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Acronyms and Definitions

AB-C	 Aboveground live Biomass in units of Mg C ha−1

ACCA	 Automated Cloud Cover Assessment
AGLB	 �Aboveground Live Forest Biomass in Mg dry 

weight ha−1

ASTER	 �Advanced Spaceborne Thermal Emission and 
Reflection Radiometer

AVHRR	 Advanced Very High Resolution Radiometer
AWiFS	 Advanced Wide Field Sensor
BRDF	 Bidirectional Reflectance Distribution Function
BB-C	 Belowground live Biomass in units of Mg C ha−1

CBERS	 China–Brazil Earth Resources Satellite
CDM	 Clean Development Mechanism
DEM	 Digital Elevation Model
DW-C	 Dead Wood biomass in units of Mg C ha−1

ESTARFM	 �Enhanced Spatial and Temporal Adaptive 
Reflectance Fusion Model

ETM+	 Enhanced Thematic Mapper Plus

Fmask	 Function of Mask
GHG	 Greenhouse Gas
GLAS	 Geoscience Laser Altimeter System
GV	 Green Vegetation (unitless fraction, range 0–1)
HRG	 High-Resolution Geometric
HRV	 High-Resolution Visible
HRVIR	 High-Resolution Visible and Infrared
HRS	 High-Resolution Stereoscopic
IRMSS	 Infrared Multispectral Camera
IRS	 Indian Resources Satellite
INPE	 Instituto Nacional de Pesquisas Espaciais
LI-C	 Carbon content of forest floor litter in Mg C ha−1

LISS	 Linear Imaging Self-Scanner
MERIS	 Medium-Resolution Imaging Spectrometer
MSS	 Multispectral Scanner
MVC	 Maximum-Value Compositing
NDFI	 �Normalized Difference Fraction Index (unitless, 

range −1 to 1)
NDMI	 Normalized Difference Moisture Index
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NPV	 �Non-Photosynthetic Vegetation (unitless fraction, 
range 0–1)

Mg	 Megagram = 1 × 106 g = 1 metric ton
MAIAC	 �Multi-Angle Implementation of Atmospheric 

Correction for MODIS
MISR	 Multi-angle Imaging SpectroRadiometer
MODIS	 Moderate Resolution Imaging Spectroradiometer
MVC	 Maximum-Value Compositing
NDVI	 Normalized Difference Vegetation Index
NIR	 Near-Infrared
SMA	 Spectral Mixture Analysis
STARFM	 �Spatial and Temporal Adaptive Reflectance Fusion 

Model
REDD+	 �Reducing Emissions from Deforestation and 

Degradation, conservation of forest carbon stocks, 
sustainable management of forests, or enhance-
ment of forest carbon stocks in developing 
countries

SO-C	 Soil organic carbon in Mg C ha−1

SPOT	 Satellite Pour l’Observation de la Terre
SWIR	 Shortwave Infrared
TM	 Thematic Mapper
UNFCCC	 �United Nations Framework Convention on 

Climate Change
WiFS	 Wide Field Sensor

14.1  Introduction

Tropical forests abound with regional and local endemic species 
and house at least half of the species on earth, while covering 
less than 7% of its land (Gentry, 1988; Wilson, 1988; as cited in 
Skole and Tucker, 1993). Their clearing, burning, draining, and 
harvesting can make slopes dangerously unstable, degrade water 
resources, change local climate, or release to the atmosphere the 
organic carbon (C) that they store in their biomass and soils as 
greenhouse gases (GHGs). These forest disturbances accounted 
for 19% or more of annual human-caused emissions of CO2 to 
the atmosphere from the years 2000 to 2010, and that level is 
more than the global transportation sector, which accounted 
for 14% of these emissions. Forest regrowth from disturbances 
removes about half of the CO2 emissions coming from the for-
est disturbances (Houghton, 2013; IPCC 2014). Another GHG of 
concern when considering tropical forests is N2O released from 
forest fires.

Tropical forests (including subtropical forests) occur where 
hard frosts are absent at sea level (Holdridge, 1967), which 
means low latitudes, and where the dominant plants are trees, 
including palm trees, tall woody bamboos, and tree ferns. They 
include former agricultural or other lands that are now under-
going forest succession (Faber-Langendoen et  al., 2012). They 
receive from <1000  mm year−1 of precipitation to more than 
10 times that much as rainfall or fog condensation. Whether dry 
or humid, tropical forests have far more species diversity than 
temperate or boreal forests, and their role in earth’s atmospheric 
GHG budgets is large.

Multispectral satellite imagery, that is, remotely sensed 
imagery with discrete bands ranging from visible to shortwave 
infrared (SWIR) wavelengths, is the timeliest and most acces-
sible remotely sensed data for monitoring these forests. Given 
this relevance, we summarize here how multispectral imagery 
can help characterize tropical forest attributes of widespread 
interest, particularly attributes that are relevant to GHG emis-
sion inventories and other forest C accounting: forest type, age, 
structure, and disturbance type or intensity; the storage, degra-
dation, and accumulation of C in aboveground live tree biomass 
(AGLB, in Mg dry weight ha−1); the feedbacks between tropical 
forest degradation and climate; and cloud screening and gap fill-
ing in imagery. In this chapter, the term biomass without further 
specification is referring to AGLB.

14.2  Multispectral Imagery and REDD+

14.2.1  �Greenhouse Gas Inventories 
and Forest Carbon Offsets

Multispectral satellite imagery can provide crucial data to inven-
tories of forest GHG sinks and sources. Inventories of GHGs that 
have forest components include national inventories for nego-
tiations related to the United Nations Framework Convention 
on Climate Change (UNFCCC). The UNFCCC now includes a 
vision of compensating countries for reducing greenhouse gas 
emissions to the atmosphere from deforestation, degradation, 
sustainable management of forests, or conservation or enhance-
ment of forest C stocks in developing countries (known as 
REDD+). Inventories of GHG emissions for the UNFCCC Clean 
Development Mechanism (CDM) may also include forests, and 
there are other forest carbon offset programs.

Programs like REDD+ could help moderate earth’s climate. 
They could also help conserve tropical forests and raise local 
incomes, as long as countries make these latter goals a priority 
in REDD+ planning. Compensation in REDD+ is for organic 
carbon (C) stored in forest AGLB, dead wood, belowground live 
biomass, soil organic matter, or litter, as long as the stored C is 
“produced” by avoided GHG emissions, such as avoided defores-
tation or avoided degradation of forest C stores.

In forest C offsets, avoided emissions are estimated as the dif-
ference between net GHG emissions that would have occurred 
without implementing change (the baseline case or business-as-
usual scenario) and actual net emissions that are reduced from 
what they would have been without the management change (the 
project case). Logging, burning, and fragmentation are examples 
of disturbances that degrade forest C stores. Replacing conven-
tional logging with reduced impact logging reduces associated C 
emissions and is an example of avoided C emissions. For subna-
tional projects such as those developed under voluntary carbon 
markets or the CDM, leakage must also be subtracted. Leakage 
refers net emissions that a carbon offset project displaces from 
its location to elsewhere. Examples are deforestation or remov-
als of roundwood or fuelwood in a forest not far from the forest 
where such activities have ceased for forest C credits.
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Many countries and organizations have officially proposed 
that forest C stored by enrichment planting, or by forest growth 
or regrowth on lands that were not forest before 1990, should 
also be explicitly eligible for REDD+ compensation (Parker 
et al., 2009). These latter activities, afforestation and reforesta-
tion, already dominate forest projects developed under the CDM.

14.2.2  Roles of Multispectral Imagery

The United Nations Intergovernmental Panel on Climate Change 
(IPCC) provides guidelines for GHG emission inventories, includ-
ing for forest land (IPCC, 2006). Expanded methods based on 
these guidelines include those from the Verified Carbon Standard 
program (http://www.v-c-s.org). Summaries of these guidelines 
for communities seeking to certify carbon credits for voluntary 
carbon markets are also available (e.g., Vickers et al., 2012). For 
each stratum of each land use considered, changes in C stocks are 
estimated on an annual basis as the net of changes in the C pools 
as follows (in Mg C year−1) (Equation 2.3, IPCC, 2006):

	ΔCLU = ΔCAB-C + ΔCBB-C + ΔCDW-C + ΔCLI-C + ΔCSO-C + ΔCHW-C	
(14.1)

where
ΔCLU is the carbon stock changes for a land-use stratum, for 

example, a forest stratum, in Mg C year−1

ΔCSUBSCRIPT represents carbon stock changes for a given pool
Subscripts denote the following carbon pools in units of Mg 

C year−1:
AB-C is the aboveground live biomass carbon
BG-C is the belowground biomass carbon
DW-C is the dead wood carbon
LI-C is the litter carbon
SO-C is the soil organic carbon
HW-C is the harvested wood carbon

For forest GHG inventories for REDD+ and other programs, 
multispectral satellite imagery can be used to estimate some of 
the key variables for Equation 14.1:

	 1.	 Areas of forest strata (e.g., forest types, disturbance/degra-
dation classes, or management)

	 2.	 Baseline and ongoing rates of change in the areas of forest 
strata

	 3.	 The AGLB and rates of C accumulation in young forests
	 4.	 Point estimates of forest C pools in AGLB with fine-

resolution imagery to supplement ground plot data
	 5.	 Potentially, forest AGLB if shown to be accurate for a 

given landscape
	 6.	 Potentially, GHG emission factors for forest disturbances 

if spectral indices of disturbance intensity can be cali-
brated to correlate well with associated GHG emissions 
and remaining C pools

Monitoring forest extent over large scales is also crucial to this 
forest C accounting, and multispectral satellite imagery is the 

best data for this purpose, but this topic is covered in other chap-
ters of this book (Chapters 15, 17 through 19). Other chapters also 
cover multispectral image fusion with radar to map forest AGLB 
(e.g., Saatchi et al., 2011) or estimation of tropical forest biomass 
with airborne lidar (e.g., Asner et al., 2012). Multi-angular image 
data can also improve forest age mapping (Braswell et al., 2003).

When using the “stock-difference” method (IPCC, 2006) to 
quantify the parameters in Equation 14.1, the total C pool for 
each time period is estimated by multiplying the spatial density 
of C by the area (in hectare) of the forest stratum. The change 
in the C pool is estimated as the difference in C pools between 
two time periods divided by the elapsed time in years (please 
see Equation 2.5 in IPCC, 2006). In addition, in Equation 14.1, 
belowground biomass is usually estimated as a fraction of 
aboveground biomass with default values by ecological zone, 
region, or country. Also, when the type of land use is forest, lit-
ter can often be ignored.

The average spatial density of carbon in live biomass, in 
Mg C ha−1, is estimated from the average spatial density of the 
dry weight of live biomass (in Mg ha−1) multiplied by the C frac-
tion of dry weight biomass. Typically, this C fraction is about 
50% of dry weight mass. The IPCC (2006) has published default 
values for average C fraction of dry weight wood biomass by 
ecological zone. Dry weight is estimated with equations that 
relate the size of the trees growing in a forest to their dry weight, 
mainly as gauged by tree stem diameter and height. Then, the 
estimated dry weights of all trees in a known area are summed. 
Species-specific or regional equations are sometimes available.

14.3  �Characteristics of 
Multispectral Image Types

Multispectral satellite imagery is available at spatial resolu-
tions ranging from high (<5 m) to medium (5–100 m), to 
coarse (>100 m) (e.g., Table 14.1). The data usually include 
reflective bands covering the visible (blue, green, and red) and 
near-infrared (NIR) wavelengths of the electromagnetic spec-
trum. Several other sensors include SWIR bands (e.g., Landsat 
Thematic Mapper [TM] and subsequent Landsat sensors); the 
sensors aboard the fourth and fifth missions of Satellite Pour 
l’Observation de la Terre (SPOT 4 high-resolution visible and 
infrared [HRVIR], SPOT 5 high-resolution geometric [HRG], 
and the SPOT 4 and 5 Vegetation instruments); the Moderate 
Resolution Imaging Spectroradiometer (MODIS), the Advanced 
Wide Field Sensor (AWiFS), and the Infrared Multispectral 
Scanner Camera aboard the China–Brazil Earth Resources 
Satellite series [CBERS].

Satellite launches in the years 1998–1999 greatly increased 
the amount of imagery available for monitoring tropical for-
ests. These launches brought (1) the first public source of high-
spatial-resolution imagery (IKONOS, with <5-m pixels); (2) the 
first medium-resolution imagery (5–100 m pixels) with some 
degree of consistent global data collection (Landsat 7); (3) the 
first medium-resolution imagery with fine-resolution panchro-
matic bands of 2.5–5 m (SPOT 4 and Landsat 7, respectively); 

AQ1

AQ2

AQ3
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Table 14.1  Multispectral Satellite Imagery Most Commonly Used to Characterize Tropical Forests

SatelliteRepeat/Revisita Cycle, 
Scene Size/Swath Width 
Quantization Band Wavelength (µm) 

Distributed Spatial 
Resolution (m) Approximate Active Dates 

High resolution (<5 m)
IKONOS Panchromatic 0.45–0.90 1 September 24, 1999 to present
3- to 5-day revisit 1-Blue 0.445–0.516 4
11 × 11 km scenes 2-Green 0.506–0.595 4
11 bits 3-Red 0.632–0.698 4

4-Near-infrared 0.757–0.853 4
QuickBird Panchromatic 0.45–0.90 0.6 October 18, 2001 to present
2- to 6-day revisit 1-Blue 0.45–0.52 2.4
18 × 18 km Scenes 2-Green 0.52–0.60
11 bits 3-Red 0.63–0.69

4-Near-infrared 0.76–0.90

Medium resolution (5–100 m) with high-resolution panchromatic
SPOT 4 HRVIR; SPOT 5 HRG Panchromatic 0.51–0.73 2.5 SPOT 4: March 24, 1998 to July 2013
2–3 days Revisit Panchromatic 0.51–0.73 5 SPOT 5: May 04, 2002 to present
60 × 60 km Green 0.50–0.59 10
8 bits Red 0.61–0.68 10

Near-infrared 0.78–0.89 10
Shortwave infrared 1.58–1.75 20

SPOT 1, 2, 3 HRV Panchromatic 0.51–0.73 10 SPOT 1: February 22, 1986 to September 1990
1- to 3-day revisit Green 0.50–0.59 20 SPOT 2: January 22, 1990 to July 16, 2009—
60 km × 60 km Red 0.61–0.68 20 SPOT 3: September 26, 1993 to November 14, 1996
8 bits Near-infrared 0.78–0.89 20

Medium resolution (5–100 m)
Landsat MSS 1,2,3 (4,5) 4 (1)-Blue–green 0.5–0.6 60b Landsat 1: July 23, 1972 to January 06, 1978
16 days repeat 5 (2)-red 0.6–0.7 60b Landsat 2: January 22, 1975 to February 25, 1982
170 ×  185 km 6 (3)-Near-infrared 0.7–0.8 60b Landsat 3: March 05, 1978 to March 31, 1983
4 bits 7 (4)-Near-infrared 0.8–1.1 60b

Landsat 4 TM, 5 TM, 7 ETM+ 1-Blue 0.45–0.52 30 Landsat 4: July 17, 1982 to December 14, 1993
16 days Repeat 2-Green 0.52–0.60 30 Landsat 5: March 1, 1984 to January 2013
170 ×  183 km 3-Red 0.63–0.69 30 Landsat 7: April 15, 1999
8 bits 4-Near-infrared 0.76–0.90 30

5-Shortwave infrared 1.55–1.75 30
6-Thermal (2 ETM+ bands) 10.40–12.50 L4,5 120c (30)

L7 60c (30)
7-Shortwave infrared 2.08–2.35 30
8-Panchromatic (L7 only) 0.52–0.90 15

EO-1 ALI MS-1’-Coastal aerosol 0.433–0.453 30 November 21, 2000 to present
16-day repeat MS-1-Blue 0.45–0.515 30
37 × 42 km MS-2-Green 0.525–0.605 30
12 bits MS-3-Red 0.63–0.69 30

MS-4-Near-infrared 0.775–0.805 30
MS-4’-Near-infrared 0.845–0.89 30
MS-5’-Shortwave infrared 1.2–1.3 30
MS-5 1.55–1.75 30
MS-7 2.08–2.35 30
Panchromatic 0.48–0.69 10

(continued )
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and (4) the first coarse-resolution imagery (>100 m pixels) dis-
tributed with higher-level preprocessing like atmospheric cor-
rection and cloud-minimized compositing (MODIS and SPOT 
Vegetation). Before IKONOS, remotely sensed reference data 
had to come from air photos that in many places were costly to 
obtain and outdated.

The next big advances in tropical forest monitoring with satel-
lite imagery came in 2005–2008, when (1) Google, Inc. and the 
producers of high-resolution imagery such as QuickBird and 
IKONOS made high-resolution data viewable on Google Earth 
for many sites, making reference data free and accessible for sub-
sets of project areas; and (2) the Brazilian National Institute for 
Space Research (INPE) and the United States Geological Survey 
(USGS) began to freely distribute Landsat and other imagery 
with medium spatial resolution, making long, dense time series 
of medium-resolution imagery available over large areas.

Other sources of multispectral imagery for monitoring 
tropical forests over large areas that are not shown in Table 
14.1, mainly to highlight them here, include the Japan–U.S. 
Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) (aboard Terra). In addition to 15 m VNIR 

bands, it has several SWIR and thermal bands with 30–90 m 
spatial resolution. Data for Brazil and China and nearby areas 
are also available from CBERS. The series of CBERS satel-
lites, 1, 2, and 2B, collected panchromatic to SWIR images 
with medium spatial resolution (20–80 m, 113–120 km swath 
width), and red and NIR images with coarse spatial resolution 
(260 m, 890 km swath width) from 1999 to 2010 and missions 
to collect with medium-resolution multispectral imagery with 
a 5-day revisit cycle are scheduled. In the Indian Resources 
Satellite (IRS) series, the Wide Field Sensor (WiFS) has a 
740 km swath width, 188 m spatial resolution, and red and NIR 
bands. More recently, the IRS-P6 satellite carries the AWiFS 
instrument. AWiFS has 60 m pixels for green through SWIR 
bands, a 740 km swath width, a 5-day revisit cycle, and a SWIR 
band, combining advantages of imagery with medium and 
coarse spatial resolutions. The later of the IRS series sensors 
include data from Linear Imaging Self-Scanner (LISS) with 
multispectral imagery with a 23.5 m spatial resolution. Ground 
stations receiving data from CBERS and the IRS satellite series 
have not covered all of the tropics. Fortunately, that situation 
should gradually change.

Table 14.1 (continued )  Multispectral Satellite Imagery Most Commonly Used to Characterize Tropical Forests

SatelliteRepeat/Revisita Cycle, 
Scene Size/Swath Width 
Quantization Band Wavelength (µm) 

Distributed Spatial 
Resolution (m) Approximate Active Dates 

Landsat 8 1-Coastal aerosol 0.433–0.453 30 February 11, 2013—
16-day repeat 2-Blue 0.450–0.515 30
170 × 183 km 3-Green 0.525–0.600 30
12 bits 4-Red 0.630–0.680 30

5-Near-infrared 0.845–0.885 30
6-SWIR 1 1.560–1.660 30
7-SWIR 2 2.100–2.300 30
8-Panchromatic 0.500–0.680 15
9-Cirrus 1.360–1.390 30
10-Thermal infrared 1 10.60–11.19 100c (30)
11-Thermal infrared 2 11.50–12.51 100c (30)

Coarse resolution (>100 m)
Terra/Aqua MODISd (7 of 36 

bands are shown)
1 0.620–0.670 250 Terra (EOS AM): August 12, 1999 to present

1-day revisit 2 0.841–0.876 250 Aqua (EOS PM): May 04, 2002 to present
2330 km Swath Width 3 0.459–0.479 500
12 bits 4 0.545–0.565 500

5 1.230–1.250 500
6 1.628–1.652 500
7 2.105–2.155 500

SPOT 4,5 Vegetation 1, 2d 0-Blue 0.43–0.47 1150 Aboard SPOT 4: March 24, 1998 to July 2013
1-day revisit 2-Red 0.61–0.68 1150 Aboard SPOT 5: May 04, 2002 to present
2250 km Swath Width 3-Near-infrared 0.78–0.89 1150
10 bits SWIR-Shortwave infrared 1.58–1.75 1150

a	Revisit cycles change with latitude.
b	The original MSS pixel size of 79 × 57 m is now resampled to 60 m.
c	 Thermal infrared Landsat bands are now resampled to 30 m.
d	For coarse-resolution sensors, resolution given is at nadir.
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14.4  �Preprocessing Imagery 
to Address Clouds

14.4.1  Cloud Screening

We begin with cloud and cloud shadow screening, as this step is 
crucial in the image processing chain for characterizing tropi-
cal forests. Clouds and their shadows obscure the ground and 
contaminate temporal trends in reflectance. Automated systems 
for processing large archives of satellite imagery are becoming 
more common for natural resource applications and must screen 
clouds. Clouds are composed of condensed water vapor that form 
water droplets and scatter visible to NIR light, reducing direct 
illumination on the surface below and forming a cloud shadow. 
In multispectral satellite imagery, clouds are characterized by 
a high albedo (Choi and Bindschadler, 2004), while their shad-
ows have lower reflectance than surrounding pixels. The easiest 
solution to cloud contamination is to restrict analyses to cloud-
free imagery, which may include only dry season imagery for 
tropical and coastal environments due to frequent cloud cover. 
Alternatively, methods to screen cloud- and shadow-contami-
nated pixels can increase the number of observations available 
(Figure 14.1). Increasing the number of available observations 
in a time series may also improve the detection of land surface 
change and reflectance trends.

Manual and semiautomated approaches to cloud screening 
are undesirable for processing large numbers of images due to 
the time-consuming nature of the work, which may depend not 
only on analyst experience but also on image contrast. Several 
automated approaches have been developed, but separat-
ing cloud and shadow from the land surface is not necessarily 

straightforward given the diversity of land surfaces coupled 
with large variations in cloud and shadow optical properties 
(Lyapustin et al., 2008; Zhu et al., 2012; Goodwin et al., 2013). 
A summary of current approaches to cloud and shadow screen-
ing for Landsat TM/ETM+, SPOT, and MODIS sensors follows.

14.4.1.1  Landsat TM Imagery

The Landsat TM/ETM+ archives of countries with receiving sta-
tions now contain up to three decades of imagery (1984 to pres-
ent) with varying levels of cloud and cloud shadow contained 
in the archive of images. The U.S. Geological Survey is working 
with other countries to consolidate these archives through con-
sistent processing and distribution through its website (landsat.
usgs.gov). Image preprocessing by the Landsat program has 
included the Automatic Cloud Cover Assessment (ACCA) algo-
rithms for both Landsat-5 TM and Landsat-7 ETM+ missions, 
which use optical and thermal (ETM+ only) bands to identify 
clouds (Irish, 2006). It is designed for reporting the percentage of 
cloud cover over scenes rather than producing per-pixel masks. 
Further modifications have also been tested for application to 
Landsat 8 imagery (Scaramuzza et al., 2012), which includes a 
new cirrus band (1.360–1.390  µm) that is sensitive to aerosol 
loadings and should improve cloud detection. ACCA is designed 
to limit the impacts of cloud and scene variability on threshold-
ing. The ETM+ ACCA incorporates two passes: one to conser-
vatively estimate “certain” cloud at the pixel level with a series 
of spectral and thermal tests. The result is then used to derive 
scene-based thermal thresholds for the second pass. The error 
in scene-averaged cloud amount was estimated to be around 
5% (Irish et  al., 2006). Scaramuzza et  al. (2012) validated the 
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Figure 14.1  Illustration of cloud distribution spatially and temporally over tropical forests of north Queensland: (a) Landsat image (RGB: 542, 
Path/Row: 96/71, and date July 02, 2007) and (b) percentage of observations classified as cloud between 1986 and 2012 (n = 445). Note: high cloud 
fractions were not included in calculations.
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per-pixel classification of the ETM+ ACCA (pass 1) and found 
a 79.9% agreement between reference and ACCA at the pixel 
scale. Using a subset of the same reference set, Oreopoulos et al. 
(2011) evaluated both per-pixel ACCA masks and a cloud detec-
tion algorithm modified from the MODIS Luo–Trishchenko–
Khlopenkov algorithm (Luo et  al., 2008). Both ACCA and 
the modified LTK showed greater than 90% agreement with 
the reference, although like ACCA, the LTK had limited abil-
ity to detect thin cirrus clouds. Furthermore, ACCA has been 
used as the starting point for further cloud masking (Choi and 
Bindshadler, 2004; Roy et al., 2010; Scaramuzza et al., 2012).

Earlier studies have shown that several approaches work well 
for classifying clouds and cloud shadows over particular path/
rows. One approach is image differencing based on image pairs 
(Wang, 1999), while other studies have empirically defined 
thresholds for cloud brightness and coldness in one or more 
spectral/thermal bands, for example, Landsat TM Bands 1 and 
6 (Martinuzzi et al., 2007); Bands 3 and 6 (Huang et al., 2010); 
Bands 1, 3, 4, and 5 (Oreopoulos et al., 2011); and Bands 1, 4, 5, 
and 6 (Helmer et al., 2012). The application of these methods to a 
range of path/rows around the globe, however, remains untested 
and may encounter issues due to spectral similarities among the 
wide range of combinations of land surfaces and cloud/cloud 
shadows.

The automated method that Huang et  al. (2010) developed 
to allow forest change detection in cloud-contaminated imag-
ery considers brightness and temperature thresholds for clouds 
that are self-calibrated against forest pixels. It requires a digital 
elevation model to normalize top of atmosphere brightness tem-
perature values and helps to project cloud shadow on the land 
surface. Published validation data for this method are currently 
limited to four U.S. images with forest and would benefit from 
further calibration/validation.

Two additional automated approaches have recently been 
published: Fmask (Function of mask) (Zhu and Woodcock, 
2012) and a time series approach by Goodwin et  al. (2013) 
(Figure 14.2). Fmask integrates existing algorithms and metrics 
with optical and thermal bands to separate contaminated pix-
els from land surface pixels. Fmask also considers contextual 
information for mapping potential cloud shadow using a flood-
fill operation applied to the NIR band. Cloud shadows are then 
identified by linking clouds with their shadow with solar/sensor 
geometry and cloud height inferred from the thermal Landsat 
TM Band 6. The results were validated with a global dataset and 
were a significant improvement to ACCA with Fmask achieving 
an overall, user’s, and producer’s accuracies of 96%, 89%, and 
92%, respectively compared to 85%, 92%, and 72%, respectively 
for ACCA.

The time series method uses temporal change to detect cloud 
and cloud shadow (Goodwin et  al. (2013)). It smoothes pixel 
time series of land surface reflectance using minimum and 
median filters and then locates outliers with multi-temporal 
image differencing. Seeded region grow is applied to the dif-
ference layer using a watershed region grow algorithm to map 
clusters of change pixels, with clumps smaller than 5 pixels 

removed to minimize classification speckle. This has the effect 
of increasing the cloud/shadow detection rate while restricting 
commission errors; smaller magnitudes of change associated 
with cloud/cloud shadows are mapped only if they are in the 
neighborhood of larger changes. Morphological dilation opera-
tions were applied to map a larger spatial extent of the cloud and 
cloud shadow, while shadows were translated along the image 
plane in the reverse solar azimuth direction to assess the overlap 
with clouds and confirm the object is a shadow. A comparison 
with Fmask showed that the time series method could screen 
more cloud and cloud shadow than Fmask across Queensland, 
Australia (cloud and cloud shadow producer’s accuracies were 
8% and 12% points higher, respectively).

Several trade-offs exist between these two automated 
approaches to cloud and shadow screening. The time series 
method might detect more cloud and cloud shadow, yet Fmask 
is more computationally efficient and practical for individual 
images. At present, the time series method is processed using 
entire time series for each Landsat path/row. For operational 
systems processing many images, the computational overhead 
of the time series approach could be worthwhile as it can detect 
more cloud/shadow contamination. Locations with few cloud-
free observations per year and high land-use change are also less 
desirable for a time series method. In the absence of an atmo-
spheric aerosol correction, pixels contaminated by smoke and 
haze are more likely to be classified as cloud by the time series 
method. Neither the Fmask nor the time series method nor 
previous attempts adequately map high level, semitransparent 
cirrus cloud (Figure 14.2d–f). New methods for Landsat 8 will 
likely detect more cloud with the new band sensitive to cirrus 
clouds. Both Fmask and the time series methods are highly con-
figurable allowing calibration for a localized region or a wider 
application. Fmask has been calibrated using a global reference 
set, while the time series approach was calibrated and tested 
mainly for northeastern Australian conditions.

Although both methods have high accuracy, further improve-
ments could be made particularly to screening cloud shadow. 
Removing the dependency of a link between cloud and shadow 
would be a considerable advancement as clouds are often 
missed or under/overmapped, causing the shadow test to fail. 
Furthermore, adding thermal information to the time series 
method has the potential to remove commission errors where 
bright surfaces such as exposed soil are falsely classified as cloud. 
Both methods use a series of rules to classify cloud and shadow 
and have the flexibility to add new algorithms and criteria to 
improve the detection of contaminated pixels.

14.4.1.2  SPOT Imagery

The spatial and spectral characteristics of SPOT (Satellite Pour 
l’Observation de la Terre) have similarities to Landsat imagery, 
with the first satellite launched in 1986 (SPOT 1), and similar 
methods for screening cloud and cloud shadows should be use-
ful. The main exception is that SPOT lacks a thermal band, 
which has been useful in discriminating clouds (e.g., ACCA). 
However, only a limited number of studies have been published 
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on screening cloud and cloud shadow from SPOT data. SPOT is 
a commercially operated sensor, and unlike Landsat TM/ETM+ 
and MODIS, scenes are typically purchased/tasked with limited 
cloud cover or would otherwise prove cost prohibitive for many 
vegetation applications. The New South Wales government of 
Australia, for example, acquired 1850 images between 2004 and 
2012, of which only 313 contain cloud with the maximum cloud 
cover values <10% (Fisher, 2014).

Le Hégarat-Mascle and André (2009) used a Markov random 
field framework that assumes that clouds are connected objects, 
solar/sensor geometry is known, and shadow has a similar shape 
to its corresponding cloud (excluding the influence of topogra-
phy). Potential cloud pixels were identified using a relationship 
between green and SWIR bands; shadows were located using 
cloud shape, orientation of shadow relative to cloud and SWIR 
band reflectance, removing objects not part of a cloud–shadow 
pair. The method was applied to 39 SPOT 4 HRVIR images over 
West Africa with encouraging results. However, when applying 
this method, Fisher (2014) found commission errors as bright 

surfaces were frequently matched to dark surfaces that were not 
cloud contaminated. They suggest first masking vegetation and 
water bodies, then locating marker pixels for clouds and shad-
ows in the green–SWIR space and NIR bands, respectively, then 
growing objects with the watershed transform. Sensor/solar 
geometry and object size are also used to match clouds with 
their shadows.

14.4.1.3  MODIS Imagery

MODIS has a standard cloud product, in contrast to SPOT or 
until recently Landsat, which includes information on whether a 
pixel is clear from cloud/shadow contamination. The cloud mask 
is based on several per-pixel spectral tests and is produced at 
250 m and 1 km spatial resolutions (Strabala, 2005). A validation 
with active ground-based lidar/radar sensors showed an 85% 
agreement with the MODIS cloud mask (Ackerman et al., 2008).

Recent research has found that time series information 
can improve cloud detection in MODIS imagery (Lyapustin 
et  al., 2008; Hilker et  al., 2012). The cloud-screening method 
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Figure 14.2  Examples of Fmask and time series approaches to cloud and cloud shadow screening: (a) Landsat TM image, (b) TS classification, 
(c) Fmask classification, (d) Landsat TM image, (e) TS classification, and (f) Fmask classification, (a–c) well-detected cumulus cloud and cloud 
shadow (RGB: 542, Path/Row: 97/71, and date October 10, 1998) and (d–f) a complex example where both methods miss sections of cirrus cloud 
(RGB: 542, Path/Row: 98/72, and date April 04, 2001).
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in multi-angle implementation of atmospheric correction, for 
example, uses a dynamic clear-sky reference image and cova-
riance calculations, in addition to spectral and thermal tests, 
to locate clouds over land (Lyapustin et al., 2008). In a tropical 
Amazonian environment, Hilker et al., 2012 demonstrated that 
this method was better at detecting clouds and increasing the 
number of usable pixels than the standard product (MYD09GA), 
which translated into more accurate patterns in NDVI.

14.4.2  Filling Cloud and Scan-Line Gaps

Cloud and cloud shadow screening removes contaminated 
pixels from analyses but leaves missing data in the imagery 
and derived products. The scan-line correction error affect-
ing Landsat 7 post-2003 also leaves gaps approximating 20% of 
affected images (USGS, 2003). Data gaps in maps are aestheti-
cally unappealing, and the derivation of statistics is more dif-
ficult. As a result, approaches have been developed to fill data 
gaps including temporal compositing and fusing imagery from 
two different sensors.

A range of temporal compositing algorithms have been devel-
oped to minimize cloud contamination and noise (Dennison 
et al., 2007; Flood, 2013). Compositing involves analyzing band/
metric values across a date range with an algorithm deciding 
the pixel value most likely to be cloud/noise free. The choice 
of algorithm may vary depending on the application and land-
cover type. Compositing algorithms have generally been applied 
to high-temporal-frequency data such as MODIS and AVHRR; 
however, methods for compositing imagery with a lower tem-
poral resolution have also been developed. For example, the 
MOD 13 products use the maximum-value compositing algo-
rithm with NDVI as the metric in 16-day and monthly compos-
ites of MODIS imagery (Strabala, 2005). Landsat has similarly 
been composited using a parametric weighting scheme (Griffiths 
et al., 2013). The result is an image that ideally is free from noise 
or cloud that can be used as a product itself or the corresponding 
pixels used to infill data gaps.

The fusion or blending of MODIS and Landsat offers another 
approach to predict image pixel values within data gaps. These 
methods integrate medium-spatial-resolution Landsat with 
temporal trends in reflectance (e.g., seasonality) captured by 
the higher temporal frequency of MODIS. Roy et  al. (2008) 
integrated the MODIS bidirectional reflectance distribution 
function (BRDF)/albedo product and Landsat data to model 
Landsat reflectance. They found that infrared bands were more 
accurately predicted than visible wavelengths, probably in 
response to greater atmospheric effects at shorter wavelengths. 
The spatial and temporal adaptive reflectance fusion model 
(STARFM) requires a MODIS–Landsat image pair captured on 
the same day plus a MODIS image on the prediction date and 
applies spatial weighting to account for reflectance outliers (Gao 
et  al., 2006). Further algorithm development has produced an 
enhanced STARFM (ESTARFM) method that was found to 
improve predictions in heterogeneous landscapes (Zhu et  al., 
2010). However, there are known limitations with blending 

or fusing Landsat and MODIS imagery. Solutions involving 
MODIS will work only post-2000 when imagery was first cap-
tured and potentially 2002 onward where stable BRDF predic-
tions are needed (Roy et  al., 2008). Furthermore, Emelyanova 
et al. (2013) found that land-cover type and temporal and spatial 
variances impact the fusion of MODIS and Landsat as well as the 
choice of algorithm. Where the temporal variance of MODIS is 
considerably less than the spatial variance of Landsat, blending 
may not improve predictions.

Gap filling using Landsat imagery alone has also been per-
formed. Helmer and Ruefenacht (2005) developed a method for 
predicting Landsat values using two Landsat images for change 
detection. This method develops a relationship between uncon-
taminated pixels in an image pair with regression tree models, 
and it then applies these models to predict the values in areas 
with missing data in the target image. Additional images are 
used in the same way to predict pixels in remaining cloud gaps. 
Langner et al. (2014) segment such pairwise predictive models 
according to forest type. Approaches using geostatistics have 
also been developed. Pringle et al. (2009) use an image before 
and after the target image in geostatistical interpolation to pre-
dict values in Landsat 7 SLC-off imagery. Based on their results, 
they recommend images captured within weeks, rather than 
months, of each other to limit temporal variance in a tropical 
savanna environment. Zhu et  al. (2012) also use geostatistics 
with encouraging results to predict missing Landsat 7 SLC-off 
data based on the Geostatistical Neighborhood Similar Pixel 
Interpolator.

A potential limitation with gap filling is the introduction of 
image noise or artifacts. This is because of differences in veg-
etation phenology, illumination, and atmospheric effects as gap-
filled imagery contains data from multiple dates and/or sensors. 
These effects can be minimized by atmospheric and illumina-
tion corrections as well as methods that seek to balance the 
distribution of pixel values such as histogram matching, linear 
regression, or regression trees (Helmer and Ruefenacht, 2007).

14.5  �Forest Biomass, Degradation, 
and Regrowth Rates from 
Multispectral Imagery

Studies have used multispectral imagery to map or estimate 
some key inputs to the variables in Equation 14.1 (Section 14.2.2) 
for forests: forest AGLB (in Mg dry weight ha−1), rates of C accu-
mulation in reforesting lands (in Mg dry weight ha−1 year−1), and 
area or intensity of forest degradation or disturbance (in ha). 
In addition, multispectral imagery is the most common satel-
lite imagery for mapping tropical forest types, which we discuss 
in Section 14.6, and AGLB estimates are often more precise and 
accurate if stratified by forest type.

In this section, we first review work that uses the spectral and 
textural information in multispectral imagery of high spatial 
resolution to estimate tropical forest AGLB. We then discuss 
how the spectral information inherent to multiyear image time 
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series has high sensitivity to the height, AGLB, and age of forests 
that have established since about 10 years before the start of an 
image sequence (so as early as 10 years before 1972 for Landsat 
data), which we refer to here as young forests, allowing estimates 
of biomass and C accumulation rates in reforested lands. Next, 
we discuss how multispectral imagery from a single epoch of 
medium- to coarse-spatial-resolution imagery has limited sensi-
tivity to tropical forest age or biomass. Section 14.5.3 focuses on 
detecting tropical forest degradation at pixel and subpixel scales.

14.5.1  �Tropical Forest Biomass from High-
Resolution Multispectral Imagery

When considering forest structure mapping, multispectral 
imagery of high spatial resolution, with pixels ≤5 m, is distinct 
from imagery with medium spatial resolution because the spa-
tial patterns of dominant and codominant tree crowns are vis-
ible. The possibility of detecting tree crown size suggests a way 
to estimate AGLB by allometry between stem diameters, used 
to estimate AGLB, and crown size (Asner et al., 2002; Couteron 
et  al., 2005; Palace et  al., 2008). Automated crown delineation 
in these images is more accurate than manual means, but both 
methods overestimate the area of large crowns and underesti-
mate the frequency of understory and codominant trees (Asner 
et al., 2002; Palace et al., 2008), such that biomass estimates from 
crown delineation alone require adjustments.

A new technique, however, predicts the biomass of high-
biomass tropical forests with stand-level spatial patterns of tree 
crowns in images with ~1 m or finer pixels. The new method first 
applies two-dimensional Fourier transforms to subsets (samples) 
of high-resolution panchromatic images, from which it produces 
a dataset with a row for each sample of imagery and columns 
that bin the outputs from the transform so that the columns in 
each row together form a proxy for the distribution of crown 
sizes discerned or “apparent” in each image sample. Principal 
components transformation of this matrix yields axes that serve 
as predictors in regression models of stand structural param-
eters, like basal area, AGLB, or “apparent” dominant crown size 
(calculated by inversion) (Couteron et  al., 2005; Barbier et  al., 
2010; Ploton et al., 2011). Ploton et al. (2011) predicted forest bio-
mass ranging from ~100 to over 600 Mg ha−1 in Western Ghats, 
India, with IKONOS image extracts downloaded from Google 
Earth Pro (0.6–0.7 m resolution). Their model explained 75% of 
the variability in forest biomass. They estimated that the rela-
tive uncertainty in AGLB estimates that was due to the remote 
sensing technique, of <15%, was similar to uncertainties asso-
ciated with estimating forest AGLB with lidar. With this new 
technique, AGLB estimates from high-resolution imagery on 
Google Earth could supplement ground- or lidar-based surveys. 
The resulting increase in the number and density of AGLB esti-
mates for forests should better characterize the landscape-scale 
spatial variability in AGLB and increase the precision of forest 
C-pool estimates.

Related to the earlier work on AGLB are studies that have 
characterized how gradients in the spatial patterns of tropical 

forest canopies correspond with climate. These gradients are 
apparent in high-resolution imagery, and future changes in these 
patterns could reflect and help monitor effects of global climate 
change (Malhi and Román-Cuesta, 2008; Palace et  al., 2008; 
Barbier et al., 2010). Barbier et al. (2010), for example, showed 
how dominant crown size and canopy size heterogeneity change 
with climate and substrate across Amazonia.

14.5.2  �Biomass, Age, and Rates of Biomass 
Accumulation in Forest Regrowth

With a long time series of medium-resolution multispectral 
images such as Landsat, key variables for GHG inventories (and 
forest C accounting for REDD+) can be mapped and estimated 
for young tropical forests, including area, age, height, AGLB, 
and rates of biomass accumulation. Where an image time series 
spans the age range of young forests, its spectral data can pre-
cisely estimate age, which is needed to estimate biomass accu-
mulation rates and can also help estimate the height or AGLB 
of these forests. Helmer et al. (2009) estimated a landscape-level 
rate of AGLB accumulation in Amazonian secondary forest by 
regressing forest biomass estimates from the Geoscience Laser 
Altimeter System (Figure 14.3) against remotely sensed forest 
age (R-square = 0.60). The estimated landscape-level biomass 
accumulation rate of 8.4 Mg ha−1 year−1 agreed well with ground-
based studies. Forest age was mapped with an algorithm that 
automatically processed a time series of Landsat MSS and TM 
imagery (1975–2003) with self-calibrated thresholds that detect 
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from automatic processing of a time series of Landsat MSS, TM, and 
ETM+ imagery, in the 150 m window surrounding GLAS waveform 
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when secondary forests established on previously cleared land. 
The technique mapped the extent of old-growth forest and age of 
secondary forest with an overall accuracy of 88%. With the time 
series, tropical secondary forest >28 years old was accurately dis-
tinguished from old-growth forest, even though it was spectrally 
indistinct in the most recent Landsat scenes. This older second-
ary forest clearly stored less C than the old-growth forest, being 
shorter and having much smaller average canopy diameters than 
nearby old growth.

Forest height and AGLB are strongly related, and the height 
or AGLB of young forests can be mapped with long time series 
of Landsat images in tropical (Helmer et al., 2010) and temper-
ate (Li et al., 2011; Plugmacher et al., 2012; Ahmed et al., 2014) 
regions. With a regression tree model based on the spectral data 
from all of the images in a time series of cloud-gap-filled Landsat 
imagery (1984–2005 with 1- to 5-year intervals), Helmer et al. 
(2010) mapped the height (RMSE = 0.9 m, R-square = 0.84, range 
0.6–7 m) and foliage height profiles of tropical semievergreen 
forest (Figure 14.4). In contrast with mapping the height of old 
forests, local-scale spatial variability in young forest structure 
was mapped, because within-patch differences in disturbance 
intensity and type, and subsequent forest recovery rate, were 
reflected in the spectral data from the multiyear image stack. 
This study also mapped forest disturbance type, age, and wet-
land forest type, with an overall accuracy of 88%, with a deci-
sion tree model of the entire time series of cloud-minimized 

composite images to better understand avian habitat. As a result, 
the classification distinguished different agents of forest distur-
bance, including classes of cleared forests and forests affected by 
escaped fire, and allowed estimation of rates of forest regrowth. 
Forest age, vertical structure, and disturbance type explained 
differences in woody species composition, including abundance 
of forage species for an endangered Neotropical migrant bird, 
Kirtland’s warbler Dendroica kirtlandii.

14.5.3  �Limitations to Mapping Forest 
Biomass or Age with One 
Multispectral Image Epoch

14.5.3.1  �Tropical Forest Biomass with 
One Image Epoch

Forest biomass mapping with multispectral imagery empirically 
predicts the AGLB of forested pixels with models that relate for-
est AGLB or height, from ground plots or lidar, to spectral bands, 
spectral indices, or spectral texture variables. It remains a chal-
lenge (Song, 2013). Forest AGLB is usually estimated in units of 
Mg dry weight ha−1 (see Section 14.2). As more data on stand 
species composition and species-specific wood densities become 
available, maps of C storage in forest biomass, as in Asner et al. 
(2013) and Michard et al. (2014), rather than forest biomass itself, 
may become more common.
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Figure 14.4  Tropical dry forest height and foliage height profiles were mapped from a time series of gap-filled Landsat and ALI imagery on the 
island of Eleuthera, The Bahamas, substituting time for vertical canopy space. The time series was also used to map forest disturbance type and age.
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Medium- to coarse-spatial-resolution imagery from one epoch 
is not that sensitive to small changes in the AGLB or C storage 
in aboveground biomass of dense tropical forests. (By epoch, we 
mean imagery from one date, one gap-filled, or composite image 
composed of imagery from one to several years, or multiseason 
imagery from 1 year.) This limited sensitivity appears in biomass 
mapping models as high per pixel uncertainty that can manifest 
itself in several ways:

	 1.	 Mapping models may explain a minority of variance in 
reference data (i.e., regressions of predicted vs. observed 
values have low coefficients of determination or R-squared 
values of less than 0.50) (e.g., Oza et al., 1996 for volume 
of Indian deciduous forest; Steininger, 2000 for Bolivian 
sites; Wijaya et al., 2010 in Indonesia).

	 2.	 Mapping models may both underestimate AGLB at high-
biomass sites and overestimate AGLB where biomass is 
low (e.g., Baccini et al., 2008 for tropical Africa; Blackard 
et  al., 2008 for the United States including Puerto Rico; 
Wijaya et al., 2010).

	 3.	 Spectral responses to AGLB may saturate at relatively 
low levels of around 175 Mg C ha−1. For example, studies 
indicate that stand-level multispectral responses saturate 
at 150–170 Mg ha−1 for study sites in Brazilian Amazonia 
(Steininger, 2000; Lu, 2005), ~180 Mg C ha−1 in Panama 
(Asner et  al., 2013), and 175 Mg ha−1 across Uganda 
(Avitabile et al., 2012). These saturation levels may be half 
or less of the biomass of the most structurally complex or 
old-growth tropical forests in humid lowlands. In many 
landscapes, the relationship between multispectral data 
and tropical forest AGLB may saturate at even lower levels.

	 4.	 Continental- to global-scale mapping models may not 
capture gradients in AGLB and C pools that stem from 
differences in forest allometry and average wood density 
(Mitchard et al. (2014).

Despite per-pixel uncertainties, estimates of the total forest bio-
mass may be accurate when pixels are summed over large areas 
that have a wide range of AGLB. This result could happen when 
the average biomass of pixels covering a large area approaches the 
mean of the ground or lidar data used to estimate the mapping 
model. Estimates of total forest AGLB across tropical landscapes 
can also be accurate if the landscapes that have few forest patches 
with AGLB exceeds the levels where spectral response becomes 
saturated (e.g., Avitabile et al. 2012).

Texture variables from SPOT 5 imagery may improve map-
ping models of AGLB, because SPOT 5 imagery has finer spa-
tial resolutions of 10–20 m compared with many other image 
sources with medium spatial resolution (Table 14.1), but results 
may still have relative errors of around 20% (Castillo-Santiago 
et al., 2010). Exceptions may include Asian bamboo forests (Xu 
et al., 2011) or low-biomass tropical forests.

Mapping models of tropical forest AGLB or height that rely on 
multispectral imagery benefit from added predictors. Example pre-
dictors that may improve models include topography, forest type, 

climate, soils, geology, or indicators of disturbance like tree canopy 
cover (Helmer and Lefsky, 2006; Saatchi et al., 2007; Blackard et al., 
2008; Asner et al., 2009; Lefsky, 2010; Wijaya et al., 2010). After 
including these predictors in mapping models, the variability in 
the biomass mapped for undisturbed forests may reflect more of 
the variability in AGLB that stems from regional- to landscape-
scale environmental gradients in attributes like rainfall. Maps of 
these spatial patterns may be useful, but they may not reveal much 
local-scale AGLB variation.

14.5.3.2  Tropical Forest Age with One Image Epoch

As with AGLB, multispectral imagery has limited sensitivity to 
increasing forest age. Many studies show that spectral indices 
that contrast the mid-infrared bands with the near-infrared or 
visible bands are the most sensitive indices to tropical forest age, 
height, and AGLB (e.g., Boyd et  al., 1996; Helmer et  al., 2000; 
Steininger, 2000; Thenkabail et al., 2003; Helmer et al., 2010). For 
example, with Landsat TM or ETM+ data, these indices include 
the NIR/SWIR ratio, the tasseled cap wetness index (Crist and 
Cicone, 1984; Huang et al., 2002), the wetness brightness differ-
ence index (WBDI) (Helmer et  al., 2009), and the normalized 
difference moisture index (NDMI) (also referred to as the nor-
malized difference structure index and the normalized differ-
ence infrared index). The WBDI and NDMI are calculated as

	 WBDI = TC Wetness – TC Brightness	 (14.2)

	
NDMI

NIR SWIR

NIR  SWIR
b4 b5

b4 b5

= −
+( )

( ) 	 (14.3)

However, lowland humid tropical forests recovering from pre-
vious clearing may become spectrally indistinct from mature 
forests within 15–20 years (Boyd et al., 1996; Steininger, 2000), 
though slower-growing tropical forests, like montane or dry for-
ests, can remain spectrally distinct longer (Helmer et al., 2000; 
Viera et al., 2003). Only a handful of forest age classes can be 
reliably distinguished in single-date multispectral imagery. Age 
differences are blurred by differences in disturbance type and 
intensity that affect regrowth rates and related spectral responses 
during forest succession (Foody et al., 1996; Nelson et al., 2000; 
Thenkabail et al., 2004; Arroyo-Mora et al., 2005), although age 
explains more variability in rates of forest regrowth than does 
disturbance type (Helmer et al., 2010; Omeja et al., 2012).

Recently logged forest has less biomass than old-growth for-
est, but it may become spectrally indistinct from mature forest 
within a year or two (Asner et al., 2004a), which is another case 
in which the forest canopy recovers faster than forest AGLB. In 
a study in Sabah, Malaysia, conventional logging reduced forest 
biomass by 67%, but reduced impact logging reduced it by 44% 
(Pinard and Putz, 1996). In moist forests of Amazonia, AGLB 
decreased by only 11%–15% after reduced impact logging (Miller 
et al., 2011).

The youngest regenerating forest patches in landscapes usually 
do not dominate pixels as large as those of coarse-spatial-resolution 
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imagery like MODIS. The outcome is that maps from such imag-
ery have high error rates for secondary tropical forest. When mod-
eling pixel fractional cover of one or more young forest classes vs. 
nonforest vs. old forest with MODIS, for example, secondary for-
est is modeled with the most bias and the least precision (Braswell 
et al., 2003; Tottrup et al,. 2007). In Amazonia, the model R-square 
values for the fraction of secondary forest cover were 0.35 for 
MODIS data alone and 0.61 for MODIS plus MISR data. At the 
spatial resolution of 1.1 km, corresponding to most of the MISR 
bands, resulting maps overestimated secondary forest area by 
26%. Converting fractional secondary forest cover to discrete 
classes underestimated secondary forest area by 43% (Braswell 
et al., 2003). Similarly, Carreiras et al. (2006) concluded that the 
errors for decision tree classification of secondary forest with 
SPOT 4 Vegetation across Amazonia were unacceptably high.

14.5.4  �Detecting Tropical Forest Degradation 
with Multispectral Imagery

Tropical forests suffer anthropogenic pressures that perturb 
their structure and ecological functioning (Vitousek et  al., 
1994). Human activities that disturb them range from plant 
collection and human habitation to total deforestation. Many 
of these forest disturbances can occur at fine spatial scales of 
less than five to tens of meters, including forest fire (Aragão and 
Shimabukuro, 2010), recent logging (de Wasseige and Defourny, 
2004; Asner et al., 2005; Sist and Ferreira, 2007), road networks 
(Laporte et  al., 2007; Laurance et  al., 2009), mining (Peterson 
and Heemskerk, 2001), and expanding agricultural frontiers 
(Dubreuil et al., 2012). These human impacts appear like small 
isolated objects within an ocean of greenness (Souza et al., 2003). 
They appear as points (logging gaps), lines (roads, trails), both 
points and lines (logging decks plus skid trails), and with min-
ing areas, both bare soil and pooled water are present.

Although these disturbances can be small, medium-resolution 
remote sensing techniques can detect and quantify them within 
homogeneous forest cover (Gond et al., 2004). Compared with 
fine-scale imagery, images with pixels of 5–30 m have lower or 
no cost while more frequently covering larger areas of tropical 
forest. Consequently, medium-resolution imagery constitutes 
an excellent tool for assessing logging activities in tropical for-
ests across large scales (Asner et al., 2005). Much work to detect 
finely scaled disturbances of tropical forests uses pixel-level 
spectra (Section 14.5.3.1). Other work models subpixel spectra 
to derive continuous variables for monitoring fine-scale dis-
turbances, focusing on the degradation of forest C storage for 
REDD+ programs and ecosystem models (Section 14.5.3.2).

14.5.4.1  �Detecting Fine-Scale Forest 
Degradation at the Pixel Level

Detecting small canopy gaps and skid trails that have been 
open for less than 6  months is possible in French Guiana 
with SPOT 5 HRG images (Gond and Guitet, 2009). The 
technique developed is based on the local contrast between 

a photosynthetically active surface (the forest) and one with 
no or little photosynthetic activity (the gap itself). Using the 
three main channels dedicated to vegetation identification (red 
[0.61–0.68 µm], near-infrared [0.79–0.89 µm] and SWIR [1.58–
1.75 µm] wavelengths), the contrast between forests and gap is 
increased enough to be accurately depicted. The detection of 
an undisturbed forest pixel is made by multiple thresholds on 
the different reflectances. The advantage of standard remotely 
sensed data like SPOT 4/5 or Landsat 5/7/8 is the possibil-
ity to detect the focused object automatically (Pithon et  al., 
2013). The automatic processing makes the system operational 
for tropical forest management and depends only on image 
availability.

14.5.4.1.1  Road and Trail Detection
Road and trail detection is also a challenge for tropical forest 
management. Opening, active, and abandoned road and trail 
networks are a permanent landmark of tropical forest open-
ness and degradation (Laurance et al., 2009). Documenting this 
dynamic is possible with the 30  years of medium-resolution 
radiometer archives (Landsat and SPOT). In 2007, Laporte 
et  al. (2007) photo-interpreted Landsat imagery to map the 
road and trail network across the forests of Central Africa to 
show which forest areas are endangered by logging activity. 
When displaying red, NIR, and SWIR channels in red, green, 
and blue, active roads and trails are “brown”; abandoned roads 
and trails are “green,” and intact tropical forests are “dark 
green” (de et al., 2004). To automatically process the archives 
for large areas, Bourbier et  al. (2013) proposed a method for 
using Landsat archive to allow tropical forest managers to 
visualize the road and trail network dynamism at local (con-
cession) or national scales.

14.5.4.1.2  Mining Detection
Detecting mining activity is slightly different. In general, 
detecting legal mining is not a real challenge because bare sur-
faces are prominent and easily mapped. When mining is illegal 
in tropical forests, however, the bare surface is much smaller 
and difficult to detect (Almeida-Filho and Shimabukuro, 2002). 
The additional difficulty comes from the mobility of the ille-
gal miners. A recent abandoned mining site is detectable, but 
the miners have left. Detecting active mining sites where min-
ers are illegally working is most critical to managers. To map 
active mining sites in French Guiana, an automatic system 
using SPOT 5 imagery from a local reception station has been 
operational since 2008 (Gond et al., unpublished). The system 
is based on detecting turbid waters resulting from debris wash-
ing. Again, the object “turbid water” sharply contrasts with its 
environment, as with tropical forest vs. bare soil. Using red, 
NIR, and SWIR channels, turbid water is detected by multiple 
thresholds on reflectances. So far, the operational system has 
processed over 1230 SPOT 5 images to ensure regular coverage 
in space and time of illegal mining activity in French Guiana 
(Joubert et al., 2012).
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14.5.4.2  �Detecting Forest Degradation at the Subpixel 
Level with Spectral Mixture Analysis

Forest degradation in the context of REDD+ can be defined as 
a persistent reduction in carbon stocks or canopy cover caused 
by sustained or high-impact disturbance. As a result, forest 
degradation is often expressed as a complex, three-dimensional 
change in forest structure related to the introduction of areas 
of bare soil, piles of dead vegetation created by the residues and 
collateral damage of removed trees and other plants, and areas 
with standing dead or damaged tree trunks associated with 
partial tree fall. Burned forests also leave surface fire scars, 
indicated by patches of charred vegetation and bare ground 
(Cochrane et al., 1999; Alencar et al., 2011). Much of tropical 
forest degradation occurring around the world is driven by 
selective logging and fires that escape into forests from neigh-
boring clearings. At the multispectral sensor resolution of 
Landsat, SPOT, and MODIS, it is expected that forest degrada-
tion will be expressed in varying combinations of green veg-
etation (GV), soil, non-photosynthetic vegetation (NPV), and 
shade within image pixels.

Spectral mixture analysis (SMA) models can be used to 
decompose the mixture of GV, NPV, soil, and shade reflec-
tances into component fractions known as endmembers 
(Adams et  al., 1995). The SMA has been extensively used 
throughout the world’s tropical forests to detect and map for-
est degradation (Asner et  al., 2009a). For example, subpixel 
fractional cover of soils derived from the SMA was used to 
detect and map logging infrastructure including log land-
ings and logging roads (Souza and Barreto, 2000), while the 
NPV fraction improved the detection of burned forests and of 
logging damage areas (Cochrane and Souza, 1998; Cochrane 
et al., 1999). GV and shade enhance the detection of canopy 
gaps created by tree fall (Asner et al., 2004b) and forest fires 
(Morton et al., 2011).

SMA models usually assume that the image spectra are 
formed by a linear combination of n pure spectra, or endmem-
bers (Adams et al., 1995), such that
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where
Rb is the reflectance in band b
Ri,b is the reflectance for endmember i, in band b
Fi is the fraction of endmember i
εb is the residual error for each band

The SMA model error is estimated for each image pixel by com-
puting the RMS error, given by
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As mentioned, in the case of degraded forests, the expected end-
members are GV, NPV, soil, and shade fractions. Including a 
cloud endmember is also possible, which improves the detec-
tion and masking of clouds when mapping forest degradation 
over large areas with long time series of imagery in the Amazon 
region (Souza et al., 2013). To calibrate the model, the endmem-
bers can be obtained directly from the images (Small, 2004) or 
from reflectance spectra acquired in the field with a handheld 
spectrometer (Roberts et  al., 2002). The advantage of obtain-
ing endmembers directly from images is that spatial and radio-
metric calibration between field and sensor observations is not 
required. The SMA can be automated to make this technique 
useful for mapping and monitoring large tropical forest regions. 
A Monte Carlo unmixing technique using reference endmember 
bundles was proposed for that purpose (Bateson et al., 2000), as 
well as generic endmember spectral libraries (Souza et al., 2013).

14.5.4.3  �Interpreting and Combining Subpixel 
Endmember Fractions and Derived Indices

The SMA fractions can be combined into indices to further 
accentuate areas of forest degradation. For example, the normal-
ized difference fraction index (NDFI) was developed to enhance 
the detection of forest degradation by combining the detection 
capability of individual fractions (Souza et al., 2005). The NDFI 
values range from −1 to 1. For intact forests, NDFI values are 
expected to be high (i.e., about 1) due to the combination of high 
GVshade (i.e., high GV and canopy shade) and low NPV and soil 
values. As forest becomes degraded, the NPV and soil fractions 
are expected to increase, lowering NDFI values relative to intact 
forest. Bare soil areas will produce NDFI value of −1 because of 
the absence of GV.

Another approach to SMA allows for uncertainty in the end-
member reflectance spectra used for decomposing each pixel 
into constituent cover types. Referred to as endmember bundles 
(Bateson et al., 2000), SMA with spectral endmember variabil-
ity provides a means to estimate GV, NPV, soil, and shade frac-
tions with quantified uncertainty in each image pixel. Using a 
Monte Carlo approach, Asner and Heidebrecht (2002) developed 
automated SMA procedures that have subsequently been used 
to map forest degradation due to logging or understory fire in a 
wide variety of tropical regions (e.g., Alencar et al., 2011; Carlson 
et al., 2012; Allnutt et al., 2013; Bryan et al., 2013).

Several mapping algorithms based on spatial and contextual 
classifiers, decision trees, and change detection have also been 
applied to SMA results to better map forest degradation using 
Landsat, SPOT, and MODIS imagery. These techniques are 
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discussed elsewhere (Asner et  al., 2009b; Souza and Siqueira, 
2013). Additionally, large area mapping and estimates of forest 
degradation in the Amazon region have also been conducted 
using these techniques (Asner et al., 2005; Souza et al., 2013).

14.6  �Mapping Tropical Forest Types 
with Multispectral Imagery

14.6.1  �Forest Types as Strata for REDD+ 
and Other C Accounting

Maps of forest type are critical to tropical forest management, 
including for REDD+ and other GHG inventories. When esti-
mating tropical forest AGLB and other C stores with existing 
inventory ground plots or lidar data, the estimates are gener-
ally stratified by forest type (Asner, 2009; Helmer et  al., 2009; 
Salimon et al., 2011). When designing forest inventories or lidar 
surveys, stratifying sample locations by forest type improves the 
efficiency of the sample design (Wertz-Kanounnikoff, 2008), 
including stratification with types defined by disturbance his-
tory (Salk et al., 2013). Stratification by topography or geology 
may also be important (Ferry et al., 2010; Laumonier et al., 2010) 
if forest type does not inherently account for related variability 
in AGLB. An informative review and synthesis of lidar sample 
design as it relates to forest parameter estimation over large for-
est areas is available in Wulder et al. (2012). Another important 
role of forest-type maps based on multispectral satellite imag-
ery is that they are often used to account for the distributions of 
species and habitats when planning representative reserve sys-
tems. For this reason, forest-type maps are also useful to identify 
where deforestation or wood harvesting is “leaking” to forests 
that are critical to conserve, but that store less C than forest areas 
being targeted in REDD+ or carbon offset projects.

Most satellite image–based maps of tropical forest types map 
classes of forest formations. Vegetation formations are defined 
by growth form and physiognomy. At the simplest level, forest 
formations may distinguish among closed, open, and wetland 
forests. More detailed formations may distinguish among forests 
with different leaf forms or phenology (e.g., deciduous vs. ever-
green, broad-leaved vs. needle-leaved, or descriptors that imply a 
suite of physiognomic characteristics, such as “dry,” “montane,” 
or “cloud” forests). More detailed than forest formations are forest 
associations, which distinguish among tree species assemblages. 
For example, in Figure 14.5, which we discuss in Section 14.6.4, 
the upper-level headings for forests are forest formations. The 
subheadings under each forest formation are forest associations.

14.6.2  �High-Resolution Multispectral Imagery 
for Mapping Finely Scaled Habitats

High-resolution imagery makes excellent reference data for 
calibrating classification and mapping models based on imagery 
with coarser spatial resolution, but using it as the primary basis 

for mapping forest types has several disadvantages. In high-
resolution imagery, the within-stand spectral variability of forest 
types can be large, varying within tree crowns, for example, such 
that digital classifications at the pixel scale cannot distinguish 
many forest types. Also these images cover relatively small areas, 
making them inefficient for mapping forest types over large 
areas (Nagendra and Rocchini, 2008). Existing archives of high-
resolution imagery also lack SWIR bands, which are important 
in vegetation mapping. Because Landsat ETM+ data have SWIR 
bands, for example, Thenkabail et  al. (2003) found that three 
floristic tropical forest classes were more distinct in ETM+ data 
than in IKONOS imagery. Worldview 3, however, will have eight 
SWIR bands collected at a spatial resolution of 3.7 m.

Yet satellite imagery with high spatial resolution can aid 
in mapping finely scaled habitats or habitat characteristics. 
Example habitats are edges or linear features: riparian areas 
(Nagendra and Rocchini, 2008), roadsides or other corridors, 
or strands of vegetation types along coastlines. Habitats with 
high mechanical, chemical, or moisture stress can also be finely 
scaled. Example stresses are fast-draining substrates where 
microtopography strongly affects vegetation, like substrates of 
limestone (Martinuzzi et al., 2008) or sand, or substrates that are 
also semi-toxic like serpentines. High winds, or drier climate as 
in savanna ecotones, also lead to finely scale habitats.

Savanna ecosystems, for example, range in tree cover from 
grassland to forest, which is why we mention them here. Tree 
cover may change over meters, and high-resolution imagery 
may be most effective for habitat mapping. Boggs (2010) applied 
object-oriented classification to 4 m multispectral IKONOS 
imagery to map tree cover patterns in Mozambique savanna.

In Namibia, tree clusters and grass patches are distinguish-
able with object-oriented or pixel-level classifications of pan-
sharpened QuickBird imagery (0.6 m pixels). In contrast, 10 m 
multispectral SPOT-5 pixels, though pan-sharpened to 2.5 m, 
required object-oriented classification (Gibbes et al., 2010).

Object-oriented classification of medium-resolution imagery 
can indeed sometimes substitute for high-resolution imagery when 
it can discern finer-scale features of interest that are missed with 
pixel-level classifications. In Jamaica, Newman et al. (2011) found 
that object-oriented classification of medium-resolution imagery 
led to better characterization of roads and forest fragmentation 
metrics than pixel-level classification did. Object-oriented clas-
sification of ASTER data can map savanna habitats in northwest 
Australia, and it was also more accurate than pixel-level classifi-
cation (Whiteside et al., 2011). Longer-wave infrared bands were 
resampled to the 15 m resolution of the visible and NIR bands.

14.6.3  �Remote Tree Species Identification 
and Forest-Type Mapping

Many tropical tree species can be identified by photo interpre-
tation of high-resolution satellite imagery or air photos. With 
tree crowns in tropical forest often reaching >10 m in diameter, 
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Figure 14.5  Forest associations and land cover were mapped with the gap-filled Landsat ETM+ imagery, centered around the year 2007, plus 
synthetic multiseason imagery developed from three gap-filled TM images from the 1980s that were from the mid to late dry season including 
from severe drought.
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subcrown features are visible. In subtropical to warm-temperate 
forests of east central Queensland, Australia, Tickle et al. (2006) 
correctly identified dominant tree species in most of 150 air 
photo plots with stereo color air photos of scale 1:4000 (~2 m 
resolution). With these data, they categorized the air photo plots 
into five genus groups.

In moist forests of Panama, Garzón-López et al. (2013) found 
that visual analysis of high-resolution color air photos (0.13 m 
pixels) can reveal spatial distributions of some tropical forest 
canopy trees. Of 50 common canopy species on a 50 ha plot, 
22% had crowns that were distinct in the photos. Of four species 
tested, interpreters found 40% of the stems that were recorded in 
field surveys; the resulting maps accurately showed spatial pat-
terns of the species. Sánchez-Azofeifa et al. (2011) concluded that 
2.4 m multispectral QuickBird imagery can reveal the spatial 
distribution and clusters of a species that is conspicuous when 
flowering, though immature or nonflowering individuals are 
often missed.

In French Guiana, Trichon and Julien (2006) found that 12 
of the 15 most common canopy species or species groups were 
identifiable, with an accuracy of 87%, in color air photos ranging 
in scale from 1:1500 to 1:8000 (~0.75 to 4 m pixels). In the pho-
tos, 20%–25% of trees with dbh ≥ 10 cm, and all trees with dbh 
≥ 20 cm, were visible. For 10 taxa from old-growth Ecuadorian 
Amazon forest representing a range of crown structures, 
González-Orozco et al. (2010) found that photo interpretation of 
large-scale air photos with a dichotomous key correctly identi-
fied individuals at a rate of >70% for three of the taxa and >50% 
for two of them.

That photo interpreters can identify many of the dominant 
species in tropical forest canopies in high-resolution imagery 
suggests that, given field-based knowledge of the composition 
and distribution of tree floristic classes (i.e., tree species asso-
ciations), which are defined by dominant tree species, floris-
tic types of tropical forest can be identified in high-resolution 
multispectral imagery. Consequently, reference data from 
photo-interpreting high-resolution multispectral imagery can 
supplement field data as a source of training and validation data 
for mapping tropical tree communities with satellite imagery 
(Helmer et al., 2012).

14.6.4  �Mapping Tropical Forest Types with 
Medium-Resolution Imagery

In mapping tropical forest types with multispectral imagery, 
spectral similarity among forest classes is a major challenge. 
Disturbance, differences in topographic illumination, artifacts 
from filling cloud and other data gaps or from scene mosaicing, 
all increase class signature variability and consequently increase 
signature overlap among classes. Secondary forest in a humid 
montane zone, for example, may be spectrally similar to shade 
coffee or old-growth forest on highly illuminated slopes. When 
on a shaded slope, that same secondary montane forest is spec-
trally similar to old-growth forest in a less productive zone at 
higher altitudes (Helmer et al., 2000). Yet digital classifications 

of multispectral imagery can map many different forest types 
with some additions: (1) ancillary geographic data, (2) multisea-
son or multiyear imagery or derived phenology, and (3) pixels 
for training classification models that represent the variability 
in environmental and image conditions.

Digital maps of environmental data like topography, climate, 
or geology help distinguish spectrally similar forest types. With 
Landsat TM/ETM+, linear discriminant function classifications 
have incorporated ancillary data via post-classification rules 
based on topography to map eucalyptus forest types (Skidmore, 
1989); adding topographic bands to spectral bands to map land-
cover and forest physiognomic types (Elomnuh and Shrestha 
2000; Helmer et al., 2002; Gottlicher et al., 2009) or distinguish 
among tree floristic classes (Foody and Cutler, 2003; Salovaara 
et  al., 2005); and classifying imagery by geoclimatic zone 
(Helmer et  al., 2002). Image smoothing or segmentation can 
improve these classifications by reducing within-class spectral 
variation (Tottrup, 2004; Thessler et al., 2008).

Tree associations or other floristic classes can be separable with 
multispectral imagery within an ecological zone, particularly if 
topographic bands are included. With TM/ETM+ and 18–127 
plots, studies have separated three to nine floristic classes within 
lowland evergreen forest in central Africa, Amazonia, Borneo, 
or Costa Rica (Foody and Cutler, 2003; Thenkabail et al., 2003; 
Salovaara et al., 2005; Thessler et al., 2008; Sesnie et al., 2010). 
Chust et al. (2006) mapped nine floristic subclasses with ETM+ 
data, elevation, and geographic position over a broad environ-
ment across central Panama. With Landsat TM data, Wittmann 
et  al. (2002) mapped three structural classes of Amazonian 
várzea forests that corresponded to four associations: early suc-
cessional low várzea, late secondary and climax low várzea (two 
associations), and climax high várzea. These studies use spectral 
data from a single image date and consider only forest; cloudy 
areas were mapped as such.

When mapping many classes, machine learning classifica-
tions more effectively incorporate ancillary environmental data 
including date bands for gap-filled images. They also do not 
assume that class spectral distributions are parametric, and they 
typically outperform linear classifications. Combining ancil-
lary data and machine learning classification permits classifica-
tions that distinguish many forest and land-cover types, even 
with noisy, cloud-gap-filled imagery. Examples with TM/ETM+ 
include decision tree classifications of one or two seasons of 
cloud-gap-filled Landsat plus ancillary data to map tropical for-
est physiognomic types and land cover (Kennaway and Helmer, 
2007; Helmer et al., 2008; Kennaway et al., 2008). Sesnie et al. 
(2008) mapped land cover, agriculture type, floristic classes of 
lowland old-growth forest and three higher-elevation classes 
based on a map of life zones (sensu Holdridge, 1967) with a rela-
tively cloud-free image for each of two scenes. To map tree floris-
tic classes of lowland through montane tropical forest types and 
land cover in Trinidad and Tobago, Helmer et al. (2012) applied 
decision tree classification to recent cloud-gap-filled Landsat 
imagery stacked with decades-old, gap-filled synthetic multi-
season imagery from droughts (Figure 14.5).
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Mapping many physiognomic or floristic classes of tropical 
forest as in the earlier studies requires (1) thousands of training 
and testing pixels representing the environmental and spectral 
ranges of each class, including the range of pixel dates where 
gap-filled imagery was used (Helmer and Ruefenacht, 2007); 
(2) a band that represents the date of the source image for each 
pixel in the composite image (a date band); and a machine learn-
ing classification model. The extensive training data needed 
are rarely available from field plots. But analysts can learn to 
identify many physiognomic and floristic classes in remotely 
sensed imagery given field-based knowledge of general distribu-
tions, particularly given free viewing of high-resolution imagery 
online and Landsat image archives, allowing almost unlimited 
reference data collection.

Helmer et al. (2012) found that all mono- and bidominant tree 
floristic classes and many other tree communities in Trinidad 
and Tobago could be distinguished in reference imagery from 
nearby associations by (1) unique canopy structure in high-
resolution imagery or (2) distinct or unique phenology on specific 
dates of either high- or medium-resolution reference imagery. 
For example, distinct canopy structure at high resolution dis-
tinguished Mora excelsa forests, littoral associations (frequent 
palms in one; prostrate stems in the other); Pterocarpus offici-
nalis swamps, palm swamps, mangroves, and stands of bamboo 
(Bambusa vulgaris), abandoned coconut (Cocos nucifera), teak 
(Tectona grandis), pine (Pinus caribaea), and Brazilian rubber 
(Hevea brasiliensis). Phenology, including characteristics like 
flowering, deciduousness, leaf flushes, or inundation, helped 
to distinguish seven forest associations in high-resolution ref-
erence imagery and four associations in phenologically unique 
Landsat reference scenes. With this knowledge and reference 
imagery, thousands of training data pixels could be collected.

Including multiseason imagery in classification models of 
coarse-resolution imagery also improves spectral distinction 
among tropical forest types (Bohlman et  al., 1998, Tottrup, 
2004). What is exciting is that we can now think beyond mul-
tiseason imagery to multiyear imagery that captures climate or 
weather extremes or disturbance history. Helmer et al. (2012) 
found that adding bands from cloud-gap-filled TM imag-
ery from a severe drought that occurred 20 years earlier than 
the most recent imagery used in the stack of data for classi-
fication contributed to the largest increases in accuracy when 
mapping forest associations in Trinidad. Mapping accuracy of 
seasonal associations benefited the most. Accuracy improved 
by 14%–21% for deciduous, 7%–36% for semievergreen, and 
3%–11% for seasonal evergreen associations, and by 5%–8% 
for secondary forest and woody agriculture. Multiyear mul-
tispectral imagery that displays different flood stages helps 
distinguish between upland and periodically flooded tropical 
forests (Helmer et al., 2009) and among tropical forested wet-
land types (and can reflect differences in secondary forest spe-
cies composition by mapping disturbance type as mentioned) 
(Helmer et  al., 2010). In Amazonia, de Carvalho et  al. (2013) 
determined the life cycle length of native bamboo patches with 
multiyear TM/ETM+ data.

14.6.5  �Species Richness and 
Multispectral Imagery

The tree species richness of tropical forests increases with some 
of the same variables that influence forest reflectance in multi-
spectral satellite imagery. Richness increases with forest height 
(among lowland forests with strong edaphic differences), soil 
fertility (after accounting for rainfall), canopy turnover, and 
time since catastrophic disturbance; richness decreases with 
dry season length, latitude, and altitude (Givnish, 1999). We 
know from forest ground plots that tree species richness also 
increases with secondary forest age (Whittmann et  al., 2002; 
Chazdon et  al., 2007; Helmer et  al., 2008). Consequently, over 
gradients that span from dry to humid, multispectral bands 
and indices related to vegetation greenness, structure, or distur-
bance may correlate with species richness. And in fact studies 
have documented such relationships with single-date Landsat 
TM or ETM+ imagery (Foody and Cutler, 2006; Nagendra et al., 
2010; Hernández-Stefanoni et al., 2011). Single-date multispec-
tral data are unlikely, however, to be sensitive to differences in 
species richness along short environmental gradients such as 
among humid evergreen tropical forests. Moreover, an impor-
tant consideration in biodiversity conservation is that species 
richness alone does not define conservation value: representa-
tion across as many native ecosystems and species as possible is 
just as important if not more so. Many less productive tropical 
forest types with less tree species richness, like cloud forests, or 
forests on harsh or drying soils like those on ultramafic or lime-
stone substrates or ombrotrophic sands, have the most endemic 
species richness.

14.6.6  �Tropical Forest-Type Mapping 
at Coarse Spatial Scale

In tropical regions extending over large areas, multiseason data 
from monthly, annual, or multiyear composites of imagery with 
coarse spatial resolution have supported large-area mapping of 
tropical forest formations with even linear classification meth-
ods (Joshi et  al., 2006; Gond et  al., 2011, 2013; Pennec et  al., 
2011; Verheggen et  al., 2012). For example, Gond et  al. (2011) 
mapped five classes of forest canopy openness across the French 
Guiana with an unsupervised classification of an annual com-
posite image of SPOT 4 Vegetation data. Across Central Africa, 
Gond et al. (2013) mapped 14 forest formations with 1 year of 
8- and 16-day MODIS image composites. The forest formations 
were based on leaf phenology and canopy openness. With 1 year 
of NDVI composite images from the Indian Resource Satellite 
(IRS 1C) WiFS across India, Joshi et al. (2011) mapped 14 for-
est formations. The formations were labeled by phenology and 
climatic class (e.g., Tropical dry deciduous forest, Tropical moist 
deciduous forest, and so on). Verheggen et  al. (2012) applied 
unsupervised classification to seasonal and annual composites 
of MEdium-Resolution Imaging Spectrometer (MERIS) and 
SPOT 4 Vegetation data for the Congo basin, producing a map 
with six forest classes that were based on leaf phenology, canopy 
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openness, and elevation class. Producers’ and users’ accuracies 
for forest classes in the latter two studies were mostly between 
80% and 100%.

Combining ancillary data, monthly image composites of 
imagery with coarse spatial resolution but high temporal resolu-
tion, and decision tree classification has permitted forest classi-
fications at subcontinental to global scales or has distinguished 
many more forest formations. Decision tree classification of 
monthly composites of imagery with coarse spatial resolution, 
and mosaics of such composites, is also used to map tropical for-
ests over large areas. Examples of such large-area maps based 
on MODIS image composites are of tropical forest ecoregion 
(Muchoney et  al., 2000), biome (Friedl et  al., 2002), or forest 
formation (Carreiras et al., 2006). With decision tree classifica-
tion of dry season MODIS image composites, Portillo-Quintero 
and Sánchez-Azofeifa (2010) mapped the extent of two classes 
of tropical dry forests (Tropical dry forest and Forests in tropi-
cal grasslands, savannas, and shrublands), for the mainland 
Neotropics plus the Greater Antilles. Overall accuracy was 82%. 
The importance of this latter work is that global land-cover maps 
often misclassify dry tropical forests as some other land cover.

14.6.7  �Tropical Forest-Type Mapping 
and Image Spatial Resolution

Without question, multiseason data greatly improve the number 
of different physiognomic or floristic classes of tropical forest that 
can be mapped with multispectral satellite imagery. Monthly 
image composites or derived phenology metrics, as are possible 
with coarse-resolution imagery, are optimal. Joshi et  al. (2006) 
qualitatively compared their WiFS-based map of forest types 
across India with a forest map of the country based on LISS data, 
which has a pixel resolution of 23.5 m but a 24-day repeat cycle. 
They concluded that the 5-day revisit cycle of WiFS, which allowed 
them to incorporate 12 monthly image composites, yielded better 
information on forest types and other vegetation and land-cover 
classes, even though WiFS has a spatial resolution of 188 m.

However, tropical forest types can change greatly over small 
areas, and spatial resolutions coarser than 100–200 m are too 
coarse to distinguish important differences in forest types in 
many places. In tropical islands, for example, forest floristic and 
physiognomic types that are critical to distinguish for conserva-
tion planning would be poorly delineated. Medium-resolution 
imagery with a shorter revisit cycle would greatly improve 
prospects for mapping tropical forest types with multispectral 
imagery. This could be more easily accomplished, for example, 
if AWiFS data, with its 56 m spatial resolution and 5-day revisit 
cycle, were available for all of the tropics, or if the Landsat pro-
gram had a constellation of at least four satellites.

In addition, past disturbances affect forest physiognomy 
and species composition, and some forest classes may become 
spectrally distinct only during periodic drought and flooding. 
Consequently, forest-type mapping can also benefit when older 
satellite imagery or long image time series are incorporated into 
forest-type mapping, as in Helmer et al. (2010, 2012).

Finally, to distinguish tropical forest types on small moun-
tains, small islands, along coastlines, rivers, and other linear 
features, or in other finely scaled landscapes, high-resolution 
imagery will be needed.

14.7  �Monitoring Effects of Global 
Change on Tropical Forests

14.7.1  �Progress in Monitoring Tropical Forests 
at Subcontinental to Global Scales

Tropical forest mapping with coarse-resolution imagery in 
optical remote sensing is very constrained by cloud cover. 
Helpfully, its high temporal frequency of acquisition balances 
the handicaps of cloud-contaminated pixels (McCallum et al., 
2006). Historical long time series from NOAA-AVHRR paved 
the way for this research (Tucker et al., 1985; Townshend et al., 
1991). Indeed, the spectral capacities from visible to SWIR of 
these sensors motivated many applications and technological 
developments. The identification of tropical forest patterns 
has improved over time (Holben, 1986; Mayaux et  al., 1998; 
DeFries et  al., 2000) and benefits from a large panel of veg-
etation indices for evaluating photosynthetic activity (Rouse 
et al., 1974; Huete, 1988; Pinty and Verstraete, 1992; Qi et al., 
1994; Gao, 1996).

At the end of the 1990s, the experiences gained from these 
applications led to new sensors adapted to land surface 
observation, including SPOT Vegetation (March 1998) and 
TERRA-MODIS (December 1999) (Friedl et  al., 2010). Spatial 
resolutions were improved from 1.1  km (NOAA-AVHRR) to 
1.0  km (Vegetation), 0.3 (MERIS), and 0.5/0.25  km (MODIS). 
Geo-location was improved. Specific spectral bands dedicated 
to vegetation were implemented. New sensor technology was 
developed such as the push-broom system on Vegetation, which 
avoids large swath distortions. After 15  years of feedback, we 
may now measure the added value of these sensors.

Research to characterize tropical forests at subcontinental to 
global scales has become more accurate and precise (Mayaux 
et al., 2004; Vancutsem et al., 2009) by taking phenology into 
account (Xiao et  al., 2006; Myneni et  al., 2007; Doughty and 
Goulden, 2008; Park, 2009; Brando et  al., 2010). Repetitive 
observation and long temporal archives make possible land-
surface observation on 8-, 10-, or 16-day time periods and 
allow phenology studies to take advantage of both high spectral 
quality and high observation frequency (Verheggen et al., 2012 
for MERIS and Vegetation; Gond et  al., 2013 for MODIS). In 
addition, there are more forest attributes being characterized, 
including forest edges (to delimit forest patches and more accu-
rately estimate forest areas) (Verheggen et  al., 2012; Mayaux 
et al., 2013), aboveground biomass (Malhi et al., 2006; Saatchi 
et al., 2007; Baccini et al., 2008), deforestation and forest deg-
radation (Achard et  al., 2002; Duveiller et  al., 2008; Hansen 
et al., 2008; Baccini et al., 2012; Desclée et al., 2013), and climate 
change impacts (Phillips et al., 2009; Lewis et al., 2011; Samanta 
et al., 2011).
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Sensor capabilities and computer capacities now allow the 
production of global-scale land-cover maps (Bartholomé and 
Belward, 2005, for Vegetation; Friedl et al., 2002; Hansen et al., 
2008, for MODIS), which have greatly improved our knowl-
edge of land surface cover in comparison with previous views 
obtained from NOAA-AVHRR (DeFries and Townshend, 1994; 
Loveland and Belward, 1997).

Tropical forest characterizations with multispectral imagery 
have now begun to address a real challenge: that of monitoring 
and understanding climate change impacts on the biosphere 
(Gibson et al., 2011). Tropical forests are particularly threatened 
by global temperature increases and the possibility of modi-
fied rainfall regimes (Zelazowski et  al., 2011). These changes 
will influence vegetation spatial distribution (Parmesan and 
Yohe, 2003), forest functioning (Nemani et al., 2003), and car-
bon storage capacity (Stephens et al., 2007), which may in turn 
affect climate. In this context, monitoring tropical forests with 
coarse-resolution satellite imagery is of prime importance to 
understanding biological processes and managing forest resil-
ience. Zhao and Running (2010), for example, showed that 
large-scale droughts have decreased net primary productivity 
in the Southern Hemisphere, including tropical Asia and South 
America. As we discuss later, however, some critical remote sens-
ing problems still need to be addressed before we can effectively 
monitor some important effects of droughts on tropical forests.

14.7.2  �Feedbacks between Tropical Forest 
Disturbance and Drought

Multispectral imagery can help characterize the positive feed-
back among tropical forest disturbance, fire, and climate. First, 
tropical forest clearing dries nearby forest, and multispectral 
imagery can detect forest clearing. In Amazonia, for example, 
Briant et al. (2010) delineated forest boundaries with MODIS 
multispectral bands and found that as the forest becomes more 
fragmented, drops in MODIS-based indices related to canopy 
moisture extend further into intact forest, and that the old for-
est in more fragmented landscapes has lower canopy moisture 
to begin with. Second, forest cover data also reveal that forests 
desiccated by fragmentation and other disturbance are more 
susceptible to fire. Armenteras et  al. (2013) used forest frag-
mentation indices from forest cover maps, along with active 
fire data from MODIS, which uses MODIS thermal bands, to 
show that forest fires increase in extent and frequency with 
fragmentation. Logging also increases forest vulnerability to 
fire (Uhl and Buschbacher, 1985; Woods, 1989), and as outlined 
earlier, logging can be detected with medium-resolution mul-
tispectral imagery.

A third aspect of the disturbance–fire–climate feedback is that 
drought magnifies the association between disturbance and fire 
(Siegert et al., 2001; Alencar et al., 2006). In Amazonia, fire scars 
mapped with Landsat occurred mostly within 1 km of clearings 
during normal dry seasons but extended to 4 km from clearings 
during drought years (Alencar et al., 2006). Some of these stud-
ies relied on Landsat imagery to quantify forest fragmentation, 

because of its finer spatial resolution, or radar imagery to map 
fire scars, to avoid clouds.

Amazonian droughts are likely to become more common 
and severe with climate change. During droughts, reduced for-
est growth and increased tree mortality cause intact forests to 
shift from a net sink to a net source of CO2 to the atmosphere 
(Lewis et al., 2011). However, monitoring drought effects that 
are spectrally subtle, like increased tree mortality or changes 
in phenology, remains a challenge because of residual cloud 
and aerosol contamination in coarse-resolution multispec-
tral imagery. For example, studies have found that vegetation 
greenness may increase, decrease, or show no change during 
drought. The increases could stem from decreased cloud cover, 
leaf flushes related to increased sunlight, decreased canopy 
shadow from increased mortality of the tallest trees, or all three 
of these factors, and despite observation frequency, cloud and 
smoke contamination in pixels still obscures trends in vegeta-
tion greenness (Anderson et al., 2010; Asner and Alencar, 2010; 
Samanta et al., 2010). Asner et al. (2004c) suggest that metrics 
from hyperspectral imagery may be better suited to resolve 
drought effects on tropical forests because they are sensitive to 
canopy leaf water content and light-use efficiency. A challenge, 
then, is to develop a system that, despite cloud and smoke con-
tamination, integrates these different sensors to continuously 
monitor the feedback between forest fragmentation, logging, 
fire, and climate.

14.8  Summary and Conclusions

Across spatial scales, increased image access, and data usability 
are the main factors driving an explosion of progress in char-
acterizing tropical forests with multispectral satellite imagery. 
The menu of preprocessed image products of the second gen-
eration of high-frequency earth observation satellite sensors, 
MODIS and SPOT Vegetation, along with their improved spatial 
and spectral resolution, led to a wider group of users applying 
multispectral imagery across larger areas and in more diverse 
ways. Products like cloud-screened composites of earth surface 
reflectance, vegetation indices, quality flags, fire flags, and land 
cover have enabled efforts to map tropical forest productivity, 
type, phenology, moisture status, and biomass, and to study the 
effects of climate change on tropical forests, particularly feed-
back among drought, fire, and deforestation.

At the scale of medium-resolution imagery, free access to 
Landsat, and in some cases free access to SPOT imagery, has 
spawned many new applications that rely on dozens, hundreds, 
or thousands of scenes, including scenes with scan-line gaps or 
scenes previously considered too cloudy to bother with. Cloud- 
and gap-filled Landsat imagery and image time series are now 
used to automatically detect forest clearing, partial disturbance, 
or regrowth; quantify degradation of tropical forest C storage; 
map the age, structure, biomass, height, and disturbance type 
of secondary tropical forests; automatically and more pre-
cisely mask clouds and cloud shadows in imagery; and create 
detailed maps of forest types in these often cloudy landscapes. 
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Characterizing tropical forest phenology at medium resolu-
tion will now be possible for many places, which will be easier 
given recent additions to Landsat image preprocessing. Many of 
these automated applications build on the experiences gained 
from the high-frequency, coarse-spatial-resolution imagery, and 
all of them are relevant to REDD+ monitoring, reporting, and 
verification.

At fine spatial scales, free viewing and low-cost printing of 
georeferenced high-resolution imagery via online tools like 
Google Earth and Bing supplement field data for training and 
testing the earlier products that are based on medium- and 
coarse-resolution imagery. In addition, scientists have used 
image products from Google Earth to estimate tropical forest 
biomass directly. New commercial sensors that produce multi-
spectral satellite imagery with spatial resolutions ≤0.5 m should 
also allow more disturbance types and tropical tree communi-
ties to be remotely identifiable.
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