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ABSTRACT.—Satellite image-based mapping of tropical forests is vital to conservation planning. Standard
methods for automated image classification, however, limit classification detail in complex tropical land-
scapes. In this study, we test an approach to Landsat image interpretation on four islands of the Lesser
Antilles, including Grenada and St. Kitts, Nevis and St. Eustatius, testing a more detailed classification than
earlier work in the latter three islands. Secondly, we estimate the extents of land cover and protected forest
by formation for five islands and ask how land cover has changed over the second half of the 20th century.
The image interpretation approach combines image mosaics and ancillary geographic data, classifying the
resulting set of raster data with decision tree software. Cloud-free image mosaics for one or two seasons were
created by applying regression tree normalization to scene dates that could fill cloudy areas in a base scene.
Such mosaics are also known as cloud-filled, cloud-minimized or cloud-cleared imagery, mosaics, or com-
posites. The approach accurately distinguished several classes that more standard methods would confuse;
the seamless mosaics aided reference data collection; and the multiseason imagery allowed us to separate
drought deciduous forests and woodlands from semi-deciduous ones. Cultivated land areas declined 60 to
100 percent from about 1945 to 2000 on several islands. Meanwhile, forest cover has increased 50 to 950%. This
trend will likely continue where sugar cane cultivation has dominated. Like the island of Puerto Rico, most
higher-elevation forest formations are protected in formal or informal reserves. Also similarly, lowland
forests, which are drier forest types on these islands, are not well represented in reserves. Former cultivated
lands in lowland areas could provide lands for new reserves of drier forest types. The land-use history of
these islands may provide insight for planners in countries currently considering lowland forest clearing for
agriculture.

KEYWORDS.—vegetation map, land-use change, Landsat, Caribbean, forest conservation, machine learning,
multidate

INTRODUCTION

Gaps in the global network of conserva-
tion reserves are mostly in montane and
insular tropical landscapes, where species
endemism is high (Rodrigues et al. 2004).
The need to expand reserve networks
on tropical islands is particularly urgent

(Myers et al. 2000; Rodrigues et al. 2004).
Habitat losses are often extensive, and land
development pressures can be large. Con-
servation planning often starts by mapping
habitats with Landsat satellite imagery
(Scott et al. 1993). These maps can then sup-
port simple to complex assessments of re-
serve networks. Simple “representative-
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ness” assessments, for example, estimate
the extent of each forest formation or eco-
logical zone that is under protection. Such
initial assessments have provided timely
data to planners on whether conservation
reserve networks may under represent
some ecosystems (Powell et al. 2000;
Helmer et al. 2002; Helmer 2004). Data for
these simple assessments, however, are of-
ten unavailable or outdated. One reason is
that standard methods for automated sat-
ellite image interpretation are not effective
for detailed mapping of land cover and for-
est formations in montane and insular
tropical landscapes. Complications include
steep environmental gradients, spectral
confusion between land-cover classes, and
persistent cloud cover. Consequently, map-
ping these complex landscapes with satel-
lite imagery is a subject of research. Meth-
ods that work well in one landscape may
not distinguish classes that are important in
another one.

The first objective of this study is to test
an approach to mapping forest formations
and land cover with satellite imagery over
two study areas in the Caribbean. The first
study area is Grenada, where the approach
has not been tested. The second area is St.
Kitts, Nevis and St. Eustatius, where
Helmer and Ruefenacht (2007) test a sim-
pler set of classes than we test here when
comparing methods to fill cloud gaps in
Landsat imagery. The approach can be de-
scribed as decision tree classification of
cloud-cleared Landsat imagery and ancil-
lary data, and it may include cloud-cleared
image mosaics from more than one season.
Earlier work outlines three main advan-
tages of this overall approach for complex
Caribbean landscapes (Helmer and Ruef-
enacht 2007; Kennaway and Helmer 2007):
1) decision tree classifications digest ancil-
lary geospatial data that can resolve spec-
tral confusion between classes; 2) fairly
seamless image mosaics speed training
data collection; and 3) when available, mul-
tiseason imagery reveals extents of drought
deciduous woody vegetation, which also
improves training data. Many recent stud-
ies show the advantages of image classifi-
cation with decision trees, and decision tree
classification is almost becoming common

in remote sensing (Hansen et al. 1996;
Friedl and Brodley 1997; Lawrence and
Wright 2001; Vogelmann et al. 2001; Homer
et al. 2004; Carreiras et al. 2006; Ruefenacht
et al. In Press). However, only two ex-
amples classify Landsat imagery with deci-
sion trees in a tropical island setting
(Helmer and Ruefenacht 2007; Kennaway
and Helmer 2007). Kennaway and Helmer
(2007) map forest formations and land
cover with decision trees over the Caribbe-
an islands of Puerto Rico, Vieques and
Culebra. The land-cover types and forest
formations that we map in this study in-
clude ones that earlier work collapses, de-
lineates by hand, ignores, or does not en-
counter.

The second objective of this study is to
better understand the extent to which the
reserve systems or informal reserves of the
above four islands, as well as the informal
reserves of Barbados, represent different
forest formations. We also ask whether
land cover has changed on these islands
over the last half-century. Earlier work on
the Caribbean island of Puerto Rico shows
that the extents of protected lowland forest
formations can be small (Helmer et al.
2002). Cultivated land area has declined in
Puerto Rico, which may mean that more
land is available for setting aside conserva-
tion reserves in lowland areas. These same
areas, however, are where most of the land-
cover change to urban or built-up land oc-
curs (Helmer 2004). The trends in Puerto
Rico could also occur on the islands in this
study. However, recent and detailed land-
cover data have not been available to quan-
tify the extent to which reserves include
different forest formations.

MATERIALS AND METHODS

Overview

To accomplish our first goal, we used de-
cision tree software to classify Landsat im-
age mosaics over two study areas: one area
included St. Kitts, Nevis and St. Eustatius,
and the other area was the island of
Grenada. In the classifications, we com-
bined ancillary raster data, like topographic
variables, with the Landsat image bands.
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The Landsat imagery included one image
mosaic and one image for Grenada, and
two image mosaics for the St. Kitts study
area. The image mosaics were developed
by applying regression trees to normalize
images from other dates to fill the cloudy
areas present in the base scene for each mo-
saic. We then assessed accuracy of the
Landsat image classifications with 1-m
pan-sharpened, false color IKONOS imag-
ery dated from 2000-2003. For a few re-
maining cloudy areas, we manually inter-
preted forest formations and land cover
from the IKONOS imagery.

For the second goal, we first mapped
forest formations and land cover for Barba-
dos by manually interpreting 1-m pan-
sharpened, true color IKONOS imagery,
circa 2000. Much of Barbados was cloud-
obscured in all available Landsat imagery.
Also, because we did not have multiseason
imagery for Barbados, some forest forma-
tions were generalized. Secondly, we quan-
tified the extents of protected forest by for-
mation for all five of the islands. For
Grenada, Barbados and St. Eustatius, we
used a protected area database for the in-
sular Caribbean produced by The Nature
Conservancy. The primary source for pro-
tected areas was the World Database on
Protected Areas (WDPA-Consortium 2003),
which was enhanced using country-scale
protected area information (TNC 2007). All
of the Barbados protected areas in the da-
tabase are only informally protected. A
1000-ft contour provided boundaries for
protected lands on Nevis, because develop-
ment is prohibited above that elevation.
Boundaries for the new central forest re-
serve on St. Kitts, which include most lands
above 1000 ft elevation, came from the St.
Kitts Physical Planning Division. We
manually digitized boundaries for Brim-
stone Hill National Park, in St. Kitts. Fi-
nally, we assessed whether changes in cul-
tivated land or forest areas have occurred
over the last half-century by comparing ar-
eas of cultivated lands and other land-
cover types from the maps with area esti-
mates from a table published in Beard
(1949). Beard (1949) extensively surveyed
several islands of the Lesser Antilles from
1942 to 1946. He inventoried the species

composition of and mapped forest types,
and he estimated the areas of different for-
est types, pasture and grazed woodlands,
cultivated lands and “other uncultivated”
lands (towns, villages, sand dunes, salt
flats). We only present comparisons based
on the tabular results in that publication.
As we discuss later, the scale of the maps
published in Beard (1949) is too coarse for
change detection within a geographic infor-
mation system.

Study areas

The Caribbean Leeward islands of St.
Kitts, Nevis, and St. Eustatius, and the
Windward islands of Grenada and Barba-
dos, are part of the Lesser Antilles. The cli-
mate and woody vegetation formations on
the islands are subtropical or tropical, and
they range from xeric forests and shrub-
lands to semi-deciduous, seasonal ever-
green or evergreen forests including cloud
forests. Volcanic geology dominates four of
the islands, which each have one or more
mountains of volcanic origin. Elevations on
the volcanic islands range from just below
sea level in some wetlands to 600 m on St.
Eustatius, 1156 m on St. Kitts, 985 m on
Nevis, and 840 m on Grenada. Karst sub-
strates dominate most of Barbados, which
has elevations that range to 336 m and a
more restricted range of vegetation forma-
tions.

Classification scheme

As in Helmer et al. (2002), the forest and
shrubland classes are designated to the for-
mation level (Table 1). Formations are
adapted from Areces-Malea et al. (1999),
who classify Caribbean vegetation accord-
ing to standards of the US Federal Geo-
graphic Data Committee (FGDC 1997).
Mapping forests to the formation level is
practical for satellite image classification in
these landscapes when plot-level floristic
data are not available (Helmer et al. 2002).
Image spectra or geospatial environmental
data can usually distinguish woody forma-
tions because environmental and physiog-
nomic factors, like leaf phenology, largely
define them.
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TABLE 1. Woody vegetation formations mapped in this study. Formation groups or subgroups are shown in bold typeface. All formation groups are tropical or
subtropical and broadleaved unless otherwise noted.

Woody vegetation Formation
This study (adapted from Areces-Malea, 1999 and USFGDC, 1997)

Plant Community Formation
Beard, 1949

Drought Deciduous and Semi-Deciduous Forest, Forest/Shrub, Shrubland or Woodland
(Dry, Dry-Moist), Lowland or Submontane Seasonal Formations—Dry Scrub Woodlands
Deciduous, Evergreen Coastal and Mixed Forest or Shrubland, with or without Succulents

(on Limestone or other substrates)
Dry Evergreen Formations1

Dry evergreen forest
Littoral woodland
Evergreen bushland

Secondary and Sub-Climax Dry Evergreen
Communities

Thorny thickets
Vegetation of sand-dunes and rocky slopes

Secondary and Sub-Climax Seasonal Communities
Cactus bush

Drought Deciduous Woodland (grazing or fire ongoing) Rough grazing2

Secondary Seasonal Communities
Logwood thicket (Haematoxylum campechianum)
Logwood-Acacia bush
Thorn savanna (Prosopis pallida savanna)
Leucaena thicket (Leucaena leucocephala)
Croton thicket (Croton spp.)

Drought Deciduous Forest/Shrub (grazed in past) Secondary Seasonal Communities
Logwood thicket (Haematoxylum campechianum)
Logwood-Acacia bush
Leucaena thicket (Leucaena leucocephala)
Croton thicket

Semi-Deciduous and Drought Deciduous Forest on Limestone (includes Semi-Evergreen Forest) Seasonal Formations
Semi-Evergreen Seasonal Forest

Semi-Deciduous Forest (includes Semi-Evergreen Forest) Deciduous Seasonal Forest
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TABLE 1. Continued

Woody vegetation Formation
This study (adapted from Areces-Malea, 1999 and USFGDC, 1997)

Plant Community Formation
Beard, 1949

Seasonal Evergreen and Evergreen Forest or Forest/Shrub (Moist, Moist-Wet, Wet, Rain),
Lowland or Submontane

Seasonal Formations—Evergreen Seasonal Forest
Optimal Formation—Rain forest

Seasonal Evergreen Forest with Coconut Palm —
Seasonal Evergreen Forest Seasonal Formations—Evergreen Seasonal Forest

Evergreen Forest3

Optimal Formation—Rain forest
Secondary and Sub-climax Communities

Pioneer forest
Tree-fern brake
Miconia thicket

Evergreen Forest—Cloud Forest (Moist-Wet, Wet, Rain), Lower Montane Montane Formations
Sierra Palm, Transitional and Tall Cloud Forest Lower Montane Rain forest

Montane thicket
Secondary and Sub-climax Communities

Palm brake
Miconia thicket

Elfin and Sierra Palm Cloud Forest4 Elfin Woodland
Secondary and Sub-climax Communities4

Palm brake
Pioneer communities of volcanic ejecta
Fumarole vegetation

Forested Wetlands Edaphic Formations
Mangrove Mangrove Woodland
Seasonally Flooded Savannas and Woodlands Seasonal-Swamp Formations—Savanna

1Other Dry Evergreen Communities of Beard: Fire grasslands (occurs in St. Kitts and mapped as pasture/grass).
2Not part of dry scrub woodlands in Beard
3Sierra Palm present in some areas, like Steep Non-Forest Vegetation.
4Montane Non-Forest Vegetation includes Montane herbaceous vegetation, Fumarole vegetation and Miconia thicket.
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In the FGDC standards for subtropical or
tropical woody vegetation, drought decidu-
ous refers to woody vegetation formations
in which at least 75% of woody canopy spe-
cies are deciduous. Semi-deciduous means
that most upper canopy trees are drought
deciduous and many understory trees and
shrubs are evergreen, but the evergreen
and deciduous woody plants are not al-
ways separated by layers. This definition
overlaps with the FGDC definition for semi-
evergreen, in which 25 to 75% of canopy tree
species are deciduous. To avoid confusion,
we use only the term semi-deciduous (after
Areces-Mallea et al. 1999), and we use it for
stands with 25 to 75% of deciduous woody
canopy species. Mixed refers to mixed ever-
green and deciduous cover that includes
trees or shrubs at maturity, as in Areces-
Malea et al. (1999). At least 75% of seasonal
evergreen and evergreen canopy species are
evergreen. In seasonal evergreen forma-
tions, some canopy species drop some
leaves during drought.

Forest includes lands with at least 25%
tree or tree plus shrub cover, combining the
two forest successional stages of Helmer et
al (2002). The one case in which we distin-
guish the younger forest/shrub class is
where young stands are drought deciduous
but adjacent older forest is semi-deciduous
(forest/shrub includes lands with 25-60%
tree plus shrub cover, or �60% cover of
uniformly young seedlings or saplings that
may include shrubs). This definition of for-
est differs from the FGDC standards and
Areces-Malea et al. (1999), which call lands
with 25-60% tree cover woodlands. As in
Helmer et al. (2002), we reserve the term
woodland for lands with >25% canopy
cover of drought deciduous shrubs or trees,
which are often leguminous and thorny,
and a clear understory that fire and grazing
maintain and that may include grasses or
forbs. If these disturbances cease, drought
deciduous woodlands may succeed to
drought deciduous forest/shrub, which le-
gumes often also dominate, and they may
eventually succeed to semi-deciduous or
mixed formations. In the map legends we
generalized the driest coastal forest and
shrubland formations into one class. With
the exception of large patches of Coccoloba

uvifera on St. Kitts, most patches of coastal
evergreen forest were too small to be dis-
tinct from the matrix of drought deciduous
and mixed formations. In addition, in Bar-
bados, the class deciduous, evergreen
coastal and mixed forest or shrubland (with
or without succulents), also includes a mo-
saic of drought deciduous, semi-deciduous
and seasonal evergreen forest/shrub below
and to the northeast of Mt. Hillaby.

Landsat imagery

Even the clearest Landsat images for
each study area still had many clouds ob-
structing land. Consequently, we used a re-
gression tree method (Helmer and Ruef-
enacht 2005) to make nearly cloud-free
image mosaics. Such mosaics are also
known as cloud- filled, cloud-minimized or
cloud-cleared imagery, mosaics, or com-
posites. The base or reference image for each
mosaic is usually the clearest one available
for the season of interest. The subject im-
ages are other image dates that are cloud-
free where the reference image is cloudy.
The regression tree method normalizes
subject images to the reference image for
each mosaic. The normalization minimizes
atmospheric, phenological and illumina-
tion differences between the various image
dates that form each mosaic. Because the
new subject image data are calibrated to the
reference image for each mosaic with re-
gression tree models, they more seamlessly
fill cloudy areas in the reference image. De-
tails on the method are available in Helmer
and Ruefenacht (2005). Most of the Landsat
scenes were terrain-corrected, Landsat 7
Enhanced Thematic Mapper (ETM+) im-
ages (Table 2). We also used two ETM+
images over the St. Kitts area and one
Landsat 5 image over Grenada that were
not terrain-corrected. All images were co-
registered, to within <1 pixel root mean
square error, to the clearest terrain-correct-
ed image for each study area.

We made two image mosaics for the St.
Kitts study area (Helmer and Ruefenacht
2007), including one mosaic for each of two
stages of phenology for drought deciduous
woody vegetation (Table 2). Drought de-
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ciduous woody vegetation was “leaf-on” in
the base scene for the mosaic from the be-
ginning of the dry season. Drought decidu-
ous woody vegetation was in a “leaf-off”
state in the base image for the other. For
Grenada, we made one image mosaic and
used a Landsat 5 scene as a leaf-off image
in the classification.

Landsat image classifications

We evaluated whether the decision tree
software See5 (http://www.rulequest
.com) could effectively classify cloud-
cleared Landsat imagery 1) in Grenada,
and 2) for a more detailed set of classes
than previous work in the St. Kitts study
area. Reference, or training data for each
classification consisted of 25 to >100 mul-
tipixel patches distributed throughout the
extent of each class, resulting in a dense
training dataset of thousands of pixels per
class. The data included field-based data
for St. Kitts, Nevis, and Grenada that was
collected between January and June 2003.
Field data collection relied on simulta-
neously observing land cover and forest
formation both in satellite imagery and in
the field. In the field we integrated a Global
Positioning System (GPS) receiver with a
laptop computer (with a daylight-viewable
image display) running the ERDAS Imag-
ine GPS tool (Leica-Geosystems, 2003).

To distribute training data throughout
the extent of each class, we then supple-
mented these field data by visually inter-
preting pan-sharpened, 1-m false color or

true color IKONOS images. The IKONOS
imagery was from the years 2000-2001 for
St. Kitts and Nevis, and from 2003 for
Grenada. The images were dated between
October and February, when drought de-
ciduous woody vegetation was in a leaf-on
stage. Field work in St. Kitts and Nevis in-
cluded traversing eight elevation gradients
on windward and leeward sides of these
islands. This extensive training data al-
lowed us to estimate the elevations where
seasonal evergreen forest changed to ever-
green forest for different windward and
leeward slopes, even though these two for-
est types were not visually distinct in the
IKONOS imagery. The training data for
sugar cane included subclasses that dif-
fered by field maturity. Most drought de-
ciduous vegetation was in a leaf-off stage in
the leaf-off image mosaic; however, we also
included a separate training class for some
patches of drought deciduous woodlands
that were greened up in the leaf-off imag-
ery. The training data also initially com-
bined the signatures for large patches of
coastal evergreen forest or shrubland in St.
Kitts with seasonal evergreen forest for
later editing. Spectral signatures for all bar-
ren lands were also combined, and barren
lands were later manually separated into
different classes (e.g. quarry, sand, bare
ground) after decision tree classification. In
mountainous areas, we collected a shad-
owed and sunlit version of each class
(Helmer et al. 2000). In Grenada, training
data for herbaceous agriculture were joined
with training data for pasture, and herba-

TABLE 2. Landsat image mosaics in this study, including the base, or reference image for each image mosaic
and the dates and overlay orders of images that filled clouds in each reference image.

Phenology of
drought deciduous
woody vegetation1

Landsat image
dates for

reference image
in each mosaic

Overlay order of
subject images

for image mosaics
(2nd-below-top

to bottom)

Cloud-obscured
land cover in

reference image
(%)

Cloud-obscured
land cover in
image mosaic

(%)

Grenada, WRS Path/row 001/052
Leaf-on 11 Nov 01 24 Mar 86-30 Sept 00 2.2 0.6

St. Kitts, Nevis and St. Eustatius Path/row 002/048
Leaf-on 12 Dec 99 5 Sept 00-2 Feb 03-11 Sept 02 9.1 2.2
Leaf-off 11 Sept 02 2 Feb 03-5 Sept 00-12 Dec 99 20.7 2.2

1Drought deciduous formations include drought deciduous woodlands, drought deciduous forest and
drought deciduous forest/shrub.
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ceous agriculture was manually recoded
from pasture.

For each study area, the Landsat image
bands were joined with ancillary geo-
graphic data layers into a many-layer set,
or stack, of raster data. When using decision
trees to classify raster data stacks, the deci-
sion tree software determines which of sev-
eral image bands and ancillary layers most
accurately distinguish classes based on the
training data. The values of the spectral and
ancillary predictor variables in the training
data pixels parameterize the decision tree
model. The spatial distribution of different
forest types classified by the decision tree is
on a per-pixel basis. Decision trees quickly
identify complex relationships between
variables and apply them in a classification
model. They are useful for both description
and prediction. This study applies them for
prediction, the primary goal of which is ac-
curacy (De’ath and Fabricius 2000). Conse-
quently, ancillary data can include corre-
lated variables. Although the resulting
models can be complex, complex models
are appropriate when the goal of a classifi-
cation is accuracy rather than to character-
ize the relationships between the classes
and the spectral or ancillary data.

Landsat image bands in the stacks in-
cluded bands 1-5, 7, and two band indices:
the normalized difference vegetation index
(NDVI) and the band 4:5 ratio. For the St.
Kitts study area, we also included variance
over 3x3 windows of the 15-m pan band
from the leaf-on image mosaic that we then
resampled to a 30-m cell size. The NDVI
gauges vegetation greenness, and the band
4:5 ratio is sensitive to forest structure and
successional stage in tropical landscapes
(Fiorella and Ripple 1993; Helmer et al.
2000). The ancillary data included distance
to primary road, distance to coast, distance
to ravine, and topographic variables from
Shuttle Radar Topography mission digital
elevation data (Farr and Kobrick 2000). To-
pographic variables included elevation,
slope, slope position, aspect, and topo-
graphic shading based on the sun elevation
and azimuth of each image date (or refer-
ence image date in the case of image mosa-
ics) (Leica-Geosystems 2003). The locations
of each pixel in the training data were used

to extract corresponding values of the im-
age bands and ancillary data from the stack
of raster data for each classification. These
data were then input into the See5 software
to create a classification model which we
then applied to classify the raster data
stack.

We used the default values in See5 for
classification with pruning. Decision tree
pruning deters trees from so closely fitting
one particular set of training data that they
over fit training data, meaning that the ac-
curacy of classifying new cases begins to
decline. Pruning in See5 removes parts of
the decision tree with high predicted error
rates. We also included the boosting option
with 10 trials; each trial results in a new
tree. In boosting, See5 constructs many de-
cision trees, in this case 10, in which con-
struction of each successive tree focuses on
misclassified cases in the previous tree. In
final classification, each pixel is classified
with each of the 10 trees and the most com-
monly predicted class is assigned to that
pixel. The final classification, then, is the
outcome of a vote by 10 different decision
trees. Finally, we applied larger misclassi-
fication costs for the most common misclas-
sifications from initial runs of the program.
The classification model was then applied
to the stack of raster data with the Classi-
fication and Regression Tree (CART) tool
for ERDAS Imagine (Leica-Geosystems,
2003) from the U.S. Geological Survey
(ftp://edcftp.cr.usgs.gov/pub/edcuser/
dewitz/NLCD_mapping_tool).

Accuracy assessments

For the study areas that underwent deci-
sion tree classification, stratified random
samples, of about 50 pixels per class, pro-
vided data for estimating classification ac-
curacies. The accuracy assessments ex-
cluded classes or areas that were entirely
visually-interpreted: forested and non-
forested wetlands in the St. Kitts study
area, herbaceous agriculture in Grenada
and the remaining cloudy areas. Barren
classes were also combined for the assess-
ment. We differentiated the barren pixels
by visual “heads-up” digitization over the
IKONOS imagery. With evergreen and sea-
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sonal evergreen forest formations not being
distinct in the IKONOS imagery, we com-
bined them in the accuracy assessment.
These accuracy assessment observations fill
error matrices from which we then calcu-
lated overall percentage of correctly classi-
fied pixels (those data in the main diagonal
of a matrix divided by the total number of
observations), producer’s and user’s accu-
racies, and the Kappa coefficient of agree-
ment (Cohen 1960; Congalton 1991). Pro-
ducer’s accuracy is the proportion of
reference observations for a given class that
were classified correctly, indicating how
well the classification model identifies
known cases. It is related to omission errors
(Omission error = 1 – Producer’s accuracy).
User’s accuracy is also a class-level mea-
sure of accuracy and is the proportion of
observations classified to a given class that
actually were that class. It indicates the
likelihood that a given location is classified
correctly, and it is related to commission
error (Commission error = 1 – User’s accu-
racy). The Kappa coefficient is a statistic
that measures overall agreement after ad-
justing for chance agreement. It was devel-
oped to compare agreement between raters

in social science studies, but remote sensing
studies commonly use it to assess classifi-
cation error. Because forest formations and
land cover for Barbados were for the most
part manually delineated, we did not per-
form an accuracy assessment for that map.
Very fine resolution imagery was not avail-
able for St. Eustatius at the time of the ac-
curacy assessment. However, we verified
and manually edited the classification for
St. Eustatius based on the high resolution
imagery that is now viewable on Google
Earth (http://earth.google.com/).

RESULTS AND DISCUSSION

Landsat image classifications

The Landsat and IKONOS image inter-
pretations produced the first detailed, sat-
ellite image-based land-cover and forest
formation maps for the islands studied
(Figures 2-4, and Table 3). Before manual
editing, the overall accuracies for the Land-
sat image classifications were 69% for the
St. Kitts study area and 59% for Grenada.
Limited manual editing improved these
overall accuracies to 71% and 78%, respec-

FIG. 1. Study area location.
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FIG. 2. Map of land cover and forest formations of St. Kitts, Nevis and St. Eustatius circa 2000.
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FIG. 3. Map of land cover and forest formations of Grenada circa 2001 (excludes Grenadian islands in the
Grenadines).
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FIG. 4. Map of land cover and forest formations of Barbados, circa 2000.
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tively (Appendices A and B). Kappa coeffi-
cients of agreement after manual editing
were 0.69 ± 0.04 for the St. Kitts study area
and 0.76 ± 0.03 for Grenada. Kappa coeffi-
cients of agreement between 0.6 and 0.8 are
considered “substantial” according to some
criteria (Landis and Koch 1977). Kappa co-
efficients in this range are also considered
good in remote sensing studies. In both
study areas, the main sources of error were
confusion between low density urban
lands, herbaceous agriculture, and pasture,
as well as confusion between low and high
density urban lands. Training pixels for
high density urban lands included only
pixels with �80% manmade structures
(from visual interpretation). Those for low
density urban lands included both vegeta-
tion and about 15 to 80% man-made struc-
tures. Both the high and low density urban
lands, then, could contain mixed pixels.
Landsat image pixels at 30-m resolution
that include both man-made structures and
vegetation can have spectral signatures like
pasture. Imagery with finer spatial resolu-
tion would better distinguish man-made
structures from vegetation.

As for the woody vegetation classes,
most forest types in both study areas were
classified with better than 60% accuracy be-
fore manual editing. After limited manual
editing, most forest types were classified
with greater than 70% accuracy. Drought
deciduous woodland showed some confu-
sion with pasture, drought deciduous for-
est or shrubland formations, and semi-
deciduous forest. These classes are related,
for pasture can have up to 25% cover of the
same drought deciduous, leguminous
shrubs or trees that dominate in drought
deciduous woodland and forest. The two
cloud forest types also showed some con-
fusion with each other. They are also
closely related, having some tree species in
common and overlapping elevation ranges.
In Grenada, semi-deciduous forest showed
confusion with woody agriculture that in-
cluded coconut or mixtures of cacao, coco-
nut, banana, and other crops. The high clas-
sification accuracy in the error matrix for
this class reflects manual editing. Nut-
meg plantations in Grenada, which are at
middle elevations and have dense ever-

green tree cover, are fairly accurately dis-
tinguished from evergreen forest by the de-
cision tree classification.

The approach in this study, of mapping
detailed forest formations and land cover
with decision trees and cloud-cleared
Landsat imagery, was successful for map-
ping the 17 classes in the St. Kitts study
area and 15 classes in Grenada. Achieving
substantial accuracy required only limited
manual editing. Based on these results and
the other Caribbean island studies men-
tioned, the approach is apparently robust
for these complex tropical landscapes.
Helmer and Ruefenacht (2007) and Ken-
naway and Helmer (2007) discuss some ad-
vantages of the overall approach. First, de-
cision trees are nonparametric and handle
many different discrete and continuous
predictor variables, separating spectrally
similar forest types with variables like ge-
ology, rainfall or topographic features
(Strahler 1981; Skidmore 1989; Friedl and
Brodley 1997). The ancillary geospatial data
are important to classifying imagery over
these landscapes. For a simpler classifica-
tion set in the St. Kitts study area, Kappa
coefficients with no manual editing were
0.3 to 0.6 without ancillary data, suggesting
large error. With ancillary data, Kappa co-
efficients were above 0.6 (Helmer and Ruef-
enacht 2007). Decision tree classification
also avoids unrealistically abrupt borders
between forest types that can result from
identifying forest type from ecological zone
maps (Kennaway and Helmer 2007).

The decision trees themselves are thou-
sands of lines long and too complex to pre-
sent in detail. However, we summarized
the number of times that a variable appears
in a tree, and how far down in the tree each
variable occurred, with scripts that Ruef-
enacht et al. (In press) developed. In both
classifications, the variables that most com-
monly appear in the top nodes of the deci-
sion trees are spectral, or they are ancillary
variables that affect the spectral bands, like
image topographic shading based on image
sun-target-sensor geometry. The spectral
bands and indices among the top nodes of
the two decision trees included Landsat
image bands 3 (red), 1 or 2 (blue or green),
5 or 7 (shortwave infrared), NDVI, and the
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TABLE 3. Areas of land cover and forest formations for St. Kitts, Nevis, St. Eustatius, and Grenada (excluding Grenada Grenadines), from decision tree
classification of Landsat imagery, and Barbados (from classification of IKONOS imagery). A “C” indicates a class is present but is collapsed to a more generalized
class at a higher level in the hierarchy. A dash indicates that the class was not detectable or not present.

Land-cover or forest formation
Symbol in

Appendices
St. Kitts

(ha)
Nevis
(ha)

St. Eustatius
(ha)

Barbados1

(ha)
Grenada

(ha)

Urban or built-up land
High-Medium Density Urban or Built-up Land UrbnHi 728 141 100 3,840 308
Low Density Built-up Land (Rural or Residential) UrbnLo 444 528 42 5,231 2,439

Herbaceous agriculture
Sugar cane Cane 4,548 — — 11,518
Minor crops (including sugar cane in Grenada) Crops — 24 — 1,609 332

Mixed and Woody agriculture
Nutmeg and Mixed Woody Agriculture MxdWdAg1 — — — — 8,984
Coconut Palm and Mixed Woody Agriculture

(including Cacao, Banana, other) MxdWdAg2 — — — — 469
Coconut Palm-Pasture MxdWdAg3 9.3 14 — 248 —

Pasture and Drought Deciduous Woodland
Pasture, Hay or Inactive Agriculture (e.g. abandoned sugar cane) PastAg — — — 8,658 2,343
Pasture, Hay or other Grassy Areas PastGr 2,634 2,724 773 2,459 —
Golf course Golf 56 49 — 308 12
Drought Deciduous Woodland DDwoodl 644 981 328 1,081 54
Lower Montane, Non-Forest Vegetation (e.g. Miconia thicket) MontShr 103 12 — — —
Steep Non-Forest Vegetation NonfStp 77 2.8 — — —

Drought Deciduous and Semi-Deciduous Forest, Forest/Shrub or Shrubland (Dry, Dry-Moist), Lowland or Submontane
Deciduous, Evergreen Coastal and Mixed Forest or Shrubland,

with or without Succulents, on either Limestone or other substrates1 DDMxdForShr 753 210 328 2,913 2,162
Drought Deciduous Forest/Shrub DDForShr 72 325 89 263 —
Semi-Deciduous and Drought Deciduous Forest on Limestone

(includes Semi-Evergreen Forest) — — — 2,864 C
Semi-Deciduous Forest (includes Semi-Evergreen Forest) SDFor 1,155 1,935 159 277 6,422
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TABLE 3. Continued

Land-cover or forest formation
Symbol in

Appendices
St. Kitts

(ha)
Nevis
(ha)

St. Eustatius
(ha)

Barbados1

(ha)
Grenada

(ha)

Seasonal Evergreen and Evergreen Forest or Forest/Shrub (Moist, Moist-Wet, Wet, Rain), Lowland or Submontane
Seasonal Evergreen Forest with Coconut Palm EVforC 24 158 — — C
Seasonal Evergreen Forest SEfor 1,453 1,031 11 34 C
Evergreen Forest EVfor 2,726 755 — — C
Seasonal Evergreen and Evergreen Forest (combined) EVSEfor 6,347

Evergreen Forest—Cloud Forest (Moist-Wet, Wet, Rain), Lower Montane
Sierra Palm, Transitional and Tall Cloud Forest CLDforTall 575 110 — — 663
Elfin and Sierra Palm Cloud Forest CLDforElf 194 45 — — 198

Forested and Emergent Wetlands
Mangrove Mangrove 13 14.5 — 6.9 172
Seasonally Flooded Savannas and Woodland — 5.4 — — —
Emergent Wetland EmergWetl 1.2 0.8 — 4.0 43

No vegetation
Quarries Quarry 15 13 — 201 26
Coastal Sand, Rock and Bare Soil BareC 107 104 86 172 304
Bare Soil (including bulldozed land) Bare 104 134 112 1,078 C
Water—Permanent Watr 260 7.0 — 50 63
Cloud-covered areas in final map — — — 615 —

Total 16,695 9,311 2,029 43,431 31,341

1On Barbados, this class includes a mosaic of deciduous and seasonal evergreen forest/shrub northeast of Mt. Hillaby.
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band 4:5 ratio. In contrast, the layers that
appeared in the “leaves” of the trees were
the ancillary ones. The topographic vari-
ables were at higher-level nodes than the
distance variables (distances to roads, riv-
ers or ravines, or the coast). These results
suggest that the decision trees first spec-
trally segment the images and then use the
ancillary variables to separate spectrally
similar classes, and that the topographic
variables are more generally relevant than
the distance variables. This latter result
might be expected, because topographic
variables probably relate more consistently
to forest type than do variables like road
distance.

The second main advantage of the ap-
proach is that the fairly seamless cloud-
cleared imagery developed with regression
trees speeds training data collection. The
regression tree normalization more closely
matches vegetation phenology between im-
ages from different dates than do linear ra-
diometric normalization, linear histogram
matching, or atmospheric correction via
dark object subtraction (Helmer and Ruef-
enacht 2007). Ease of training data collec-
tion is important. In our preliminary work,
these detailed classifications are inaccurate
without well-distributed training pixels.
Typically, we add to training data after a
first round of classification so that the train-
ing data identify the correct class of some of
the initially wrongly classified pixels. Deci-
sion tree classification that combines both
spectral data and relevant ancillary data
actually can resolve some of the spectral
heterogeneity of non-normalized cloud-
cleared imagery (Helmer and Ruefenacht
2007). The caveat to this conclusion, how-
ever, is that the well-distributed training
data available for classification modeling
include the cloud-filled areas.

The multiseason imagery is a third main
advantage of the approach in this study.
Many studies show that multiseason imag-
ery enhances Landsat image classifications
in temperate forest landscapes. In this case
the differences in display tone (i.e., spectral
absorption) between seasons provide ad-
ditional visual cues to distinguish drought
deciduous from semi-deciduous (and
semi-evergreen) formations when collect-

ing training data. Helmer et al. (2002) com-
bines these classes. Drought deciduous
woody formations are purplish to brown in
leaf-off images or image mosaics when dis-
playing Landsat image bands 5 (short-
wave-infrared energy), 4 (near-infrared en-
ergy) and 3 (red energy) in the red, green,
and blue display color guns, respectively.
They appear green in “leaf-on” imagery;
that is, leaf chlorophyll and water absorb
relatively more red and shortwave-infrared
radiation. A cautionary note is that tone
differences cannot be the only information
source when designating training data, be-
cause drought deciduous vegetation can be
both leaf-off and greened-up in different
places in the same scene date. Additional
visual cues to distinguish these formations
in training data came from the fine spatial
resolution IKONOS imagery. Much of the
drought deciduous vegetation on these is-
lands has visibly distinct canopies.

Forest protection and land-cover change

In the second half of the 20th century, for-
est cover has apparently increased on St.
Kitts, Nevis, Grenada and Barbados, by
about 50 to 950% (Table 4). Pasture,
drought deciduous woodlands, and devel-
oped or bare lands have also increased.
Cultivated lands, meanwhile, have de-
creased by 59 to 99%. Land cover on these
islands has shifted from being dominated
by agriculture to having from nearly zero
(Nevis) to 30% cultivated land cover (Fig-
ure 5). Proportional increases in drier for-
mations at lower elevations, the drought
deciduous, mixed and semi-deciduous (in-
cluding semi-evergreen) forests or shrub-
lands, were larger than those in evergreen
formations. Beard (1949) does not detail his
methods for mapping or estimating land-
cover areas. However, the published esti-
mates of land cover and forest areas are
probably the most reliable and consistent
ones available from that era. An important
note is that the total land areas that Beard
reports for each island differ from those in
the satellite image-based maps by four to
eight percent. As a result, not all of the land
area tabulated for 1945 is accounted for in
2000 in Table 4. Still, visual analysis of the
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maps suggests that they are fairly geo-
graphically accurate, indicating that they
were developed with the aid of topo-
graphic maps or aerial photos. Moreover,
forest appears in the new maps where it
does not appear in the older ones. Finally,
new urban developments are visually dis-
tinct from older ones in the recent satellite
images of the islands. Their presence sup-
ports our finding that developed land area
has increased. Considering the large land-
cover changes, we are confident that the
results accurately represent the trends in
land-cover change on the islands studied.

Sugar cane cultivation has long been de-
clining in the insular Caribbean, and it con-
tinues to do so. For example, sugar produc-
tion in 2003 declined greatly from previous
levels in Jamaica, Trinidad and Tobago,
Barbados, and St. Kitts/Nevis (McDonald
2004). In the latter three countries, sugar
cane production has become less competi-
tive as growers in other countries, like Bra-
zil and the United States, have mechanized.
Meanwhile, land-cover change to urban

and built-up lands progresses for housing
or tourism. These trends will probably con-
tinue, because the European Union has
dropped import quotas or price subsidies
that gave banana and sugar farmers in
some former colonies preferential access to
European markets. As a consequence of
these factors, the St. Kitts and Nevis gov-
ernment closed the state-run sugar com-
pany in 2005. The land-cover changes on St.
Kitts, Nevis and Barbados are strikingly
similar to those in Puerto Rico, where in-
creases in forest and urban/built-up lands
have accompanied an economic shift from
agriculture to industry and services (Franco
et al. 1997; Rudel et al. 2000; del Mar López
et al. 2001; Helmer 2004; Kennaway and
Helmer 2007). In Puerto Rico, a recent
analysis of land-cover change from 1951 to
2000 showed that agricultural lands in low-
land areas, mainly sugar cane cultivation,
shift first to pasture or other grassland
(abandoned agriculture), and then they re-
forest or undergo change to urban/built-up
lands. In addition, urban development also

TABLE 4. Land-cover change from about 1945 (Beard, 1949) to about 2000 for St. Kitts, Nevis, Barbados and
Grenada. Beard (1949) did not tabulate land-cover areas on St. Eustatius. Net land-cover changes do not sum to
zero because total island areas differ by 4% to 8% between the two studies.

Land-cover or forest formation classes (Description in Beard, 1949) St. Kitts Nevis Barbados Grenada

Urban or built-up land, Golf courses, No vegetation (Other Uncultivated Land1)
1945 (ha) 708 40 5,848 202
2000 (ha) 1,714 977 10,885 3,153
Change (%) 142 2,314 86 1,458

Herbaceous Agriculture, Mixed and Woody Agriculture (Cultivated Land)
1945 (ha) 11,223 8,013 33,508 27,661
2000 (ha) 4,557 38 13,375 9,784
Change (%) −59 −100 −60 −65

Pasture, Hay, Inactive Agriculture, other Grassy Areas and Drought Deciduous Woodland
(Savannas and Rough Grazing)

1945 (ha) 344 0 1,922 405
2000 (ha) 3,278 3,705 12,198 2,397
Change (%) 853 3705 2,912 25

Drought Deciduous or Semi-Deciduous Forest, Forest/Shrub, and Shrubland (Dry Scrub Woodlands)
1945 (ha) 809 668 607 1,052
2000 (ha) 1,979 2,469 6,351 8,584
Change (%) 145 73 946 716

Evergreen Forest and Forest/Shrub (Seasonal Evergreen, Evergreen, and Cloud Forests) (Rain Forest,
Lower Montane Rain Forest, Montane Thicket, Elfin Woodland, Palm Brake and Secondary Rain Forest)

1945 (ha) 3,946 1,295 20 3,946
2000 (ha) 4,972 2,101 34 7,208
Change (%) 26 62 71 83

All forest % Change 50 134 948 220

1“Towns, villages, military areas, salt ponds, sand dunes, etc.”
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FIG. 5. Land-cover distributions estimated from this study and from Beard (1949) for a) St. Kitts and Nevis,
b) Barbados, and c) Grenada.
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TABLE 5. Area and proportion (in parentheses) of existing forest formations within informal or formal reserves in St. Kitts, Nevis, St. Eustatius and Grenada
(excludes Grenada islands in the Grenadines)1. The “protected” forests in St. Kitts, Nevis and Barbados are protected informally (with the exception of Brimstone
Hill National Park in St. Kitts). The Grenada protected areas include Mt. St. Catherine reserve, which is not yet formally designated as a reserve.

St. Kitts Nevis St. Eustatius Barbados Grenada

Protected area in ha (% of existing forest protected)

Drought Deciduous or Semi-Deciduous Forest, Forest/Shrub, and Shrubland (Dry, Dry-Moist), Lowland or Submontane
Deciduous, Evergreen Coastal and Mixed Forest or Shrubland, with or without Succulents 5.7 (0.8) 0 (0) 219 (67) 83 (2.8) 140 (6.5)
Drought Deciduous Forest/Shrub 6.7 (9.3) 0 (0) 14 (16) 0 (0) —
Semi-Deciduous and Drought Deciduous Forest on Limestone (includes Semi-Evergreen Forest) — — — 138 (4.8) —
Semi-Deciduous Forest (includes Semi-Evergreen Forest) 45 (3.9) 26 (1.4) 108 (68) 0 (0) 0 (0)

Evergreen Forest and Forest/Shrub (Moist, Moist-Wet, Wet, Rain), Lowland or Submontane — — — — 1,771 (28)
Evergreen Forest with Coconut Palm 0 (0) 0 (0) — — —
Seasonal Evergreen Forest 251 (17) 326 (32) 10 (100) 0 (47) C
Evergreen Forest (includes some Sierra Palm forest) 2,674 (98) 737 (98) — — C

Evergreen Forest—Cloud Forest (Moist-Wet, Wet, Rain), Lower Montane — — — — —
Sierra Palm, Transitional and Tall Cloud Forest 575 (100) 110 (100) — — —
Elfin and Sierra Palm Cloud Forest 194 (100) 45 (100) — — 578 (87)

Forested Wetlands 187 (94)
Mangrove 0 (0) 0 (0) — 1.3 (18) 0 (0)
Seasonally Flooded Savannas and Woodland — 0 (0) — — —

Proportion of land area under formal or informal protection (%) 25 14 28 2.8 9.1

1A dash indicates that the forest formation is not present; a “C” indicates the forest formation was mapped to a more generalized class, at a higher level in the
hierarchy.

2On Barbados, this class includes a mosaic of deciduous and seasonal evergreen forest/shrub northeast of Mt. Hillaby.
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clears some secondary forest. The huge
proportional increases in pasture, grass-
land or woodland in Barbados and Nevis
(sugar cane once dominated Nevis agricul-
ture) suggest that, like Puerto Rico (Ken-
naway and Helmer 2007), sugar cane shifts
first to pasture, grassland or woodland.

Higher elevation forest formations on the
islands studied are generally protected in
formal or informal reserves (Table 5). Land
development is prohibited above 1000 ft el-
evation on Nevis. In St. Kitts, most lands
above the 1000-ft elevation contour fall into
the new central forest reserve designated in
2007. Before that, land development was
also prohibited above 1000 ft. Although
protected informally on both islands at the
time of this study, 98% to 100% of ever-
green and cloud forests are above the 1000-
ft elevation contour on St. Kitts and Nevis.
Land cover above 1000 ft elevation in-
cluded only 75 ha of sugar cane and 152 ha
of pasture/grass on St. Kitts, and about 41
ha of pasture/grass on Nevis. The remain-
ing land cover above 1000 ft was forest or
other montane vegetation, suggesting that
the limitation on development above 1000
ft elevation has provided some protection
for those forests. Also above 1000-ft eleva-
tion were 17% and 32% of the seasonal ev-
ergreen forests on St. Kitts and Nevis, re-
spectively. On Grenada, cloud forests are
87% to 94% protected, and 28% of the forest
classified as evergreen and seasonal ever-
green forests is protected. The protected
forest estimates for Grenada include the
proposed Mt. St. Catherine reserve. It en-
compasses 76% of the protected palm and
elfin cloud forest. It also includes 21% of
the protected evergreen and seasonal ever-
green forest, and 33% of the protected tran-
sitional and tall cloud forest. Informal wa-
tershed protection in Grenada also helps to
protect much of the forest in montane ar-
eas. On Barbados, the 20-ha area of sea-
sonal evergreen forest at Turner’s Hall
Woods has always been protected even
though it is not legally a reserve. On St.
Eustatius, seasonal evergreen forest occurs
only in the mouth of the volcanic mountain
known as The Quill, which is protected. The
Quill National Park also protects 68% of the
semi-deciduous forest present on the island.

Much smaller proportions of drier forest
types are protected on St. Kitts, Nevis,
Grenada and Barbados. Although the pro-
portions of existing drier forest formations
that are protected range from 0.1 to 4.8%,
the areas of protected drier forests are
small. For example, the area of protected
deciduous, evergreen coastal and mixed
forest or shrubland on St. Kitts is only 8.3
ha, though it is 1.2% of the total area of that
formation. A substantial portion of the
drier forest formations that persist in Bar-
bados are in an extensive limestone, gully
network. In St. Eustatius, Boven and The
Quill National Parks protect 67% of the dri-
est forest. No forested wetlands are pro-
tected on St. Kitts, Nevis or Grenada. An
estimate of the proportions of protected ar-
eas in lowland ecological zones might bet-
ter reflect the fact that protected land areas
at low elevations on these islands are small.
These islands, then, are also similar to Puer-
to Rico in protected area distribution. Pro-
tected lands are mainly at higher eleva-
tions, which is important for water
resources. At the same time, lowland eco-
logical zones and ecosystems are not well
protected, but pressure for land develop-
ment is greatest at lower elevations
(Helmer, 2004).

CONCLUSIONS

Decision tree classification of Landsat
image mosaics combined with ancillary
geospatial data is an effective approach to
mapping detailed forest formations and
land cover in complex tropical landscapes.
First, decision tree modeling “learns” the
relative importance of various image bands
and ancillary data for classifying forest or
land cover. Consequently, distinguishing
between spectrally similar forest forma-
tions does not require ecological zone
maps, which are often unavailable or too
coarse for these landscapes. Secondly,
training data collection is simplified when
the data can be collected from image mo-
saics that minimize cloud cover yet are
relatively seamless. Finally, imagery from
two seasons reveals the relative extents of
drought deciduous forests, shrublands and

E. H. HELMER, ET AL.194



woodlands. Accurate land-cover and forest
formation maps are derivable, then, with
only one set of training data instead of
separate datasets for the clear parts from
each image date and for each ecological
zone.

Formal or informal reserves in St. Kitts,
Nevis, and Grenada protect almost all
cloud forests. These reserves also protect
substantial amounts of existing evergreen
forest formations. Higher elevation forests
are also well-protected on St. Eustatius, as
are drier forest types. Drier forest forma-
tions have little protection St. Kitts, Nevis,
Grenada, and Barbados, and the reserve
systems do not protect mangroves or other
wetlands.

At the same time, land under cultivation
has declined and forest areas have in-
creased over the second half of the 20th
century on these islands, which may make
more land available for conservation at
lower elevations. Development and con-
struction have also increased on all of the
islands, mostly at lower elevations. Drier
forest types, which are at lower elevations,
underwent proportional increases that
were greater than evergreen forest forma-
tions. Given that 1) relatively small propor-
tions of drier forest formations or man-
groves are protected, and 2) most land
development occurs at lower elevations,
protection and restoration of drier forests
on formerly cultivated lands, as well as
mangroves, are probably among the most
important conservation priorities for these
countries.
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APPENDIX A. Error matrix for the classification of St. Kitts, Nevis and St. Eustatius from a stratified random sample of points over St. Kitts and Nevis. The Kappa
coefficient of agreement after manual editing was 0.69 ± 0.04.

Class

Reference User’s
Accuracy

(%)UrbHi UrbLo Cane Past Golf DWoodl Mntshr NonfStp DMxdfor Dforshr SDfor EVforC EVSEfor CLDforT CLDforE Bare Watr

NUrbHi 38 10 0 0 2 0 0 0 0 0 0 0 0 0 0 2 1 72
UrbLo 1 18 5 3 0 2 0 0 0 0 0 0 0 0 0 0 0 62
Cane 1 5 44 6 0 1 0 0 0 1 2 0 2 0 0 0 0 71
Past 3 6 14 51 1 11 0 1 3 0 5 0 3 0 0 4 2 49
Golf 0 1 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 96
Dwoodl 2 4 1 5 0 31 0 0 4 2 4 0 0 0 0 1 0 57
MntShr 0 0 0 0 0 0 6 0 0 0 0 0 1 0 0 0 0 86
NonfStp 0 0 1 1 0 0 0 9 0 0 0 0 2 2 1 0 0 56
DMxdFor 0 0 1 0 0 3 0 0 48 2 4 0 0 0 0 2 1 79
DForShr 0 0 2 0 0 2 0 0 0 41 5 1 1 0 0 0 0 79
SDfor 0 3 2 3 0 1 0 0 0 6 39 3 6 0 0 0 0 62
EVforC 1 0 0 0 0 0 0 0 1 2 1 12 0 0 0 1 0 67
EVSEfor 0 1 2 2 0 0 0 1 0 0 6 1 83 5 2 0 0 81
CLDforT 0 0 0 0 0 0 0 1 0 0 0 0 2 26 7 0 0 72
CLDforE 0 0 0 0 0 0 1 0 0 0 0 0 1 4 17 0 0 74
Bare 4 4 1 0 0 1 0 0 1 0 0 0 0 0 0 42 1 78
Watr 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 47 90

Producer’s
Accuracy

(%)

76 34 60 71 88 60 86 75 83 76 58 71 82 70 63 79 90 Overall
Correct

71%
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APPENDIX B. Error matrix for classification of Grenada from a stratified random sample of points. The Kappa coefficient of agreement after manual editing was
0.76 ± 0.03.

Class

Reference User’s
Accuracy

(%)UrbHi UrbLo WdAgN WdAgC Past Woodl DMxdfor SDfor EVSEfor CLDforT CLDforE EMWetl Mangrv Bare Watr

UrbHi 41 7 0 0 1 0 1 0 0 0 0 0 0 1 2 77
UrbLo 1 38 1 0 5 0 3 3 1 0 0 0 0 0 0 73
WdAgN 0 2 31 0 1 0 0 5 7 0 0 0 0 1 0 65
WdAgC 0 0 0 32 0 0 0 9 0 0 0 0 1 1 0 73
Past 0 5 2 0 35 0 3 2 0 0 0 0 0 0 0 71
Woodl 0 0 0 0 1 39 6 0 0 0 0 0 1 2 0 80
DMxdfor 0 1 0 0 0 2 38 5 1 0 0 0 0 0 0 81
SDfor 0 0 6 0 1 0 3 46 0 0 0 0 0 0 0 82
EVSEfor 0 0 5 0 0 0 0 2 38 4 0 0 0 0 0 78
CLDforT 0 0 0 0 0 0 0 0 10 36 3 0 0 0 0 73
CLDforE 0 0 0 0 0 0 0 0 1 17 29 0 0 0 0 62
EMWetl 0 0 0 0 0 0 1 0 4 0 0 41 1 0 2 84
Mangrv 0 0 0 1 0 0 1 2 0 0 0 1 39 0 1 87
Bare 0 4 0 1 3 2 2 2 0 0 0 0 0 79 2 83
Watr 0 1 0 0 0 0 0 1 0 0 0 3 0 0 41 89

Producer’s
Accuracy

(%)

98 66 69 94 74 91 66 60 61 63 91 91 93 94 85 Overall
Correct

78%
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