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Remote sensing of forest vertical structure is possible with lidar data, but lidar is not widely available. Here
we map tropical dry forest height (RMSE=0.9 m, R2=0.84, range 0.6–7 m), and we map foliage height
profiles, with a time series of Landsat and Advanced Land Imager (ALI) imagery on the island of Eleuthera,
The Bahamas, substituting time for vertical canopy space. We also simultaneously map forest disturbance
type and age. We map these variables in the context of avian habitat studies, particularly for wintering
habitat of an endangered Nearctic-Neotropical migrant bird, the Kirtland's Warbler (Dendroica kirtlandii). We
also illustrate relationships between forest vertical structure, disturbance type and counts of forage species
important to the Kirtland's Warbler. The ALI imagery and the Landsat time series are both critical to the
result for forest height, which the strong relationship of forest height with disturbance type and age
facilitates. Also unique to this study is that seven of the eight image time steps are cloud-cleared images:
mosaics of the clear parts of several cloudy scenes. We created each cloud-cleared image, including a
virtually seamless ALI image mosaic, with regression tree normalization. We also illustrate how viewing time
series imagery as red–green–blue composites of tasseled cap wetness (RGB wetness composites) aids
reference data collection for classifying tropical forest disturbance type and age. Our results strongly support
current Landsat Program production of co-registered imagery, and they emphasize the value of seamless
time series of cloud-cleared imagery.
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1. Introduction

Forest age, vertical structure, disturbance, and species composition
are related forest attributes that affect avian habitat (Holmes et al.,
1979; Johnston & Odum, 1956; Karr, 1968; Leck, 1979; MacArthur,
1958; Rappole & Morton, 1985; Terborgh, 1977; Thiollay, 1999).
Studies often characterize avian habitat by mapping these variables
with remote sensing (Bergen et al., 2007; Goetz et al., 2007;
Gottschalk et al., 2005). Here we describe a study to map these
variables in a persistently cloudy tropical region with remote sensing
data that are widely and freely available.

Algorithms can now automatically map forest disturbance that is
stand replacing, or forest age, with time series of mostly cloud-free
Landsat images (Helmer et al., 2009; Huang et al., 2009; Kennedy
et al., 2007; Masek et al., 2008). One possibility to minimize cloud
contamination, especially in more cloudy regions, is to mosaic or
composite multiple images which can now be done without concern
for image costs, as long as data come from the U.S. Geological Survey
(USGS) or the Brazilian Institute for Space Research. Here we refer to
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such images as cloud-cleared images. Also, it is now feasible to create
long time series of cloud-cleared images, perhaps with intervals of
≤5 years in cloudy tropical regions if other receiving stations make
their Landsat archives freely available. Yet whether long time series of
cloud-cleared Landsat images will permit us to map simultaneously
tropical forest change between many time intervals is untested.

In this study, we create a time series of cloud-cleared images and
test if we can use it tomap forest attributes important to avian habitat,
including forest vertical structure and disturbance type and age.
Landsat Thematic Mapper (TM), Enhanced Thematic Mapper (ETM+)
and Advanced Land Imager (ALI) images compose the cloud-cleared
images. Only one nearly clear image exists for the study area. Recent
studies suggest that where clear scenes are rare, cloud-cleared images
and cloud-cleared image time series are as valuable for monitoring
forests as clear images or image time series. Helmer and Ruefenacht
(2005) detect land-cover change to developed lands with simple
maximum likelihood classification of two time steps of cloud-cleared
images. For each image time step, regression treemodels predict pixel
values of a reference, or base scene, from the clear parts of secondary
scenes that can fill areas obscured by clouds in the base scene. Hansen
et al. (2008) detect forest clearing with two time steps of cloud-
cleared imagery by classifying each time step into forest vs. nonforest.
Accurate land-cover and forest type mapping is also possible with
cloud-cleared imagery. Recent work simultaneously maps land cover
and many different forest habitats in persistently cloudy, complex
tropical regions with decision tree classification of cloud-cleared
Landsat imagery and ancillary data, like digital elevation model-
(DEM) derived variables (Helmer et al., 2008b; Helmer & Ruefenacht,
2007; Kennaway & Helmer, 2007; Kennaway et al., 2008).

Methods for remote sensing of forest height use lidar (Lefsky et al.,
2002), radar imagery (Kellndorfer et al., 2004; Papathanassiou&Cloude,
2001), multi-angle and seasonal optical imagery with coarse spatial
resolution (Chopping et al., 2009), aerial photos (Véga& St-Onge, 2008),
optical imagery with fine spatial resolution (Wolter et al., 2009), or
sometimes single-date optical imagery with medium spatial resolution
(Kalacska et al., 2007). Of these data, only lidar directly measures the
vertical distribution of forest canopies. Unfortunately, spatially contig-
uous lidar data are not globally available and were not available for this
study. Multispectral optical satellite imagery is globally available, but its
sensitivity to forest height is limited. What scientists have not tested is
Table 1
We created an eight-step image time series from the 24 scenes listed here, along with th
encompassed a portion of path/row 012/043 in World Reference System 2. Each mosaic incl
scenes, then filled the cloudy parts of the base scene after undergoing normalization to the b
scenes are listed in the order that they filled cloudy areas in the base scene (i.e., top to bot
Landsat 7 Enhanced TM; and ALI = Advanced Land Imager.

Base year of time step Base scene date (month/day/yr)
and image type of time step

Base scene cloud cover
over study area (%)

Date
that
scen

1984 06/03/1984–L5 0.1 –

1988 12/15/1988–L4 42 04/0
1993 11/19/1993–L5 31 12/0

01/2
02/2
03/1
12/0

1996 12/29/1996–L5 25 12/2
01/2

2000 03/11/2000–L5 20 02/0
11/2

2001 03/06/2001–L7 15 02/0
11/1

2002 11/04/2002–L7 1.2 01/2
2005 04/11/2005–ALI 23a 05/0

05/2
01/1

a Includes land in northern Central Eleuthera with neither clear nor cloudy image data a
whether time, in the form ofmultiyear image time series, can substitute
for vertical canopy space for mapping forest vertical structure with
globally available, multispectral optical imagery. After stand-clearing
disturbances, young forest spectral responses change as they grow taller
and denser. Consequently, the pattern of spectral responses over time
should be related to forest height.

Our application is a project to map forest attributes important to
habitat of the Kirtland's Warbler (Dendroica kirtlandii), the endemic
Bahama Yellowthroat (Geothlypis rostrata) and other migrant and
resident bird species of broadleaved dry tropical forests of The
Bahamas. The Kirtland's Warbler is an endangered Nearctic-Neotrop-
ical migrant that is the target of extensive conservation efforts on its
limited breeding grounds in Michigan and Wisconsin, U.S.A. and in
Ontario, Canada. It winters exclusively in the Bahamian archipelago.
Only recently have data been available on wintering habitat use by
this species; these data suggest that the Kirtland's Warbler frequents
disturbed habitats (Wunderle et al., 2007, 2010).

Our main objectives are to test if we can use a time series of cloud-
cleared multispectral images to: 1) simultaneously map forest
disturbance type, age and land cover; 2) map forest vertical structure
from field-measured foliage height profiles, substituting the image
time series for vertical canopy space; and 3) illustrate relationships
between forest disturbance type, vertical structure and profile counts
of woody species that characterize Kirtland's Warbler habitat.
Secondary objectives include comparing mapping models based on
single-date imagery with those based on an image time series and
qualitatively evaluating cloud-cleared ALI imagery made with the
regression tree normalization method of Helmer and Ruefenacht
(2005). Imagery from ALI has the same, 12-bit multispectral bands as
the Operational Land Imager (OLI) that will be aboard the next
Landsat mission. Finally, the map of forest disturbance type and age
allows us to estimate for the first time disturbance rates for
broadleaved forests that the Kirtland's Warbler occupies in winter.

2. Methods

2.1. Study overview

First, we create an eight-step image time series from 24 Landsat
and Advance Land Imager (ALI) scenes. Seven of the eight time steps
eir cloud cover over land, by producing cloud-cleared image mosaics. The study area
uded a reference, or base scene. The clear parts of scenes from other dates, or secondary
ase scene with the regression tree method of Helmer and Ruefenacht (2005). Secondary
tom). Scene types: L4 = Landsat 4 Thematic Mapper (TM); L5 = Landsat 5 TM; L7 =

s and types of secondary scenes
fill clouds in corresponding base
es (month/day/yr)

Secondary scene cloud
cover over study areaa (%)

Cloud cover in final
mosaic (%)

– 0.1
3/1988–L4 16 3.6
5/1993–L5 29 0.1
2/1994–L5 35
3/1994–L5 39
1/1994–L5 45
8/1994–L5 35
7/1995–L5 15 0.2
8/1996–L5 17
8/2000–L5 17 0.0
8/1999–L7 22
2/2001–L7 23 0.7
7/2001–L7 45
3/2003–L7 21 0.0
4/2005–ALI 42a 12a

9/2005–ALI 38
5/2006–ALI 56

vailable.



Table 2
The mapping models tested in this study, and their associated input bands, are listed here. The input bands for each classification or regression tree mapping model are represented
by the image type and mosaic date. Input bands for Thematic Mapper (TM) and Enhanced Thematic Mapper included bands 1–5 and 7 and the Tasseled Cap Brightness, Greenness
and Wetness indices. Advanced Land Imagery (ALI) bands included all 30-m optical bands and two band indices: NDVI and NDSI (see text).

Model number Mapping models tested and associated input variables

See5 decision tree classification models of land cover and forest disturbance type and age
(1) Class=f {TM1984, TM1988, TM1993, TM1996, TM2000, ETM2001, ETM2002, ALI2005}
(2) Class=f {ETM2002}
(3) Class=f {TM1984, TM1988, TM1993, TM1996, TM2000, ETM2001, ETM2002}

Cubist regression tree models of mean canopy height (m)
(4) Height=f {TM1984, TM1988, TM1993, TM1996, TM2000, ETM2001, ETM2002, ALI2005}
(5) Height=f {ALI2005}
(6) Height=f {ETM2002}
(7) Height=f {TM1984, TM1988, TM1993, TM1996, TM2000, ETM2001, ETM2002}

Cubist regression tree models of foliage height profiles (mapped as percent foliage cover over six height intervals) and height variance
(8) Height variance=f {TM1984, TM1988, TM1993, TM1996, TM2000, ETM2001, ETM2002, ALI2005, height, disturbance type, disturbance/forest age}
(9) to (14) aPercent coveri=f {TM1984, TM1988, TM1993, TM1996, TM2000, ETM2001, ETM2002, ALI2005, height, disturbance type, disturbance/forest age}

a i = height interval, including: 0–1 m, 2–3 m, 3–4 m, 4–6 m or N6 m.
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are cloud-cleared image mosaics (Table 1). Second, we simultaneous-
ly map land cover and forest disturbance type and age with a single
decision tree classification of the stack of optical bands from all eight
of the image time steps (Table 2, Model 1). We also explore if the
mosaic time series was important to mapping forest disturbance type
and age as compared to using imagery from only a single mosaic time
step (comparingModels 2 and 3 in Table 2). Third, wemeasure foliage
height profiles at 48 field forest plots representing a range of forest
disturbance types and ages, also counting occurrences of five woody
species that may affect Kirtland's Warbler habitat. Fourth, we map
variables from the foliage height profiles, like mean canopy height
(Model 4), height variance (Model 8), and percent cover over various
height intervals (Models 9–14), with regression tree classification of
the stack of image bands from the time series. Here also we test
whether the image time series is important, in this case to mapping
forest height (comparing Models 4–7). Fifth, we use principal
components analysis (PCA) to illustrate the relationships between
forest disturbance type, vertical structure and counts of the five
woody species. Finally, we estimate forest disturbance rates.

2.2. Study area

The geology and topography of Eleuthera (25° N, 76° W) are typical
of The Bahamas, a country consistingof a chain of oceanic, lowelevation,
limestone islands that lie off the southeastern coast of the U.S. state of
Florida and extend to northeastern Cuba. Eleuthera has a subtropical dry
climate with a mean annual temperature of about 24 °C and annual
precipitation ranging from 1100 to 1300 mm year−1. Vegetation is
typical of dry, broadleaved semi-evergreen secondary forest on
limestone substrate of the West Indies. The diverse flora includes
deciduous and hard-leaved evergreen tree and shrub species. A few
common canopy species in these diverse forests are Bursera simaruba,
Coccoloba diversifolia, Metopium toxiferum, Guapira obtusata, Pithecello-
bium keyense, Lysiloma latisiliquum, Eugenia axilaris, Piscidia piscipula,
Bourreria ovata, Bumelia salicifolia, Amyris elemifera, Reynosia septen-
trionalis, Exothera paniculata, and Exothema caribeaum.

Increasing forest cover after the year 1950 is typical of Caribbean
islands (Helmer et al., 2008a,b), including Eleuthera. Settled in 1648,
pineapple cultivation and pasture were extensive there until the mid-
1900s,when economic and political forces led to a decline in agriculture
and an increase in forest cover. In recent decades, forest clearing for
agriculture consists of bulldozing or cutting for small fields followed by
slash burning. Farmers cultivate fields for a short time while woody
species resprout, and while forbs, shrubs and trees colonize the fields,
before eventual field abandonment. Slash burning leads to forest
disturbance by escaped fire. Forest clearing also occurs for goat grazing
and for residential development that may or may not follow. Goat
grazing and browsing do not prevent re-establishment of a dense
woody vegetation canopy. For these forest disturbances, time since last
disturbance yields a good estimate of recovering forest age in the study
area. Forest clearing for citrus plantations is an exception, because
farmers clear non-crop vegetation while the plantations are active.
Hurricanes have also disturbed forests on Eleuthera in the past 40 years.
Though we observed little direct evidence of hurricane disturbance in
the Landsat images, some indirect evidence of hurricane disturbance
may be present in the Landsat record (see Section 3.6).

2.3. Creating a cloud-free Landsat and ALI image time series where clear
scenes are rare

Few methods normalize nonlinear differences in vegetation
phenology between the image dates that compose cloud-cleared
imagery. However, normalizing imagery with respect to phenology
aids visual image interpretation when collecting reference data
(Helmer & Ruefenacht, 2007), which is important to this study.
Normalizing the phenology of the image data that composes image
composites or mosaics should also yield more effective models of
forest attributes that are based on limited field data. One method is
the regression tree normalization approach that we use here (see
below), which Helmer and Ruefenacht (2005) describe in detail.
Subsequent studies use the image mosaics resulting from the method
to map land cover and detailed forest types in complex tropical
landscapes (Helmer et al., 2008b; Kennaway & Helmer, 2007;
Kennaway et al., 2008). Helmer and Ruefenacht (2007) show that
the method more closely matches vegetation phenology between
scenes from different dates than do linear methods for image
normalization, including linear regression, linear histogrammatching,
or atmospheric correction by dark object subtraction. A second
approach to fusing imagery adjusts the imagery via the relationships
between co-located pixels from two Moderate Resolution Imaging
Spectroradiometer (MODIS) images (Gao et al., 2006; Roy et al.,
2008). The two MODIS images have dates close to those of the base
Landsat scene and the Landsat scene that will fill gaps in the base
scene. This latter approach, though, is not applicable for time steps
dated over the 28 years from 1972 to 1999, before MODIS data
became available. Localized histogram matching methods, developed
to fill scan gaps in ETM+ images dated after May 2003, and co-kriging
approaches (Zhang et al., 2009), assume that the pixels surrounding
an image gap have brightness value distributions that are similar to
those within the gap. Large cloud gaps often violate this assumption.
Interpolating pixel values between image time steps dated before and
after a cloudy pixel avoids the need for cloud-cleared imagery (e.g.,
Huang et al., 2009). This approach might miss forest disturbance if
regrowth is fast enough.
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We created an eight-step time series of Landsat and ALI imagery
consisting of seven cloud-cleared mosaics and an eighth clear image
(Table 1). We produced each cloud-cleared image mosaic with the
regression tree normalization method of Helmer and Ruefenacht
(2005). Each time step has one base scene. The base scenes were
dated from 1984 to 2005 and spaced at intervals of ≤5 years. The
regression tree method predicts pixel values for cloudy areas in each
base scene from pixels that are clear in the secondary scenes for each
time step with a Cubist (www.rulequest.com) regression tree model
for each band. The basis for each model is the set of co-located,
mutually clear pixels from each base- and secondary-scene pair. The
regression tree models for Landsat Thematic Mapper (TM) or
Enhanced Thematic Mapper (ETM+) scenes, for example, have the
following general form:

ybasei = f ðxsec1; xsec2; xsec3; xsec4; xsec5; xsec7Þ ð1Þ

In Eq. (1), ybasei is the digital number (DN) of a pixel in the base
scene for the ith band to be predicted, xsec1 is theDNof the TMor ETM+
band 1 of the corresponding pixel in the secondary scene, xsec2 is the
DN for band 2 of the secondary scene, and so on. Here one to five
secondary scenes dated within 13 months of the base scene fill cloudy
areas in the base scene. The base scenes have less than about 30% cloud
cover and are dated from November to March, corresponding to the
early to mid-dry season before peak leaf loss of deciduous species.

Wemasked clouds and cloud shadows from all scenes with image-
specific thresholds in various bands followed by manual editing. We
identified clouds with maximum thresholds in a thermal band in TM
imagery and minimum thresholds in the blue MS2 band for ALI
images. Manual editing added warm or thin clouds to the resulting
cloud masks and removed patches misclassified as cloud. We
identified cloud shadows with maximum thresholds in a shortwave
infrared (SWIR) band, including TM/ETM+ band 5 or ALI band MS5.
Manual editing removed shallow water and some wetlands from the
resulting cloud shadow mask. We then co-registered all scenes to the
reference scene for the year 2000 mosaic with ERDAS Imagine
Autosync (ERDAS, 2008), using the red band for finding tie points and
with nearest neighbor resampling. Root mean square errors (RMSE)
for the co-registrations were b0.5 pixels. We then normalized the
secondary scenes to the base scene for each mosaic time step with a
regression treemodel. The Landsat TM and ETM+ scenes had a spatial
resolution of 28.5 m, and we resampled the 30-m ALI image mosaic to
28.5 m. The Landsat and ALI imagery came from the USGS.

2.4. Mapping land cover, forest age and forest disturbance type with an
image time series

We simultaneouslymapped land cover and forest disturbance type
and age by classifying a 74-band stack from the cloud-cleared image
time series (Model 1, Table 2). We calculated forest disturbance rates
as the number of ha disturbed during an interval divided by the
interval length. Section 3.2 in the results has a complete list of the
classes mapped. Reference data for training and accuracy assessment
came from: 1) field work in May 2005, August 2006, November 2006
and March 2007; 2) Quickbird imagery for South Eleuthera dated
November 2004 to May 2005; 3) Quickbird imagery viewable on
Google Earth and dated from 2004 to 2005 (see Helmer et al., 2009 on
using Google Earth for validation and training data); and 4) viewing
the image sequence of cloud-cleared images as RGB wetness
composites, which we describe in the next section.

These training data included 20 to 50 multi-pixel patches
distributed throughout each class. Forest classes with no disturbance
during the image sequence included four wetland and one upland
forest class. Forest classes disturbed during the image sequence
included one burned wetland class and a separate class for each of
four disturbance types and up to nine disturbance/forest ages.
Disturbance types included: 1) bulldozing or larger-scale clearing
for agriculture, pasture, or intended (but not occurring) residential
development, followed by forest regrowth; 2) clearing and burning
without bulldozing, also followed by regrowth; 3) burning from
escaped fire, and 4) clearing for goat pasture followed by regrowth
with continued goat grazing. Most agriculture patches smaller than
1 ha are patches of mixed vegetable crops called conucos. Conuco is a
Taino Indian term for a small plot of cultivated land. Because clearing
for conucos may or may not include bulldozing, they fall into both of
the first two disturbance types. The nine age classes included young
forest recovering from recent disturbance in 1984, forest recovering
on land that was not forest in 1984 (see next section on distinguishing
these two classes), and forest recovering from disturbance during
each of the seven intervals between the mosaics. Young forest classes
could have less than 60% woody vegetation cover. Nonforest classes
included urban or built-up land; land converted to urban or built-up
land between 1984 and 2005; golf course or other grass; bare land;
water; active cattle pasture with less than 25% woody vegetation; and
active cattle pasture with 25 to 60% woody vegetation. We manually
delineated the few active or recently active citrus plantations. Two
large areas subject to two escaped fires were kept as separate classes.
Other areas of repeated disturbance were too few and too small to
keep as separate classes.

For the classification, we used the decision tree classification
software See5 (www.rulequest.com). See5 uses training data to form
a decision tree and associated rulesets that classify data. The nodes in
the tree are based on whichever predictor variable splits the training
data in a way that maximizes information gain (Kullback, 1959); the
subsets that result from nodes each contain more or less of a given
class or classes. We applied the decision tree model with an ERDAS
Imagine module from Ruefenacht et al. (2008), which applies a See5
classification tree to a stack of raster data in ERDAS Imagine format.
The 74 layers came from the ninemultispectral bands plus two indices
from the ALI image mosaic plus the six optical bands and the tasseled
cap (TC) brightness, greenness and wetness indices (Crist & Cicone,
1984; Crist et al., 1986; Huang et al., 2002) from each of the TM or
ETM+ mosaics. The TC equation applied to a given mosaic was the
equation appropriate for its base image.We calculated TC indices from
DNs for mosaics with TM base scenes and from top-of-atmosphere
reflectance for mosaics with base scenes from ETM+. The two ALI
indices were a normalized difference vegetation index (NDVI),
calculated from the near infrared (NIR) MS4 band (0.775–0.805 nm)
and the red band (MS3, 0.633–0.69 nm). The second index relates to
leaf water content, water levels in saturated or inundated soils, and
forest structure. It is referred to as the normalized difference infrared
index in Hardisky et al. (1983) and the normalized difference moisture
index in Wilson and Sader (2002). Because this index relates strongly
to forest height in this study, we refer to it here as the normalized
difference structure index (NDSI), after the structural index (Landsat TM
band 4:5 ratio) of Fiorella and Ripple (1993a,b). For ALI, the NDSI
derives from the NIR MS4 and the SWIR MS5 bands, as follows:

NDSI = ðMS4−MS5Þ= ðMS4 + MS5Þ ð2Þ

We produced two accuracy estimates. First, we estimated pixel-
level accuracy as the overall accuracy of the classification model that
resulted if we withheld a randomly selected 30% of the training data.
Second, a stratified random sample of about 30 points per class
provided data for an independent error assessment. Neither accuracy
estimate accounted for inclusion probability or for any spatial
autocorrelation that might exist among reference data. We designed
the stratified sample to represent more closely errors at the level of
patches rather than pixels. The design stemmed from earlier work
(Wunderle et al., 2010) that applied a 3×3 majority filter to the final
map to avoid assigning a nonforest class to Kirtland's Warbler capture
sites that fell on pixels that were a mixture of forest and nonforest.

http://www.rulequest.com
http://www.rulequest.com
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Consequently, the stratified sample was limited to points in a class
that held a majority within the surrounding 3×3-pixel window
(7310 m2). With this sample design, the error estimates from the
stratified sample apply only to pixels that are part of a majority within
the 3×3-pixel window surrounding them.

When collecting the points for the stratified random sample, a
search of 5×105 randomly generated points often found fewer than
30 points for classes with small total areas. In those cases, we kept the
points that the search located but did not search further, to avoid
oversampling those classes (R. Czaplewski, personal communication).
This approach yielded few points for some ages of non-bulldozed,
small-scale agriculture and some ages of goat-grazed forest. As a
result, we combined the validation points for forest recovering from
bulldozing for agriculture with those that recovering from clearing
only. As for goat-grazed forest patches, they were concentrated in a
few known areas, so we also qualitatively evaluated their accuracy at
the patch level. We also doubled the number of points for forest
undisturbed during the image sequence, the most extensive class. For
the error assessment data from the stratified random sample, we
calculated overall, producer's and user's accuracy, as well as the Kappa
coefficient of agreement (Cohen, 1960) with the formula for a
stratified random sample in Czaplewski (2003).

In addition to the above two accuracy assessments of the map of
land cover and forest disturbance type and age, we also compared the
results of using different band combinations for such mapping. We
compared a model based on the bands from the mosaics spanning
1984 to 2002 with one based only on the mosaic from 2002
(comparing Models 2 and 3, Table 2). We based this comparison on
a randomly withheld 30% of the training data. For this comparison, we
excluded the ALI imagery from 2005 because no ALI data were
available for the northernmost part of Central Eleuthera. We expected
the mapping model based on the mosaic time series to be more
accurate than the model based on a single image mosaic.

2.5. Identifying forest disturbance type and age with RGB wetness
composites

To identify forest disturbance type and age for reference data, we
viewed the imagery as red–green–blue (RGB) color composites of TC
wetness (Jin & Sader, 2005), which we refer to here as RGB wetness
composites. Like RGB–NDVI composites (Sader & Winne, 1992), RGB
composites display an index, in this case TC wetness, from three
sequential images in RGB color space. Scaling the display brightness in
each band to range over that of forest (the mean plus or minus two
standard deviations, including secondary forest), or simply applying a
two-standard-deviation stretch to forest-dominated imagery, help to
make the method fairly objective and repeatable. This scaling causes
Table 3
Interpretation of additive colors in three-date RGB–Wetness image composites (adapted from
this case Tasseled Cap (TC) wetness or the NDSI, from three sequential images in RGB color sp
of forest, or apply a two-standard-deviation stretch to forest-dominated imagery.

Additive display
color

TC wetness relative to
forest in date 1 (red)

TC wetness relative to
forest in date 2 (green)

TC wetness relative
forest in date 3 (blu

Black Low Low Low
Red High Low Low
Green Low High Low

Blue Low Low High
Yellow High High Low
Magenta High Low High
Pale magenta High Medium High
Cyan Low High High
Pale cyan/dark
grey

Medium Medium to high Medium to high

Grey/white High High High
pixels with TC wetness values smaller than most forest to display
brightness values close to zero. The relationships between forest
disturbance and display color are identical in RGBwetness composites
in Amazonia (Helmer et al., 2009), Maine (Jin & Sader, 2005) and
Eleuthera (this study). Disturbance between dates one and two of a
composite, without regrowth by date three, appears red. Disturbance
with regrowth by date three appears magenta, and so on (Table 3,
Fig. 1). Wherewoody species quickly colonize previously cleared land,
including all but the driest tropical forest landscapes, pixels attain
values of TC wetness or related indices that are visible as regrowth
within a year or two.

Simultaneously viewing all three-band sequential combinations of
TC wetness over a densely-spaced, long time series: 1) distinguishes
forest from pasture and herbaceous or openwoody agriculture, and 2)
reveals forest age as the interval when forest regrowth begins that
lasts through the image sequence (Helmer et al., 2009), which in
Eleuthera is usually also the interval of last disturbance. Nonforest
land, or land that changes to a nonforest use after forest clearing, has
TC wetness that either remains small or does not increase over the
long term, consistently appearing dark in all composites: black, red,
green or dark blue (dark blue in the last composite of a sequence of
composites may also indicate forest regrowth).

As for forest age, we calculated it as the time difference fromMarch
2007, when we measured foliage height profiles, and the midpoint of
the interval of the last disturbance, using the date of the base scene for
each mosaic. When viewing the sequence of composites, the cyan of
initial forest recovery first pales to lighter cyan or dark grey and then
brightens toward the lighter grey of mature forest. This pattern
allowed us to distinguish two ages of disturbed forest from the earliest
image time step. Lands that were active agriculture or pasture in 1984
and regrew after 1984 are dark cyan in RGB wetness composites (e.g.,
patch 2 in Fig. 1c). Relative to forest, their TC wetness is dark in 1984
but brightens in 1988 and 1993. In contrast, young forest already
recovering from disturbance before 1984 is pale cyan or dark grey,
because its TC wetness is already within the range of forest in 1984
(e.g., patch 4 in Fig. 1c).

We assigned the oldest forest an age of 37 years by learning, from
observing the image time series, how long disturbances remain
discernable in the imagery. In the series, forest clearing with bulldozing
becomes indiscernible from old forest by about 14 years after
disturbance. Forest burned from escaped fire can become indiscernible
within about 8 years. We consequently assumed that the oldest forest,
which is forestwith no sign of disturbance through the image sequence,
was 8 to 14 years old in 1984, making it 31 to 37 years old or older in
2007.

Forest disturbance in a secondary scene that fills cloud gaps in
a reference scene is assigned the age of the reference scene for a
Sader &Winne, 1992;Wilson & Sader, 2002). Each RGB composite displays an index, in
ace. To produce these colors, scale the display brightness in each band to range over that

to
e)

Interpretation

Nonforest or open forest/savanna with low biomass and a senescent understory
Nonforest or forest clearing from dates 1 to 2 without regrowth by date 3
Nonforest or forest clearing before date 1, followed by regrowth and then
clearing from dates 2 to 3
Nonforest or forest regrowth beginning between dates 2 and 3
Forest clearing from dates 2 to 3
Forest clearing from dates 1 to 2 with regrowth from dates 2 to 3
Partial forest disturbance from dates 1 to 2 with regrowth from dates 2 to 3
Forest regrowth beginning between dates 1 and 2 and continuing through date 3
Young or partially disturbed forest in date 1 that continued to grow through
dates 2 and 3
Grey: broadleaved forest (leaf-on)
White: water, inundated forest, or evergreen needleleaf forest



Fig. 1. RGB wetness composites (figures c, e and g) display three sequential dates of the Tasseled Cap Wetness index (W) in the red (R), green (G) and blue (B) display bands (e.g., R–
G–B=W1984–W1988–W1993 displays W from 1984, 1988 and 1993 in R, G, B color space, respectively). Disturbance between composite dates one and two appears magenta;
disturbance between composite dates two and three appears yellow; initial regrowth is cyan (if regrowth began between dates 1 and 2) to pale cyan. Also shown are TM bands 5, 4
and 3 in RGB for subsets of the image mosaics for the earliest date (1984) and for the middle date of each composite (1988, 1993 and 2001). Annotations 1 through 4 are described in
the upper right corner of the figure. For interpretation of additional colors in this figure, the reader is referred to Table 3.
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given mosaic. This age assignment is less precise than if clear data
from a single image date were available for the entire study area
for each time step in the series. For example, forest disturbance in
a secondary scene that is dated some months after the base scene
for a given mosaic is assigned an age that is older than the actual
disturbance. Minimizing the time differences between the base
scene and secondary scenes for each mosaic minimizes this error
source.
To confirm disturbance types before 1996, we viewed single image
dates. For later time steps, we determined disturbance type from the
Quickbird imagery or field visits. Patches recently burned by escaped
fire are clearly distinguishable from agricultural clearing. Their shape
is irregular and their spectral signatures are darker than recently
bulldozed land in all bands. Recently bulldozed patches are as bright
as barren land. Agriculture patches that were cleared and burned but
not obviously bulldozed are small and regularly shaped but as dark as
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escaped fire in visible bands. Field visits allowed us to identify goat-
grazed patches.

In the RGB composites, we substituted the NDSI from ALI for TC
wetness. Both indices increase directly with NIR reflectance and
indirectly with SWIR reflectance. Indices that contrast NIR and SWIR
reflectance are sensitive to forest stand development in various forest
types. The NDSI and TC wetness tend to increase with stand age
through mid-forest succession under leaf-on conditions, though in
some forests TCwetness peaks inmid-forest succession orwhen forest
canopies close, and then decreases slightly in late succession (Fiorella
& Ripple, 1993a,b; Helmer et al., 2000; Wilson & Sader, 2002).

In humid tropical landscapes, where active or semi-active woody
agriculture may form a dense woody canopy, distinguishing forest
from active or semi-active woody agriculture can be difficult, even
with an image time series and RGBwetness composites (Helmer et al.,
2009). Finally, agriculture that forms a tall dense herbaceous canopy at
peak development, like sugar cane, might also be indistinct from young
forest if all images in a sequence occur at peak crop development.

2.6. Mapping tropical dry forest height and foliage height profiles with
time series imagery

To calibrate mapping models for forest vertical structure and
explore the relationships between forest vertical structure and
disturbance type, age and counts of selected woody species, we
measured foliage height profiles at 48 plots in March 2007 (Fig. 2).
From the data for each foliage height profile plot, we calculated the
following variables (see details below): mean height, height variance,
percent foliage cover for each height interval, and total counts of five
woody species potentially affecting Kirtland's Warbler habitat.

Although the number of profile plots was somewhat small, we
used a stratified random sample design to ensure that the plots
represented the range of the most common forest disturbance his-
tories in South Eleuthera. The patch level, stratified random sample
Fig. 2. Foliage height profiles were measured for 48 plots that represented the range of
the most common forest disturbance types and ages in South Eleuthera, The Bahamas.
design for the foliage height profile plots came from a contiguity
analysis of the map of forest disturbance type and age. A contiguity
analysis assigns the pixels in each contiguous region of the same class
an individual value. We grouped patches of forest younger than
37 years into six groups, depending on whether they were disturbed
before or after the year 2000 and whether the disturbance was
clearing for agriculture of any kind, escaped fire, or clearing followed
by continued goat grazing. We then randomly sampled patches until
we had sampled at least three to five patches per group, excluding
patches that were misclassified or inaccessible. When we excluded
such patches, we visited the next patch in a random sorting of the
patches in each group. Inaccessible plots included those for which
access was denied by landowners and those that were either too
distant from our field base, given available time for fieldwork, or more
than two km from a road. Bias in the resulting sample is toward
patches that are more accessible. In stratifying the sample by age,
however, the sample designmitigates this bias, because tropical forest
age is strongly related to accessibility (Helmer, 2000; Helmer et al.,
2008a). To sample forests at least 37 years old, which form the matrix
of the forest landscape in South Eleuthera, we located plots in a
random direction and distance (b200 m but N25 m) to the north of
Madera Rd., which borders extensive old forest. For all of the younger
forest plots, plot centers were located within the patch and at least
45 m from the patch edge.

Foliage height profiles were measured with the method of
Schemske and Browkaw (1981) as modified by Wunderle and
Waide (1993). Each plot consists of two perpendicular transects
centered at the plot center. Along each transect are 20 points spaced at
1, 2, 3, 4 and 5 m from the plot center. Whether or not foliage touches
a vertical pole is recorded in height increments up the pole. The height
increments are at 0.5-m increments from 0 to 3 m above the ground,
and in subsequent height increments of 3–4, 4–6, 6–8, 8–10, and
N10 m. This plot size is smaller than the multispectral Landsat or ALI
pixels. However, plot locations were in patches of uniform distur-
bance type and age, minimizing the potential impacts of this spatial
mismatch. Mean canopy height is the mean over the 20 points of the
midpoints of the highest increment in which foliage touches the
pole. Height variance is the variance of themean height. Percent cover
for each height increment is the percent of the 20 points in which any
foliage touches the pole. Studies of Kirtland's Warbler foraging
suggest that the fruit of four woody species are important winter
forage for the species. Consequently, we counted the number of times
that the four forage species touched the pole in any of the 20 points for
each plot. The four species were Chiococca alba, Erithalis fruticosa,
Lantana involucrata, and L. bahamensis. We also counted hits of the
non-native Leucaena leucocephala, because it may compete with the
forage species in early succession.

We mapped variables from the foliage height profiles with Cubist
regression tree models. Predictor variables for forest height included
only the 74 optical layers used tomap forest disturbance type and age.
We then added mapped forest height, and mapped forest disturbance
type and age, to the set of predictor variables for mapping foliage
cover of six height intervals and height variance. A 10-fold cross-
validation provided data for evaluating these regression tree mapping
models. Cross-validation may slightly overestimate the correlation
between actual and predicted values in the mapping models, but the
number of forest plots was too small to divide the reference data into
separate training and testing subsets.

2.7. Illustrating the relationships between forest vertical structure and
Kirtland's Warbler forage species

To illustrate the relationships between forest vertical structure,
disturbance type, and counts of the woody species tallied in the profile
plots, we applied principal components analysis (PCA) to the height
profile data. Because the species counts inherently depend partly on
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foliage cover, multiple regression analysis was inappropriate for this
purpose. Principal components analysis transforms multivariate data
into independent axes, condensing many related, often redundant
variables into a few axes that explainmuch of the variability in a dataset
(Legendre & Legendre, 1998). Plotting the principal component scores
for observations then reveals the major gradients in a dataset. The
transformation coefficients for each variable, which are the factor load-
ings, are correlation coefficients between the original variables and the
gradients, revealing their relationship to each other.With PCA, variables
can have different measurement units. In this case, the units include
percent foliage cover and species counts. Themain assumption of PCA is
that the variables relate linearly to one another. Consequently, PCA is
suitable for analyzing species abundances over gradients that are short
enough for the abundances to increase or decreasemonotonically along
their length (Legendre & Legendre, 1998). In this case, excluding foliage
cover in intervals above 4 m shortens the environmental gradient
enough to allow the data to meet this requirement. We also excluded
E. fruticosa because the data had few observations of this species.

The axes of the resulting PCA are gradients that relate forest
vertical structure to abundances of species potentially important
to Kirtland's Warbler habitat. Earlier work applies PCA to a dataset
that combines foliage height profiles from Kirtland's Warbler capture
sites with the randomized plots collected for this study (Wunderle
et al., 2010). The PCA here differs from that work by excluding the
capture site data to obtain a more balanced dataset. The capture
sites bias toward places the bird inhabits and span several years.
Fig. 3. A visual comparison twomosaics of the clear parts of four dates of Advance Land Image
ALI bands MS5, MS4 and MS3 in RGB). The comparison suggests that cloud-cleared ALI imag
mosaics made without normalization.
In addition, this PCA uses the height intervals collapsed to those
that we map here, and it includes counts of the forage species and
L. leucocephala.

3. Results and discussion

3.1. Cloud-free ALI image mosaic and regression tree normalization

The cloud-cleared mosaic of ALI data created with regression tree
normalization is virtually seamless when compared with a mosaic of
the clear image parts in which no normalization has been applied
(Fig. 3). Regression tree normalization minimizes phenological
differences between the image dates that compose cloud-cleared
image mosaics (Helmer & Ruefenacht, 2007), including for LDCM-like
imagery. It thereby can produce relatively seamless data.

Seamless image mosaics can be important when mapping forest
attributes with limited plot data, because seams that are apparent in
mosaics or composites may also appear in maps resulting from such
imagery. Specialized applications that require visual interpretation to
collect training data, or to delineate specific disturbances or land uses,
can also benefit from relatively seamless imagery. This study is an
example of such a specialized application. In the mosaics, the seams
that do occur come from residual errors in the normalization models.
These seams are least apparent when the image dates that form
each mosaic have similar sun-target-sensor geometry (Helmer &
Ruefenacht, 2007). Correcting input images for such differences
r (ALI) imagery made without (a) vs.with (b) regression tree normalization (displaying
e mosaics in tropical dry forest regions can be virtually seamless when compared with
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would likely improve results when applying regression tree normal-
ization. Though the method is often effective at matching nonlinear
differences in vegetation phenology, results also improve when input
images have similar phenology. Because the normalized data that fill
cloud gaps lose some detail (Helmer & Ruefenacht, 2005), the method
is only appropriate for creating mosaics from adjacent scenes if the
area of interest in the adjacent scene is small. Finally, we have
observed that seams occur when true land-cover change has occurred
between the image dates that compose a mosaic.
Fig. 4. Forest disturbance type and age were simultaneously mapped with supervised dec
imagery. In the images, cloudy areas in a base scene for each time step are filled with clear dat
Helmer and Ruefenacht (2005).
3.2. Map of forest disturbance type and age

This study presents for the first time an approach for simulta-
neously mapping land cover and tropical forest disturbance type
and age with a cloud-cleared image time series. The resulting map
for Eleuthera (Fig. 4) which is based on mapping Model 1 in Table 2,
is generally accurate. Overall accuracy estimated by withholding
30% of training data is 88%. Overall accuracy estimated with the
stratified random sample of the classified map is 87%, and the Kappa
ision tree classification of an eight-step time series of cloud-cleared Landsat and ALI
a from other images andmade seamless via the regression tree normalizationmethod of
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Table 4
Class accuracies and areas for the classes that we simultaneously mapped with decision tree classification of a time series of cloud-cleared image mosaics. These accuracies are from
the stratified random sample of 1035 points, for which overall classification accuracy was 87%, and the Kappa coefficient was 0.86. The validation data combined points from land
bulldozed for agriculture with points from land that did not undergo bulldozing when cleared.

Class of land cover or forest disturbance
interval and type

User's accuracy
(%)

Producer's
accuracy (%)

Number of
reference points

Class area (ha)

Bulldozed Not bulldozed

Forest cleared for agriculture 2002–2005 69 50 38 431 21
Forest cleared for agriculture 2001–2002 100 87 13 118 12
Forest cleared for agriculture 2000–2001 74 88 26 373 20
Forest cleared for agriculture 1996–2000 47 84 20 815 27
Forest cleared for agriculture 1993–1996 83 95 41 245 70
Forest cleared for agriculture 1988–1993 88 100 35 293 80
Forest cleared for agriculture 1984–1988 89 81 51 154 260
Forest cleared for agric. ∼1981 (active in 1984) 97 75 39 885 56
Forest cleared for agric. ∼1979 (young in 1984) 65 100 20 3573 3
Forest burned 2002–2005 100 70 42 470
Forest burned 2001–2002 97 100 29 393
Forest burned 2000–2001 97 91 36 1310
Forest burned 1996–2000 93 75 37 630
Forest burned 1988–1993 90 88 30 210
Forest burned 1984–1988 100 81 20 87
Forest burned ∼1981 (burned just before 1984) 50 19 3 21
Forest burned ∼1979 (young in 1984) 100 86 13 51
Forest burned 2001–2002 and 2002–2005 100 100 27 68
Forest burned 2000–2001 and 2002–2005 100 85 32 183
Forest cleared 2002–2005 and goat grazed 83 93 21 146
Forest cleared 2001–2002 and goat grazed 78 80 8 96
Forest cleared 2000–2001 and goat grazed 100 80 8 71
Forest cleared 1996–2000 and goat grazed 50 85 5 74
Forest cleared 1993–1996 and goat grazed 75 100 3 18
Forest cleared 1988–1993 and goat grazed 80 100 4 27
Forest cleared ∼1981 and goat grazed 90 100 9 59
Forest undisturbed since ∼1970 98 95 60 11,866
Urban, built-up in 1984 43 79 20 1194
New urban, 1984–2005 75 47 40 873
Water 100 97 37 7664
Bare 90 96 30 1788
Golf course and other grass 96 100 22 53
Citrus, active or semi-active 126
Pasture, b25% woody 87 52 40 595
Pasture, 25–60% woody 38 69 11 225
Mangrove, Permanently flooded 57 57 30 866
Mangrove, tidally flooded 77 87 29 1843
Mangrove, semi-permanently flooded 67 100 20 594
Palm swamp 97 88 31 794
Palm swamp (burned 2000–2001) 100 60 19 41
Coastal shrubs 93 60 36 453
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coefficient of agreement came to 0.86 (Table 4). Most classes have
user's and producer's accuracy better than 70%. A patch-level
evaluation of goat-grazed stands suggests good producer's accuracy.
The map misclassified only two goat-grazed patches as cleared
for agriculture; most age assignments of goat-grazed patches were
correct. Small, scattered patches of vegetation around residential
areas and some agriculture are misclassified as goat-grazed, though,
suggesting commission error for the goat-grazed disturbance type.
We observed that the unedited classification overestimates forest
age of former citrus fields cleared well before abandonment. This
observation suggests that the decision tree model mainly assigns age
based on a spectral signature that is typical of a given disturbance type
in a given mosaic date. It also implies that this method may
inaccurately map forest age where forest age is not nearly equal to
disturbance age.

We attribute the high accuracy of the map of land cover and forest
disturbance type and age to six factors. First, spectral-temporal
signatures from an image time series can better distinguish forest
disturbance type and age than can single-date signatures. The
classification based only on the image mosaic from 2002 has an
overall accuracy of 44% (Model 2, Table 2), which is much worse than
the overall accuracy of 83% for the classification based on the image
series extending from 1984 to 2002 (Model 3, Table 2). Second, the
classification is decision-tree based. Decision trees do not assume that
input data are parametric, and they can accommodate nonlinear
relationships between spectral data and class assignment (Friedl &
Brodley, 1997). Third, the training data were comprehensive: we dis-
tributed them throughout the study area. Fourth, the seamlessness of
the cloud-cleared imagery produced with regression tree normaliza-
tion greatly facilitated training data collection (Helmer & Ruefenacht,
2007). Fifth, the validation points included some points that came
from within the same patch, which would tend to improve accuracy
estimates. Finally, visual interpretation of forest disturbance age in the
reference data, and of disturbance types before about 1996, mimicked
that of training data, which likely also improved accuracy estimates.
All other reference classes were assigned based on field visits and
interpretation of Quickbird imagery.

The disturbance map proved invaluable for characterizing Kirtland's
Warbler habitat based on canopy height and disturbance type and age.
By comparing warbler capture sites with the randomly selected sites,
Wunderle et al. (2010) established that the warbler was linked to
human-disturbed sites with low canopy height and age range of 3–
28 years. Now that we have quantified some important traits of the
warbler's habitat, the location and extent of potential habitat available
on southern Eleuthera can be determined. More extensive vegetation
data are becoming available that may permit further refinement



Fig. 5. Actual values for mean forest height (a), height variance (b) and percent foliage cover over vertical intervals (c through h) are plotted against values predicted by regression
tree mapping models. The mapping models are based on the eight-step time series of cloud-cleared Landsat TM, ETM+ and ALI image mosaics and the field data from 48 plots.
Predicted values are based on a 10-fold cross-validation.
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of habitat mapping by mapping the distribution of the warbler's fruit or
forage plants.
3.3. Maps of forest height and other variables from foliage height profiles

No previous studies map forest height and foliage height profiles
with optical image time series. Mean height of the foliage height
profiles, as predicted by the regression tree mapping model that
included all mosaic dates (Model 4, Table 2), explains 84% of the
variability in actual mean height, based on a 10-fold cross-validation.
The root mean square error (RMSE) of the relationship is 0.9 m, and
bias is negligible (Fig. 5a). In addition, the map of forest height has
no discontinuities associated with the different image dates that
compose the cloud-cleared imagery (Fig. 6a).
Fig. 6. Forest three-dimensional structure, including height, height variance, and percent co
height profile data and a time series of cloud-cleared imagery, substituting time for vertica
(Fig. 7) suggest that the most variance in the data comes from contrasting foliage cover below
with figures d through h).
A regression tree mapping model for forest height that uses only
bands from the ALI mosaic (Model 5, Table 2) predicts only 68% of the
variability in actual height (10-fold cross-validation). This result
indicates that the earlier imagery in the time series improves the
mapping model of forest height. Supporting this conclusion is the fact
that if we exclude the eight plots that were newly disturbed in the ALI
mosaic and estimate a regression tree model with the cloud-cleared
TM and ETM+ image mosaic from 2002 (Model 6, Table 2), the
resulting model predicts only 16% of the variability in actual height
(also a 10-fold cross-validation). Excluding the eight plots does not
change the range of the response variable in thismodel and so does not
explain the difference inmodelfits. Adding spectral data fromall of the
earlier TM and ETM+ image time steps (Model 7, Table 2) improves
this R-square to 53%, also indicating the importance of an image time
series. Given that the ALImosaic is closer in time towhenwemeasured
ver over vertical intervals, was mapped from regression tree mapping models of foliage
l canopy space. Principal components transformation of the foliage height profile data
1 mwith cover above 1 m, and this contrast is apparent in the maps (compare figure c
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Fig. 6 (continued).
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height, models based only on the TM and ETM+ time series are not
entirely comparable to the model based only on the ALI imagemosaic.
However, the above results also suggest that the 12-bit ALI imagery
is more sensitive to forest structure than one or more dates of TM or
ETM+ imagery, which are 8-bit data. The result is consistent with
results of Pu et al. (2005), who show that ALI imagery ismore sensitive
to forest leaf area index and crown cover than is Landsat ETM+
imagery. The NDSI calculated from ALI was the most important of the
74 spectral bands in the mapping model of forest height, occurring in
rules or linear models that covered over 60% of cases. In turn, forest
height was the most important predictor of height variance and
canopy cover in height intervals above 2 m. The observation supports
the concept that forest height explainsmuch of the variability in forest
canopy height profiles (Lefsky et al., 2005).

For percent cover over various height intervals (Fig. 5c–h), the
regression tree mapping models also have negligible bias, with the
exception of the mapping model for cover from 0 to 1 m. Model
predictions, however, had varying precision. Model-predicted values
explained 18%, 38%, 69%, 75%, 56% and 71% of the variability in actual
values of percent cover from 0 to 1, 1 to 2, 2 to 3, 3 to 4, 4 to 6 and N6 m
(10-fold cross-validations). Predicted height variance explained 49%
of the variability in actual values. The maps of foliage height profiles
were mostly seamless (Fig. 6c–h), presumably because the cloud-
cleared imagery created with regression tree normalization were also
nearly seamless. Only the map of percent cover from 1 to 2 m shows
slight discontinuities associated with cloud-filled areas in one of the
mosaics.

Like other work (Helmer et al., 2000, 2009; Helmer & Ruefenacht,
2005; Song et al., 2001), mapping from a time series of two or more
images (or image mosaics) required no radiometric normalization
among the time steps. That step is not necessary when the spectral
values that parameterize a classification model come from the images
undergoing classification rather than a different image date, a
theoretical model, or a spectral trend from an image series.
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3.4. Mapping forest height with image time series in other tropical
landscapes

Results and observations fromwork here and in Amazonia suggest
that three main factors help make the methods in this study effective
at mapping forest vertical structure. The factors are: 1) a strong
relationship between forest height and recent spectral signatures, 2) a
strong relationship between forest height and past signatures, and 3)
a balanced sample design. Below we discuss how these factors apply
in Eleuthera and where their absence might make these methods less
effective.

As for recent signatures, the first factor, the relationship between
forest height and the NDSI from ALI is strong in Eleuthera; the NDSI
explains 62% of the variance in a linear regression model of forest
height (Table 5, Models 1, 3 and 5). The methods in this study might
falter where the relationship between forest height and recent
spectral data is weaker, as is likely for imagery with a smaller
dynamic range than ALI has, and is possible in landscapes more humid
than Eleuthera. In wetter landscapes, forests of different heights may
be less spectrally distinct, as canopies close at younger ages and
forests grow taller after canopy closure than the tallest forests
currently in Eleuthera. In addition, active fields, woody agriculture, or
pastures may have dense vegetation cover that is spectrally similar to
young forest, particularly in wet season imagery.

Spectral data from past scenes (factor 2) in Eleuthera also relate
well to forest height. They improve regression tree models of forest
height and relate consistently to forest disturbance type and forest
age, which are variables that also predict forest height (Table 5,
Models 1–4). In contrast, in humid forests of Amazonia the time
difference between forest clearing and agricultural abandonment
varies across the landscape. Accurately mapping forest age there, for
example, requires a method that finds when forest regrowth begins
rather than when forests are disturbed (e.g., Helmer et al., 2009).
Presumably, where forest age and disturbance age are unequal,
predicting forest height will require a more precise gauge of forest age
or growth than a past disturbance signature.

As to the third factor, sample design, we maximized model
efficiency by stratifying the sampling of plots by two variables that
we expected to explain the most variability in forest height:
disturbance type and forest age. The forest height models might
explain less variability in forest height with a more comprehensive
sample of undisturbed forests, as would have resulted from a
systematic landscape sample. Natural height differences in closed
forest undergoing only subtle disturbances may not be spectrally
Table 5
Least squares regression models of forest mean height estimated to help explain the
results of the regression tree mapping models of forest height and elucidate the
relationships between forest height, age and disturbance type. The models come from
the 48 field-measured foliage height profiles. All models are highly significant
(pb0.0001), based on F-tests for overall significance of the regressions. In Models 1
and 2, forest undisturbed during the image sequence is the base case for disturbance
type and represented by the intercept.

Regression models of forest heighta Adjusted
R-square

(1) Height in m=−3.85⁎⁎+0.0026⁎⁎⁎NDSIb−0.72⁎⁎⁎Clear−
0.42Fire−1.37⁎⁎⁎Goat

0.87

(2) Height in m=1.12⁎⁎⁎+0.10⁎⁎⁎Age−0.47⁎Clear+
0.37Fire−1.29⁎⁎⁎Goat

0.85

(3) Height in m=−3.57⁎+0.17⁎⁎NDSIb+0.12Age⁎⁎⁎ 0.81
(4) Height in m=0.11+0.15⁎⁎⁎Age 0.79c

(5) Height in m=−10.06⁎⁎⁎+0.0049⁎⁎⁎NDSIb 0.62c

a Asterisks indicate probabilities of erroneously rejecting the null hypothesis that
coefficient estimates are zero, based on a two-sided t-distribution, ⁎⁎⁎p≤0.0005,
⁎⁎p≤0.005, ⁎p≤0.05.

b NDSI = normalized difference structure index in ALI imagery, rescaled to 12 bits.
c R-square shown rather than Adjusted R-square.
distinct and could add unexplained variability to forest height models.
Floodplain forests in Amazonia, for example, are shorter than upland
forests (Helmer et al., 2009), but they are not always spectrally distinct
from them.

Though disturbance type and age can predict forest height,
explaining 85% of its variability, the map of forest height based on
spectral data is more realistic than what would result if we mapped
forest height from the thematic classes alone. For example, the forest
height map from regression tree models of spectral data (Fig. 5a)
maps more severely burned areas as shorter in the large area burned
by escaped fire between 2000 and 2001 that is visible in the upper left
part of Fig. 1f and g. A map based only on disturbance type and age
would show uniform height for that entire patch. In field observations,
severe burns kill more stems that would otherwise quickly resprout.

3.5. Relationships between forest vertical structure and Kirtland's
Warbler forage species

The PCA of the foliage height profiles, with disturbance type
identified, shows the landscape–level relationships between forest
vertical structure, disturbance type and counts of Kirtland's Warbler
forage species and L. leucocephala. The axis shows a gradient that is
important to Kirtland's Warbler habitat. The first component (PC1)
explains 43% of the total data variability. It separates stands with
dense foliage cover in the height interval from 0 to 1 m from taller
stands with less cover near the ground (Fig. 7a). The PC1 axis also
shows that L. bahamensis, L. leucocephala and L. involucrata are
associated with these short stands, while C. alba is associated with
stands that have dense foliage cover from 1 to 4 m. The shortest
stands include young stands cleared for agriculture, young stands
burned from escaped fire, and both young and old goat-grazed stands
(Fig. 7b).

The second PC axis (PC2) explains 17% more variation in the data.
It also shows an important habitat gradient. The PC2 axis separates
stands with high counts of L. involucrata from stands with more L.
bahamensis and L. leucocephala. One of the most important fruit
species for the Kirtland's Warbler is L. involucrata (Wunderle et al.,
2010). A hypothesis is that L. involucrata is more common in those
goat-grazed patches subject to ongoing goat grazing (or patches
subject to periodic mowing, based on the presence of L. involucrata
alongmowed roadsides), but less abundantwhere goats have recently
been excluded. Goats browse and disperse L. leucocephala; being a
legume, its nutrient content is relatively high (Clavero & Razz, 2003;
Pamo et al., 2006). Consequently, we expect it to be less abundant in
patches subject to more intense or ongoing goat grazing, allowing
L. involucrata to thrive.

3.6. Forest disturbance rates in South and Central Eleuthera

Forest disturbance rates changed in South and Central Eleuthera
from 1984 to 2005 (Fig. 8). Disturbance rates tended to be largest for
agriculture associated with bulldozing (Agriculture 1) before about the
year 2000, averaging 107 ha year−1 over the four intervals before the
year 2000. Forest disturbance for agriculture with bulldozing increased
to an average of 207 ha year−1 over the three intervals since 2000.
However, escaped fire became the largest source of forest disturbance
after 2000, increasing 9-fold from an average of 65 ha year−1 before
then to an average of 579 ha year−1 after. Four hurricanes brushed or
hit Eleuthera from 1999 to 2004. Hurricane Floyd hit Eleuthera
in September 1999 with sustained winds of 120 miles per hour and is
considered the most destructive hurricane to hit the region since 1929,
suggesting that the increase in area disturbed by escaped fire
might stem mainly from increased fuel loadings caused by hurricane
disturbance, though the concurrent increase in forest clearing for
agriculture is probably also important. Forest clearing for goat grazing
increased somewhat after around the year 2001.



Fig. 7. A principal components analysis of foliage height profile data illustrates the relationships between forest vertical structure, disturbance type, and counts of woody species that
provide important Kirtland's Warbler forage as well as a potentially competing species. Disturbance types include clearing for agriculture (clear), burning by escaped fire (fire),
clearing followed by regrowth with goat grazing (goat) and forest undisturbed during the image sequence (oldfor).
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4. Summary and conclusions

This study shows that time, as gauged by a multiyear time series of
cloud-cleared satellite imagery, can be exchanged for continuous
vertical forest canopy space. We map aspects of forest three-
dimensional structure: mean height ranging from 0.6 to 7 m; height
variance; and percent cover in vertical intervals. We conclude that
forest height mapping is possible with a time series of ALI and TM or
ETM+ imagery in subtropical dry forest landscapes on limestone
substrate where forest height relates strongly to recent and past
spectral data. Both an image time series and ALI data may be critical to
accurately mapping forest height. Models based only on one image
time step or that exclude the ALI data are much weaker. The OLI
imagery from the next Landsat mission will likely improve our ability
Fig. 8. Forest disturbance rates are shown here as the percent of the total area of forest di
Disturbance patterns changed in South and Central Eleuthera from 1984 to 2005. Before the
with bulldozing (Agriculture 1). After about the year 2000, forest disturbance by escaped fire
for goat grazing increased somewhat around 2001.
to map forest vertical structure. However, our results also highlight
that a Landsat archive that includes many past images will maximize
the utility of the forthcoming OLI data for monitoring forest structure.

This study also demonstrates the usefulness of long, dense time
series of cloud-cleared Landsat and ALI images made with regression
tree normalization. Seven of the eight steps in the image time series
with which we map forest vertical structure are cloud-cleared image
mosaics. Although only 48 forest plots were available to calibrate the
mapping models for height and other variables, the resulting maps
have few discontinuities associated with the different dates that
compose the mosaics in the time series. This observation supports
regression tree normalization as an option for producing cloud-
cleared image mosaics for mapping forest attributes with models
based on limited field data. Unlike methods that rely on MODIS to
sturbed during each interval. The percentages are calculated from the data in Table 6.
year 2000, disturbance rates in ha year−1 tended to be largest for agriculture associated
averaged 579 ha year−1 and was the largest source of forest disturbance. Forest clearing

image of Fig.�8
image of Fig.�7


Table 6
Disturbance rates for Central and South Eleuthera Island, The Bahamas, 1984–2005, calculated as the number of ha disturbed during an interval (from Table 3) divided by the interval
length. Agriculture 1 includes clearing that involved bulldozing, whether for agriculture or for urban development that did not ensue, and including citrus plantations (for which we
manually determined the date of initial forest clearing). Agriculture 2 includes small-scale agriculture that did not obviously undergo bulldozing. Clearing for goat grazing includes
cleared forest that regrew under pressure of goat grazing. Escaped Fire includes lands burned by fire that escaped from agricultural burning.

Interval years Interval
length (yr)

Clearing for Agriculture 1,
bulldozed (ha year−1)

Clearing for Agriculture 2,
not bulldozed (ha year−1)

Clearing for goat
grazing (ha year−1)

Burned by Escaped
Fire (ha year−1)

Total area of forest disturbed
during intervala (ha)

1984–1988 4.5 34 58 0 19 111
1988–1993 4.9 60 16 6 43 124
1993–1996 3.1 79 23 6 0 107
1996–2000 3.2 255 8 23 197 483
2000–2001 1.0 373 20 71 1310 1774
2001–2002 1.7 69 7 56 231 364
2002–2005 2.4 180 9 61 196 445

a Excludes land converted to urban/built-up land, most of which was forest, which occurred at an average rate of 873 ha/20.8 years, or 42 ha year−1.
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normalize the data that fill cloud gaps, the regression tree method is
applicable to imagery dated before the year 2000. The ability of the
regression tree method to provide cloud-cleared data dated from
before the year 2000 was critical to the study.

Our results also show that digital classification of a time series of
cloud-cleared Landsat and ALI images can simultaneously map land
cover and forest disturbance type and age. The image time series and
comprehensive training data were important to this result. Collecting
the training data required visually identifying forest disturbance
events, disturbance types, and regrowth. Enhancing this visualization
were the relatively seamless cloud-cleared imagemosaics and viewing
the imagery as a series of RGB wetness composites. The results of this
study also suggest that the regression tree-normalization method
of Helmer and Ruefenacht (2005) will be effective with the forth-
coming 12-bit OLI data that the LDCM mission will provide. The
regression tree normalization method is completely automatic.
However, operationally producing mosaics based on the method
requires accurate cloud and cloud shadow masks, which we did
not produce automatically in this study.

The map of forest disturbance type and age includes specialized
disturbance classes, like forest clearing followed by goat grazing,
which fully automated algorithms for forest change detection are
unlikely to distinguish from other disturbance types. This specialized
disturbance type of clearing followed by goat grazing is associated
with important Kirtland's Warbler forage species, including
L. involucrata and, according to earlier work, E. fruticosa (Wunderle
et al., 2010). The goat grazing and browsing apparently stunt these
forests, because even older stands remain short, and may reduce
competition from nonforage species.

Given that visual interpretation was important to mapping forest
disturbance type and age, we also conclude that a global archive of
Landsat image time series should include relatively seamless cloud-
cleared imagery for time intervals with no completely clear scenes but
several partly cloudy ones. Producing such imagery will require
accurate automated cloud and cloud shadow detection. Fully
automated algorithms exist that do not require mosaics to map
general aspects of forest disturbance from image time series.
However, no single algorithm will satisfy the myriad of specialized
applications that are possible with time series of satellite imagery.
With readily available image time series that include seamless cloud-
cleared imagery for persistently cloudy regions, users can more easily
tailor classifications to specialized needs.
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