar	
surveys,	stratifying	sample	locations	by	forest	type	improves	the	
efficiency	 of	 the	 sample	 design	 (Wertz-Kanounnikoff,	 2008),	
including	 stratification	with	 types	defined	by	disturbance	his-
tory	(Salk	et al.,	2013).	Stratification	by	topography	or	geology	
may	also	be	important	(Ferry	et al.,	2010;	Laumonier	et al.,	2010)	
if	forest	type	does	not	inherently	account	for	related	variability	
in	AGLB.	An	informative	review	and	synthesis	of	lidar	sample	
design	as	it	relates	to	forest	parameter	estimation	over	large	for-
est	areas	is	available	in	Wulder	et al.	(2012).	Another	important	
role	of	 forest-type	maps	based	on	multispectral	 satellite	 imag-
ery	is	that	they	are	often	used	to	account	for	the	distributions	of	
species	and	habitats	when	planning	representative	reserve	sys-
tems.	For	this	reason,	forest-type	maps	are	also	useful	to	identify	
where	deforestation	or	wood	harvesting	 is	 “leaking”	 to	 forests	
that	are	critical	to	conserve,	but	that	store	less	C	than	forest	areas	
being	targeted	in	REDD+	or	carbon	offset	projects.

Most	satellite	image–based	maps	of	tropical	forest	types	map	
classes	 of	 forest	 formations.	 Vegetation	 formations	 are	 defined	
by	growth	 form	and	physiognomy.	At	 the	 simplest	 level,	 forest	
formations	 may	 distinguish	 among	 closed,	 open,	 and	 wetland	
forests.	More	detailed	formations	may	distinguish	among	forests	
with	different	leaf	forms	or	phenology	(e.g.,	deciduous	vs.	ever-
green,	broad-leaved	vs.	needle-leaved,	or	descriptors	that	imply	a	
suite	of	physiognomic	characteristics,	such	as	“dry,”	“montane,”	
or	“cloud”	forests).	More	detailed	than	forest	formations	are	forest	
associations,	which	distinguish	among	tree	species	assemblages.	
For	example,	in	Figure	14.5,	which	we	discuss	in	Section	14.6.4,	
the	 upper-level	 headings	 for	 forests	 are	 forest	 formations.	 The	
subheadings	under	each	forest	formation	are	forest	associations.

14.6.2   High-Resolution Multispectral Imagery 
for Mapping Finely Scaled Habitats

High-resolution	 imagery	 makes	 excellent	 reference	 data	 for	
calibrating	classification	and	mapping	models	based	on	imagery	
with	coarser	spatial	resolution,	but	using	it	as	the	primary	basis	

for	 mapping	 forest	 types	 has	 several	 disadvantages.	 In	 high-	
resolution	imagery,	the	within-stand	spectral	variability	of	forest	
types	can	be	large,	varying	within	tree	crowns,	for	example,	such	
that	digital	 classifications	at	 the	pixel	 scale	 cannot	distinguish	
many	forest	types.	Also	these	images	cover	relatively	small	areas,	
making	 them	 inefficient	 for	 mapping	 forest	 types	 over	 large	
areas	(Nagendra	and	Rocchini,	2008).	Existing	archives	of	high-
resolution	imagery	also	lack	SWIR	bands,	which	are	important	
in	vegetation	mapping.	Because	Landsat	ETM+	data	have	SWIR	
bands,	 for	 example,	 Thenkabail	 et  al.	 (2003)	 found	 that	 three	
floristic	tropical	forest	classes	were	more	distinct	in	ETM+	data	
than	in	IKONOS	imagery.	Worldview	3,	however,	will	have	eight	
SWIR	bands	collected	at	a	spatial	resolution	of	3.7	m.

Yet	 satellite	 imagery	 with	 high	 spatial	 resolution	 can	 aid	
in	 mapping	 finely	 scaled	 habitats	 or	 habitat	 characteristics.	
Example	 habitats	 are	 edges	 or	 linear	 features:	 riparian	 areas	
(Nagendra	 and	 Rocchini,	 2008),	 roadsides	 or	 other	 corridors,	
or	 strands	 of	 vegetation	 types	 along	 coastlines.	 Habitats	 with	
high	mechanical,	chemical,	or	moisture	stress	can	also	be	finely	
scaled.	 Example	 stresses	 are	 fast-draining	 substrates	 where	
microtopography	 strongly	 affects	 vegetation,	 like	 substrates	 of	
limestone	(Martinuzzi	et al.,	2008)	or	sand,	or	substrates	that	are	
also	semi-toxic	like	serpentines.	High	winds,	or	drier	climate	as	
in	savanna	ecotones,	also	lead	to	finely	scale	habitats.

Savanna	 ecosystems,	 for	 example,	 range	 in	 tree	 cover	 from	
grassland	 to	 forest,	 which	 is	 why	 we	 mention	 them	 here.	 Tree	
cover	 may	 change	 over	 meters,	 and	 high-resolution	 imagery	
may	be	most	effective	for	habitat	mapping.	Boggs	(2010)	applied	
object-oriented	 classification	 to	 4	 m	 multispectral	 IKONOS	
imagery	to	map	tree	cover	patterns	in	Mozambique	savanna.

In	Namibia,	 tree	clusters	and	grass	patches	are	distinguish-
able	 with	 object-oriented	 or	 pixel-level	 classifications	 of	 pan-
sharpened	QuickBird	imagery	(0.6	m	pixels).	In	contrast,	10	m	
multispectral	 SPOT-5	 pixels,	 though	 pan-sharpened	 to	 2.5	 m,	
required	object-oriented	classification	(Gibbes	et al.,	2010).

Object-oriented	 classification	 of	 medium-resolution	 imagery	
can	indeed	sometimes	substitute	for	high-resolution	imagery	when	
it	can	discern	finer-scale	features	of	interest	that	are	missed	with	
pixel-level	classifications.	In	Jamaica,	Newman	et al.	(2011)	found	
that	object-oriented	classification	of	medium-resolution	 imagery	
led	 to	 better	 characterization	 of	 roads	 and	 forest	 fragmentation	
metrics	 than	 pixel-level	 classification	 did.	 Object-oriented	 clas-
sification	of	ASTER	data	can	map	savanna	habitats	in	northwest	
Australia,	and	it	was	also	more	accurate	than	pixel-level	classifi-
cation	(Whiteside	et al.,	2011).	Longer-wave	infrared	bands	were	
resampled	to	the	15	m	resolution	of	the	visible	and	NIR	bands.

14.6.3   Remote Tree Species Identification 
and Forest-Type Mapping

Many	tropical	tree	species	can	be	identified	by	photo	interpre-
tation	 of	 high-resolution	 satellite	 imagery	 or	 air	 photos.	 With	
tree	crowns	in	tropical	forest	often	reaching	>10	m	in	diameter,	
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Figure 14.5 Forest	associations	and	land	cover	were	mapped	with	the	gap-filled	Landsat	ETM+	imagery,	centered	around	the	year	2007,	plus	
synthetic	multiseason	imagery	developed	from	three	gap-filled	TM	images	from	the	1980s	that	were	from	the	mid	to	late	dry	season	including	
from	severe	drought.
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subcrown	features	are	visible.	In	subtropical	to	warm-temperate	
forests	of	east	central	Queensland,	Australia,	Tickle	et al.	(2006)	
correctly	 identified	 dominant	 tree	 species	 in	 most	 of	 150	 air	
photo	 plots	 with	 stereo	 color	 air	 photos	 of	 scale	 1:4000	 (~2	 m	
resolution).	With	these	data,	they	categorized	the	air	photo	plots	
into	five	genus	groups.

In	moist	forests	of	Panama,	Garzón-López	et al.	(2013)	found	
that	visual	analysis	of	high-resolution	color	air	photos	(0.13	m	
pixels)	 can	 reveal	 spatial	 distributions	 of	 some	 tropical	 forest	
canopy	 trees.	 Of	 50	 common	 canopy	 species	 on	 a	 50	 ha	 plot,	
22%	had	crowns	that	were	distinct	in	the	photos.	Of	four	species	
tested,	interpreters	found	40%	of	the	stems	that	were	recorded	in	
field	surveys;	the	resulting	maps	accurately	showed	spatial	pat-
terns	of	the	species.	Sánchez-Azofeifa	et al.	(2011)	concluded	that	
2.4	 m	 multispectral	 QuickBird	 imagery	 can	 reveal	 the	 spatial	
distribution	and	clusters	of	a	species	that	 is	conspicuous	when	
flowering,	 though	 immature	 or	 nonflowering	 individuals	 are	
often	missed.

In	 French	 Guiana,	 Trichon	 and	 Julien	 (2006)	 found	 that	 12	
of	the	15	most	common	canopy	species	or	species	groups	were	
identifiable,	with	an	accuracy	of	87%,	in	color	air	photos	ranging	
in	scale	from	1:1500	to	1:8000	(~0.75	to	4	m	pixels).	In	the	pho-
tos,	20%–25%	of	trees	with	dbh	≥	10 cm,	and	all	trees	with	dbh	
≥	20 cm,	were	visible.	For	10	taxa	from	old-growth	Ecuadorian	
Amazon	 forest	 representing	 a	 range	 of	 crown	 structures,	
González-Orozco	et al.	(2010)	found	that	photo	interpretation	of	
large-scale	air	photos	with	a	dichotomous	key	correctly	identi-
fied	individuals	at	a	rate	of	>70%	for	three	of	the	taxa	and	>50%	
for	two	of	them.

That	 photo	 interpreters	 can	 identify	 many	 of	 the	 dominant	
species	 in	 tropical	 forest	 canopies	 in	 high-resolution	 imagery	
suggests	 that,	 given	 field-based	 knowledge	 of	 the	 composition	
and	 distribution	 of	 tree	 floristic	 classes	 (i.e.,	 tree	 species	 asso-
ciations),	 which	 are	 defined	 by	 dominant	 tree	 species,	 floris-
tic	 types	 of	 tropical	 forest	 can	 be	 identified	 in	 high-resolution	
multispectral	 imagery.	 Consequently,	 reference	 data	 from	
photo-	interpreting	 high-resolution	 multispectral	 imagery	 can	
supplement	field	data	as	a	source	of	training	and	validation	data	
for	 mapping	 tropical	 tree	 communities	 with	 satellite	 imagery	
(Helmer	et al.,	2012).

14.6.4   Mapping Tropical Forest Types with 
Medium-Resolution Imagery

In	 mapping	 tropical	 forest	 types	 with	 multispectral	 imagery,	
spectral	 similarity	 among	 forest	 classes	 is	 a	 major	 challenge.	
Disturbance,	 differences	 in	 topographic	 illumination,	 artifacts	
from	filling	cloud	and	other	data	gaps	or	from	scene	mosaicing,	
all	increase	class	signature	variability	and	consequently	increase	
signature	 overlap	 among	 classes.	 Secondary	 forest	 in	 a	 humid	
montane	zone,	for	example,	may	be	spectrally	similar	to	shade	
coffee	or	old-growth	forest	on	highly	illuminated	slopes.	When	
on	a	shaded	slope,	that	same	secondary	montane	forest	is	spec-
trally	 similar	 to	old-growth	 forest	 in	a	 less	productive	 zone	at	
higher	altitudes	(Helmer	et al.,	2000).	Yet	digital	classifications	

of	 multispectral	 imagery	 can	 map	 many	 different	 forest	 types	
with	some	additions:	(1)	ancillary	geographic	data,	(2)	multisea-
son	or	multiyear	 imagery	or	derived	phenology,	and	 (3)	pixels	
for	 training	classification	models	 that	 represent	 the	variability	
in	environmental	and	image	conditions.

Digital	maps	of	environmental	data	like	topography,	climate,	
or	geology	help	distinguish	spectrally	similar	forest	types.	With	
Landsat	TM/ETM+,	linear	discriminant	function	classifications	
have	 incorporated	 ancillary	 data	 via	 post-classification	 rules	
based	on	topography	to	map	eucalyptus	forest	types	(Skidmore,	
1989);	adding	topographic	bands	to	spectral	bands	to	map	land-
cover	 and	 forest	 physiognomic	 types	 (Elomnuh	 and	 Shrestha	
2000;	Helmer	et al.,	2002;	Gottlicher	et al.,	2009)	or	distinguish	
among	tree	floristic	classes	(Foody	and	Cutler,	2003;	Salovaara	
et  al.,	 2005);	 and	 classifying	 imagery	 by	 geoclimatic	 zone	
(Helmer	 et  al.,	 2002).	 Image	 smoothing	 or	 segmentation	 can	
improve	 these	 classifications	 by	 reducing	within-class	 spectral	
variation	(Tottrup,	2004;	Thessler	et al.,	2008).

Tree	associations	or	other	floristic	classes	can	be	separable	with	
multispectral	imagery	within	an	ecological	zone,	particularly	if	
topographic	 bands	 are	 included.	 With	 TM/ETM+	 and	 18–127	
plots,	studies	have	separated	three	to	nine	floristic	classes	within	
lowland	evergreen	forest	 in	central	Africa,	Amazonia,	Borneo,	
or	Costa	Rica	(Foody	and	Cutler,	2003;	Thenkabail	et al.,	2003;	
Salovaara	et al.,	2005;	Thessler	et al.,	2008;	Sesnie	et al.,	2010).	
Chust	et al.	(2006)	mapped	nine	floristic	subclasses	with	ETM+	
data,	elevation,	and	geographic	position	over	a	broad	environ-
ment	across	central	Panama.	With	Landsat	TM	data,	Wittmann	
et  al.	 (2002)	 mapped	 three	 structural	 classes	 of	 Amazonian	
várzea	forests	that	corresponded	to	four	associations:	early	suc-
cessional	low	várzea,	late	secondary	and	climax	low	várzea	(two	
associations),	and	climax	high	várzea.	These	studies	use	spectral	
data	from	a	single	 image	date	and	consider	only	forest;	cloudy	
areas	were	mapped	as	such.

When	 mapping	 many	 classes,	 machine	 learning	 classifica-
tions	more	effectively	incorporate	ancillary	environmental	data	
including	 date	 bands	 for	 gap-filled	 images.	 They	 also	 do	 not	
assume	that	class	spectral	distributions	are	parametric,	and	they	
typically	 outperform	 linear	 classifications.	 Combining	 ancil-
lary	data	and	machine	learning	classification	permits	classifica-
tions	 that	 distinguish	 many	 forest	 and	 land-cover	 types,	 even	
with	noisy,	cloud-gap-filled	imagery.	Examples	with	TM/ETM+	
include	 decision	 tree	 classifications	 of	 one	 or	 two	 seasons	 of	
cloud-gap-filled	Landsat	plus	ancillary	data	to	map	tropical	for-
est	physiognomic	types	and	land	cover	(Kennaway	and	Helmer,	
2007;	Helmer	et al.,	2008;	Kennaway	et al.,	2008).	Sesnie	et al.	
(2008)	mapped	 land	cover,	agriculture	 type,	floristic	classes	of	
lowland	 old-growth	 forest	 and	 three	 higher-elevation	 classes	
based	on	a	map	of	life	zones	(sensu Holdridge,	1967)	with	a	rela-
tively	cloud-free	image	for	each	of	two	scenes.	To	map	tree	floris-
tic	classes	of	lowland	through	montane	tropical	forest	types	and	
land	cover	in	Trinidad	and	Tobago,	Helmer	et al.	(2012)	applied	
decision	 tree	 classification	 to	 recent	 cloud-gap-filled	 Landsat	
imagery	 stacked	 with	 decades-old,	 gap-filled	 synthetic	 multi-
season	imagery	from	droughts	(Figure	14.5).
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Mapping	 many	 physiognomic	 or	 floristic	 classes	 of	 tropical	
forest	as	in	the	earlier	studies	requires	(1)	thousands	of	training	
and	testing	pixels	representing	the	environmental	and	spectral	
ranges	 of	 each	 class,	 including	 the	 range	 of	 pixel	 dates	 where	
gap-filled	 imagery	 was	 used	 (Helmer	 and	 Ruefenacht,	 2007);	
(2)	a	band	that	represents	the	date	of	the	source	image	for	each	
pixel	in	the	composite	image	(a	date band);	and	a	machine	learn-
ing	 classification	 model.	 The	 extensive	 training	 data	 needed	
are	 rarely	 available	 from	 field	 plots.	 But	 analysts	 can	 learn	 to	
identify	 many	 physiognomic	 and	 floristic	 classes	 in	 remotely	
sensed	imagery	given	field-based	knowledge	of	general	distribu-
tions,	particularly	given	free	viewing	of	high-resolution	imagery	
online	and	Landsat	image	archives,	allowing	almost	unlimited	
reference	data	collection.

Helmer	et al.	(2012)	found	that	all	mono-	and	bidominant	tree	
floristic	 classes	 and	many	other	 tree	 communities	 in	Trinidad	
and	Tobago	could	be	distinguished	 in	 reference	 imagery	 from	
nearby	 associations	 by	 (1)	 unique	 canopy	 structure	 in	 high-	
resolution	imagery	or	(2)	distinct	or	unique	phenology	on	specific	
dates	 of	 either	 high-	 or	 medium-resolution	 reference	 imagery.	
For	 example,	 distinct	 canopy	 structure	 at	 high	 resolution	 dis-
tinguished	 Mora excelsa forests,	 littoral	 associations	 (frequent	
palms	 in	one;	prostrate	 stems	 in	 the	other);	Pterocarpus offici-
nalis	swamps,	palm	swamps,	mangroves,	and	stands	of	bamboo	
(Bambusa vulgaris),	 abandoned	 coconut	 (cocos nucifera),	 teak	
(Tectona grandis), pine	 (Pinus caribaea),	 and	 Brazilian	 rubber	
(Hevea brasiliensis).	 Phenology,	 including	 characteristics	 like	
flowering,	 deciduousness,	 leaf	 flushes,	 or	 inundation,	 helped	
to	 distinguish	 seven	 forest	 associations	 in	 high-resolution	 ref-
erence	imagery	and	four	associations	in	phenologically	unique	
Landsat	 reference	 scenes.	 With	 this	 knowledge	 and	 reference	
imagery,	thousands	of	training	data	pixels	could	be	collected.

Including	 multiseason	 imagery	 in	 classification	 models	 of	
coarse-resolution	 imagery	 also	 improves	 spectral	 distinction	
among	 tropical	 forest	 types	 (Bohlman	 et  al.,	 1998,	 Tottrup,	
2004).	What	is	exciting	is	that	we	can	now	think	beyond	mul-
tiseason	imagery	to	multiyear	imagery	that	captures	climate	or	
weather	extremes	or	disturbance	history.	Helmer	et al.	(2012)	
found	 that	 adding	 bands	 from	 cloud-gap-filled	 TM	 imag-
ery	from	a	severe	drought	that	occurred	20 years	earlier	than	
the	 most	 recent	 imagery	 used	 in	 the	 stack	 of	 data	 for	 classi-
fication	contributed	to	the	 largest	 increases	 in	accuracy	when	
mapping	forest	associations	in	Trinidad.	Mapping	accuracy	of	
seasonal	 associations	 benefited	 the	 most.	 Accuracy	 improved	
by	 14%–21%	 for	 deciduous,	 7%–36%	 for	 semievergreen,	 and	
3%–11%	 for	 seasonal	 evergreen	 associations,	 and	 by	 5%–8%	
for	 secondary	 forest	 and	 woody	 agriculture.	 Multiyear	 mul-
tispectral	 imagery	 that	 displays	 different	 flood	 stages	 helps	
distinguish	between	upland	and	periodically	flooded	 tropical	
forests	(Helmer	et al.,	2009)	and	among	tropical	forested	wet-
land	types	(and	can	reflect	differences	in	secondary	forest	spe-
cies	composition	by	mapping	disturbance	type	as	mentioned)	
(Helmer	et  al.,	 2010).	 In	Amazonia,	de	Carvalho	et  al.	 (2013)	
determined	the	life	cycle	length	of	native	bamboo	patches	with	
multiyear	TM/ETM+	data.

14.6.5   Species Richness and 
Multispectral Imagery

The	tree	species	richness	of	tropical	forests	increases	with	some	
of	the	same	variables	that	influence	forest	reflectance	in	multi-
spectral	satellite	imagery.	Richness	increases	with	forest	height	
(among	 lowland	 forests	 with	 strong	 edaphic	 differences),	 soil	
fertility	 (after	 accounting	 for	 rainfall),	 canopy	 turnover,	 and	
time	 since	 catastrophic	 disturbance;	 richness	 decreases	 with	
dry	 season	 length,	 latitude,	 and	 altitude	 (Givnish,	 1999).	 We	
know	 from	 forest	 ground	 plots	 that	 tree	 species	 richness	 also	
increases	 with	 secondary	 forest	 age	 (Whittmann	 et  al.,	 2002;	
Chazdon	et  al.,	 2007;	Helmer	et  al.,	 2008).	Consequently,	 over	
gradients	 that	 span	 from	 dry	 to	 humid,	 multispectral	 bands	
and	indices	related	to	vegetation	greenness,	structure,	or	distur-
bance	may	correlate	with	species	 richness.	And	 in	 fact	 studies	
have	 documented	 such	 relationships	 with	 single-date	 Landsat	
TM	or	ETM+	imagery	(Foody	and	Cutler,	2006;	Nagendra	et al.,	
2010;	Hernández-Stefanoni	et al.,	2011).	Single-date	multispec-
tral	data	are	unlikely,	however,	to	be	sensitive	to	differences	in	
species	 richness	 along	 short	 environmental	 gradients	 such	 as	
among	humid	evergreen	 tropical	 forests.	Moreover,	 an	 impor-
tant	 consideration	 in	 biodiversity	 conservation	 is	 that	 species	
richness	 alone	 does	 not	 define	 conservation	 value:	 representa-
tion	across	as	many	native	ecosystems	and	species	as	possible	is	
just	as	important	if	not	more	so.	Many	less	productive	tropical	
forest	types	with	less	tree	species	richness,	like	cloud	forests,	or	
forests	on	harsh	or	drying	soils	like	those	on	ultramafic	or	lime-
stone	substrates	or	ombrotrophic	sands,	have	the	most	endemic	
species	richness.

14.6.6   Tropical Forest-Type Mapping 
at Coarse Spatial Scale

In	tropical	regions	extending	over	large	areas,	multiseason	data	
from	monthly,	annual,	or	multiyear	composites	of	imagery	with	
coarse	spatial	resolution	have	supported	large-area	mapping	of	
tropical	forest	formations	with	even	linear	classification	meth-
ods	 (Joshi	 et  al.,	 2006;	 Gond	 et  al.,	 2011,	 2013;	 Pennec	 et  al.,	
2011;	 Verheggen	 et  al.,	 2012).	 For	 example,	 Gond	 et  al.	 (2011)	
mapped	five	classes	of	forest	canopy	openness	across	the	French	
Guiana	with	an	unsupervised	classification	of	an	annual	com-
posite	image	of	SPOT	4	Vegetation	data.	Across	Central	Africa,	
Gond	et al.	 (2013)	mapped	14	 forest	 formations	with	1	year	of	
8-	and	16-day	MODIS	image	composites.	The	forest	formations	
were	based	on	leaf	phenology	and	canopy	openness.	With	1	year	
of	NDVI	composite	 images	 from	the	Indian	Resource	Satellite	
(IRS	1C)	WiFS	across	 India,	 Joshi	et al.	 (2011)	mapped	14	 for-
est	 formations.	The	formations	were	 labeled	by	phenology	and	
climatic	class	(e.g.,	Tropical dry deciduous forest,	Tropical moist 
deciduous forest,	 and	 so	 on).	 Verheggen	 et  al.	 (2012)	 applied	
unsupervised	classification	 to	 seasonal	and	annual	composites	
of	 MEdium-Resolution	 Imaging	 Spectrometer	 (MERIS) and	
SPOT	4	Vegetation	data	for	the	Congo	basin,	producing	a	map	
with	six	forest	classes	that	were	based	on	leaf	phenology,	canopy	
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openness,	and	elevation	class.	Producers’	and	users’	accuracies	
for	forest	classes	in	the	latter	two	studies	were	mostly	between	
80%	and	100%.

Combining	 ancillary	 data,	 monthly	 image	 composites	 of	
imagery	with	coarse	spatial	resolution	but	high	temporal	resolu-
tion,	and	decision	tree	classification	has	permitted	forest	classi-
fications	at	subcontinental	to	global	scales	or	has	distinguished	
many	 more	 forest	 formations.	 Decision	 tree	 classification	 of	
monthly	composites	of	 imagery	with	coarse	 spatial	 resolution,	
and	mosaics	of	such	composites,	is	also	used	to	map	tropical	for-
ests	 over	 large	 areas.	 Examples	 of	 such	 large-area	 maps	 based	
on	 MODIS	 image	 composites	 are	 of	 tropical	 forest	 ecoregion	
(Muchoney	 et  al.,	 2000),	 biome	 (Friedl	 et  al.,	 2002),	 or	 forest	
formation	(Carreiras	et al.,	2006).	With	decision	tree	classifica-
tion	of	dry	season	MODIS	image	composites,	Portillo-Quintero	
and	Sánchez-Azofeifa	 (2010)	mapped	 the	extent	of	 two	classes	
of	 tropical	dry	 forests	 (Tropical dry forest	 and	Forests in tropi-
cal grasslands, savannas, and shrublands),	 for	 the	 mainland	
Neotropics	plus	the	Greater	Antilles.	Overall	accuracy	was	82%.	
The	importance	of	this	latter	work	is	that	global	land-cover	maps	
often	misclassify	dry	tropical	forests	as	some	other	land	cover.

14.6.7   Tropical Forest-Type Mapping 
and Image Spatial Resolution

Without	question,	multiseason	data	greatly	improve	the	number	
of	different	physiognomic	or	floristic	classes	of	tropical	forest	that	
can	 be	 mapped	 with	 multispectral	 satellite	 imagery.	 Monthly	
image	composites	or	derived	phenology	metrics,	as	are	possible	
with	 coarse-resolution	 imagery,	 are	 optimal.	 Joshi	 et  al.	 (2006)	
qualitatively	 compared	 their	 WiFS-based	 map	 of	 forest	 types	
across	India	with	a	forest	map	of	the	country	based	on	LISS	data,	
which	has	a	pixel	resolution	of	23.5	m	but	a	24-day	repeat	cycle.	
They	concluded	that	the	5-day	revisit	cycle	of	WiFS,	which	allowed	
them	to	incorporate	12	monthly	image	composites,	yielded	better	
information	on	forest	types	and	other	vegetation	and	land-cover	
classes,	even	though	WiFS	has	a	spatial	resolution	of	188	m.

However,	tropical	forest	types	can	change	greatly	over	small	
areas,	 and	 spatial	 resolutions	 coarser	 than	 100–200	 m	 are	 too	
coarse	 to	 distinguish	 important	 differences	 in	 forest	 types	 in	
many	places.	In	tropical	islands,	for	example,	forest	floristic	and	
physiognomic	types	that	are	critical	to	distinguish	for	conserva-
tion	 planning	 would	 be	 poorly	 delineated.	 Medium-resolution	
imagery	 with	 a	 shorter	 revisit	 cycle	 would	 greatly	 improve	
prospects	 for	mapping	 tropical	 forest	 types	with	multispectral	
imagery.	This	could	be	more	easily	accomplished,	for	example,	
if	AWiFS	data,	with	its	56	m	spatial	resolution	and	5-day	revisit	
cycle,	were	available	for	all	of	the	tropics,	or	if	the	Landsat	pro-
gram	had	a	constellation	of	at	least	four	satellites.

In	 addition,	 past	 disturbances	 affect	 forest	 physiognomy	
and	 species	 composition,	 and	 some	 forest	 classes	may	become	
spectrally	distinct	only	during	periodic	drought	and	flooding.	
Consequently,	forest-type	mapping	can	also	benefit	when	older	
satellite	imagery	or	long	image	time	series	are	incorporated	into	
forest-type	mapping,	as	in	Helmer	et al.	(2010,	2012).

Finally,	 to	 distinguish	 tropical	 forest	 types	 on	 small	 moun-
tains,	 small	 islands,	 along	 coastlines,	 rivers,	 and	 other	 linear	
features,	 or	 in	 other	 finely	 scaled	 landscapes,	 high-resolution	
imagery	will	be	needed.

14.7   Monitoring Effects of Global 
Change on Tropical Forests

14.7.1   Progress in Monitoring Tropical Forests 
at Subcontinental to Global Scales

Tropical	 forest	 mapping	 with	 coarse-resolution	 imagery	 in	
optical	 remote	 sensing	 is	 very	 constrained	 by	 cloud	 cover.	
Helpfully,	its	high	temporal	frequency	of	acquisition	balances	
the	handicaps	of	cloud-contaminated	pixels	(McCallum	et al.,	
2006).	Historical	long	time	series	from	NOAA-AVHRR	paved	
the	way	for	this	research	(Tucker	et al.,	1985;	Townshend	et al.,	
1991).	Indeed,	the	spectral	capacities	from	visible	to	SWIR	of	
these	sensors	motivated	many	applications	and	technological	
developments.	 The	 identification	 of	 tropical	 forest	 patterns	
has	 improved	 over	 time	 (Holben,	 1986;	 Mayaux	 et  al.,	 1998;	
DeFries	 et  al.,	 2000)	 and	 benefits	 from	 a	 large	 panel	 of	 veg-
etation	 indices	 for	 evaluating	 photosynthetic	 activity	 (Rouse	
et al.,	1974;	Huete,	1988;	Pinty	and	Verstraete,	1992;	Qi	et al.,	
1994;	Gao,	1996).

At	 the	 end	 of	 the	 1990s,	 the	 experiences	 gained	 from	 these	
applications	 led	 to	 new	 sensors	 adapted	 to	 land	 surface	
observation,	 including	 SPOT	 Vegetation	 (March	 1998)	 and	
TERRA-MODIS	 (December	 1999)	 (Friedl	 et  al.,	 2010).	 Spatial	
resolutions	 were	 improved	 from	 1.1  km	 (NOAA-AVHRR)	 to	
1.0  km	 (Vegetation),	 0.3	 (MERIS),	 and	 0.5/0.25  km	 (MODIS).	
Geo-location	 was	 improved.	 Specific	 spectral	 bands	 dedicated	
to	 vegetation	 were	 implemented.	 New	 sensor	 technology	 was	
developed	such	as	the	push-broom	system	on	Vegetation,	which	
avoids	 large	 swath	 distortions.	 After	 15  years	 of	 feedback,	 we	
may	now	measure	the	added	value	of	these	sensors.

Research	to	characterize	tropical	forests	at	subcontinental	to	
global	 scales	 has	 become	 more	 accurate	 and	 precise	 (Mayaux	
et al.,	2004;	Vancutsem	et al.,	2009)	by	taking	phenology	into	
account	 (Xiao	 et  al.,	 2006;	 Myneni	 et  al.,	 2007;	 Doughty	 and	
Goulden,	 2008;	 Park,	 2009;	 Brando	 et  al.,	 2010).	 Repetitive	
observation	 and	 long	 temporal	 archives	 make	 possible	 land-
surface	 observation	 on	 8-,	 10-,	 or	 16-day	 time	 periods	 and	
allow	phenology	studies	to	take	advantage	of	both	high	spectral	
quality	and	high	observation	frequency	(Verheggen	et al.,	2012	
for	 MERIS	 and	 Vegetation;	 Gond	 et  al.,	 2013	 for	 MODIS).	 In	
addition,	 there	are	more	forest	attributes	being	characterized,	
including	forest	edges	(to	delimit	forest	patches	and	more	accu-
rately	 estimate	 forest	 areas)	 (Verheggen	 et  al.,	 2012;	 Mayaux	
et al.,	2013),	aboveground	biomass	(Malhi	et al.,	2006;	Saatchi	
et al.,	2007;	Baccini	et al.,	2008),	deforestation	and	forest	deg-
radation	 (Achard	 et  al.,	 2002;	 Duveiller	 et  al.,	 2008;	 Hansen	
et al.,	2008;	Baccini	et al.,	2012;	Desclée	et al.,	2013),	and	climate	
change	impacts	(Phillips	et al.,	2009;	Lewis	et al.,	2011;	Samanta	
et al.,	2011).
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Sensor	 capabilities	 and	 computer	 capacities	 now	 allow	 the	
production	 of	 global-scale	 land-cover	 maps	 (Bartholomé	 and	
Belward,	2005,	for	Vegetation;	Friedl	et al.,	2002;	Hansen	et al.,	
2008,	 for	 MODIS),	 which	 have	 greatly	 improved	 our	 knowl-
edge	of	 land	 surface	cover	 in	comparison	with	previous	views	
obtained	from	NOAA-AVHRR	(DeFries	and	Townshend,	1994;	
Loveland	and	Belward,	1997).

Tropical	forest	characterizations	with	multispectral	imagery	
have	now	begun	to	address	a	real	challenge:	that	of	monitoring	
and	 understanding	 climate	 change	 impacts	 on	 the	 biosphere	
(Gibson	et al.,	2011).	Tropical	forests	are	particularly	threatened	
by	 global	 temperature	 increases	 and	 the	 possibility	 of	 modi-
fied	 rainfall	 regimes	 (Zelazowski	 et  al.,	 2011).	 These	 changes	
will	 influence	 vegetation	 spatial	 distribution	 (Parmesan	 and	
Yohe,	2003),	 forest	 functioning	(Nemani	et al.,	2003),	and	car-
bon	storage	capacity	(Stephens	et al.,	2007),	which	may	in	turn	
affect	climate.	In	this	context,	monitoring	tropical	forests	with	
coarse-resolution	 satellite	 imagery	 is	 of	 prime	 importance	 to	
understanding	 biological	 processes	 and	 managing	 forest	 resil-
ience.	 Zhao	 and	 Running	 (2010),	 for	 example,	 showed	 that	
large-scale	 droughts	 have	 decreased	 net	 primary	 productivity	
in	the	Southern	Hemisphere,	including	tropical	Asia	and	South	
America.	As	we	discuss	later,	however,	some	critical	remote	sens-
ing	problems	still	need	to	be	addressed	before	we	can	effectively	
monitor	some	important	effects	of	droughts	on	tropical	forests.

14.7.2   Feedbacks between Tropical Forest 
Disturbance and Drought

Multispectral	imagery	can	help	characterize	the	positive	feed-
back	among	tropical	forest	disturbance,	fire,	and	climate.	First,	
tropical	 forest	clearing	dries	nearby	 forest,	and	multispectral	
imagery	can	detect	forest	clearing.	In	Amazonia,	for	example,	
Briant	et al.	 (2010)	delineated	forest	boundaries	with	MODIS	
multispectral	bands	and	found	that	as	the	forest	becomes	more	
fragmented,	drops	in	MODIS-based	indices	related	to	canopy	
moisture	extend	further	into	intact	forest,	and	that	the	old	for-
est	in	more	fragmented	landscapes	has	lower	canopy	moisture	
to	begin	with.	Second,	forest	cover	data	also	reveal	that	forests	
desiccated	 by	 fragmentation	 and	 other	 disturbance	 are	 more	
susceptible	 to	 fire.	 Armenteras	 et  al.	 (2013)	 used	 forest	 frag-
mentation	 indices	 from	 forest	 cover	 maps,	 along	 with	 active	
fire	data	from	MODIS,	which	uses	MODIS	thermal	bands,	 to	
show	 that	 forest	 fires	 increase	 in	 extent	 and	 frequency	 with	
fragmentation.	 Logging	 also	 increases	 forest	 vulnerability	 to	
fire	(Uhl	and	Buschbacher,	1985;	Woods,	1989),	and	as	outlined	
earlier,	logging	can	be	detected	with	medium-resolution	mul-
tispectral	imagery.

A	third	aspect	of	the	disturbance–fire–climate	feedback	is	that	
drought	magnifies	the	association	between	disturbance	and	fire	
(Siegert	et al.,	2001;	Alencar	et al.,	2006).	In	Amazonia,	fire	scars	
mapped	with	Landsat	occurred	mostly	within	1 km	of	clearings	
during	normal	dry	seasons	but	extended	to	4 km	from	clearings	
during	drought	years	(Alencar	et al.,	2006).	Some	of	these	stud-
ies	relied	on	Landsat	imagery	to	quantify	forest	fragmentation,	

because	of	its	finer	spatial	resolution,	or	radar	imagery	to	map	
fire	scars,	to	avoid	clouds.

Amazonian	 droughts	 are	 likely	 to	 become	 more	 common	
and	severe	with	climate	change.	During	droughts,	reduced	for-
est	growth	and	increased	tree	mortality	cause	intact	forests	to	
shift	from	a	net	sink	to	a	net	source	of	CO2	to	the	atmosphere	
(Lewis	et al.,	2011).	However,	monitoring	drought	effects	 that	
are	 spectrally	 subtle,	 like	 increased	 tree	 mortality	 or	 changes	
in	 phenology,	 remains	 a	 challenge	 because	 of	 residual	 cloud	
and	 aerosol	 contamination	 in	 coarse-resolution	 multispec-
tral	 imagery.	For	example,	 studies	have	 found	 that	vegetation	
greenness	 may	 increase,	 decrease,	 or	 show	 no	 change	 during	
drought.	The	increases	could	stem	from	decreased	cloud	cover,	
leaf	 flushes	 related	 to	 increased	 sunlight,	 decreased	 canopy	
shadow	from	increased	mortality	of	the	tallest	trees,	or	all	three	
of	these	factors,	and	despite	observation	frequency,	cloud	and	
smoke	contamination	in	pixels	still	obscures	trends	in	vegeta-
tion	greenness	(Anderson	et al.,	2010;	Asner	and	Alencar,	2010;	
Samanta	et al.,	2010).	Asner	et al.	(2004c)	suggest	that	metrics	
from	 hyperspectral	 imagery	 may	 be	 better	 suited	 to	 resolve	
drought	effects	on	tropical	forests	because	they	are	sensitive	to	
canopy	leaf	water	content	and	light-use	efficiency.	A	challenge,	
then,	is	to	develop	a	system	that,	despite	cloud	and	smoke	con-
tamination,	 integrates	 these	 different	 sensors	 to	 continuously	
monitor	 the	 feedback	 between	 forest	 fragmentation,	 logging,	
fire,	and	climate.

14.8  Summary and Conclusions

Across	spatial	scales,	increased	image	access,	and	data	usability	
are	 the	main	 factors	driving	an	explosion	of	progress	 in	char-
acterizing	 tropical	 forests	 with	 multispectral	 satellite	 imagery.	
The	 menu	 of	 preprocessed	 image	 products	 of	 the	 second	 gen-
eration	 of	 high-frequency	 earth	 observation	 satellite	 sensors,	
MODIS	and	SPOT	Vegetation,	along	with	their	improved	spatial	
and	spectral	resolution,	 led	to	a	wider	group	of	users	applying	
multispectral	 imagery	 across	 larger	 areas	 and	 in	 more	 diverse	
ways.	Products	like	cloud-screened	composites	of	earth	surface	
reflectance,	vegetation	indices,	quality	flags,	fire	flags,	and	land	
cover	 have	 enabled	 efforts	 to	 map	 tropical	 forest	 productivity,	
type,	phenology,	moisture	status,	and	biomass,	and	to	study	the	
effects	of	 climate	 change	on	 tropical	 forests,	particularly	 feed-
back	among	drought,	fire,	and	deforestation.

At	 the	 scale	 of	 medium-resolution	 imagery,	 free	 access	 to	
Landsat,	 and	 in	 some	 cases	 free	 access	 to	 SPOT	 imagery,	 has	
spawned	many	new	applications	that	rely	on	dozens,	hundreds,	
or	thousands	of	scenes,	including	scenes	with	scan-line	gaps	or	
scenes	previously	considered	too	cloudy	to	bother	with.	Cloud-	
and	gap-filled	Landsat	 imagery	and	image	time	series	are	now	
used	to	automatically	detect	forest	clearing,	partial	disturbance,	
or	regrowth;	quantify	degradation	of	 tropical	 forest	C	storage;	
map	 the	 age,	 structure,	 biomass,	height,	 and	disturbance	 type	
of	 secondary	 tropical	 forests;	 automatically	 and	 more	 pre-
cisely	 mask	 clouds	 and	 cloud	 shadows	 in	 imagery;	 and	 create	
detailed	maps	of	forest	types	in	these	often	cloudy	landscapes.	
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Characterizing	 tropical	 forest	 phenology	 at	 medium	 resolu-
tion	will	now	be	possible	for	many	places,	which	will	be	easier	
given	recent	additions	to	Landsat	image	preprocessing.	Many	of	
these	 automated	 applications	 build	 on	 the	 experiences	 gained	
from	the	high-frequency,	coarse-spatial-resolution	imagery,	and	
all	of	them	are	relevant	to	REDD+	monitoring,	reporting,	and	
verification.

At	 fine	 spatial	 scales,	 free	 viewing	 and	 low-cost	 printing	 of	
georeferenced	 high-resolution	 imagery	 via	 online	 tools	 like	
Google	Earth	and	Bing	supplement	field	data	 for	 training	and	
testing	 the	 earlier	 products	 that	 are	 based	 on	 medium-	 and	
coarse-resolution	 imagery.	 In	 addition,	 scientists	 have	 used	
image	 products	 from	 Google	 Earth	 to	 estimate	 tropical	 forest	
biomass	directly.	New	commercial	sensors	that	produce	multi-
spectral	satellite	imagery	with	spatial	resolutions	≤0.5	m	should	
also	allow	more	disturbance	types	and	tropical	tree	communi-
ties	to	be	remotely	identifiable.
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