
25

2
An Automatic System for Reconstructing 
High-Quality Seasonal Landsat Time Series

Xiaolin Zhu, Eileen H. Helmer, Jin Chen, and Desheng Liu

2.1 Introduction

Seasonal time series data from satellites are highly desired by researchers 
from different fields to study our Earth system. Seasonal time series data 
contain the temporal aspects of natural phenomena on the land surface, which 
are extremely helpful for discriminating different land cover types (Zhu and 
Liu, 2014), monitoring vegetation dynamics (Shen et al., 2011), estimating crop 
yields (Johnson et al., 2016), assessing environmental threats (Garrity et al., 
2013), exploring human-nature interactions (Zhu and Woodcock, 2014a), and 
revealing ecology-climate feedbacks (Piao et al., 2015).

Since 2008, all Landsat images, archived and newly acquired, have been 
available at no charge for end users, stimulating the studies of land surface 
dynamics with seasonal Landsat time series, because these data have a spatial 
resolution appropriate for heterogeneous land surfaces, such as urban areas 
(Schneider, 2012; Zhou et al., 2014). However, like all optical satellite images, 
Landsat images are contaminated by clouds and cloud shadows (Ju and Roy, 
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2008). In addition, since May 2003, the scan-line corrector (SLC) of the Enhanced 
Thematic Mapper plus sensor (ETM+) on Landsat 7 has failed permanently. 
It causes roughly 22% of the pixels to be unscanned in any ETM+ image 
(referred to as SLC-off images) after 2003 (Chen et al., 2011). These sources 
of image contamination (i.e., clouds, cloud shadows, and SLC gaps) severely 
hinder Landsat time series applications and thus must be removed and then 
filled with data predicted from a different date, from nearby pixels or from 
both to reconstruct a high quality seasonal time series. Image reconstruction 
is especially important in cloudy regions such as tropical, subtropical, and 
high altitude regions.

Generally, reconstructing high quality Landsat time series involves two steps: 
screening clouds and cloud shadows and interpolating contaminated pixels. 
For screening clouds and cloud shadows in Landsat images, some promising 
methods have been developed, including Function of mask (Fmask) (Zhu 
and Woodcock, 2012), time series filtering method (Goodwin et al., 2013), and 
multiTemporal mask (Tmask) (Zhu and Woodcock, 2014b). Now, Fmask is used 
by the United States Geological Survey (USGS) to produce a cloud mask layer 
for end users. This product can be directly used when reconstructing Landsat 
time series. For interpolating contaminated pixels in Landsat images, existing 
techniques can be grouped into three categories: spatial interpolators (Cheng 
et al., 2014; Meng et al., 2009), temporal interpolators (Melgani, 2006; Zhu et al., 
2015), and spatiotemporal interpolators (Chen et al., 2011; Zhu et al., 2012a,b).

Spatial interpolators search for one or several uncontaminated pixels that 
likely have the same land cover and that have very similar spectral values as 
the contaminated pixel, referred to as similar pixels. This searching process 
requires cloud-free ancillary images acquired at different times. Then, the 
contaminated pixel is replaced by similar pixels. Meng et al. (2009) developed 
a closest spectral fit (CSF) method to replace spectral values of cloudy pixels 
by cloud-free pixels using location-based one-to-one correspondence and 
spectral-based closest fit. Cheng et  al. (2014) applied a pixel-offset based 
Markov random field global function to find the most suitable similar pixels 
to replace contaminated pixels.

Temporal interpolators estimate values of contaminated pixels through the 
temporal relationship among images acquired at different time points. In 
general, there are two ways to model the temporal relationship: as a function 
of cloud-free observations in the time series sequence (Melgani, 2006) or as a 
function of observation time (Zhu et al., 2015). To interpolate cloudy pixels in 
one image of a time series, the contextual multiple linear prediction (CMLP) 
method developed by Melgani (2006) uses a multiple linear function to model 
the relationship between the pixel values of the image being reconstructed 
and other images in the sequence. CMLP can only interpolate cloudy images 
one at a time in the sequence because it needs to build the temporal model 
for each cloudy image. Zhu et al. (2015) employed harmonic models to fit the 
temporal pattern of each pixel in a time series sequence. The temporal model 
is a function of the satellite image acquisition time, and its coefficients are 
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estimated from all cloud-free points in the time series sequence. This trained 
temporal model delineates the seasonality of each pixel. It can be used to 
interpolate cloudy pixels in all images of the time series simultaneously.

Spatiotemporal interpolators integrate both spatial and temporal 
information into the prediction of contaminated pixels (Chen et al., 2011; 
Zhu et al., 2012a,b). Chen et al. (2011) proposed a Neighborhood Similar Pixel 
Interpolator (NSPI) method to interpolate the gaps caused by the SLC problem. 
NSPI first searches for similar pixels and then it uses these similar pixels as 
samples to predict gap pixels in two ways. A spatial prediction is obtained 
from a weighted average of similar pixel values in the target image, that is, 
the image to be constructed, to predict the gap pixels. A temporal prediction 
is obtained by retrieving the temporal change from similar pixel values in 
both the target image and ancillary images. Then the two predictions are 
combined based on confidence measures to get the final prediction of gap 
pixels. The NSPI method was further modified (i.e., MNSPI) for restoring 
the spectral values of cloudy pixels by considering the difference between 
narrow wedge-shaped SLC-off gaps and cloud, that is, clouds are randomly 
shaped clusters and most are much larger than SLC-off gaps (Zhu et al., 2012a). 
The temporally predicted result is given an increasingly larger weight as the 
spatial distance of the pixel from the cloud edge increases. The NSPI method 
was further improved through incorporating Geostatistics, which can help 
to estimate the uncertainties of interpolation results and reduce the number 
of empirical parameters (Zhu et al., 2012b).

In general, spatiotemporal interpolators have more advantages compared 
with either spatial interpolators or temporal interpolators alone. Limitations 
of spatial interpolators include: (1) accuracy decreases fast with the size of 
cloud patches; (2) spatial continuity of interpolated images cannot be well 
reserved in heterogeneous landscapes. Spatiotemporal interpolators use 
the corresponding pixel information from cloud-free ancillary images, so 
it is less affected by the size of cloud patches. The weighted combination 
of two predictions in spatiotemporal interpolators ensures the spatial 
and radiometric continuity of the reconstructed image in heterogeneous 
landscapes (Chen et al., 2011). Limitations of temporal interpolators are high 
uncertainties when applied in very cloudy regions. Temporal interpolators 
use cloud-free points in the time series to model a temporal pattern for each 
pixel, then this temporal pattern is used to predict values of cloudy points. 
However, in areas with persistent clouds, such as tropical regions, there are 
no adequate cloud-free points in the time series to build a reliable temporal 
model. Thus, it leads to large errors in the reconstructed seasonal time series. 
In contrast, spatiotemporal interpolators also use spatial information which is 
a valuable complement when the temporal information is not reliable.

However, the original NSPI and MNSPI were developed for interpolating 
gap pixels and cloudy pixels, respectively, in individual images. They are 
not efficient for reconstructing seasonal Landsat time series when clouds, 
cloud shadows, and SLC-off gaps exist in most images in a time series. To 
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this end, this chapter introduces an automatic system for interpolating all 
types of contaminated pixels in all Landsat images of a time series through 
integrating NSPI and MNSPI into an iterative process. The input data of this 
system are a time series of Landsat images, along with associated cloud and 
cloud shadow masks, and the output is a time series with the same Landsat 
images but without missing pixels caused by clouds, cloud shadows, and 
SLC-off gaps. This system will promote the use of Landsat time series to 
monitor land surface dynamics.

2.2 Methods

Figure 2.1 shows the flowchart of the proposed automatic system for 
reconstructing Landsat time series. It requires two input data sets. First, multi-
temporal original Landsat images are collected to composite a time series. 
These original Landsat images can be either the Level 1 Terrain corrected 
(L1T) product or land surface reflectance product downloaded from the USGS 
Earth Explorer system. If a Landsat image is covered by a lot of clouds, cloud 
shadows, and SLC-off gaps, its useful information is very limited. Therefore, 
only Landsat images with more than 40% clear pixels of the entire scene are 
included in the time series. All these selected Landsat images are stacked 
by their acquisition dates. Considering that original Landsat images have 

Orginal Landsat time series

Unsupervised classification of

uncontaminated pixels in each image

Process ith image

Search nearest clear observation from all other images

Interpolate contaminated pixels

using NSPI

Process all

images?

Reconstructed high-quality seasonal images

No

Yes

i+1

Cloud/shadow mask

FIGURE 2.1
Flowchart of the automatic system for reconstructing high-quality seasonal Landsat time series.
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been geo-rectified and calibrated accurately (Zhu and Woodcock, 2014b), no 
further preprocessing steps are needed. Second, a mask product is needed to 
indicate the contaminated pixels in the time series. Cloud masks of Landsat 
images are available from the USGS Earth Explorer system. Although the 
cloud mask produced by the Fmask algorithm has acceptable accuracy in 
many places, the omission of clouds and cloud shadows will lead to errors 
in the interpolation results. Therefore, two extra steps are used to reduce the 
omission errors in cloud mask: (1) considering that the omission errors often 
happen at the edges of cloud patches, a buffer of 1 or 2 pixels can be added to 
the cloud patches; (2) manual editing is needed if there are still contaminated 
pixels not marked in the mask. As Figure 2.1 shows, there are 3 main steps for 
the proposed automatic system. The details will be described below.

2.2.1 Classify Uncontaminated Pixels in Each Image

The NSPI method assumes that pixels with the same class should have high 
spectral similarity and similar temporal changing pattern (Chen et al., 2011). 
To speed up the searching of spectrally similar pixels in the original NSPI 
method, all input images in the time series are classified based on the spectral 
similarity of pixels. Here, to ensure the automation of the whole system, we 
use a classic unsupervised classifier, K-means, to classify the uncontaminated 
pixels in each image. The k-means method uses an iterative procedure. At 
each iteration, each pixel is assigned to one class based on the closeness with 
the class means obtained from the last iteration, and then class means are 
updated using a new class labels of pixels. The iterative process will be ended 
when the class labels no longer change (Lloyd, 1982). Number of classes, k, 
is an important parameter in K-means classification. It can be determined 
empirically based on the study area and the same value is used for all of the 
images. In most cases, the number of classes ranges from 3 to 10. Specifically, 
urban areas often have 7–10 land cover types, rural areas have 4–6 land cover 
types, and areas without human activities have 3–4 land cover types. The 
final result is a classification map of uncontaminated pixels for each of the 
original Landsat images.

2.2.2  Select Ancillary Data for Each Contaminated 
Pixel from the Time Series

In the NSPI method, to interpolate the value of a contaminated pixel, which 
is named as a target pixel, a clear observation in other images corresponding 
to this target pixel is needed. This clear observation is named as ancillary 
data. As a result, to interpolate all contaminated pixels in any one image 
of the time series, we need to select the best ancillary data from the time 
series for each contaminated pixel. Assuming that there are K images in the 
time series, we are interpolating the ith image (i = 1, … , K). The searching 
process of ancillary data for all contaminated pixels in the ith image is as 
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follow: (1) sort all other K-1 images in the time series based on the temporal 
closeness to the ith image; (2) start from the image closest to the ith image, 
clear pixels in this image corresponding to contaminated pixels in the ith 
image are selected as ancillary data of these contaminated pixels; (3) for 
the remaining contaminated pixels without ancillary data, do the above 
selecting process in the next closest image; (4) repeat the searching process 
until all contaminated pixels have ancillary data selected.

2.2.3 Interpolate Contaminated Pixels by NSPI

There are some differences between the NSPI method for SLC-off gap filling 
(Chen et al., 2011) and MNSPI for cloud removal (Zhu et al., 2012a). To integrate 
NSPI and MNSPI in one system for interpolating pixels contaminated by both 
clouds and SLC-off gaps, the original NSPI method needs some modifications. 
Below will briefly describe the steps of NSPI interpolation, while more details 
can be find in Chen et al. (2011) and Zhu et al. (2012a).

Let us assume that a contaminated pixel (x, y) in a Landsat image to be 
interpolated was acquired at t2, and its corresponding ancillary data were 
provided by a Landsat image acquired at t1. The first step is searching for 
similar pixels based on the ancillary data. The original NSPI and MNSPI use 
different strategies to search for similar pixels based on the different properties 
of SLC-off gaps and clouds. Here, a new strategy appropriate for both gaps 
and clouds is used. As shown in Figure 2.2, a target pixel contaminated by 
clouds is to be interpolated. First, using the spectral classification map of 

Ancillary image at t1 The target image at t2

Target pixel to be interpolated

Clouds SLC-off gaps Spectral class patches

Similar pixels selected

FIGURE 2.2
Schematic diagram of the similar pixel selection.
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the ancillary image, pixels that are clear in both the target image and the 
ancillary image and that are the same class as the target pixel are selected 
by an adaptive window procedure (Chen et al., 2011) as the candidates for 
similar pixels. Second, the N (e.g., 20) pixels that are most similar to the target 
pixel are selected as similar pixels from the candidates. Here, the similarity is 
defined as the root mean square deviation (RMSD) between each candidate 
pixel and the target pixel as Equation 2.1:
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where L(xi, yi, t1, b) is the band b value of ith candidate pixel located in (xi, yi,) 
in the ancillary image acquired at t1, L(x, y, t1, b) and has the same definition 
but for a target pixel, and n is the number of spectral bands.

The similar pixels are given different weights when they are used to predict 
the value of the target pixel. The weight Wj determines the contribution of the 
jth similar pixel for predicting the value of the target pixel. This is determined 
by the spatial distance and the spectral similarity between the similar pixel 
and the target pixel (Gao et al., 2006). Higher spectral similarity and smaller 
distance of a similar pixel to the target pixel will increase the weight of that 
given pixel. Therefore, the weight of the jth similar pixel, Wj, can be calculated 
by the following equations:
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The range of Wj is from 0 to 1, and the sum of all similar pixel weights is 1.
Then, two initial predictions using the spatial information and temporal 

information can be calculated, respectively. First, since the similar pixels 
have the same or approximate spectral value as the target pixel when they 
are observed at the same time, we can use the information of these similar 
pixels in the image at t2 to predict the target pixel. Accordingly, the weighted 
average of all the similar pixels in the target image is used to make the first 
prediction for the target pixel:
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Secondly, for the target pixel, the value at t2 equals the sum of the 
value at t1 and the change from t1 to t2. Because the value at t1 can be 
obtained directly from the ancillary image, we only need to estimate the 
change of the target pixel from t1 to t2. It is reasonable to assume that 
the change of similar pixels can represent the change of the target pixel, 
because the similar pixels have the same temporal pattern as the target 
pixel. Accordingly, the weighted average of the change provided by all 
the similar pixels is used to calculate the value of the target pixel as the 
second prediction:
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Last, a weighted combination of the two initial predictions is used to 
compute the final prediction. The weights (T1 and T2) are determined by the 
extent of spatial continuity and the extent of temporal continuity between 
the ancillary image and the target image estimated from similar pixels. Here, 
the averaged RMSD (R1) between the similar pixel and the target pixel is used 
to denote the extent of the spatial continuity:
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In the same way, the averaged RMSD (R2) of similar pixels between 
observations at t1 and t2 is used to denote the extent of temporal continuity 
between the input image and the target image:
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Then, the normalized reciprocal of R1 and R2 is used as the weight T1 and 
T2 respectively:
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The final predicted value of the target pixel is calculated as:
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The above interpolation process is implemented for all contaminated pixels 
in each image of the time series until all images are reconstructed.

2.3 Experiments

To evaluate the feasibility and effectiveness of the proposed automatic system, 
two experiments were carried out: a real cloudy time series reconstruction 
and a simulated cloudy time series reconstruction.

For the experiment with the real cloudy time series reconstruction, 15 
Landsat-7 images covering Mona Island of Puerto Rico (a size of 400 × 400 
pixels) were used. Mona Island lies 66 km west of Puerto Rico. It is a mainly 
flat limestone plateau surrounded by sea cliffs and covered by tropical dry 
forests. As is typical in tropical regions, most Landsat images of this island 
are cloudy. In this experiment, we used all 15 Landsat-7 images acquired from 
2008 and 2009 with less than 60% of pixels contaminated by clouds, cloud 
shadows, and SLC-off gaps. These images were stacked according to their 
dates (i.e., day of year) to composite a one-year time series (Table 2.1). From 
Table 2.1, the proportion of contaminated pixels in images varies from 23.67% 
to 57.29%. Figure 2.3 shows a false-color composite of 3 images with low, 
medium, and high proportions of contaminated pixels. It is a common issue 
for existing methods that the accuracy of image reconstruction decreases with 

TABLE 2.1

Summary of Landsat-7 Images in Mona Island Site

ID Year Day of Year Contaminated Pixels %

1 2008 11 26.37
2 2008 27 25.96
3 2008 43 25.25
4 2009 61 32.89
5 2009 77 37.62
6 2008 91 25.68
7 2009 109 46.68
8 2008 139 57.29
9 2008 171 48.47
10 2008 203 27.48
11 2009 253 53.11
12 2009 301 24.23
13 2009 317 46.68
14 2009 333 27.63
15 2009 349 23.67
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the proportion of missing pixels, so the different proportions of contaminated 
pixels in this site are good for testing whether or not the performance of 
the proposed method is acceptable for images with large proportions of 
contaminated pixels.

To more quantitatively assess the accuracy of seasonal image 
reconstruction, another study site with a lot of cloud-free Landsat images 
was used to implement a simulation study. Fifteen cloud-free Landsat 7 
images were provided by Emelyanova et al. (2013). This site is in southern 
New South Wales, Australia, and has a heterogeneous landscape. The 
major land cover types in this area are irrigated rice cropland, dryland 
agriculture, and woodlands. These images were acquired during 2001 
October to 2002 May. Rice croplands are often irrigated in October-
November, which leads to large temporal changes in the time series. Both 
high temporal change and high heterogeneity challenge the reconstruction 
of contaminated pixels, so this data set is ideal for testing the effectiveness 
of the proposed method. We cut all images to the image size of Mona Island 
for this experiment. Cloud masks from the Mona Island site were overlaid 
onto all 15 cloud-free images in this site to produce pseudo cloudy images. 
Figure 2.4 shows one image in this site and its corresponding simulated 
contaminated image using the mask from a Mona Island image shown in 
Figure 2.3 (the right one).

Then, the proposed method was applied to these pseudo cloudy images. 
The accuracy was evaluated through the calculation of two statistical 
indices. The first index is the root mean square error (RMSE). This metric 
is frequently used to assess the differences between values predicted by 
a model and the values observed or measured. A larger RMSE indicates 
a larger prediction error. The second metric is correlation coefficient (R) 
between the actual values and predicted values of contaminated pixels. R 
is used to show the linear relationship between actual and reconstructed 
images. An R value closer to 1 indicates higher accuracy of reconstructed 
images.

2009 DOY 349 2009 DOY 061 2008 DOY 139

FIGURE 2.3
False-color composite of 3 Landsat-7 images in Mona Island with low, medium, and high 
proportion of contaminated pixels (from left to right).
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2.4 Results

2.4.1 Reconstruction of Real Landsat Time Series

All the 15 images in the time series were reconstructed successfully. To save 
space here, Figure 2.5 only shows the reconstructed results of three images 
in Figure 2.3, but other images have similar reconstruction results. We can 
see that regardless of the proportion of contaminated pixels the images have, 
the reconstructed images appear spatially continuous without displaying 
the footprints of gaps or cloud/shadow patches. The result suggests that the 
proposed automatic system can interpolate contaminated pixels accurately to 
produce high-quality time series.

Although we cannot assess the accuracy quantitatively for Mona, because 
the true pixel values are unknown, we can analyze the time series based 

(a) (b)

FIGURE 2.4
A Landsat-7 image acquired on February 11, 2002 (a) and its simulated contaminated image 
using the mask from the Mona Island image of 2008 DOY139 (b).

2009 DOY 349 2009 DOY 061 2008 DOY 139

FIGURE 2.5
Reconstruction results of three contaminated images shown in Figure 2.3.
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on the prior knowledge of the vegetation growing cycle to evaluate the 
usefulness of the reconstructed images. Figure 2.6 shows the average 
enhanced vegetation index (EVI) time series (Huete et al., 2002) derived from 
the 15 reconstructed images over Mona Island. The dry season of Mona 
Island is from January to April. As can be seen from the EVI curve, the EVI 
values decrease during the dry season and reach the lowest point in the 
end of March. This temporal pattern is consistent with the local vegetation 
pattern as the deciduous tree species lose leaves during the dry season. The 
EVI curve from the reconstructed time series indicates the reliability of the 
proposed method. It can help us to monitor vegetation seasonality at high 
frequency.

2.4.2 Reconstruction of Simulated Landsat Time Series

Quantitative accuracy assessment of reconstruction results of all 15 simulated 
contaminated images are reported in Table 2.2. The proposed method was 
used to reconstruct all 6 bands with 30-m resolution. To save space and 
because results from the two shortwave bands are similar to those for the first 
four bands, only results from the first 4 bands were listed in Table 2.2. R values 
of all images are higher than 0.8, and most RMSE values are less than 0.02, 
suggesting that the proposed automatic system interpolated all contaminated 
pixels very accurately. In addition, most existing methods do not usually yield 
acceptable results when there are large proportions of contaminated pixels. 
Figure 2.7 shows the scatter plot between the accuracy (both RMSE and R) of 
near infrared (NIR) band and the proportion of contaminated pixels. No clear 
relationship exists in the scatter plot, suggesting that the proposed method 
yields a robust result, regardless the proportion of pixels contaminated in an 
image.
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0.40
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I
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0.20
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Date (day of year)

32 60 91 121 152 182 213 244 274 305 335

FIGURE 2.6
Enhanced vegetation index (EVI) time series of Mona Island derived from reconstructed 15 
Landsat-7 images. Each circle is the mean value of all pixels in this study area and the error bar 
is one standard deviation.
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Figure 2.8 shows the NIR band results of two simulated contaminated 
images. One image has a low proportion of contaminated pixels (upper row 
in Figure 2.8), while another one has a high proportion of contaminated pixels 
(lower row in Figure 2.8). By visual comparison of both of the reconstructed 
images shown in Figure 2.8, the reconstructed images are very close to the 
actual images. We can see that all the spatial details were retrieved well, 

TABLE 2.2

RMSE and R Values of Reconstructed 15 Simulated Landsat-7 Cloudy Images

ID Year DOYa CP %b

RMSE R

Band1 Band2 Band3 Band4 Band1 Band2 Band3 Band4

1 2001 17 26.37 0.0075 0.0092 0.0141 0.0300 0.90 0.90 0.91 0.96
2 2001 33 25.96 0.0080 0.0104 0.0152 0.0304 0.88 0.88 0.90 0.95
3 2001 40 25.25 0.0081 0.0105 0.0165 0.0359 0.84 0.84 0.86 0.90
4 2001 56 32.89 0.0073 0.0096 0.0145 0.0230 0.91 0.92 0.93 0.94
5 2001 65 37.62 0.0098 0.0146 0.0231 0.0319 0.89 0.90 0.91 0.91
6 2002 97 25.68 0.0081 0.0117 0.0183 0.0273 0.96 0.96 0.97 0.93
7 2002 104 46.68 0.0094 0.0142 0.0219 0.0285 0.94 0.94 0.95 0.92
8 2002 136 57.29 0.0098 0.0131 0.0193 0.0281 0.91 0.91 0.92 0.91
9 2002 145 48.47 0.0092 0.0118 0.0182 0.0296 0.89 0.89 0.90 0.91
10 2002 168 27.48 0.0082 0.0109 0.0148 0.0250 0.90 0.88 0.92 0.95
11 2002 184 53.11 0.0074 0.0089 0.0130 0.0255 0.91 0.90 0.93 0.94
12 2002 193 24.23 0.0082 0.0108 0.0162 0.0269 0.85 0.87 0.89 0.92
13 2002 200 46.68 0.0088 0.0112 0.0158 0.0262 0.84 0.85 0.88 0.91
14 2002 209 27.63 0.0075 0.0086 0.0118 0.0164 0.91 0.93 0.94 0.97
15 2002 216 23.67 0.0065 0.0078 0.0114 0.0177 0.91 0.94 0.95 0.96

a DOY: days starting from October 1, 2001.
b CP%: proportion of simulated contaminated pixels.
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FIGURE 2.7
Scatter plot between proportion of contaminated pixels in each image and the accuracy of 
reconstructed images: root mean square error (RMSE) and correlation coefficient R.
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indicating that the contaminated pixels interpolated by our method have 
high accuracy, even when the landscape is very heterogeneous.

Figure 2.9 shows the average NDVI time series derived from the 15 cloud-
free Landsat-7 images compared with the time series as reconstructed 
with the simulated contaminated images. It is clear that the two NDVI 
temporal curves are very consistent with each other. Both curves describe 
well the temporal dynamics associated with crop phenology over a single 
growing season. During the irrigation period, the NDVI values decrease. 
Then, NDVI values increase during the crop growing period (Emelyanova 
et al., 2013). This temporal pattern from reconstructed images shows that 
the reconstructed time series can be used to monitor a fast-changing 
agricultural landscape.

2.5 Conclusion and Discussions

Landsat time series data have been widely used to study seasonal land 
surface dynamics at regional and global scales, but the SLC failure in 
Landsat-7 and cloud contamination reduce the chances of obtaining a 

(a) (b) (c)

(d) (e) (f )

FIGURE 2.8
Images in upper row are NIR band of simulated contaminated Landsat-7 image of DOY*136 
(a), the true image (b), and the reconstructed image (c). Images in lower row are NIR band 
of simulated contaminated Landsat-7 image of DOY*216 (d), the true image (e), and the 
reconstructed image (f).
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high-quality time series. Therefore, the necessary and feasible way to 
address this problem is to interpolate contaminated pixels to reconstruct the 
time series. This chapter introduces an automatic system to reconstruct all 
contaminated images simultaneously in a time series, which is based on the 
NSPI method and an iterative process. The real and simulation experiments 
show that the proposed method can reconstruct dense Landsat time series 
successfully. The vegetation indices derived from the reconstructed time 
series can be used to monitor the vegetation seasonality, including forest 
phenology and crop growing stages. The robustness of the proposed method 
for interpolating images with large proportions of missing pixels is very 
important because it is difficult to acquire good quality images in cloudy 
regions (Ju and Roy, 2008). Considering that the Landsat series have collected 
data over 40 years, the method introduced in this chapter will promote 
the use of seasonal Landsat time series in various disciplines, including 
ecology, hydrology, earth science, environmental science, agriculture, and 
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FIGURE 2.9
NDVI time series derived from original cloud-free Landsat-7 images (a) and from reconstructed 
results of simulated contaminated images (b). Each circle is the mean value of all pixels and the 
error bar is one standard deviation.
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even sociology. Studying seasonality can advance our understanding of 
interactions between different Earth systems and improve our ability to 
predict future scenarios.

In general, the proposed method has the following strengths: (1) it makes 
full use of temporal and spatial information contained in all images in 
the time series and produces the contamination-free images in all seasons 
simultaneously; (2) it integrates cutting edge techniques for SCL-off gap filling 
and cloud removal into one system so that various types of missing pixels 
can be processed at the same time; (3) it is highly automated with minimal 
predefined parameters and human-computer interactions, so it can be user 
friendly for people from fields other than remote sensing. The proposed 
method has been successfully applied to study vegetation phenology in 
Puerto Rico and the US Virgin Islands (Gwenzi et al., 2017). The open-source 
program of the proposed method can be downloaded from the developer’s 
website: xiaolinzhu.weebly.com.

The proposed method may face some challenges in some specific 
situations. First, in regions with extremely persistent clouds, it would be 
very difficult to reconstruct Landsat time series with acceptable accuracy 
because clouds totally cover many Landsat images. A possible way to solve 
this problem is to incorporate data from other sensors with short revisit 
cycles, such as MODerate resolution Imaging Spectroradiometer (MODIS) 
images. Currently, some spatiotemporal data fusion methods have been 
developed to fuse MODIS and Landsat images to increase the frequency 
of Landsat observations (Gao et  al., 2006; Zhu et  al., 2016, 2010). These 
techniques could be integrated into our automatic system in the future. 
Second, the proposed method contains a similar pixel searching process 
for each contaminated pixel, so it may need a lot of computing time when 
processing massive images over large area. Therefore, we recommend 
using high performance computers or parallel computing to increase the 
computing speed when it is used to reconstruct Landsat time series over 
large area and long period.
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