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Abstract. Leaf mass per area (LMA) is a trait of central importance to plant physiology
and ecosystem function, but LMA patterns in the upper canopies of humid tropical forests
have proved elusive due to tall species and high diversity. We collected top-of-canopy leaf
samples from 2873 individuals in 57 sites spread across the Neotropics, Australasia, and
Caribbean and Pacific Islands to quantify environmental and taxonomic drivers of LMA
variation, and to advance remote-sensing measures of LMA. We uncovered strong taxonomic
organization of LMA, with species accounting for 70% of the global variance and up to 62%
of the variation within a forest stand. Climate, growth habit, and site conditions are secondary
contributors (1–23%) to the observed LMA patterns. Intraspecific variation in LMA averages
16%, which is a fraction of the variation observed between species. We then used spectroscopic
remote sensing (400–2500 nm) to estimate LMA with an absolute uncertainty of 14–15 g/m2

(r2¼ 0.85), or ;10% of the global mean. With radiative transfer modeling, we demonstrated
the scalability of spectroscopic remote sensing of LMA to the canopy level. Our study
indicates that remotely sensed patterns of LMA will be driven by taxonomic variation against
a backdrop of environmental controls expressed at site and regional levels.

Key words: canopy chemistry; imaging spectroscopy; leaf mass per area, LMA; leaf traits;
phylogenetics; rain forest; remote sensing; specific leaf area, SLA; taxonomy.

INTRODUCTION

Leaf mass per area (LMA) is the ratio of the dry mass

of a leaf to its surface area (grams dry mass per square

meter); its well-known reciprocal is specific leaf area

(SLA¼LMA�1). As simple as it appears, LMA is a trait

indicative of plant physiological processes ranging from

light capture to growth rates as well as the life strategies

of plants (Niinemets et al. 1999, Westoby et al. 2002).

LMA is also linked to investments in chemical

compounds distributed throughout the leaf mesophyll,

which strongly affects leaf thickness and mass. LMA is

broadly correlated with leaf nitrogen concentrations

across biomes (Reich et al. 1997, Wright et al. 2004).

These and other factors have made LMA a measure-

ment of central interest in plant biology and ecology.

A number of potential environmental controls over

LMA have been investigated, and studies agree that

photosynthetic radiation is a key factor (Niinemets and

Kull 1998, Cunningham et al. 1999). To maximize light

capture per unit nitrogen invested, shade leaves usually

have much lower LMA than do sun leaves (Evans 1989).

A new comprehensive review by Poorter et al. (2009)

also shows that variation in temperature and water

availability cause substantial variation in LMA among

terrestrial plants. These and other environmental factors

create LMA variation at scales ranging from the vertical

profile within a single tree (the ‘‘light gradient’’) to

regional variation associated with differing climate

regimes.

Compared to most biomes, the canopy chemistry and

physiology of humid tropical forests are poorly under-

stood (Townsend et al. 2008). Tall, inaccessible trees of

hundreds to thousands of species challenge our ability to

quantify and understand the properties of canopies in

these regions. LMA has been measured in a few studies

of tropical forests, but usually with small sample sizes

relative to the high species diversity within and among

these ecosystems (Poorter et al. 1995, Paoli 2006,

Sanchez-Azofeifa et al. 2009). With relatively small

sample sizes, neither the environmental nor taxonomic

(or phylogenetic) controls over LMA can be assessed.

For example, in a recent study by Asner et al. (2009),

162 canopy species from the Australian Wet Tropics

were collected and measured, but even this substantial

data set was too small, lacked species-level replication,

and was spread across too wide an array of conditions to

quantify and compare environmental and taxonomic

patterns. Although the Asner et al. (2009) study

controlled for canopy position (and thus sunlight
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conditions) to yield a comparative data set across taxa,

combining data from that study with previous literature

does not produce a data set suitable for inter-site and

taxonomic study. Even more problematic, when leaves

are collected from a range of light-gradient positions in

the forest, as has been done in and among past studies,

most environmental and taxonomic sources of LMA

variation are trumped by lighting conditions (Poorter et

al. 2009). As a result, there are not enough data

available to develop a broad understanding of environ-

mental or taxonomic controls over LMA in tropical

forests.

The labor required to study humid tropical forest

canopies not only limits our measurements and knowl-

edge, but also makes repeated analysis or monitoring of

forests intractable from the ground. Remote sensing

thus continues to grow in importance as a means to

measure canopies from above. Tropical forest remote

sensing has mainly focused on forest structure and

deforestation, but new capabilities in remote sensing of

leaf traits are evolving (see reviews by Kokaly et al.

2009, Ustin et al. 2009). In a study by Asner and Martin

(2008), spectroscopic remote-sensing signatures of SLA

were examined in the same 162 species from Australia

presented by Asner et al. (2009). This worked yielded

insight into the use of imaging spectroscopy for SLA

mapping in tropical forests with varying structural

properties. However, that study did not incorporate

enough data to test the generality of the approach or to

determine whether remote sensing would be sensitive to

taxonomic composition in the canopy.

The challenge in remote sensing of canopy properties

rests not only in the technologies and algorithms for

detection, but also in the ecological patterns and sources

of variation that may be present within and across

forests. We do not know what to expect in terms of local

and regional diversity of leaf traits, so we do not know

how sensitive the remote-sensing methods will need to be

in order to detect variation in space and time. LMA is an

important case in point: the measurement remains

relatively rare in humid tropical forests, and thus we

do not know the variance in LMA at stand or regional

levels. As a result, we do not know the relative

importance of environmental, taxonomic, or random

variation determining patterns in remotely sensed LMA,

which would be highly indicative of other chemical and

physiological processes.

Here we report on a study to determine sources of

variation in LMA among a very large number of canopy

species found in humid tropical forests. Although LMA

and SLA are simple reciprocals of one another, we

adopt LMA in this paper to facilitate easy comparison

to the recent global synthesis provided by Poorter et al.

(2009). We then refine and test a method for remote

sensing of LMA using high-fidelity spectroscopy, an

improved form of hyperspectral remote sensing, that has

become possible from aircraft in recent years (Asner and

Martin 2009). Our specific questions are: (1) What is the

relative importance of environmental control and

taxonomic organization in LMA among humid tropical

forest canopies? (2) How well can LMA be remotely

sensed at leaf and canopy levels? (3) If remote sensing of

LMA is universally possible, will the patterns be driven

by environmental conditions, taxonomic composition,

or random variability?

MATERIALS AND METHODS

Leaf samples

We analyzed top-of-canopy leaf samples from 2873

individuals in 57 sites spread across the Neotropics,

Australasia, and Caribbean and Pacific Islands

(Appendix A). Of these 2873 individuals, we had 2279

identified to the genus level and 2013 definite taxonomic

identifications to the species level. A small portion of the

Pacific Island collection includes species originating in

the Paleotropics (n ¼ 38). The data set is composed of

several common growth habits found in tropical forest

canopies, including tree (n ¼ 2400), liana (316), palm

(54), hemi-epiphyte (55), and vine (45) (Appendix B).

We are only interested in humid tropical forest species,

so we controlled for minimum mean annual precipita-

tion (MAP). The MAP range across sites is 1165–7340

mm/yr based on long-term climate records. Concomitant

variation in total annual incident solar radiation (Rs) is

4.6–6.0 kWh�m�2�yr�1, as estimated from the NASA

Surface meteorology and Solar Energy (SSE) Release 6.0

data set (January 2008) of regional annual averages, July

1983–June 2005 (available online).6 We did not control

for mean annual temperature (MAT), which ranges from

13.28 to 27.28C. Combined, our sites include subtropical

and tropical moist, wet, and rain forests in the Holdridge

Life Zone classification system (Holdridge 1967;

Appendix A). In addition, we only include specimens

collected within the global humid tropical forest biome

as delineated by Hansen et al. (2008). Detailed informa-

tion and maps for the species and sites can be viewed

through Carnegie Institution Spectranomics (available

online).7

Field methods

Leaf collections.—At each site, species were carefully

selected to control for full-sunlight canopies. This

process requires that two or more trained workers agree

that at least 50% of a selected canopy maintains an

unobstructed exposure to the sky (see Plate 1).

Individuals meeting this criterion were then marked,

and a voucher specimen was collected. Vouchers were

matched by local expert taxonomists to type specimens

kept at the CSIRO Tropical Research Centre in

Atherton, Australia, the National Agrarian University

La Molina Herbarium in Peru, and the Missouri

Botanical Garden. We also matched genus names to

6 hhttp://eosweb.larc.nasa.gov/sse/i
7 hhttp://spectranomics.ciw.edui
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information provided by Kew Botanic Gardens. Family-

level taxonomy followed the Angiosperm Phylogeny
Group III (available online).8 All project reference

vouchers are kept at the CSIRO, La Molina, or
Carnegie Institution facilities, and all specimens can be

viewed through Carnegie Spectranomics (see foot-

note 7).
Leaf collections were conducted using a combination

of tree climbing, crane, shooting, and pole-clipping
techniques. Only fully sunlit branches of mature leaves

were taken and processed within 20 min in the field for

leaf spectroscopy. The branches were sealed in large
polyethylene bags to maintain moisture, stored on ice in

coolers, and transported to a local site for LMA
processing within 4 h.

Leaf spectroscopy.—Hemispherical reflectance and

transmittance from 400 to 2500 nm was measured on
12 randomly selected leaf surfaces immediately after

acquiring each branch at the field site. The spectral
measurements were taken at or close to the midpoint

between the main vein and the leaf edge, and approx-
imately halfway from petiole to leaf tip. Care was taken

to avoid large primary or secondary veins, while

allowing for smaller veins to be incorporated into the
measurement.

The spectra were collected with a field spectrometer
using 1.4-nm sampling (FS-3 with custom detectors and

a custom-built exit slit configuration to maximize signal-

to-noise performance; Analytical Spectra Devices,
Boulder, Colorado, USA), an integrating sphere de-

signed for high-resolution spectroscopic assays, and a
custom illumination collimator. Measurements were

collected with 136-ms (millisecond) integration time
per spectrum. The spectra were then calibrated for dark

current and stray light, and referenced to a calibra-

tion block (Spectralon, Labsphere, Durham, New
Hampshire, USA) within the integrating sphere. The

high-fidelity measurement capability of our system
resulted in calibrated spectra that did not require

smoothing or other filters commonly used in leaf optical
studies.

LMA measurements

A subset of leaves was selected from the branches for

scanning and weighing. Leaf area was determined on a
600 dots-per-inch (dpi) flatbed optical scanner using

enough leaves to fill two scan areas each of 21 3 25 cm
(up to about 75 leaves per sample depending upon leaf

size). Petioles were removed from each leaf before
scanning, and mid-veins were cut out of the leaves when

they reached or exceeded 2 mm in diameter. Leaves

exceeding the surface area of the scanner were cut into
sections (without petiole or mid-vein if .2 mm

diameter) until two full scan areas were completed.
The scanned leaves were then dried at 708C for a

minimum of 72 h before dry mass was measured. LMA

was then calculated as grams of dry mass per square

meter.

Canopy modeling

Using the leaf spectra collected in the field, we

simulated canopy reflectance signatures for each speci-

men based on growth habit. The canopy model has been

presented by Asner (2000) and updated by Asner and

Martin (2008). It simulates top-of-canopy spectral

reflectance based on the following scale-dependent

factors:

R ¼ f ðrtiss; ttiss;LAI; LAD; SSAI; SAD; GO-params;

GeometryÞ ð1Þ

where rtiss and ttiss are the hemispherical reflectance and

transmittance properties of plant tissues, LAI is the

canopy leaf area index, LAD is the canopy leaf angle

distribution, SSAI is the stem silhouette area index, and

SAD is the stem angle distribution. The tissues can

include both live green foliage and senescent foliage or

wood surfaces. GO-params are three crown geometric-

optical properties that include the areal density of tree

stems, the ratio of crown vertical to horizontal radius

(BR), and the ratio of tree height (ground to crown

center) and crown depth (HB). Geometry includes four

parameters of solar zenith and solar azimuth angles

(SZA, SAZ), and sensor-viewing zenith and azimuth

angles (VZA, VAZ).

For our purposes, we are implicitly modeling high-

spatial-resolution, high-fidelity airborne data, as would

be acquired from sensors such as the Carnegie Airborne

Observatory (Asner et al. 2007) and AVIRIS (Green et

al. 1998; with referenced 2005 sensor revisions available

online).9 This is important here because, in the context of

mapping humid tropical forests, the spectra would be

collected at a spatial resolution finer than that of most

tree crowns and vegetation clusters, thus simplifying the

modeling problem, especially in terms of the geometric-

optical parameters. Specifically, we do not address tree

density, intra-crown gaps, and shadows in this study.

Although the modeling covers the 400–2500 nm spectra

range, we did not simulate portions of the spectrum

between 1350–1450 nm and 1850–1975 nm because they

cannot be measured from aircraft due to atmospheric

water absorption at these wavelengths.

For each specimen, a randomly selected combination

of the field-measured leaf spectra and canopy structural

properties based on growth habit (Table 1) was used to

generate a canopy reflectance signature. This was

repeated 250 times per specimen, and the mean

reflectance signatures were recorded for subsequent

analyses. The canopy structural properties permitted to

vary included LAI, LAD, SSAI, and SAD. The viewing

and solar zenith angles were also varied within the range

8 hhttp://www.mobot.org/mobot/research/apweb/welcome.
htmli 9 hhttp://aviris.jpl.nasa.govi
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typical for airborne flight operations (VZA ¼ 0–308,

SZA ¼ 0–308). Given that airborne studies will not

generally incorporate such large SZA variation in a

single mapping flight, our approach is conservative. A

more detailed explanation of the technique is reported in

a study of canopy structural variation and its quantita-

tive impact on the chemical analysis of tropical forests

by Asner and Martin (2008).

Statistical and taxonomic analysis

Taxonomic patterns in LMA were examined with

respect to family, genus, species, and growth habit

classification. Environmental factors examined were

mean annual temperature (MAT), mean annual precip-

itation (MAP), total annual solar radiation (Rs), and

collection site location. For all models, we used the

maximum number of samples for which we had accurate

identifications. For the environmental factors of MAT,

MAP, radiation, and site, this amounted to the complete

2873 sample data set. Sample numbers were further

constrained by positive taxonomic identifications, per-

mitting the use of 2279 samples for family- and genus-

level analyses and 2013 samples for species-level

analyses.

We employed single-variable linear models to analyze

the variation in LMA explained by individual predictors

and multiple linear regression models to analyze the

variation explained by logical combinations of predic-

tors, including the interaction among predictors. For

these analyses, we only considered one taxonomic level

of aggregation at a time (e.g., family, genus, or species).

AIC (Akaike’s information criterion) values were used

to determine the best predictive models through stepwise

regression. We performed a site-level regression using

the continuous environmental variables of MAT, MAP,

and Rs as predictors of site median LMA values. We

used ANOVA with Tukey’s post hoc tests to examine

the multiple pairwise comparison of growth habit

classification.

To more thoroughly investigate the relationship

between taxonomic grouping and LMA, we modeled

the nested nature of the taxonomic levels (e.g., a given

genus is only found in a single family). We modeled

family, genus nested within family, and species nested

within genus all as random effects in a linear mixed-

effects model using restricted maximum likelihood

estimation (Faraway 2005, Bates and Maechler 2009).

These analyses were performed using R, version 2.9.2 (R

Development Core Team 2009) and Sigmaplot, version

11.0 (2008, Systat Software, SPSS, Chicago, Illinois,

USA).

We used partial least-squares (PLS) regression anal-

ysis (Haaland and Thomas 1988) to determine whether

LMA can be remotely sensed at the leaf and/or canopy

level using high-fidelity spectroscopy. Leaf spectral

measurements and canopy simulations used 210 spectral

bands with 10-nm band width (FWHM; full width at

half maximum) spanning the 400–2500 nm wavelength

range, again with the 1350–1450 nm and 1850–1975 nm

atmospheric water vapor regions removed. This config-

uration simulated measurements acquired by airborne

instruments such as the AVIRIS sensor. The full-range

leaf spectral data were convolved to 10-nm resolution

using 2008 AVIRIS spectral response functions provided

by the Jet Propulsion Laboratory, Pasadena, California,

USA.

Beginning at the leaf level, we used PLS analysis to

determine the contribution of LMA to the 220-band

leaf reflectance and transmittance spectra of all samples

(n ¼ 2873). The PLS approach is beneficial because it

utilizes the continuous spectrum as a single measure-

ment rather than as a band-by-band analysis. To avoid

overfitting, the number of factors used in the PLS

analysis was determined by minimizing the prediction

residual error sum of squares (PRESS) statistic (Chen

et al. 2004). The PRESS statistic was calculated

through a cross-validation prediction for each model.

This cross-validation procedure iteratively generates

regression models while reserving one sample from the

input data set until the root mean-square error

(RMSE) for the PRESS statistic is minimized. The

PLS models were then used to estimate LMA from the

original leaf spectral data.

To quantify our ability to predict LMA of unknown

species in a forest, we ran PLS analyses on the simulated

canopy spectra using a random selection of about half of

the total specimen data set. The resulting PLS model

was then used to estimate LMA values of the other half

of the samples. This entire procedure was then repeated

on a nonrandom basis, with the PLS model built on the

first half of the families (from Acanthaceae to

Lauraceae; Appendix B), and then predicting the LMA

of the second half (Lecythidaceae to Winteraceae).

Finally, we used PLS analysis to predict the LMA of

samples at each site using models built with data from

remaining sites. This allowed us to explore the potential

to remotely quantify LMA at any given site, given a

model developed from other sites containing mostly

different species. PLS analyses were carried out using the

TABLE 1. Parameter ranges used for canopy reflectance
simulations of 2875 tropical forest canopy specimens.

Growth habit
LAI

(m2/m2)
SSAI

(m2/m2)
LAD
(8)

SAD
(8)

Tree 3.0–7.0 0.2–0.5 20–60 70–90
Hemi-epiphyte 1.0–3.0 0.1–0.3 20–60 70–90
Liana 1.0–3.0 0.2–0.4 0–30 70–90
Palm 3.0–5.0 0.2–0.4 20–70 70–90
Vine 0.5–2.0 0.01–0.1 0–30 70–90

Notes: LAI is leaf area index. Typical LAI range information
is derived from the global synthesis of Asner et al. (2003). SSAI
is the stem silhouette area index; data are from Asner (1998).
LAD and SAD are, respectively, the leaf and stem angle
distributions in degrees; the values shown indicate the mean
tendency of foliar angle based on the two-parameter beta
distribution (Verhoef and Bach 2003).
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SAS JMP 7.0 statistical software package (2008, SAS

Institute, Cary, North Carolina, USA).

RESULTS

Basic statistics

The total LMA range is 22.2–307.6 g/m2. Median

LMA values by growth habit are 61.7 g/m2 for vines,

88.9 for lianas, 107.2 for trees, 121.2 for palms, and

134.3 for hemi-epiphytes (Fig. 1). The LMA range is

greatest for trees (25.6–307.6 g/m2) and smallest for

vines (22.2–134.6 g/m2). A one-way ANOVA indicates a

significant difference (P , 0.05) in mean LMA by

growth habit. A variety of post hoc tests (Tukey’s,

Bonferroni’s t test, Holm-Sidak method, and Fisher’s

LSD method) indicate that most pairwise comparisons

are significant, with only two exceptions; palms are

indistinguishable from both trees and hemi-epiphytes.

Treating growth habit as a factor variable, a single-

variable linear regression analysis shows that 6% of the

variation in the LMA data set is explained by habit

alone (P , 0.001; Table 2). Here we report adjusted-r2,

rather than multiple-r2 values, to reduce the impact of

overfitting.

Intraspecific variation

Our data set includes 249 species for which there are

two or more replicates spread among 44 of 57 sites,

permitting their use in an analysis comparing inter- to

intraspecific variation. The coefficients of variation

(CV) within these species vary from less than 0.01 to a

maximum of 0.55 (Fig. 2). The mean intraspecific CV

is 0.16, and most species (80%) have CV values less

than 0.25. Only a small portion of species (3%) have

CV values exceeding 0.50. Families with lowest and

highest median intraspecific variation in LMA are

Cyrllicaeae (2%) and Convolvulaceae (41%), respec-

tively. A one-way analysis of variance of LMA by

species produces a highly significant F statistic (P ,

2.2 3 10�16), demonstrating that the interspecific

variation in LMA in fully sunlit leaves is much greater

than the intraspecific variation in LMA in fully sunlit

leaves.

FIG. 1. Frequency histograms of leaf mass per area (LMA; the ratio of the dry mass of a leaf to its surface area) for all samples,
calculated separately for each growth habit.
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Site and climate effects

Among all samples, there is no significant effect of

precipitation on LMA patterns (Fig. 3). This is not

surprising, given that we controlled for minimum MAP

for moist, wet, and rain forest sites. Mean MAT and Rs

each explain 4% of the variance in LMA among all

samples, and although the signal is small, both effects

are highly significant (P , 0.001; Fig. 3). Using the

median LMA value for each site, MAP and Rs remain

minor determinants of LMA (and in the case of MAP,

insignificant); however, MAT increases in importance to

account for 29% of LMA variation among sites (P ,

0.001).

We did not attempt to analyze the LMA data using

soils as an independent variable because the quality and

type of soil information varies greatly from region to

region. Instead, we tested the effect of site, which

incorporates factors ranging from climate to substrate

age and soil chemistry. Site explains 19% of the variance

in LMA (P , 0.001), and site combined with habit

accounts for 23% of the measured variation (P , 0.001;

Table 2). Given that MATþHabit account for only 8%
of LMA variation, by difference, we infer that soils may

explain up to 15% of the variability in LMA among all

samples.

Taxonomic controls

In comparison to environmental properties, we

observe strong taxonomic organization over LMA

within and across sites. Using linear regression models

with single taxonomic levels as predictor variables,

family, genus, and species account for 27%, 41%, and

70% of the overall LMA variation, respectively (Table

2). Adding site to the regression explains a maximum of

39% and 53% of the overall variation in LMA at the

family and genus levels, respectively. At the species level,

adding site as a covariate increases the strength of the

prediction from 70% to 73%, whereas a combination of

species, MAT, and their interaction term yields the

maximum predictive power of 76% (Table 2). Explicit

accounting of taxonomic nesting with the linear mixed-

effects model shows that 32% of LMA variation is

explained at the family level, 14% is explained by genera-

within-families, and 25% is explained by species-within-

genera. This sums to 71%, which is on par with the

maximum levels of explained variance from Table 2. The

remaining 29% is undetermined.

We also examined taxonomic grouping of LMA at the

site level using linear regression models (Table 3). We

selected three sites that contributed a relatively large

number of species to the study (Appendix A), including

Barro Colorado Island (BCI, Panama), Monteverde

(Costa Rica), and Tambopata Forest Reserve (Peru). At

family and genus levels, the strongest phylogenetic

controls over LMA are observed at BCI (32%) and

Monteverde (40%), respectively. Sufficient replication of

individuals at Tambopata allowed for an analysis

among species, which indicated that 62% of the LMA

variation is driven at this taxonomic level.

TABLE 2. General linear regression modeling results for
environmental and phylogenetic factors determining leaf
mean area (LMA; the ratio of the dry mass of a leaf to its
surface area) in humid tropical forests.

Model and factor types
LMA prediction
(adjusted r2) n

Phylogenetic factors

Family 0.27 2279
Genus 0.41 2279
Species 0.70 2013
Habit 0.06 2279

Environmental factors

MAT 0.04 2873
MAP 0.01 2873
Radiation 0.04 2873
Site 0.19 2873
Site þ Habit 0.23 2870
MAT þ Habit 0.08 2870

Family þ
MAT 0.29 2279
MAP 0.27 2279
Site 0.39 2279
Radiation 0.29 2279
MAT þ MAT 3 Family 0.31 2279

Genus þ
MAT 0.44 2279
MAP 0.42 2279
Site 0.53 2279
Radiation 0.43 2279
MAT þ MAT 3 Genus 0.46 2279

Species þ
MAT 0.70 2013
MAP 0.70 2013
Site 0.73 2013
Radiation 0.70 2013
MAT þ MAT 3 Species 0.76 2013

Notes: Multiplication symbols (3) indicate an interaction
term between two factors. The plus symbols (þ) in the first
column indicate that the regressions utilized two factors
together. Sample size n is the number of tropical forest canopy
specimens.

FIG. 2. Frequency histogram of the coefficients of variation
(CV) for within-species leaf mass per area (LMA; n ¼ 249
species).
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Remote sensing

The reflectance regions of greatest variance (calculat-

ed as CVs), and thus potentially the most information

related to variation in LMA, are the shortwave-infrared

(SWIR) between 1900 and 2500 nm (22�32%), the

shortwave-infrared from 1300 to 1700 nm (up to 21%),

and the visible region from 400 to 800 nm (up to 19%)

(Fig. 4). The near-infrared (800�1300 nm) shows

relatively low variation (8%) among samples. Leaf

transmittance variation follows a similar pattern to that

of reflectance, but shows even higher CV values in the

SWIR and visible ranges (reaching 55�60%).

PLS regression indicates strong statistical relation-

ships between the spectral signatures of the specimens

and LMA (Fig. 5). Leaf reflectance and transmittance

spectra each account for 85% of the variation in LMA,

with a root mean-square error (RMSE) of ;15 g/m2 or

;10% of the global mean LMA value for the data set.

The few outliers in Fig. 5 showed no taxonomic pattern

and thus may be related to random noise or measure-

ment error, neither of which was assessed. Standardized

PLS spectral weightings and prediction equation vectors

are used to understand which regions of the spectrum are

most important to the LMA analysis (Fig. 6). With

FIG. 3. (A–C) Effects of mean annual temperature (MAT), mean annual precipitation (MAP), and total solar radiation (Rs) on
leaf mass per area (LMA) at the individual level. (D–F) Effects of MAT, MAP, and Rs on median values of LMA at the site level.
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standardized spectral weightings, departures from the

zero line indicate regions of the spectrummost important

to the PLS regression (Fig. 6A). The near- and

shortwave-infrared contribute the most to reflectance-

based estimates of LMA, with relatively little contribu-

tion from the visible portion of the spectrum.

Transmittance-based PLS analysis shows a much differ-

ent result, with a steady increase in the importance (more

negative spectral weighting) as wavelength increases.

Prediction vectors (Fig. 6B) highlight the important

spectral features relative to the PLS spectral weightings

from Fig. 6A. It is clear that features in the near- and

TABLE 3. Phylogenetic controls over LMA at three sites; n is
the number of samples per site.

Site n
Taxonomic

level
LMA

(adjusted r2)

Barro Colorado Island,
Panama

146 family 0.32
genus 0.32

Monteverde, Costa Rica 400 family 0.29
genus 0.40

Tambopata, Peru 436 family 0.24
genus 0.36
species 0.62

FIG. 4. Minimum, mean, and maximum leaf (A) reflectance
and (B) transmittance for 2871 samples collected in tropical
rain forests. (C) Spectral coefficients of variation for leaf
reflectance and transmittance.

FIG. 5. Partial least-squares (PLS) regression results for leaf
mass per area (LMA), measured vs. remotely sensed, based on
leaf (A) reflectance and (B) transmittance. RMSE is root mean-
square error.

FIG. 6. (A) Standardized PLS spectral weightings for leaf
reflectance- and transmittance-based analysis of leaf mass per
area (LMA). (B) PLS prediction vector coefficients. Departures
from the zero line indicate regions of the spectrum most
important to the PLS regression.
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shortwave-infrared, especially between 1300 and 2400

nm, are critical to the LMA results.

Canopy radiative transfer models incorporate the

measured leaf reflectance and transmittance values for

each sample, the modeled canopy structural variation

typical of each major vegetation habit found in tropical

canopies, and the simulated variation in illumination

and viewing geometry (Fig. 7, Table 1). At the canopy

scale, reflectance CV values are highest in the shortwave-

infrared (1400�2500 nm), peaking at 36%, and are also

high in the visible (up to 29%) (Fig. 7B). PLS analyses

indicate a strong correlation between spectral signatures

of specimens and their LMA values (Fig. 8). The spectra

account for 81% of the variance among all samples, with

a RMSE value of 17 g/m2. Again, the few outliers

apparent in the regression are not phylogenetically

distinct. PLS weightings indicate that the shortwave-

infrared (1300�2500 nm) is critical to the prediction of

LMA at the canopy level (Fig. 9). The visible and near-

infrared regions play a relatively small role in determin-

ing LMA, as evidenced in the smaller weightings and

vector coefficients.

We tested the predictive capability of the canopy

spectra by splitting the data set, using over half (n ¼
1488) for model development and the remaining samples

(n ¼ 1383) to test predictions. With randomly selected

training and test data, we found that canopy reflectance

spectroscopy predicts LMA with an r2 value of 0.82 and

a RMSE of 17 g/m2 (data not shown). We then sorted

the data taxonomically, and developed the regression

using all specimens from families Acanthanceae through

Lauraceae (n ¼ 1478) to predict the LMA of remaining

families Lecythidaceae to Winteraceae (n ¼ 1393). This

yielded an r2 value of 0.81 and RMSE of 18 g/m2 (Fig.

10).

We tested our ability to predict the LMA from canopy

spectra collected at the site level (Table 4), thereby

simulating data collection at a new site with the analysis

driven by a general tropical spectral-LMA library. Our

predictive ability varies slightly from site to site, with a

low and high r2 of 0.77 and 0.84 in two lowland

Peruvian Amazon sites of Tambopata and Jenaro

Herrera, respectively. The RMSE values of the predic-

tions ranged from 14 to 21 g/m2. Finally, we predicted

the LMA values of individuals within each family as

FIG. 7. (A) Minimum, mean, and maximum canopy
reflectance for 2875 samples simulated using the radiative
transfer model with field-measured leaf optical properties and
varying canopy and illumination conditions (see Table 1). (B)
Spectral coefficient of variation of canopy reflectance.

FIG. 8. Partial least-squares (PLS) regression results for
measured vs. remotely sensed leaf mass per area (LMA) based
on mean canopy reflectance signatures of each sample.

FIG. 9. (A) Standardized PLS spectral weightings for
canopy reflectance analysis of leaf mass per area (LMA). (B)
PLS prediction vector coefficients. Departures from the zero
line indicate regions of the spectrum most important to the PLS
regression.
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shown in Appendix C. The results indicate significant r2

values for predicting all families, yet the strength of the

regressions varies from a low r2 of 0.48 for

Phyllanthaceae to a high of 0.95 for Convolvulaceae.

DISCUSSION

Environment vs. taxonomic controls

We found enormous variation in LMA values within

all growth habits found in humid tropical forest

canopies (Fig. 1). In total, our LMA range was a

remarkable 22.2�307.6 g/m2, yet the LMA range for

humid tropical forests was thought to be on the order of

about 30�150 g/m2 (Poorter et al. 2009). In fact, our

reported variation in LMA encompasses nearly the

global range of values found within and across most

plant functional types and ecosystems including aquatic

marine, grassland, tundra, woodland, and all major

forest types (Poorter et al. 2009). The only groups to

exceed the minimum or maximum limits of our data set

are aquatic freshwater and desert succulent groups,

respectively.

Why do we see such variation at the top of humid

tropical forest canopies? If it is random sample

variation, we would expect high intraspecific variation

in LMA, but our results indicate an average CV of only

16% for LMA within species (Fig. 2). If the observed

pattern is environmentally driven, then we would have

uncovered more than the 19% contribution of site

conditions to the LMA variation (Table 2). Despite

annual precipitation and temperature ranges of

1800�7340 mm and 13.2�27.28C, respectively, only

temperature has a modest 4% contribution to the

FIG. 10. Results of calibrating the PLS model using families Acanthaceae through Lauraceae (black circles) to predict leaf mass
per area (LMA) for families Lecythidaceae through Winteraceae (gray circles). See Appendix B for a complete list of families. The
heavy solid line is the regression of the prediction step, and the two dashed lines show the 95% confidence interval on the prediction.
The thin solid line is the regression of the calibration step.

TABLE 4. Estimation of LMA by research site, using LMA and high-fidelity spectra collected at
other sites in the data set; n is the number of samples per site.

Campaign and country r2 RMSE Slope Intercept n

Jenaro Herrera, Peru 0.84 14.26 0.95 5.76 461
Wet Tropics, Australia 0.83 20.51 0.99 1.83 162
Limahuli Valley, Hawaii, USA 0.82 16.87 1.03 �1.61 40
BCI and region, Panama 0.82 14.47 1.02 �2.91 284
Monteverde, Costa Rica 0.81 16.07 0.90 7.18 400
Allpahuayo, Peru 0.81 15.43 1.01 0.41 599
Puerto Rico, USA 0.81 20.97 1.11 �9.51 106
Cape York, Australia 0.80 17.69 1.01 �2.96 196
Hawaiian Islands, USA 0.79 24.22 1.08 �11.05 175
Tambopata, Peru 0.77 14.99 0.98 2.57 448

Note: All linear regression P values are ,0.0001.
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measured LMA variation among samples. Site condi-

tions are clearly important overall, especially when the

median LMA values of a site are tested against

temperature (Fig. 3), but environment still does not

account for the observed diversity of LMA.

The most likely explanation for the wide range of

observed LMA variation rests in the high biological

diversity of humid tropical forest canopies. The size and

taxonomic structure of our data set, combined with a

careful treatment of average lighting conditions, reveal

strong species-level control over LMA variation. This

pattern begins to emerge at the level of growth habits,

albeit weakly with only 6% of the variation in LMA

explained by habit. From there, plant families, genera,

and finally species show increasing control over LMA

patterns. Fully 70% of LMA variation is attributable to

variation among species, with small additions from site

and/or temperature that maximize our predictive capa-

bility to 76%. Finally, within our nested linear mixed-

effects model, we can partition the total variance to

family (32%), genera-within-families (14%), species-

within-genera (25%), and unexplained (29%). This

approach provides a quantitative understanding of

how well taxonomic groupings reflect LMA. The fact

that family and species-within-genera are dominant

levels of control over LMA indicates that leaf structure

correlates more strongly with taxonomic partitioning at

these levels. The lower percentage of variance explained

by genera-within-families suggests that families must

organize genera relatively well in terms of LMA. The

unexplained variance could be due to some combination

of site conditions (e.g., soils, elevation, climate), tree

selection, measurement error, and random variation.

The dominant role that taxa play in creating patterns

of LMA in humid tropical forest canopies is an

expression of the processes that create high biodiversity

in these regions. The causes of such high levels of

diversity remain heavily debated, with neutral processes,

niche differentiation, and environmental filtering being

the top contenders (Givnish 1999, Wright 2002). LMA is

biophysically and biochemically linked to these process-

es via its role in plant growth (Wright et al. 2004),

defense (Coley and Barone 1996), and life strategy

(Hikosaka 2004). Because our study indicates strong

taxonomic organization of LMA, it suggests that

whichever forces control taxonomic diversity also

control functional diversity among species. Such func-

tional diversity is unlikely to be driven by purely

stochastic processes, but rather by community-scale

differentiation based largely on niche availability (Kraft

et al. 2009).

PLATE 1. Carnegie botanists climb high into the tropical forest canopy in the Amazon basin in the search for full-sunlight leaves
destined for chemical and spectral analysis. (Left) Felipe Sinca hoists long pole clippers from high in the canopy, and (right) Nestor
Jamillo works his way up a palm for leaf collection. More photos are available on the Carnegie Spectranomics website at hhttp://
spectranomics.ciw.edui. Photo credits: G. P. Asner.
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Environmental filtering is probably an important

additional determinant of LMA in humid tropical

forests, although our study directly considers only

cross-site environmental controls that proved relatively

weak compared to taxonomic signals within and across

a wide range of forest conditions. Nonetheless, at the

site level we did observe variation in the strength of

species-level control (Table 3), implying that there is

variation in the strength of environmental filtering on

LMA and/or on the species present and their leaf traits.

A detailed (and laborious) analysis of micro-site vs.

inter-site environmental controls is needed to more fully

quantify these effects.

The notion that canopy diversity begets a diversity of

leaf traits has also been demonstrated recently in terms

of nutrient concentrations and biologically mediated

processes. Townsend et al. (2007) showed that taxo-

nomically driven variation in leaf nutrient concentra-

tions, and particularly nitrogen : phosphorus ratios, in

just a few humid tropical forest sites in Costa Rica and

Brazil exceeds the range found throughout forests

globally. At the site level, Epps et al. (2007) have shown

that foliar litter quality and decomposition rates, which

are driven directly by leaf chemistry, follow phylogenetic

patterns. LMA is closely linked to these leaf traits, so in

one sense our observations of high diversity in tropical

forest LMA are not surprising, but the strong taxonomic

structure to the patterns is new. It suggests that remotely

sensed patterns of LMA will be dominated by the

taxonomic composition of the canopy.

Remote sensing of LMA

Remote sensing of leaf properties is not new; many

have demonstrated how leaf pigments, nutrients, and

carbon fractions can be estimated at both leaf and

canopy levels (reviewed by Kokaly et al. 2009, Ustin et

al. 2009). Moreover, modeling studies demonstrate the

importance of leaf structure in defining the spectral

properties of foliage (Jacquemoud and Baret 1990, Feret

et al. 2008). In tropical forests, leaf and canopy

spectroscopic analyses have provided estimates of water,

nutrient, pigment, and even SLA (the reciprocal of

LMA; Asner et al. 2009), but a comprehensive remote-

sensing analysis of a single leaf property has not been

made among a wide range of tropical forest sites.

Using 2873 samples representing the growth habits

that dominate canopy leaf biomass distributed across

149 plant families found in upper-canopy positions of

humid tropical forests, we found that high-fidelity leaf

spectra predict LMA with an r2 value of 0.85 and

RMSE ,15 g/m2 (Fig. 5). However, reflectance and

transmittance regressions make differential use of the

spectrum to achieve these high accuracies (Fig. 6). This

is caused by differences in how mesophyll structure and

chemical composition are expressed in absorption and

scattering of light on a leaf (reflectance) vs. through a

leaf (transmittance) (Govaerts et al. 1996, Jacquemoud

et al. 1996, Vogelmann et al. 1996).

Despite the strong leaf-level results, the true test rests

in the retrieval of leaf properties from canopy spectra,

which incorporates the myriad canopy structural

contributions and angular ‘‘artifacts’’ inherent to

HiFIS (high-fidelity imaging spectroscopy) measure-

ments taken from aircraft. Canopy radiative transfer

models are not perfect surrogates for actual aircraft

measurements, but they are physically based and have

proven useful for leaf analyses from the air

(Jacquemoud et al. 2000, Zarco-Tejada et al. 2001,

Ustin et al. 2004, Asner and Vitousek 2005). They can

be used conservatively, such as we have done, to

understand the sensitivity of canopy reflectance to

various leaf and canopy properties (e.g., Baret et al.

1994). If the method does not work well using simulated

canopy data, then it is unlikely to work with actual data

collected from aircraft.

Our results indicate that LMA can be retrieved from

canopy spectra with r2 values exceeding 0.80 and RMSE

values in the 14�20 g/m2 range (Figs. 8 and 10, Table 4;

Appendix C). Importantly, the spectroscopy of LMA

appears to be unaffected by growth habit. We also

showed that the strength of the predictions holds well

for randomly or taxonomically selected subsamples.

However, observed variation in our ability to predict

LMA within plant families (Appendix C) suggests that

particular leaf characteristics associated with phylogeny

may still play a role in determining the relationship

between spectroscopy, LMA, and other leaf properties.

The site-specific strength of the relationship between

spectra and LMA does vary (r2 ¼ 0.77�0.84; RMSE ¼
14�21 g/m2), which could be due to undetermined site-

level factors affecting our data compilations. There were

no obvious contributors (e.g., epiphylls, drought stress,

phenology) to variation in the LMA predictions (data

not shown). One unknown factor might be soil fertility,

which could impart a nutrient effect on the spectra–

LMA relationship. However, the spectra are differen-

tially sensitive to nitrogen concentrations (e.g., spectral

features for nitrogen are somewhat different from those

relating to LMA) (Asner and Martin 2008), and

nitrogen shows relatively weak correlations with LMA

among tropical forest species (Wright et al. 2004,

Poorter and Bongers 2006).

This study emphasizes that the most important

portion of the spectrum required for accurate LMA

determination is the shortwave-infrared (1300�2500
nm), a region that has proven extremely difficult to

measure well at leaf or aircraft levels. This wavelength

region is currently intractable to measure with high

fidelity from space due to low signal-to-noise perfor-

mance of orbital sensors (Ungar et al. 2003). Even at the

leaf level, these measurements are rare, and thus we have

dedicated much time to developing systems that provide

high-fidelity measurements under tropical-forest field

conditions. At the aircraft level, the only system to

demonstrate high-fidelity shortwave-infrared measure-

ments at high spectral resolution is the latest version of
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AVIRIS (post-2005). The results we presented here—

that a major leaf trait, LMA, is both taxonomically

organized and measureable with high-fidelity reflectance

spectroscopy—highlight the potential role that new

shortwave-infrared sensors can play in breaking long-

standing barriers to biodiversity sensing, even in

speciose humid tropical forests.
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