

Forest Service

Southern Forest Experiment Station

Joseph M. Wunderle, Jr.

SINOPSIS

Pueden usarse diferentes métodos para estudiar la distribución de una especie de ave terrestre o para llevar cuenta de los cambios en sus poblaciones. El método apropiado dependerá de si el objetivo es sencillamente documentar la presencia de una especie, o cuantificar su abundancia relativa, densidad poblacional, tendencias poblacionales a largo plazo, uso de hábitat, presunción de supervivencia, o las condiciones físicas de individuos de la especie. Una vez definido el objetivo es necesario considerar la selección del lugar de estudio, el total de unidades muestra, la hora del día, época del año y la experiencia del personal de campo. Las técnicas censales—y sus ventajas y desventajas en las islas del Caribe-que se tratan en este trabajo son: Recuento en punto sin estimación de distancia, recuentos en punto con radio variable, recuentos en punto con radio fijo, recuentos en punto para cotorras, transectos de línea sin estimado de distancia, transectos de línea de distancia variable, transectos de faja, representación en mapa estadístico, representación en el mapa del territorio de las aves marcadas, redes ornitológicas y el uso de reproducciones de grabaciones para aumentar la posibilidad de detección. En el caso de la mayoría de los estudios de aves terrestres en el Caribe, se recomienda el método de recuento en punto.

RECONOCIMIENTOS

Wylie C. Barrow, Jr.; Robert W. Colburn; Francisco J. Vilella; Robert B. Waide; y los participantes en los talleres sobre censos de vida silvestre celebrados en St. Lucia y Jamaica proveyeron comentarios constructivos a un borrador inicial de este trabajo. Además, el trabajo se benefició de los comentarios constructivos de Robert A. Askins, Peter G.H. Evans, John R. Faaborg, Peter Pyle, C. John Ralph, Nigel Varty y James W. Wiley. Por último, agradezco a Peter Pyle su autorización para usar sus figuras, ya antes publicadas. Las ilustraciones de las Figuras 4 hasta la 11 son adaptados de Pyle y otros 1987, por S.N.G. Howell.

Métodos Para Contar Aves Terrestres Del Caribe

Joseph M. Wunderle, Jr.

INTRODUCCION

En las Islas del Caribe actualmente hay 37 especies de aves residentes en peligro de extinción; 34 de ellas son especies terrestres (Collar y Andrew 1988). Además, el Caribe recibe la visita de miles de aves migratorias de Norte América cada invierno y muchas de ellas pueden verse amenazadas por alteraciones en su hábitat de reproducción o de sus áreas de invernada en el Caribe. En la mayoría de los casos. sabemos muy poco o nada sobre la biología de población básica necesaria para evitar la desaparición de estos residentes o visitantes de las islas. Con frecuencia nuestra ignorancia incluye una falta de información fundamental sobre la distribución de hábitats, las fluctuaciones normales en la población, y la reacción poblacional a una gama de alteraciones naturales o inducidas por el hombre. Esta ignorancia podría resultar trágica para algunas de las especies en peligro de extinción de la región, en particular en islas en que las alteraciones inducidas por el hombre o los sucesos naturales frecuentes, tales como sequías y huracanes, podrían reducir drásticamente las poblaciones de aves. Así pues, es necesario estimular y ayudar a los biólogos del Caribe para que censen y sigan de manera sistemática las poblaciones de aves en sus islas.

Los ornitólogos han usado una variedad de técnicas para estudiar la abundancia y distribución de las poblaciones de aves en el Caribe. Por ejemplo, algunos estudios han incluido observadores que permanecen fijos durante un intervalo de tiempo establecido y cuentan todas las aves detectadas en un punto (Cox y Ricklefs 1977, Rivera-Milán 1992, Wunderle 1985) o que cuentan solamente aquellas aves detectadas a una distancia determinada del observador (Wunderle y otros 1992) antes de pasar al próximo punto. En otros casos, el observador cuenta y totaliza aves mientras camina despacio a lo largo de un transecto de línea (Lack 1976, Lack y Lack 1973, Lack y otros 1973). En algunos casos, además de contar aves, el observador anota la distancia entre las aves y el transecto (Cruz y Delannoy 1984, Emlen 1977a, Faaborg y Arendt

1985) o cuenta solamente las aves a una distancia determinada del transecto (Vilella y Zwank 1987). Algunos estudios incluyen la reproducción de grabaciones del canto u otras vocalizaciones de ciertas especies sigilosas para inducir una respuesta y documentar su distribución en el hábitat y su abundancia (Blockstein 1988, Varty 1991, Wunderle 1992). Aves capturadas en redes ornitológicas también brindan una indicación de abundancia (Diamond 1974, Terborgh y Faaborg 1973, Terbrogh y otros 1978, Faaborg y Arendt 1985, Wunderle y otros 1987). Finalmente se pueden obtener estimados de densidad (aves por unidad de área) al indicar en un mapa la posición de aves territoriales no marcadas (Recher 1970) o por métodos más intensivos que requieren que las aves sean capturadas con redes ornitológicas y luego marcadas con combinaciones particulares de anillos de color. Una vez marcadas se sueltan las aves; a continuación el observador indica su territorio en un mapa (Holmes y otros 1989).

Solamente en pocos casos se ha seguido la pista a poblaciones de aves en el Caribe durante largos periodos de tiempo. Un seguimiento a largo plazo con redes ornitológicas en el bosque seco de Puerto Rico ha permitido documentar cambios poblacionales en especies residentes como consecuencia de la lluvia durante 9 años (Faaborg y otros 1984) y reducciones en aves migratorias de Norte América que invernan aquí durante 16 años (Faaborg y Arendt 1991). Recuentos navideños de aves auspiciados por la National Audubon Society, con sede en Nueva York, se han efectuado con regularidad (durante más de 15 años en algunas áreas en el Caribe). Si bien los recuentos navideños tienen muchas deficiencias, han permitido a los investigadores detectar algunos patrones general en términos de distribución y abundancia (Pashley y Martin 1988). En algunos casos, los esfuerzos de seguimiento se han concentrado en especies en peligro de extinción, como la Cotorra de Puerto Rico (Amazona vittata). Con esta especie se realizan censos que incluyen gran número de observadores situados en puntos de observación dispersos en árboles, en cimas

Joseph M. Wunderle Jr., es un biólogo investigador de vida silvestre trabaja para el Instituto Internacional de Dasonomía Tropical, Departamento de Agricultura, Servicio Forestal, Río Piedras, PR 00928-2500. Con la cooperación de: Universidad de Puerto Rico, Río Piedras, PR 00928-4984.

de colinas o en torres. Los censos tienen lugar al anochecer o al amanancer, cuando las aves se dirigen a o abandonan sus dormideros (Snyder y otros 1987). Estos recuentos sistemáticos de cotorras comenzaron a realizarse en 1968 y continúan en la actualidad.

El recién iniciado podría creer que se ha usado una variedad confusa de métodos para tomar muestras de las poblaciones de aves terrestres en el Caribe. No obstante, en los ejemplos indicados arriba, el método usado por lo general fue el apropiado para contestar la pregunta o las preguntas de los investigadores. Por lo tanto, la selección de un método de muestreo en particular dependerá de la pregunta que interesa al investigador y del tiempo y los recursos disponibles para realizar la muestra.

En este documento se resumen algunos de los métodos censales para aves más apropiados al tomar muestras de aves terrestres caribeñas, en particular pájaros cantores (Paseriformes) en las islas del Caribe. Los métodos censales aquí descritos pueden emplearse para estudios de abundancia y distribución de hábitats. Por ejemplo, pueden efectuarse censos en una variedad de hábitats diferentes para determinar en cuál hábitat abunda más la especie de interés. Localizar la especie amenazada y su hábitat apropiado constituye la primera fase de cualquier esfuerzo de conservación. Una vez identificado el hábitat apropiado, deben llevarse a cabo censos sistemáticos regulares para mantenerse al tanto de cambios en la población durante periodos largos de tiempo. Un seguimiento sistemático y a largo plazo permite al observador determinar cómo las poblaciones de aves reaccionan a sucesos naturales o inducidos por el hombre. Los estudios recientes de huracanes, en los que la información censal recopilada antes de un huracán permitió contar con un punto de referencia contra el cual comparar los datos recopilados después de pasado el huracán, sirven para ilustrar los beneficios del seguimiento a largo plazo (Askins y Ewert 1991, Waide 1991, Wauer y Wunderle 1992, Wunderle y otros 1992).

Muchas publicaciones han descrito los métodos y técnicas de muestreo para paseriformes, y algunas de ellas han sentado las bases para una gran parte de este trabajo (Pyle y otros 1987; Ralph y otros, 1993; Verner 1985). Debido a que estos métodos censales publicados con anterioridad estudiaron especies de zonas templadas, métodos más apropiados para el Caribe, basados en 15 años de experiencia, se enfatizan en este trabajo. El propósito de este articulo es estimular a los observadores de aves del Caribe a que adopten métodos censales de amplia aceptación al estudiar y documentar las poblaciones de aves en sus islas.

REQUISITOS CENSALES

Requisitos Generales

Todo método censal debe satisfacer los requisitos básicos que se indican a continuación y que aparecen en Manuwal y Carey (1991):

- (1) Las aves deben identificarse correctamente.
- (2) Los esfuerzos de muestreo deben ser adecuados para detectar la presencia de la especie.
- (3) Los esfuerzos de muestreo deben ser adecuados para obtener estimados con la precisión deseada.
- (4) Las diferencias detectadas por los observadores deben ser mínimas, o deben justificarse.
- (5) Las diferencias en detectabilidad entre especies deben ser mínimas, o deben justificarse.
- (6) Las diferencias en detectabilidad entre hábitats deben ser mínimas, o deben justificarse.
- (7) Las diferencias en detectabilidad entre años deben ser mínimas, o deben justificarse.

Selección de Lugares de Muestreo

La selección del lugar o lugares para el recuento depende del propósito del mismo. Si la función de los recuentos es describir la distribución y abundancia de especies determinadas amenazadas o en peligro de extinción, entonces los estudios iniciales deben llevarse a cabo en una variedad de hábitats diferentes y posiblemente en los "bordes" de los hábitats. No obstante, para efectos de control a largo plazo, por lo general es mejor tomar muestras en tipos de hábitats uniformes. Si se diseña el estudio para tomar muestras en hábitats uniformes, entonces los recuentos deben llevarse a cabo a 25 m por lo menos, y preferiblemente a 50 m (Hutto y otros 1986) del borde del hábitat, siempre que las condiciones lo permitan.

Factores que afectan los Resultados de un Censo

Hora del Día.— La mejor hora para llevar a cabo un censo es durante la mañana, desde el amanecer hasta aproximadamente las 10:00 a.m. en las tierras bajas, y hasta las 11:00 a.m. en elevaciones altas (>400 m). Es preferible que los censos comiencen 15 minutos después del amanecer. La captura con redes ornitológicas puede efectuarse durante el día, aunque dichas capturas tienden a disminuir al mediodía en los hábitats calurosos y soleados de las tierras bajas.

Epoca del Año.—El recuento y la captura con redes ornitológicas pueden llevarse a cabo en cualquier época del año. No obstante, si el propósito es documentar cambios poblacionales, el recuento o la captu-

ra con red debe hacerse cada año en la misma época más o menos. La comparación entre recuentos efectuados durante la temporada de reproducción y aquellos realizados en otras épocas es difícil debido a cambios en el comportamiento de las aves. Por ejemplo, es más fácil detectar aves durante los censos realizados en la temporada reproductiva cuando son más vocales, pero suelen ser más fáciles de atrapar en la temporada no reproductiva cuando vagan más. Por lo tanto, el tiempo y la temporada de muestreo deben estandarizarse.

Las sequías periódicas pueden constituir un problema serio para los censos estandarizados por fechas fijas durante la temporada reproductiva en muchas áreas de tierras bajas, en particular en la zona de vida subtropical de los bosques secos. Las sequías que implican atrasos en el inicio de las primeras precipitaciones de la estación lluviosa (por lo general en abril o principios de mayo) retrasan la reproducción y, por lo tanto, reducen las detecciones por el censo. Por ejemplo, los recuentos programados para principios de mayo típicamente mostrarían una abundancia de aves en reproducción, pero en un año de sequía la reproducción podría atrasarse hasta principios de junio, lo cual conllevaría menos detecciones de lo normal. Una solución a este problema seria programar los censos para la llegada de las primeras precipitaciones de la estación lluviosa en los bosques secos. No obstante, en bosques húmedos y mojados la mayoría de la reproducción tiene lugar a fines de la estación de lluvias. Por lo tanto, la mejor solución es contar aves solamente después de haberse detectado la actividad reproductiva. Los censos usualmente programados para la temporada no reproductiva (es decir, noviembre a enero) tienen menos probabilidades de enfrentar este problema.

Condiciones del Tiempo.—Un censo o una captura con red jamás deberá llevarse a cabo cuando hay mucho viento, lluvia, neblina, exceso de calor, o cuando el sol bate directamente sobre la red.

Expedientes

Llevar un diario de campo es un requisito esencial de todo estudio de campo. Es de sumo valor llevar cuenta rutinaria de la fecha, hora, lugar, las condiciones climatológicas, el personal, el número y tipo de censos realizados, toda ave observada o escuchada y la fenología de las plantas (cuáles plantas estan echando flores o frutas). Las observaciones adicionales en cuanto a comportamiento, nidificación y conducta predatoria pueden ser de valor. Deben usarse hojas de datos estandarizadas en todo censo. En el apéndice se proveen ejemplos de cada tipo.

Cuidado del Equipo

Los binoculares con magnificación de 7×35 o mayor son los más apropiados para el trabajo censal. El

principal problema enfrentado por los observadores de aves del Caribe es el de mantener los lentes de los binoculares libres de cultivo fungal, lo cual suele suceder en condiciones cálidas y húmedas. Por lo tanto, es esencial guardar los binoculares en un lugar seco, como una caja de madera con una tapa con pequeñas perforaciones, y con una pequeña bombilla en el fondo de la caja para calentar y secar los binoculares que se suspenderán sobre la misma. La bombilla debe estar encendida siempre que los binoculares estén en la caja.

Los binoculares también pueden guardarse en un caja de plástico o metal herméticamente cerrada (algunos envases de galletas son ideales) con un saco de tela o un calcetín viejo lleno de cristales de sílica, para absorber la humedad del envase y los binoculares. Los cristales se tornarán rosados cuando estén saturados de humedad y puede secarse en un horno hasta que recobren su color azul normal. Los cristales de sílica absorberán la humedad del envase, protegiendo los binoculares de la humedad. Los cristales de sílica pueden adquirirse comercialmente en un sinnúmero de tiendas de efectos fotográficos.

METODOS CENSALES

Selección del Método Censal

Una vez definidos los objetivos del estudio, es posible seleccionar un método apropiado para tomar un censo de las poblaciones de aves (tabla 1). Cualquiera de una variedad de métodos puede emplearse para detectar la presencia de una especie en un hábitat. Si la especie de interés es especialmente rara o sigilosa, el uso de una reproducción de vocalizaciones grabadas puede aumentar la probabilidad de su detección. Si el objetivo del estudio es obtener una medida de la abundancia relativa (es decir el número de individuos de la especie por punto, el porcentaje de puntos con uno o más individuos, el numero de individuos por kilómetro de transecto, etc.), entonces también hay una variedad de métodos disponibles. Las mediciones de abundancia relativa son útiles para fines comparativos, como la comparación de hábitats o años. Las tendencias poblacionales pueden seguirse usando los mismos métodos empleados para tomar muestras de abundancia relativa. Sólo unos pocos métodos son apropiados para medir la densidad poblacional (es decir, el número de individuos por hectárea), pero afortunadamente la mayoría de las medidas de abundancia relativa son adecuadas para la mayoría de los propósitos. Por último, si su objetivo requiere medir la condición física de las aves (gordas o flacas) o medidas de supervivencia, será necesario recurrir a atrapar las aves con redes ornitológicas.

Tabla 1.—Resumen de métodos censales y cuán apropiados resultan para objetivos específicos en el Caribe (Adaptado de Manuwal y Carey 1991)

Método	Objetivo*									
	Presencia especie	Abundancia relativa	Tendencias poblacionales	Densidad	Uso del hábitat	Condición	Supervivencia			
Recuentos en punto Sin estimado de										
distancia	\mathbf{R}	X	X		X					
Radio variable	X	X	X		X					
Radio fijo	X	R	R		X					
Transectos Sin estimado de										
distancia Estimado de	X	X	X							
distancia variable	X	X	X	X						
Transecto de faja	X	X	X	X						
Representación										
en mapa estadístico	${f E}$	${f E}$	\mathbf{E}	R	X					
Representación en mapa de aves										
marcadas	${f E}$	${f E}$	E	X	X		R			
Capturas con redes										
ornitológicas			X			R	X			

^{*}X = adecuado para lograr el objetivo.

R = recomendado para el Caribe.

Recuentos en Punto

Los recuentos en punto constituyen uno de los métodos más populares para estudiar las distribuciones de aves y documentar los cambios poblacionales en las aves terrestres del Caribe. Este método puede usarse para estudiar cambios anuales en las poblaciones de aves en puntos fijos, las diferencias en la composición de especies entre hábitats y la abundancia de diferentes especies en un lugar específico. Este método resulta particularmente apropiado para hábitats caribeños en que el suelo escarpado o la vegetación densa y llena de matorrales dificulta el caminar. Los recuentos en punto requieren que un observador permanezca fijo en un lugar durante un tiempo determinado y que registre toda ave detectada ya sea visualmente o auditivamente su canto. Debe haber una distancia mínima de 100 m entre cada lugar de recuento en punto, y preferiblemente de 150 ó 200 m. Un único observador puede completar de 12 a 15 recuentos en punto cada mañana, dependiendo del terreno. Dependiendo de la abundancia de la especie y el propósito de los recuentos, deben realizarse por lo menos 30 recuentos. El método puede aplicarse una o muchas veces en un lugar determinado.

El tiempo dedicado a cada punto debe representar el tiempo mínimo necesario para tomar una muestra de por lo menos el 80 por ciento de las especies presentes en el punto. Por ejemplo, estudios preliminares de Waide y Wunderle¹ en un bosque tropical y un bosque seco de Puerto Rico indicaron que en un recuento en punto, durante los primeros cinco minutos se toma la muestra del 35 a 46 por ciento de las especies, durante diez minutos del 29 al 83 porciento de las especies, y durante quince minutos del 85 al 88 por ciento de las especies, suponiéndose que el 100 por ciento de las especies se detecta en 20 minutos. Estos resultados, y los de Askins y Ewert (1991), sugieren que un recuento en punto de diez minutos puede ser adecuado para la mayoría de los estudios en el Caribe. No obstante, los observadores tal vez querrán llevar a cabo algunos experimentos iniciales para establecer el tiempo apropiado y necesario para tomar la muestra en un punto.

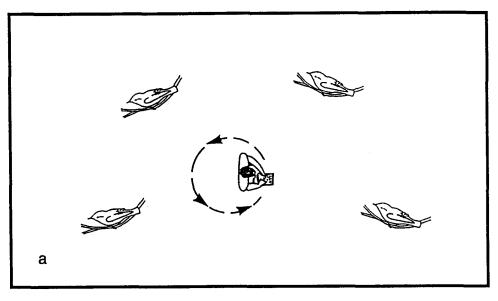
E = excesivo, provee más detalles de los necesarios para lograr el objetivo.

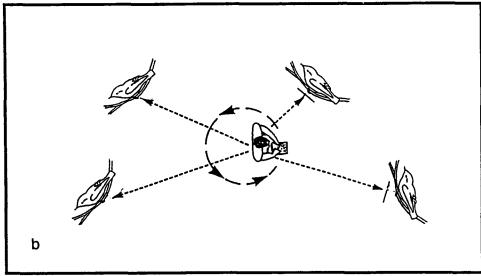
¹ Waide, Robert B.; Wunderle, Joseph M., Jr. 1987. Changes in habitats available to migrant land birds in the Caribbean. Unpublished interim report submitted to World Wildlife Fund-U.S., Washington, DC.

Debido a su sencillez y conveniencia en terrenos escarpados y densa vegetación, el método de recuento en punto es apropiado para la mayoría de las encuestas y seguimiento de paseriformes en el Caribe. Desafortunadamente, los recuentos en punto no son muy precisos a la hora de estimar densidades poblacionales, en particular en el caso de especies de baja densidad. Por ejemplo, Burnham y otros (1980) han demostrado que a fin de estimar con exactitud la densidad poblacional de una especie es necesario que por lo menos 40 recuentos en punto detecten la especie de interés, de manera que los estimados de densidad para especies raras pueden requerir 100 recuentos en punto o más. No obstante, para la mayoría de los propósitos de conservación, tal vez no sea necesario un estimado de densidad, y los resultados de los recuentos en punto pueden brindar un índice confiable de abundancia. De hecho, Verner (1985) argumenta que los recuentos en punto son el método preferido para vigilar las tendencias poblacionales a largo plazo ya que ". . . el tiempo dedicado a contar puede controlarse absolutamente y pueden tomarse muestras en más lugares, lo que permite un muestreo más representativo." No obstante, para obtener recuentos en punto con exactitud deben tomarse en consideración varios factores. Debidos a que tanto en el método de radio variable como en el método de recuentos en punto con radio fijo deben hacerse estimados de distancia, es esencial que todos los participantes practiquen la estimación de distancias con referencias conocidas en el hábitat apropiado. Un telémetro óptico puede ser de mucha utilidad para practicar los estimados de distancia. La práctica debe continuar hasta que todos los observadores logren niveles consistentes de exactitud para distancias de 25 m o menos.

La exactitud de los recuentos en punto (como en la mayoría de los otros métodos) probablemente varíe de hábitat en hábitat. Los métodos censales visuales (recuentos en punto, transectos, representación en mapa estadístico, etc.) detectan la mayoría de las especies en áreas abiertas y en áreas de baja vegetación, pero no así en áreas de densa vegetación. Lo que es más, a medida que la vegetación crece disminuye la posibilidad de detectar ciertas especies en las copas de los árboles. Esta deficiencia quedó ilustrada en un recuento en punto realizado por Waide y Narins (1988) quienes establecieron puntos de observación en la copa de los árboles a 22 m de altura en el bosque tropical lluvioso de El Verde en Puerto Rico. Aquí descubrieron que dos de las tres especies cantoras que habitan la copa de los árboles fueron subestimadas por entre un 33 y un 46 porciento en los recuentos terrestres en punto. Las especies de canto suave o de alta frecuencia tuvieron mayor probabilidad de ser pasadas por alto por los observadores en el suelo. Para contrarrestar este problema sugirieron usar un recuento en punto con radio fijo pequeño de 20 m (o banda fija pequeña

para transectos), ya que esto tendía a minimizar el sesgo contra ciertas especies de aves cantoras que habitan las copas de los árboles. También debe tenerse cuidado al estimar la distancia a los individuos cantores o de llamado (aquellos no observados), porque este es el método más vulnerable al error.


Los recuentos en punto pueden clasificarse en tres categorías principales dependiendo de cómo el observador trata la información sobre distancia de las aves (fig. 1), y puede añadirse una cuarta clasificación cuando se modifica para contar cotorras.


Recuentos en Punto sin Estimación de Distancia.—Las aves detectadas se cuentan sin tomar en consideración su distancia del observador. Estos recuentos no pueden usarse para estimar densidad, pero son de utilidad al medir la riqueza de especies. Cox y Ricklefs (1977) y Wunderle (1985) muestran ejemplos del uso de este método.

Recuentos en Punto de Radio Variable.—El observador estima la distancia que lo separa del ave detectada. El análisis por especie puede incluir datos agrupados ya sea en círculos concéntricos de radio similar a partir del punto, o datos desagrupados (Reynolds y otros 1980).

Recuentos en Punto con Radio Fijo.—Se registran detecciones de aves en un circulo con radio fijo alrededor del observador, aparte de toda detección fuera del radio. El tamaño del radio dependerá de cuán densa es la vegetación y la habilidad del observador para detectar todas las aves. Por lo tanto, el observador deberá seleccionar el radio mayor en que le sea posible detectar todas las aves. En el caso de la mayoría de los hábitats, a excepción de donde la vegetación es densa, el radio estándar utilizado es de 25 m.

Este método puede usarse para calcular tres índices de abundancia de aves, y cualquiera de ellos puede usarse para hacer pruebas de diferencias en la composición de la comunidad entre lugares, o de diferencias en la abundancia de una especie de ave en particular entre lugares diferentes o para años diferentes. Estos índices son (1) la media de detecciones en un área de 25 m del observador; (2) el porcentaje o la proporción de puntos con una o más detecciones en un área de 25 m del observador; (3) el porcentaje o la proporción de puntos con una o más detecciones, sin importar su distancia del observador. Estos índices permiten comparaciones con pruebas estadísticas estándar (Hutto y otros 1986). Dado que las especies difieren en términos de detectabilidad, a veces es útil calcular un coeficiente de detección para cada especie, en particular cuando se comparan especies diferentes, pero también cuando se compara la misma especie en diferentes épocas del año (por ejemplo temporada de reproducción vs. pasada la temporada de reproducción). Por ejemplo las especies vocales como la Paloma Turca (Columba squamosa) tienen altos coeficientes de detección, mientras que los coeficien-

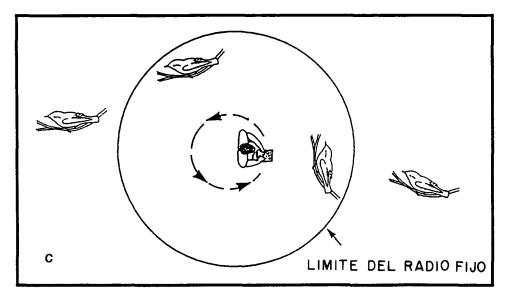


Figura 1.— Un observador estacionario estudiando aves: (a) un recuento en punto sin estimación de distancia; (b) un recuento en punto con radio variable donde el observador estima la distancia entre él y todas las aves: y (c) un recuento en punto con radio fijo en que se cuentan las aves dentro y más allá de una distancia predeterminada (radio) del observador.

tes para especies silenciosas como el zumbador (colibrí) son bajos. El coeficiente de detección representa el número de recuentos en punto en que se registró una especie dada solamente mas allá del radio de 25 m dividido entre el total de recuentos en que se registró la especie, ya fuera dentro o más allá del área de 25 m. La tabla 2 muestra ejemplos de cálculos de los diferentes índices derivados de recuentos en puntos.

Hutto y otros (1986) recomiendan recuentos en punto con radio fijo porque tienen menos supuestos que la mayoría de los demás métodos para estimar la densidad poblacional y porque pueden usarse tanto durante la temporada reproductiva como durante la temporada no reproductiva. Para ejemplos de maneras diferentes en que se ha empleado el método en el Caribe, refiérase a Askins y Ewert (1991) y Wunderle y otros (1992).

Recuentos en Punto para Cotorras.—Debido a su comportamiento esquivo las cotorras requieren técnicas censales especiales diseñadas para obtener recuentos a medida que se desplazan a sus dormideros antes del anochecer, o cuando abandonan sus dormideros al amanecer (Snyder y otros 1987). La mejor manera de contar cotorras es simultáneamente por varios observadores situados en diferentes puntos estratégicos (al tope de una colina, en la cima de un árbol, colinas desbrozadas, etc.) Cada observador cuenta las cotorras al pasar, anota la hora en que pasan, y el rumbo que siguen mientras se alejan. Ya que los observadores en diferentes lugares probablemente vean y cuenten algunas de las mismas aves, la información sobre tamaño de grupo, hora y dirección del vuelo pueden usarse una vez concluido el censo para eliminar aves individuales que se han contado más de una vez.

Tabla 2.— Ejemplo de cálculos de varios índices derivados de recuentos en punto de radio fijo de 25-m, con duración de 10 minutos cada uno.

(Para propósitos ilustratios los cálculos se basan en cinco recuentos en punto solamente, pero normalmente conllevarían 30 puntos independients o más.)

A. De la hoja de datos original (Refiérase al Apéndice):

Especie	Hora ≤25m	(∵.∪ 9 >25m	Hora ≤25m		Hora ⊆ ≤25m	,	Hora 4 ≤25m	>25m	Hora _ ≤25m	
Reinita Común	l a		3		ム	み	4	/	ス	0
	1	0		0	入	Ö	0	0_		
Zumbadorato Paloma turca	0	3_	0_	2	0	_/_			0	3
Llowsa	3	2	4		6	2	5	2	4	/_

B. Resumen de índices calculados a partir de los datos de campo indicados arriba.

Especie	/ *	Media de detecciones en 25m	Media de detecciones radio ilimitado	Porcentaje de puntos con detecciones en 25m	Porcentaje de puntos con detecciones radio ilimitado	Indice de detectibilidad
Reinita C	omun -	2.6	3.6	100	100	0.3
Zuntadin	city t	/· C	1.6	30	80	0.0
Paloma	turca +	02	3.2	20	100	1.0
Llorosa	ğ	4.4	6.0	100	100	1,0

^{*}Para la Reinita Común (Coereba flaveola) la media de detecciones en un área de 25 m constituiría el índice de abundancia más apropriado.

[†] Para El Zumbadorcito de P. R. (*Chlorostilbon maugaeus*), ambas, la media de detecciones en un área de 25 m y el porcentaje de punto con detecciones en un área de 25 m, proveerían medidas equivalentes de abundancia, porque la media de detecciones en un área de 25 m equivale a uno. Note lo bajo que es el índice de detectabilidad, lo que indica una ausencia de detecciones más allá de los 25 m.

[†] El índice más apropiado para la Paloma Turca (Columba squamosa) sería la media de detecciones por radio ilimitado o el porcentaje de punto con detecciones en puntos de radio ilimitado, debido a que esta especie rara vez se detecta en un área de 25 m del observador (esta especie reacciona facilmente a la presencia del hombre). Debido al alto índice de detectibilidad de esta especie, los puntos para recuentos en punto deben estar espaciados (por lo menos 200 m).

[§] Para la Llorosa (Neospingus speculiferus) La medida apropriada sería la detección en un área de 25 m, o la media de detecciones en puntos de radio ilimitado. El porcentaje de medidas en punto sería inapropiado para esta especie debido a su tendencia a ocurrir en bandadas.

Snyder y otros (1987) han encontrado que no es necesario que los recuentos hechos durante la temporada reproductiva de las cotorras incluyan puntos de observación a excepción de los que cubren las áreas de nidificación. Durante la temporada reproductiva (febrero a mayo) la mayoría de las cotorras, incluso las que no están activas reproductivamente, descansan en las áreas de nidificación donde se pueden contar sistemáticamente. Es mejor llevar a cabo los recuentos desde el amanecer hasta las 8:00 a.m. aproximadamente o desde las 3:30 p.m. hasta que oscurezca. Los puntos de observación deben tener una vista panorámica, y estar a distancia tal unos de otros que todas las aves en vuelo sean visibles desde un lugar por lo menos. Los recuentos hechos desde el bosque, por debajo de la copa de los árboles, probablemente pasen por alto muchas aves. Por esta razón los puntos de observación en la cima de los árboles son particularmente útiles para contar cotorras en regiones boscosas. Para obtener información sobre cómo construir plataformas en los árboles para recuentos de cotorras, comuníquese con el Wildlife Program, Caribbean National Forest, USDA Forest Service, P.O. Box B. Palmer, PR 00721, USA.

Transectos

Los transectos consisten en recorrer lentamente un hábitat y, por lo tanto, debe hacerse solamente en áreas en que el observador pueda concentrarse en las aves y no en la seguridad de su pisada o en evitar plantas espinosas o venenosas. Es importante que el observador atraviese el transecto a una velocidad determinada (por ejemplo, 100 m en 10 minutos). Los censos de transectos puede tomar muchas formas; la figura 2 muestra tres de ellas.

Transectos de Línea sin Estimados de Distancia.—Esta es la forma más sencilla de censos de transectos. Este censo permite que el observador genere una lista de las especies presentes en un hábitat. Al recorrer lentamente una distancia determinada o por un periodo determinado, el observador puede obtener una lista de especies que pueden compararse entre hábitats. Lack (1976) uso este método con efectividad en Jamaica; no obstante no puede usarse para estimar densidades aunque si provee información en cuanto a la presencia o ausencia de especies en un hábitat.

Transectos de Línea de Distancia Variable.— En este caso el observador debe estimar la distancia perpendicular entre el ave y la línea del transecto. Esto puede hacerse directa o indirectamente registrando la distancia entre el observador y el ave, y el ángulo de visión entre la línea del transecto y el ave. Con este método, se hacen recuentos de transecto en que se registran todas las detecciones, visuales y auditivas, hasta la distancia límite de detectabilidad. A continuación se multiplica el total de detecciones de cada especie por un factor de conversión (coeficiente de detectabilidad) que representa el porcentaje de la población que tipicamente se detecta. Los valores de conversión por especie se derivan directamente de curvas de distribución de puntos de detección localizados lateralmente a la línea del transecto del observador. Como es natural, esta técnica es dificil de aplicar y se recomienda solamente cuando se requieren estimados de densidad y únicamente en el caso de hábitats o terrenos en que se pueden realizar transectos con facilidad. Refiérase a Burnham y otros (1980) y Emlen (1971, 1977a, 1977b) para una explicación detallada y ejemplos de este método.

Transecto de Faja.—Se establecen bordes fijos a ambos lados de la línea transversal, y se cuenta toda ave detectada dentro de los bordes (la faja). Los bordes por lo general se establecen de 25 a 50 m a cada lado de la línea transversal, dependiendo de la densidad de la vegetación. Estos transectos son más sencillos de efectuar que los transectos de línea de distancia variable, ya que los observadores estiman solamente una distancia (hacia la frontera exterior) en lugar de hacer estimados de distancia para cada ave. Además, los estimados de densidad son bastante más sencillos y requieren solamente que el total obtenido para cada especie se divida entre el área de la faja. No obstante, con frecuencia resulta dificil determinar con certeza si un ave individual está justo adentro o justo afuera de la frontera.

Aunque los transectos de faja son más sencillos de efectuar que los transectos de línea de distancia variable, no permiten que el observador corrija el recuento para ajustar por diferencias en detectabilidad por especie. Visto que las especies difieren en cuanto a la facilidad con que, y la distancia a la que, se detectan no se recomienda que se hagan comparaciones entre especies. Por lo tanto, es mejor usar transectos de faja para hacer comparaciones de una misma especie en hábitats o lugares diferentes, pero entendiéndose que la detectabilidad puede variar de hábitat en hábitat y que las densidades derivadas constituyen estimados burdos. Vilella y Zwank (1987) ofrecen un ejemplo del uso apropiado de este método para contar guabairos pequeños de Puerto Rico (Caprimulgus) durante la noche.

Representación en Mapa Estadístico

Este método conlleva indicar la posición de aves territoriales en un mapa. Se requieren mapas de campo detallados y varias visitas (por lo menos 10) al lugar antes de que el observador pueda determinar los territorios en el lugar de estudio y la densidad poblacional. Se usa principalmente durante la temporada reproductiva ya que se basa en observaciones de machos territoriales que se exhiben activamente en

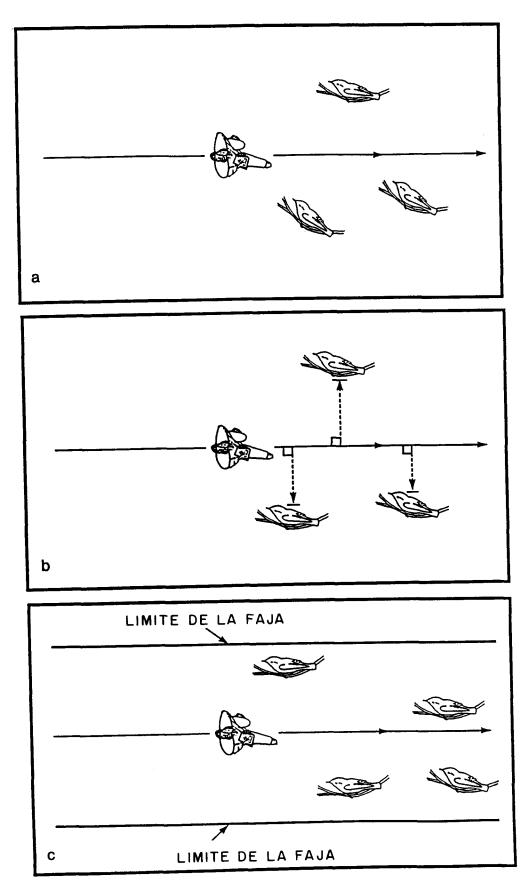


Figura 2.— Un observador que se mueve lentamente y toma nota a medida que recorre una línea de transecto: (a) el observador puede sencillamente registrar toda ave sin importar la distancia (transecto de línea sin estimación de distancia); (b) registrar todas las aves y estimar su distancia perpendicular de la línea de transecto (transecto de línea de distancia variable): (c) registrar toda ave observada dentro de una distancia determinada a ambos lados de la línea transversal (transecto de faja).

sus territorios. Con frecuencia se presume que todo macho está apareado con una hembra, lo cual a veces puede verificarse durante las visitas al campo. Algunos observadores informan solamente el total de machos territoriales por unidad de área. Obviamente, el método es más efectivo con especies territoriales y no así en el caso de especies coloniales, especies sumamente sociales o especies no territoriales. Debido a que la representación en mapa estadístico se lleva a cabo durante la temporada reproductiva principal, es más efectiva para aquellas especies que tienen una temporada reproductiva corta y bien definida. Para un ejemplo de el uso de este método en un bosque tropical lluvioso véase Recher (1970).

El método es intensivo y no resulta apropiado para un seguimiento a gran escala de aves terrestres, pero si resulta apropiado cuando se requieren números precisos sobre parejas y estimados de densidad a partir de areas pequeñas de hábitat o lugares de estudio. En una sola mañana uno o dos observadores pueden muestrear de 10 a 30 hectáreas de área boscosa o de 50 a 100 hectáreas de área abierta. El tamaño mínimo del área de estudio dependerá de la densidad de aves, requiriéndose que estén presentes por lo menos 50, y preferiblemente más de 100 parejas para obtener datos suficientes, implicando por lo menos 10 hectáreas en bosques y 50 hectáreas en hábitats abiertos. El lugar de estudio debe ser lo más circular o cuadrado posible a fin de limitar el largo de las fronteras, lo cual puede influir en las densidades de aves. Antes de dar comienzo al censo, es necesario obtener un mapa detallado (escala de 1:2000), que muestre hitos, veredas, arroyos, lindes de bosques, salientes, carreteras, etc. Si hay pocos hitos, es recomendable que se coloque una rejilla con banderines o rotulación a intervalos de 25 m a través del lugar. Es importante que el mapa sea lo suficientemente detallado como para permitir que se indique la ubicación de toda ave con precisión.

Para cada censo se usará un mapa nuevo y se emplearán símbolos diferentes para especies e indíviduos diferentes. En cada visita se deberá recorrer el área de la manera más pareja posible, y ninguna parte del lugar deberá quedar a una distancia mayor de 25 m de la ruta. La tarea más dificil es separar los diferentes individuos y no contar el mismo individuo más de una vez durante una visita. Esto requiere que se recorra el área de estudio a paso moderado a la vez que se anotan las aves en el mapa. El observador deberá detenerse con frecuencia para tratar de hacer observaciones simultáneas de individuos diferentes de una misma especie. Si no está seguro de si hay uno o dos individuos presentes, el observador deberá regresar al área más tarde esa misma mañana para verificar el número exacto.

Este método consume mucho tiempo, en particular si se ha de identificar en un mapa el territorio de todas las especies en el lugar. Por ejemplo, en un bosque por lo general toma diez mañanas censar 30 hectáreas mediante la versión aceptada del método de 10 visitas (aproximadamente 50 a 60 horas de trabajo de campo). El observador debe permitirse 40 horas (4 horas cada mañana) para preparar los mapas de especies y aproximadamente de cinco a diez horas para analizarlos. De manera que puede esperar dedicar 100 horas a censar 30 hectáreas de bosque durante la temporada reproductiva.

El método descrito aquí es el método estándar usado por el Laboratorio de Ornitología de Cornell en sus recuentos de aves residentes (conocido como los Censos de Aves en Temporada Reproductiva). Estos censos se efectúan en toda América del Norte, y los organizadores acogen con beneplácito toda participación y publican los resultados de cada predio de estudio anualmente en el "Journal of Field Ornithology." Se fomenta la participación de los residentes del Caribe. Comuníquese con el Cornell Laboratory of Ornithology, Resident Bird Counts, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA (Teléfono 607-254-2441).

Representación en Mapa del Territorio de Aves Marcadas

Al capturar aves con redes ornitológicas, colocar anillos de combinaciones de colores individualizadas en sus patas y luego indicar en un mapa su localización después de su liberación, se puede lograr un estimado exacto de densidad. De hecho, este método brinda la mejor medida de densidad aunque no se cuenten con exactitud los individuos no territoriales (transitorios). Si el estudio continúa durante un tiempo suficiente (4 a 10 años), el método tiene el beneficio adicional de permitir que se mida la supervivencia de individuos conocidos en sus territorios. Desafortunadamente, el método exige un alto insumo de mano de obra ya que requiere todo el tiempo y esfuerzo que conlleva la representación de detecciones en un mapa (es decir, preparar un mapa del terreno, y numerosas visitas para volver a detectar e indicar la posición de aves individuales en el mapa), más el tiempo necesario para capturar y marcar las aves. En vista de que el método es tan intensivo, por lo general se emplea para estudiar solamente una o dos especies a la vez (fig. 3)

Captura con Redes Ornitológicas

La captura estandarizada con redes ornitológicas puede permitir a los biólogos el llevar cuenta de los cambios poblacionales y proveer información sobre la salud de la población. Un ave capturada puede brindar información detallada en cuanto a sexo, edad, peso y condición adiposa, todo lo cual puede ayudar a evaluar la condición de una población. Por ejemplo, el

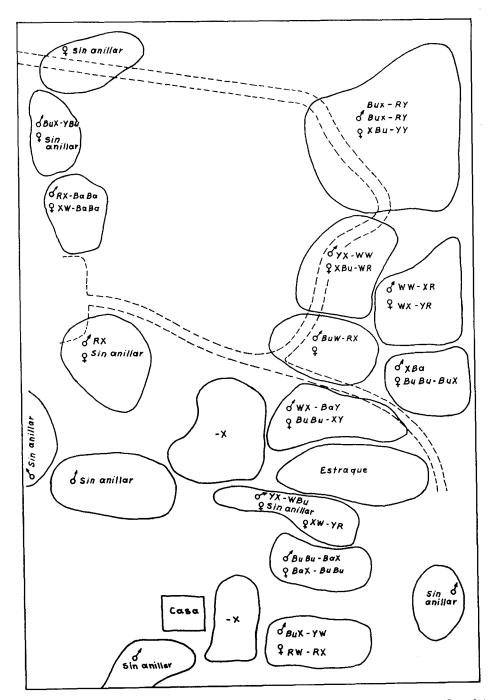


Figura 3.—Dibujo de mapa de campo para los territorios de la Reinita Común (Coereba flaveola) en Cayey. PR el 11 de marzo de 1989. El código alfabético se refiere a las combinaciones de anillos de colores (R. rojo (red); B. azul (blue); W. blanco (white); Y. amarillo (yellow); X. (metal). El código de anillos se lee de arriba hacia abajo, y de izquierda a derecha, con el ave de frente al observador. Las aves con código-X son individuos que no tienen anillos de colores y sólo lucen un anillo de metal en la pata izquierda

radio sexual de una población puede usarse para evaluar supervivencia diferencial durante el año anterior y el potencial de incremento de la población. La proporción de aves juveniles capturadas puede brindar una medida de la productividad de una población durante los meses anteriores (Baille y otros 1986). El peso y condición adiposa, cuando se relacionan con las medidas de anatómicas (por ejemplo, longitud del ala),

pueden brindar una medida de la condición de los individuos en una población. Una inspección cuidadosa de los individuos capturados puede permitir que los trabajadores determinen la condición reproductiva de los individuos y el patrón de muda, toda ello información fundamental necesaria para establecer el ciclo reproductivo y de muda anual según ilustran los estudios de Diamond (1974) en Jamaica. Por último, el

marcar a los individuos (en particular con anillos de colores) puede ayudar a estudiar la dispersión y presunción de supervivencia entre años. La obra de Faaborg y Terborgh y sus asociados (véase la literatura citada) contiene ejemplos de estudios de redes ornitológicas en el Caribe sobre distribución y tendencias poblacionales a largo plazo.

Se han usado redes de 6, 9, 12 y 18 m para capturar aves terrestres del Caribe, dependiendo de las metas del proyecto y la fuente de las redes. Debido a que la eficiencia de captura para aves de diferente tamaño varia con el tamaño de la malla de la red (Pardieck y Waide 1992), es importante, en el caso de estudios a largo plazo, usar el mismo tamaño malla sistemáticamente. Por lo general, se usan redes con malla de 30 ó 36 mm para paseriformes pequeños a medianos. Las redes pueden colocarse entre dos postes verticales de 3.0 a 3.7 m y asegurarse en cada extremo con dos cuerdas de nilón. En la mayoría de las tiendas de efectos de construcción del Caribe pueden conseguirse tubos-conductos eléctricos de metal (diámetro de 1.3 cm) o tubos de PVC del mismo diámetro que pueden hacer de postes en lugares donde no es posible conseguir postes de bambú. Las cuerdas de apoyo pueden atarse a la base de arbustos disponibles o a estacas enterradas en el suelo. Antes de colocar la red, debe limpiarse la vegetación de una franja de 1.5 a 2.0 m de ancho a todo lo largo de la red, con un machete, para evitar que se enrede en la vegetación.

Las redes son más efectivas en áreas sin viento y niveles bajos de iluminación donde la altura máxima de la vegetación es igual o apenas superior a la altura de la red. Las redes son menos efectivas en bosques de árboles altos en que las aves que moran su copa están poco representadas en muestras con red. En ocasiones es posible mitigar este problema colgando redes en la copa de los árboles, lo cual implica un andamiaje complejo con cuerdas, poleas, y postes para levantar las redes del suelo. No obstante, en la mayoría de los casos las tasas de captura con redes en la copa de los árboles son tan reducidas que rara vez compensan el esfuerzo requerido para colocarlas y operarlas.

La manera más eficiente de manejar las redes es colocando una hilera ininterrumpida de redes de manera que cada una comparta un poste con la red que le precede. Estas hileras de redes pueden colocarse en veredas no usadas o carreteras abandonadas que atraviesan el hábitat apropiado. Las redes colocadas en cerros, en las fronteras de los hábitats, cerca de arroyos o en lugares mésicos en hábitats secos pueden tener tasas de captura sumamente altos, pero las muestras pueden no ser representativas de hábitats uniformes. Las redes deben colocarse la tarde antes de tomar la muestra y recogerse durante la noche. A la mañana siguiente, las redes deben extenderse a la primera señal de luz y dejarse durante 6 horas por lo menos—preferiblemente hasta el anochecer—duran-

te dos o tres días completos para obtener una muestra adecuada. Las redes colocadas a la sombra deben revisarse cada 30 minutos aproximadamente y por lo menos cada hora. Durante lloviznas las redes deben revisarse con más frecuencia y deben recogerse en caso de lluvias fuertes. En las tierras bajas y soleadas las redes deben revisarse rutinariamente cada 10 minutos para remover las aves. La necesidad de inspecciones frecuentes de redes y la tasa de captura establecen los limites de cuántas redes pueden funcionar con seguridad en un lugar. Por lo general, dos personas experimentadas pueden manejar de 10 a 12 redes completas, suponiéndo que las tasas de captura son moderadas y que sólo se obtiene un poco de información de cada ave capturada. No obstante, las redes requieren vigilancia casi constante en áreas en que hay mangostas o gatos salvajes.

El número de aves capturadas en redes ornitológicas se reduce con el tiempo, principalmente porque las aves descubren dónde están colocadas las redes. La captura de aves moradoras de los bosques no disminuye cuando se establecen intervalos de red interrumpidos por intervalos sin red de dos o tres semanas (Wunderle y otros 1987). Sin embargo, es posible que este procedimiento no funcione en otros hábitats y con otras especies; los biólogos deben primero experimentar para determinar el intervalo apropiado entre esfuerzos de captura con red.

Manejo y Liberación de Aves Capturadas.— Liberar aves atrapadas en redes ornitológicas es un arte refinado que requiere horas de práctica y se aprende mejor de una persona con experiencia. De hecho, un principiante no debe hacer funcionar las redes sin supervisión y asistencia hasta tanto no tenga experiencia considerable en la liberación de aves enredadas. El interés principal de la captura con red siempre debe ser la vida y salud de las aves capturadas, y un operador de red nunca debe dudar en recoger las redes y liberar las aves de inmediato cuando se sienta abrumado por el número de capturas o por condiciones climatológicas severas. Los métodos empleados por la mayoría de los operadores de red para liberar aves han sido descritos por Bleitz (1970), Ralph (1967, 1988) y Shreve (1965). Aunque se han recomendado varias técnicas diferentes para liberar aves, el método más ampliamente utilizado es el de Ralph y otros (1993):

- 1. El primer y más importante paso es determinar cuál fue la dirección de penetración del ave en la red. Esto requiere que se localice la abertura del bolsillo ocasionada por el peso del ave.
- 2. Una vez determinada esta abertura del bolsillo, colóquese en el costado por el cual el ave penetró en la red y agarre ambas tibiastarso, la parte desnuda de la pata justo encima del tarsometatarso. Si la persona que libera el ave es derecha, ambas tibiastarso deben agarrarse con la mano izquier-

- da, de manera que los dedos señalen hacia la cabeza del ave. Tanto el pulgar como los dedos deben aguantar la tibiatarso tan próximo como sea posible al cuerpo del ave, dejando la mano derecha libre para apartar los hilos de la red del ave enredada.
- 3. El primer paso en el proceso de desenredar el ave debe ser asegurarse de que se deslizan hacia abajo todos los hilos a la vez que se liberan las tibiastarso y los muslos hasta por debajo de la articulación del tobillo (la articulación prominente entre la tibiatarso y el tarsometatarso). Nótese que los hilos con frecuencia pueden hallarse en la parte superior de los muslos, al costado del ave.
- 4. Los dedos se desenredan halando los hilos suavemente. Con frecuencia una punta de prueba roma, un gancho para tejer, pinzas o un lápiz pueden resultar de utilidad. En ocasiones, si se endereza la articulación del tobillo, los dedos de las aves se relajarán y se soltará la red. Con frecuencia es posible liberar los dedos liberando primero el dedo opuesto (el "pulgar"), deslizando el hilo de la red sobre este dedo, y luego retirándolo de los demás dedos. A continuación se enderezarán los otros tres dedos y se hará deslizar la red sobre ellos, liberando así las patas.
- 5. Una vez liberadas las patas deberá halar del ave hacia arriba y hacia afuera de la red, sosteniendo siempre las patas en la parte superior de las tibiastarso. Al halar el ave de la red cree un poco de tensión, de manera que cuando las alas y las demás partes del cuerpo queden libres la red se deslice del ave. A continuación debe retirarse la red del pliegue de las alas trabajando desde abajo. Con frecuencia es posible liberar un ala muy enredada abriendo el ala con cuidado y deslizando los hilos hasta desprenderlos del ala. En este punto es conveniente tirar de cualquier hilo expuesto para liberarlo o ver dónde está atrapado.
- 6. Una vez libres las alas debe desenredarse la cabeza tirando con suavidad de los hilos en el cuello, trabaje siempre de la parte posterior hacia el frente de la cabeza. Debe asegurar el pico colocando el pulgar contra la punta mientras desliza la red sobre la cabeza.
- 7. En el caso de algunas especies como los zorzales de patas coloradas (*Margarops fuscatus*), los zorzales pardos (*Turdus plumbeus*) y los pájaros carpinteros, la lengua puede trabarse en la red. En este caso, deberá sostenerse la cabeza entre el dedo meñique y el anular, mientras que el tercer dedo, el índice y el pulgar sostienen la red cerca del costado del pico y alivian la presión sobre la lengua. Con la mano libre puede manipularse una punta de prueba como un lápiz, una ramita puntiaguda, o un gancho para tejer, a fin de remover el hilo atrapado detrás de la hendidura de la len-

- gua. Este método requiere mucha destreza, y en tanto no se domine es conveniente usar unas tijeras pequeñas. Frecuentemente se podrá liberar la lengua con soltar un solo hilo de la red.
- 8. Las aves muy enredadas y en dificultades pueden extraerse usando un cuchillo afilado o unas tijeras. Si es necesario cortar hilos, primero encuentre el área con una sola capa de red, o aquella que tenga menos capas de red. Deberá cortarse el mínimo posible de hilos y deslizar el ave entre la red. Entonces deberá sacarse el ave de la red como es usual. Por último, verifique si queda algún hilo en el ave, en particular en sus alas o pico.
- 9. Una vez liberadas de la red, las aves deben colocarse en pequeños sacos de tela para ser transportadas y para ser retenidas temporalmente en el área de procesamiento. Idealmente, se colocará cada ave aparte en su propio saco, pero las especies pequeñas y no agresivas (por ejemplo las reinitas, los gorriones) pueden colocarse juntos durante periodos cortos. Es mejor "almacenar temporalmente las aves capturadas en sacos suspendidos a la sombra que colgadas de las redes, en particular cuando el proceso se ve atrasado. La manera correcta de sostener un pájaro cantor en la mano es aguantado la cabeza del ave entre los nudillos y la base de los dedos de manera que su espalda descanse firmemente contra la palma de la mano. Sostenida apropiadamente de esta manera el ave no podrá poder batir sus alas, reduciendo el riesgo de que se haga daño.

Marcas con Anillos.—Si se usa la captura con redes ornitológicas para estudios de campo, por ejemplo, para localizar el hábitat en que ocurre una especie en particular o el área en que más abunda, entonces tal vez no sea necesario marcar las aves con anillos. En este caso, sencillamente seria suficiente un corte pequeño en el extremo de una pluma de la cola para distinguir las aves nuevas de las aves recapturadas durante una sesión corta de captura con red (1 a 4 días). También le ahorrará tiempo y esfuerzo requerido para marcar con anillos, los cuales se perderían si no se propone un estudio a largo plazo. Marcar con anillos es útil solamente si servirá para contestar alguna pregunta especifica y no se recomienda como práctica rutinaria.

Es esencial marcar con anillos si se ha de estudiar la supervivencia a largo plazo o para indicar territorios en un mapa en una fecha posterior. El Servicio de Pesca y Vida Silvestre de los Estados Unidos reglamenta muy estrictamente el marcado con anillos y los materiales para ello. Se requiere que todo marcador prospectivo trabaje con un profesional establecido antes de obtener un permiso. Pueden obtenerse anillos de aluminio numerados e información sobre métodos, equipo y cómo llevar un registro del Bird Band-

ing Laboratory, Office of Migratory Bird Management, U.S. Fish and Wildlife Service, Patuxent Wildlife Research Center, Laurel, MD 20708, USA. También puede obtenerse información sobre materiales y equipo para marcar con anillos de AVINET, Inc., P.O. Box 1103, Dryden, NY 13053-1103, USA.

En el caso de la mayoría de los estudios que tratan con individuos marcados con anillos de colores, es conveniente usar cuatro anillos (dos en cada pata) lo que permite una variedad de combinaciones únicas de colores: tres anillos plásticos de colores y un anillo de aluminio del Servicio de Pesca y Vida Silvestre de los Estados Unidos. Puede usarse un código sencillo que consista en leer las combinaciones de anillos de arriba hacia abajo y de izquierda a derecha (el ave de frente al observador, comenzando por la izquierda del observador, no la del ave). Por ejemplo, el código RY-XW puede emplearse para indicar un individuo con un anillo rojo sobre uno amarillo (yellow = amarillo) en la pata derecha y un anillo de aluminio (x) sobre uno blanco (white = blanco) en la pata izquierda. Por lo tanto el tipo de color y su posición-encima o debajo así como izquierda o derecha—ofrecen muchas combinaciones únicas de anillos. Los colores rojo, amarillo, azul y blanco son los más sencillos de distinguir en el campo.

Para ajustar los anillos en espiral de colores a la pata, se coloca el extremo exterior del anillo junto a la pata y se desenrolla el mismo de manera que el extremo interior quede para afuera y ayude a mantener el anillo en posición. Aunque estos anillos raramente se sueltan, es necesario practicar para colocarlos correctamente en la pata del ave. Puede usar un gancho de ropa para practicar cómo colocar los anillos en espiral. Pueden obtenerse anillos en espiral de buena calidad, en varios tamaños y colores resistentes al sol tropical de AVINET, Inc. o de The National Band & Tag Co., 721 York St., Newport, KY 41072, USA. Pueden obtenerse anillos plásticos de color de aro abierto para aves terrestres de A. C. Hughes, Ltd., 1 High Street, Hampton Hill, Middlesex TW12 1NA, United Kingdom.

Registro y Recopilación de Datos.—Debe llevarse un registro cuidadoso de la localización, tamaño, tipo y número de redes y las horas y condiciones climatológicas en que se extienden las mismas.

Generalmente la tasa de captura por hora de red se ha usado como unidad para estandarizar el esfuerzo de captura con red. La hora de red sencillamente representa el producto del número de redes de tamaño estándar extendidas multiplicado por el total de horas que permanecen extendidas. Por ejemplo, una red extendida durante una hora representa una hora de red, mientras que 10 redes extendidas durante dos horas representan 20 horas de red de esfuerzo de captura con red (suponiendo que todas las redes son de tamaño comparable, por lo general 12 m de longitud).

El total de aves capturadas se divide entre el total de horas de red, lo que provee una tasa de captura por hora de red que permite hacer comparaciones entre capturas obtenidas por otros esfuerzos de captura con red. Con frecuencia resulta conveniente convertir la tasa de captura a 100 horas de red, para evitar tener que trabajar con puntos decimales de ave. Desafortunadamente, en el caso de la mayoría de las especies residentes en el Caribe, las capturas disminuyen con los esfuerzos de captura con red; por lo tanto, la captura por hora de red no constituye una medida de esfuerzo útil. Refiérase a Terborgh y Faarborg (1973) para una discusión de las medidas apropiadas. La mejor manera de solucionar este problema, al menos cuando se usan redes ornitológicas para propósitos de seguimiento a largo plazo, es estandarizar el número de redes, su ubicación, las horas de operación, y la hora en que se extienden y recogen las mismas. Faaborg y otros (1984), por ejemplo, siempre han usado muestras de tres días—por lo general con una hilera de 16 redes—una vez al año para sus estudios a largo plazo.

Para cada ave capturada deben registrarse la fecha, localización, especie y (si es posible) el sexo y la edad. El sexo y la edad son datos importantes, pero desafortunadamente resultan difíciles de determinar en muchas especies debido a la naturaleza variable de tamaño, plumaje y patrón de muda en cada una de las especies. Es importante notar que no es posible determinar el sexo, ni la edad, ni identificar todo individuo vivo. En el Caribe, en particular, no se han determinado métodos confiables para establecer la edad y el sexo de muchas especies, y ésta es un área en que los ornitólogos del Caribe pueden hacer contribuciones importantes. Por lo tanto, es mejor ser cuidadosos que imprecisos al determinar la edad y el sexo, y en el caso de muchas aves tales características permanecerán desconocidas.

Cómo Establecer la Edad de un Ave a Partir de la Osificación del Cráneo.—El mejor método para establecer la edad de las paseriformes es determinar el grado de osificación (definido más abajo) en el periodo postreproductivo (de abril a diciembre en la mayoría de los hábitats del Caribe). Desafortunadamente, el método permite la determinación de sólo dos categorías: juveniles (un año de empolladas o menos) y adultos (más de un año de empolladas).

Este método se basa en el hecho de que cuando un pichón abandona el nido, la sección superior del cráneo (parietales y frontales) consiste de una sola capa ósea. No obstante, a medida que el pichón madura (hasta los 4 a 12 meses, dependiendo de la especie) se desarrolla una segunda capa ósea debajo de la primera. A medida que esta capa crece se producen una serie de diminutos refuerzos óseos (parecido a los "puntales" del ala de un avión) que se extienden por las cavidades llenas de aire entre las dos capas. Este proce-

so se conoce como "osificación" o "neumatización." Cuando estos pequeños refuerzos óseos se observan desde arriba, su aspecto es el de pequeños puntos blancos (osificados) en la superficie del cráneo en contraste con el cráneo liso de las aves muy jóvenes (no osificadas).

Aunque el patrón de progresión de la osificación varia entre especies, se evidencian dos patrones principales (fig. 4). El patrón de osificación periférica es mucho más común en las especies pequeñas, mientras que el patrón de la línea media es más común en las especies más grandes. No obstante, existe una variación individual considerable y en algunas especies puede producirse cualquiera de los dos patrones. La rapidez con que ocurre este proceso varia de una especie a otra. Desafortunadamente no se ha estudiado

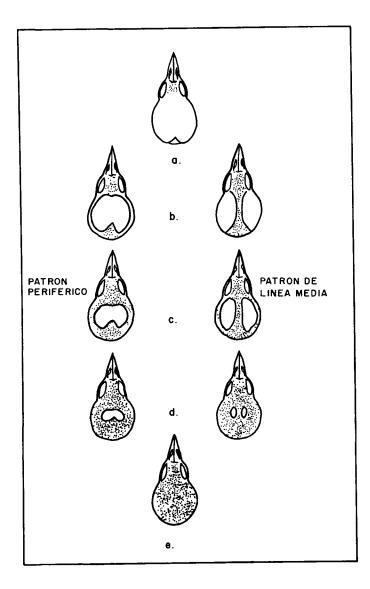


Figura 4.— Hay dos patrones principales de osificación cranial, que van desde un ave muy joven con cráneo no osificado (a) hasta un adulto maduro con cráneo totalmente osificado (e) (todas las ilustraciones son adaptados de Pyle y otros 1987, por S. N. G. Howell).

el ritmo de osificación en las aves del Caribe; por lo cual debe suponerse (correcta o incorrectamente) que los patrones encontrados en las especies de Norte América son típicos también de algunas especies del Caribe. En el caso de la mayoría de las paserformes de Norte América, los cráneos de las aves empolladas más temprano en el año (de mayo a principios de junio) pueden estar totalmente osificados para octubre y noviembre, pero en las aves empolladas más tarde en el año (de fines de junio a julio) pueden estar completamente osificados para noviembre, diciembre y enero. Este patrón parece aplicar, en general, a las aves del Caribe, por lo menos en los casos de Granada y Puerto Rico. No obstante, en el Caribe es posible encontrar aves con cráneos cuya osificación no es aún completa en cualquier época del año.

Estimar la edad de las aves conforme al grado de osificación del cráneo requiere que el observador humedezca primero las plumas encima del cráneo justo detrás de los ojos. A continuación se parten la plumas con cuidado para permitir observar el cráneo a través de un área pequeña de piel desnuda. Afortunadamente, la piel del cráneo es sumamente fina y casi transparente. De manera que con iluminación suficiente es posible distinguir el grado de osificación al hacer rodar el área de piel desnuda sobre el cráneo. Si la piel de la corona es gruesa, con frecuencia conviene hacer la partición de las plumas al costado del cráneo o en el cuello donde la piel es más transparente. Las áreas no osificadas del cráneo son de color rosado y no tienen puntos blancos (es decir no tienen refuerzos óseos), en contraste con las áreas osificadas con puntos blancos que pueden tener un aspecto general blanco, rosado-blanco o grisáceo.

La meta principal del observador es localizar áreas sin puntos blancos (no osificadas), lo que requiere que la piel desnuda y mojada se haga rodar sobre gran parte del cráneo en busca de secciones no osificadas. Al rodar la piel sobre la superficie del cráneo, el observador deberá poder distinguir entre puntos blancos en la piel (que se mueven con la piel) y puntos blancos osificados en el cráneo (que permanecen fijos cuando se hace rodar la piel). Excepto en el caso de los pichones más jóvenes, debe haber algunos puntos blancos presentes a lo largo de la línea media de la corona o en la base posterior del cráneo (fig. 4). En el caso de juveniles "avanzados" el observador debe tener cuidado de buscar pequeñas "ventanas" no osificadas en la corona detrás del ojo. Siempre debe tenerse cuidado de buscar estas pequeñas ventanas porque son fáciles de pasar por alto. Con frecuencia resulta de utilidad dibujar la posición y el tamaño relativo de las ventanas no osificadas en la hoja de datos o en el cuaderno de campo. Estos dibujos pueden contribuir información muy necesaria sobre el desarrollo de criterios para calcular la edad de especies caribeñas. En el caso de algunas especies del Caribe, tal como los zorzales par-

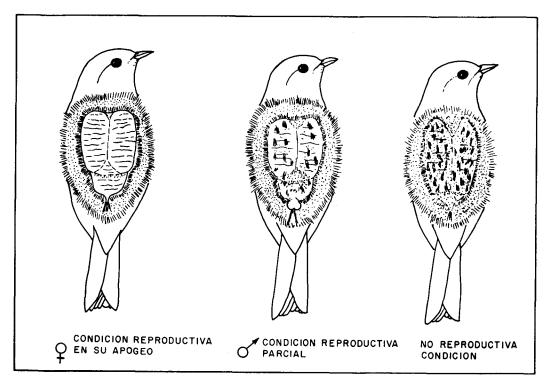


Figura 5.—Diferentes etapas en el desarrollo de una zona de incubación (adaptados de Pyle y otros 1987)

dos, puede ser difícil estimar la edad a base de la condición del cráneo debido a que los depósitos de grasa en el cráneo pueden impedir que se vea el mismo.

Determinación del Sexo.—Las aves que no evidencian diferencia sexual en términos de tamaño o plumaje, por lo general pueden identificarse por la aparición de una zona de incubación (por lo general en las hembras) o una protuberancia cloacal (machos solamente) durante la temporada reproductiva. La presencia de una zona de incubación o protuberancia cloacal, por lo general sirve para identificar de manera confiable el sexo apropiado, mientras que la ausencia de una u otra estructura no puede usarse para determinar el sexo, en particular en el Caribe donde pueden encontrarse individuos reproductivamente activos o inactivos en cualquier época del año.

Zona de Incubación.—A fin de transferir el calor del cuerpo a los huevos, las hembras desarrollan un área sumamente vascularizada y sin plumas en la parte inferior del pecho y en el abdomen que se conoce como zona para empollar o incubar. Esto le permite colocar la piel desnuda directamente sobre los huevos o pichones, facilitando así la transferencia de calor. Visto que toca a las hembras la mayor parte de la responsabilidad de empollar o incubar los huevos, éstas tienen las zonas de incubación más desarrolladas. De aquí que, en el caso de la mayoría de las paseriformes, la presencia de una zona de incubación bien desarrollada pueda usarse para determinar si el individuo es una hembra o un macho.

Las zonas de incubación comienzan a formarse con la pérdida del plumón abdominal tres a cinco días antes de la primera nidada (Blake 1963). Posteriormente, los vasos sanguíneos del área comienzan a expandirse y se acumula fluido debajo de la piel, dándole una apariencia abultada o hinchada con frecuencia descrita como edematosa (debido a la presencia de edema o acumulación de líquido). Las hembras en esta condición edematosa están incubando huevos o criando pichones recién salidos del cascarón (fig. 5). No obstante, una vez estos pichones abandonan el nido tiene lugar una disminución de la vascularización y el edema, aunque la zona de incubación puede permanecer desprovista de plumas durante un mes o más (hasta el inicio de la muda prebásica). En esta condición postreproductiva anterior a la muda, la piel de la zona de incubación de la hembra con frecuencia tiene un aspecto grisáceo y arrugado. Si la hembra inicia una nueva nidada, se repite el proceso.

La zona de incubación puede localizarse soplando suavemente para separar las plumas de la parte baja del pecho y abdomen donde puede examinarse la condición de la piel. Debe tenerse cuidado al buscar la zona de incubación ya que un observador incauto bien puede confundirse. Por ejemplo, en el caso de los zumbadores y muchos paseriformes juveniles casi no hay plumón en el abdomen, de manera que a primera vista podrían parecer hembras con una zona de incubación; no obstante, el abdomen es sumamente liso y de color rosado o rojo. Además, los machos de algunas

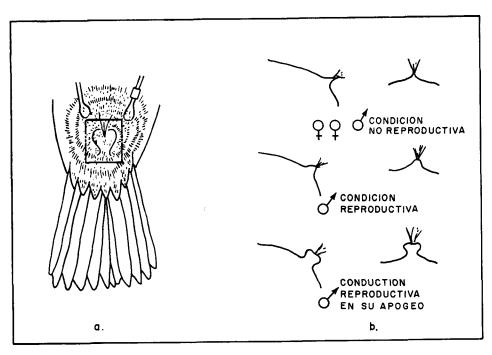


Figura 6.—Protuberancias cloacales de paseriformes en diferentes etapas de desarrollo: (a) una protuberancia cloacal en el cénit del período reproductivo en la caja; (b) diferentes etapas en el desarrollo de la protuberancia cloacal muestran un perfil (adoptados de Pyle y otros 1987).

especies de paseriformes (por ejemplo, Myiarchus, Juí, víreos, mímidas y algunos otros (Pyle y otros 1987) incubarán y desarrollarán una zona de incubación parcial. Sin embargo, en estos casos el desarrollo de la zona de incubación del macho por lo general es incompleta, y puede conllevar una pérdida entre ligera y moderada de plumas, vascularización e hinchazón que rara vez alcanzan el grado desarrollado por las hembras de la misma especie. Pueden usarse las categorías que se indican a continuación para clasificar la condición de la zona de incubación:

- Ausencia de Zona de Incubación—El pecho y el abdomen cubierto de plumón o con rastros de plumón; piel lisa sin apariencia; abultada o arrugada.
- 2. Piel Lisa—Pecho y abdomen desprovisto de plumón; piel lisa y color rojo intenso.
- Edematosa—Pecho y abdomen desprovistos de plumón y la piel está abultada o hinchada por retención de liquido y evidencia un aumento en la vascularización; representa el cénit de la incubación.
- Arrugada—Pecho y abdomen desprovistos de plumas, la piel no está hinchada; la piel tiene una apariencia arrugada y escamosa.

Protuberancia Cloacal.—Con el inicio de la temporada de reproducción, los paseriformes machos desarrollan protuberancias cloacales externas, o bulbos, que almacenan esperma y facilitan su transferencia durante la copulación. La protuberancia por lo general es visible durante varias semanas o varios meses dependiendo de la especie y el total de nidadas producidas durante el período reproductivo. La protuberancia no está presente en el caso de machos inactivos reproductivamente.

Pueden examinarse las protuberancias cloacales soplando y separando las plumas en la región cloacal. En el macho una protuberancia bien evolucionada se desarrolla en ángulo recto con el abdomen y tiende a ser más grande en la punta que en la base (fig. 6). Aunque en ocasiones las hembras pueden desarrollar pequeñas protuberancias o al menos una hinchazón de la región cloacal, rara vez alcanza el tamaño de la protuberancia del macho. Por ejemplo, una hembra en condición reproductiva puede tener una hinchazón que forma un declive gradual en el abdomen (en contraste con el ángulo recto que se desarrolla en el macho) y que termina con la abertura cloacal dirigida hacia la cola. No obstante, las hembras en esta condición por lo general están en plena condición reproductiva con una zona de incubación activa.

Con experiencia, un observador deberá poder identificar las diferencias en tamaño entre la protuberancia cloacal de los machos y podrá describir su tamaño usando categorías subjetivas (por ejemplo; ninguna, pequeña, mediana, grande).

Muda.—Se sabe muy poco sobre el orden de sucesión y tiempo de la muda (reemplazo de plumaje) en las aves del Caribe, sin embargo, esta información puede ser de utilidad al determinar la edad y el sexo en muchas especies. Un patrón de muda común entre las paseriformes del norte templado y algunas especies del Caribe, consiste de dos mudas anuales, justo antes y después de la temporada reproductiva. Estas mudas producen dos plumajes, el plumaje básico no reproductivo y el plumaje alterno reproductivo. Las mudas que producen estos plumajes son la muda prebásica, que produce el plumaje básico al final de la temporada reproductiva, y la muda prealterna, que produce el plumaje alterno al finalizar la temporada no reproductiva. Todas las paseriformes de Norte América tienen una muda prebásica, mientras que un poco más de la mitad tiene una muda prealterna. Queda por demostrar si este patrón existe para las especies caribeñas.

Una inspección cuidadosa de la piel de las aves, lo cual es posible si se sopla y separan las plumas del cuerpo, indicará si hay muda de plumas porque se notará una vaina cilíndrica alrededor de la base de cada nueva pluma. El ave se quitará esta vaina con el pico cuando la pluma madure por completo. De manera que la documentación y cuantificación de la muda

requiere, sencillamente, que se evalúe el alcance y la localización de plumas con vainas en el cuerpo de las aves.

La cuantificación de la muda del cuerpo por lo general requiere una evaluación subjetiva de la cantidad de plumón o plumas de contorno con vaina en el cuerpo, excluyendo las alas y la cola. Puede usarse una escala sencilla de tres categorías para cuantificar esta muda como ninguna, moderada o abundante. No obstante, la muda de las plumas de las alas o la cola (designadas como plumas de vuelo) puede evaluarse con precisión ya que el patrón de muda de las plumas de vuelo por lo general es sistemático. Además, por lo general resulta fácil distinguir entre plumas de vuelo nuevas y viejas en un individuo en muda. Para entender y documentar el patrón de muda de las plumas de vuelo primero es necesario conocer los términos usados para describir y numerar estas plumas.

En el ala hay dos grupos principales de plumas que intervienen en el vuelo (fig. 7): las primarias y las secundarias (remeras). Las primarias son las plumas largas ubicadas más hacia el exterior y adheridas a los huesos de las "manos" que se numeran consecuti-

Figura 7.—Ejemplo de un ala durante la muda. La p indica una pluma primaria (pp para las plumas primarias), la s indica una pluma secundaria (las plumas secundarias); terts, para terciales. En este ejemplo la primaria 6 y 55 indican la secundaria 3 están en muda (adaptado de Pyle y otros 1987).

vamente a partir de las más cercanas al pliegue de las alas (articulación de la muñeca) y en dirección exterior hacia el extremo de las alas. Hay 9 ó 10 plumas primarias en el ala, dependiendo de la especie. Pyle y otros (1987) resumieron las paseriformes con 9 y 10 plumas primarias. El patrón de muda primaria procede una pluma a la vez, desde la pluma primaria interior primera (primaria 1) hasta la pluma primaria más exterior (primaria 9 ó 10, dependiendo de la especie) y es simétrico, es decir, ocurre simultaneamente en la misma posición primaria en ambas alas. Por lo tanto, la muda de las primarias puede registrarse sencillamente tomando nota del número de las primarias que faltan o crecen durante la muda. No obstante, debe tenerse la precaución de examinar ambas alas ya que con frecuencia las plumas se pierden accidentalmente y son reemplazadas con una muda adventicia, que no es simétrica y, como es natural, no ocurre en temporada.

Las secundarias son plumas largas en la parte interior del ala, adheridas a la piel que cubre el hueso del antebrazo (ulna). Las secundarias se numeran en orden ascendente a partir del pliegue del ala (articulación de la muñeca) y hacia el cuerpo. La muda en las secundarias también sigue esta secuencia, una pluma a la vez, excepto por las tres secundarias más próximas al cuerpo (terciales), que se tienden a mudar concurrentemente con las secundarias más largas. Como en el caso de la muda de las primarias, la muda de las secundarias puede registrarse tomando nota del número de la pluma secundaria en muda, confirmando que la muda sea simétrica.

Las plumas de la cola (rectrices) se numeran por pares, comenzando con el primer par interior (designado con el número 1) y procediendo hacia el exterior en ambas direcciones hasta el par número 5 ó 6 dependiendo de la especie. En otras palabras, la numeración es simétrica partiendo de primer par interior de plumas y ascendiendo hasta las plumas más alejadas del cuerpo. El patrón de muda de la cola varia según la especie, y en el caso de algunas aves juveniles la muda de las plumas interiores primeras (número 1) a veces ocurre simultáneamente con la muda de las plumas del cuerpo. Las rectrices restantes se mudan simétricamente desde las plumas interiores más próximas al cuerpo (número 2) hasta las plumas más distantes (número 5 ó 6). La muda de la cola puede cuantificarse anotando el número de la pluma en muda.

Para resumir, puede llevarse un registro de la muda si se evalúa el alcance y la cantidad de plumas en muda en el cuerpo y el número de pluma correspondiente de las plumas de vuelo en muda. Para más detalles sobre la muda y su cuantificación, refiérase a Ginn y Melville (1983). No sólo se necesita información básica sobre los patrones de muda por edad y sexo para muchas especies del Caribe, sino que la información sobre cuando ocurre la muda contribuirá a que com-

prendamos el ciclo anual de las especies de aves, tal como demostró Diamond (1974) para las aves de Jamaica.

Depósito de Grasa.—La evaluación de la cantidad de grasa en el cuerpo de un ave puede ofrecer una indicación de la condición del ave. Niveles adiposos bajos pueden reflejar periodos de estrés, abastos alimenticios limitados, y otras condiciones que indican cuán viable es un individuo. Los niveles de adiposidad varían más en el caso de especies migratorias y alcanzan su nivel superior justo antes de la migración. Cuando hay grasa presente, se deposita visiblemente en el abdomen y en la fúrcula (espoleta). Los depósitos adiposos pueden variar de color desde naranja-blanco hasta blanquecino y por lo general representan un marcado contraste con el rojo intenso de los músculos pectorales o la víscera oscura del abdomen.

La grasa en la región de la fúrcula puede inspeccionarse apartando las plumas en la región que divide el cuello del cuerpo. Se crea una depresión (región furcular o intraclavicular) entre la unión de los músculos pectorales (músculos del pecho) con la fúrcula y los coracoides, formando una "V" en dirección a la espina dorsal. La grasa en esta región puede clasificarse de manera subjetiva de alguna a mucha. En el caso de la mayoría de las aves del Caribe una escala de 0 a 4 es suficiente, lo cual modificaría las categorías de adiposidad descritas por Ralph y otros (1993) (tabla 3)

Tabla 3.—Las categorías de adiposidad para aves del caribes (adaptado de Ralph y otros [1993].

Categoria de grasa	Fúrcula	Abdomen
0	Ausencia de grasa, región cóncava	Ausencia de grasa
1	Rastros de grasa en fragmentos dispersos, región extremadamente cóncava, fragmentos dispersos, fúrcula con	Ausencia o rastros
	menos de un 5 porciento	de grasa
2	Capa fina de grasa, fúrcula con menos de un 33 porciento	Rastros o capa fina de grasa
3	Grasa en fragmentos pequeños, fúrcula con un 50 porciento	Pequeños fragmentos de grasa, sin cubrir ciertas áreas
4	Grasa a nivel con clavículas, fúrcula con un 66 porceinto	Cubierta de capa adiposa, ligeramente rellena
5	Región ligeramente abultada	Región bien rellena

Otras Medidas.—Pueden efectuarse diferentes medidas a partir de las aves capturadas, según se describe en detalle en Pyle y otros (1987) y se resume en las figuras 8 a la 11. Algunas medidas pueden ser de utilidad especial para ayudar a determinar la edad y el sexo de algunas especies. Por ejemplo, en el caso de muchas aves, los machos de una población en particular tenderán a ser más grandes que las hembras de la misma población. De manera que las medidas del longitud del ala, longitud tarsal y peso pueden ser de mucha utilidad. Cuando se incluyen estas medidas junto con los estimados de grasa, el tamaño del ave puede ayudar a proveer una indicación de su estado de salud.

Es importante que las medidas se tomen de forma estandarizada, en particular cuando se usan para determinar la edad y el sexo de aves individuales. El peso probablemente sea la medida más sencilla, y puede tomarse con una báscula Pésola® y un saco de tela liviano (de peso conocido) para sostener el ave

mientras está suspendida. Refiérase a Svensson (1984) o Pyle y otros (1987) para otras medidas estándar, una de las cuales, por lo menos, debe ser parte del material básico de todo estuche de marca con anillos y redes, aún en el Caribe.

Reproducción de Grabación.—A fin de atraer especies silenciosas o sigilosas, con frecuencia resulta conveniente reproducir una grabación de su canto o llamado en el hábitat apropiado. Esta técnica es especialmente útil para contar una especie particularmente rara. La reproducción de la grabación puede combinarse con recuentos en punto o transectos, aunque los censos que usan reproducciones de grabación no pueden compararse con censos que no empleen este método. Un diseño de reproducción de grabaciones sencillo implica usar una cinta de vocalizaciones a su velocidad natural durante cinco minutos, seguido de cinco minutos de silencio mientras se cuentan los individuos. Esta técnica puede emplearse en cada recuento en punto individual o mientras se camina despacio

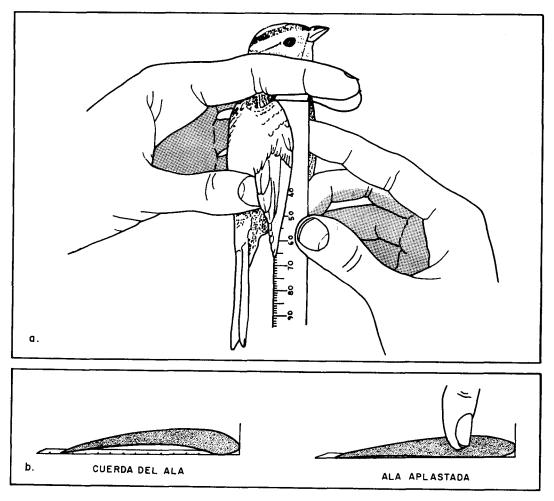


Figura 8.— Métodos para medir la longitud del ala: (a) como sostener al ave apropiadamente al medir un ala: (b) dos técnicas diferentes para obtener medidas de ala (cuerda del ala a la izquierda, ala aplastada a la derecha). La medida más comúnmente utilizada es la cuerda del ala (adaptado de Pyle y otros 1987).

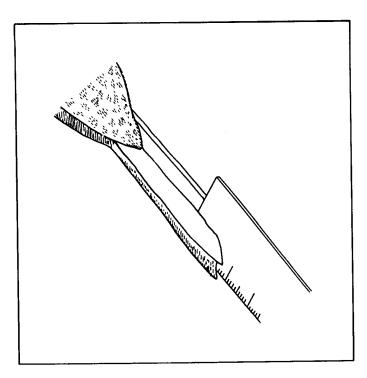


Figura 9.—Un método aceptado para medir la cola consiste en introducir una regla entre las plumas centrales de la cola (rectrices) y guiar la regla hasta tocar la superficie del cuerpo para obtener una lectura máxima de la longitud de la cola (adaptado de Pyle y otros 1987).

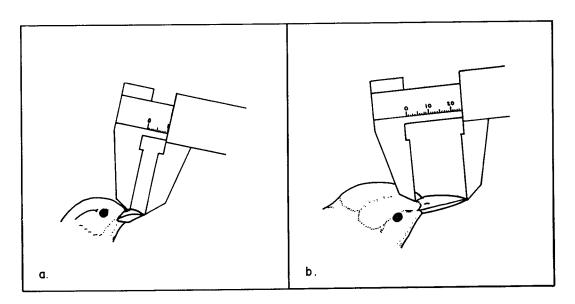


Figura 10.—Dos medidas de longitud de pico (adaptado de Pyle y otros, 1987). El culmen y el culmen expuesto son dos medidas estandar para longitud del pico. El culmen (a) se mide desde el extremo anterior de la fosa nasal hasta la punta del pico: mientras que el culmen expuesto (b) se mide desde las punta del pico hasta el borde del area plumosa en la base del pico (adaptado de Pyle y otros 1987).

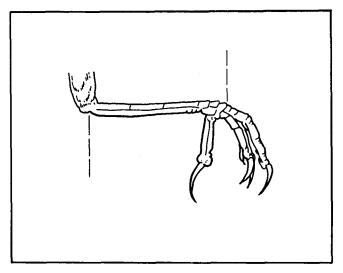


Figura 11.—Extremos del tarso-metatarso usados para obtener una medida de longitud tarsal que se realiza mejor con Verniers (adaptado de Pyle y otros, 1987).

por una línea transversal. Si la reproducción de grabaciones se hace de manera sistemática, puede usar-se para propósitos de encuesta y seguimiento ya que provee un índice de abundancia (aunque no una medida de densidad real). En el Caribe, la reproducción de grabaciones se ha usado para estudiar la distribución de una especie endémica de paloma en Granada, Leptotila wellsi, (Blockstein 1988) y para evaluar las poblaciones de varias especies endémicas de aves en Jamaica en la secuela de un importante huracán (Varty 1991).

La reproducción de grabaciones con frecuencia puede usarse para capturar aves territoriales. Por ejemplo, puede colocarse un altavoz portátil debajo de una red y usarse para atraer un individuo a la red. Este método requiere un altavoz con cable largo conectado a una grabadora que sea operada por un observador escondido a varios metros de la red. Tal cual lo describieron Holmes y Sherry (1989), el método resultó muy efectivo para capturar aves migratorias invernando en Jamaica.

Es posible obtener grabaciones del canto de muchas especies del Caribe del laboratorio acústico del Cornell Laboratory of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA (teléfono 607-254-2441). Es posible obtener información y equipo para grabaciones y reproducciones de campo de Saul Mineroff Electronics, Inc. 946 Downing Road, Valley Stream, NY 11580, USA (Teléfono: 516-825-4702).

LITERATURE CITED

Askins, Robert A.; Ewert, David N. 1991. Impact of Hurricane Hugo on bird populations in Virgin Islands National Park. Biotropica. 23: 481–487.

Baillie, S.R.; Green, R.E.; Boddy, M.; Buckland, S.T. 1986. An evaluation of the constant efforts sites scheme. Hertshire, UK: British Trust for Ornithology; report of the constant effort sites review group to the ringing committee of the British Trust for Ornithology. [Number of pages unknown].

Blake, C. 1963. The brood patch. Eastern Bird Banding Association Workshop Manual. 2: 8–9.

Bleitz, D. 1970. Mist nets and their use. Inland Bird Banding News. 42: 1-15.

Blockstein, David. 1988. Two endangered birds of Grenada, West Indies. Caribbean Journal of Science. 24: 127–136.

Burnham, K.P.; Anderson, D.R.; Laake, J.L. 1980. Estimation of density from line transect sampling of biological populations. Wildlife Monographs. 72: 1– 202.

Collar, N.J.; Andrew, P. 1988. Birds to watch. ICBP Tech. Pub. No. 8. Cambridge, UK. Page Brothers (Norwich), Ltd. 303 p.

Cox, George W.; Ricklefs, Robert E. 1977. Species diversity and ecological release in Caribbean land bird faunas. Oikos. 28: 113–122.

- Cruz, Alexander; Delannoy, Carlos A. 1984. Ecology of the elfin woods warbler (*Dendroica angelae*). 1: Distribution, habitat usage, and population densities. Caribbean Journal of Science. 20: 89–96.
- Diamond, Anthony W. 1974. Annual cycles in Jamaican forest birds. Journal of Zoology. 173: 277–301.
- Emlen, John T. 1971. Population densities of birds derived from transect counts. Auk. 88: 323-342.
- Emlen, John T. 1977a. Land bird communities of Grand Bahama Island: The structure and dynamics of an avifauna. Ornithological Monographs. 24: 1– 129.
- Emlen, John T. 1977b. Estimating breeding season bird densities from transect counts. Auk. 94: 455–468.
- Faaborg, John R.; Arendt, Wayne J. 1985. Wildlife assessments in the Caribbean. Río Piedras, PR: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, Institute of Tropical Forestry. 220 p.
- Faaborg, John R.; Arendt, Wayne J. 1991. Long-term declines in winter resident warblers in a Puerto Rican dry forest. American Birds. 43: 1,226-1,230.
- Faaborg, John R.; Arendt, Wayne J.; Kaiser, Mark S. 1984. Rainfall correlates of bird population fluctuations in a Puerto Rican dry forest. The Wilson Bulletin. 96: 575–593.
- Ginn, H.B.; Melville, D.S. 1983. Moult in birds. Guide No. 19. Hertfordshire, UK: British Trust for Ornithology. 26 p.
- Holmes, Richard T.; Sherry, Thomas W.; Reitsma, Leonard. 1989. Population structure, territoriality and overwinter survival of two migrant warbler species in Jamaica. Condor. 91: 545–561.
- Hutto, Richard L.; Pletschet, Sandra M.; Hendricks, Paul. 1986. A fixed-radius point count method for nonbreeding and breeding season use. Auk. 103: 593-602.
- Lack, David. 1976. Island biology. Cambridge, UK: Cambridge University Press. 445 p.
- Lack, David; Lack, Andrew. 1973. Birds on Grenada. Ibis. 115: 53-59.
- Lack, David; Lack, Edward; Lack, Paul; Lack, Andrew. 1973. Birds on St. Vincent. Ibis. 115: 46–52.
- Manuwal, David A.; Carey, Andrew B. 1991. Methods for measuring populations of small, diurnal forest birds. Gen. Tech. Rep. PNW-278. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 23 p.
- Pardieck, Keith; Waide, Robert B. 1992. Mesh size as a factor in avian community studies using mist nets. Journal of Field Ornithology. 63: 250-255.
- Pashley, David N.; Martin, Robert P. 1988. The contribution of Christmas bird counts to knowledge of the winter distribution of migratory warblers in the Neotropics. American Birds. 42: 1,164–1,176.

- Pyle, Peter; Howell, Steve N.G.; Yunick, Robert P.; DeSante, David F. 1987. Identification guide to North American Passerines. Bolinas, CA: Slate Creek Press. [Number of pages unknown].
- Ralph, C. John. 1967. Taking data at a banding station. In: Western bird-banding workshop manual. Bolinas, CA: Western Bird-banding Association, Point Reyes Bird Observatory. [Number of pages unknown].
- Ralph, C. John. 1988. A brief guide to banding birds. In: Western bird-banding Association workshop manual. Arcata, CA: Western Bird-Banding Association, Humboldt Bay Bird Observatory. [Number of pages unknown].
- Ralph, C. John; Geupel, Geoffrey R.; Pyle, Peter [and others]. [1993]. Field methods for monitoring landbirds. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 41 p.
- Recher, Harold F. 1970. Population density and seasonal changes of the avifauna in a tropical forest before and after gamma irradiation. In: Odum, H.T.; Pigeon, R.F., eds. A tropical rainforest. Springfield, VA: U.S. Department of Commerce, National Technical Information Services: E69-E93.
- Reynolds, R.T.; Scott, J.M.; Nussbaum, R.A. 1980. A variable circular-plot method for estimating bird numbers. Condor. 82: 309-313.
- Rivera-Milan, Frank F. 1992. Distribution and relative abundance patterns of Columbids in Puerto Rico. Condor. 94: 224–238.
- Shreve, A. 1965. Preventing net casualties. Eastern Bird Banding Association Workshop Manual. 4: 1– 22.
- Snyder, Noel F.R.; Wiley, James W.; C.B. Kepler, Cameron B. 1987. The parrots of Luquillo: natural history and conservation of the Puerto Rican Parrot. Los Angeles: Western Foundation of Vertebrate Zoology. 384 p.
- Svensson, L. 1984. Identification guide to European Passerines. Stockholm: Svensson. 279 p.
- Terborgh, John; Faaborg, John. 1973. Turnover and ecological release in the avifauna of Mona Island, Puerto Rico. Auk. 90: 759–779.
- Terborgh, John; Faaborg, John; Brockmann, Jane. 1978. Island colonization by Lesser Antillean birds. Auk. 95: 59–72.
- Varty, Nigel. 1991. The status and conservation of Jamaica's threatened and endemic forest avifauna and their habitats following Hurricane Gilbert. Bird Conservation International. 1: 135–151.
- Verner, Jared. 1985. Assessment of counting techniques. Current Ornithology. 2: 247-302.
- Vilella, F.; Zwank, P.J. 1987. Density and distribution of the Puerto Rican Nightjar in the Guayanilla Hills. Caribbean Journal of Science. 23: 238–242.

Apéndice

Ejemplos de hojas de datos de campo son mostradas para contajes de punto con radio fijo $(25~\rm m)$, transectos de faja $(25~\rm m$ a cada lado del transectso), y datos de anillas

HOJA DE DATOS PARA RECUNTOS DE PUNTO CON RADIO FIJO

Fecha	Localidad		Clima					
Observador				<u> </u>				
Especies	Hora ≤25m >25m	Hora ≤25m >25m	Hora ≤25m >25m	Hora ≤25m >25m				
			<u> </u>					

HOJA DE DATOS PARA TRANSECTOS DE FAJA

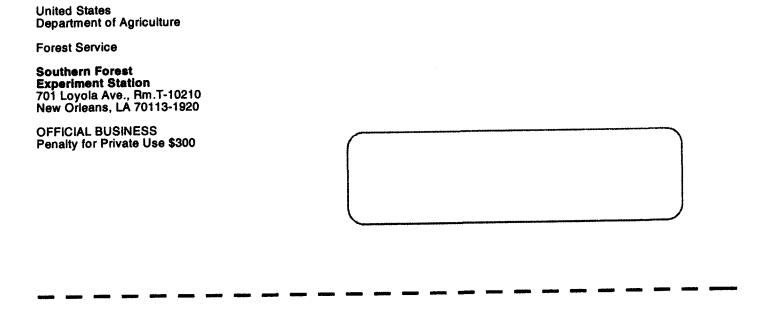
Transecto # Largo Hora <25m >25m	Largo Hora
Largo Hora	Transecto # Largo Hora ≤25m >2
<25m >25m	<u><</u> 25m >2

*U.S.GPO:1995-665-017/00040

REGISTRO DE ANILLAJE—ESPECIES INDIVIDUALES

Nombre Cient	ífico			Co	odigo		Local	idad _			
Nombre Com	ún										
# Anilla	Colores	ıEdad.S	Sexol	Ala ı	Cola	Tarso	Pico	Peso	Grasa	Muda	Fecha
<i>n</i> / / / / / / / / / / / / / / / / / / /											
<u> </u>											
			ļ								
											

Wunderle, Joseph M., Jr. 1994. Métodos para contar aves terrestres del Caribe. Gen. Tech. Rep. SO-100. New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 28 p.


Pueden usarse diferentes metodos para estudiar la distribución de una specie de ave terrestre. El método apropriado dependerá en el objetivo del estudio. En el caso de le mayoría de los estudios de aves terrestres en el Caribe, se recomienda el método de recuento en punto.

Terminos clave: Censo, estudio, llevar la cuenta, muestro, poblaciones.

El Departamento de Agricultura de los Estados Unidos (USDA) prohibe la discriminación en sus programas á base de raza, color, nacionalidad, sexo, religión, edad, impedimento, creencias políticos, y estado civil o familiar. (No todas las bases prohibidas aplican a todos los programas). Las personas con impedimentos que requieran medios alternos para comunicación de información del programa (Braille, impresión aumentada, cintas de audio, etc.) deberán comunicarse con la Oficina de Comunicaciones del USDA al (202) 720-5881 (voz) o al (202) 720-7808 (TDD).

Para presentar una querella, escriba a Secretary of Agriculture, Washington, DC 20250 o llame al (202) 720-7327 (voz) o (202) 720-1127 (TDD). USDA es un empleador de oportunidades iguales.

El uso de nombres de marcas, firmas comerciales o corporaciones, o sugerencias de suplidores de materiales, en este escrito es para información y conveniencia del lector. Dicho uso no constituye el endoso oficial ni aprobación del Departamento de Agricultura de los Estados Unidos de algún producto o servicio al efecto de excluir otros disponibles.

