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S�ocio-Ambientais – IESA, Federal University of Goi�as, Goiânia, Brazil, 14Embrapa Amazonia Oriental, C. Postal 48 66017-970,

Belem, PA, Brazil, 15USDA Forest Service, International Institute of Tropical Forestry, San Juan, Puerto Rico, 16EMBRAPA

Monitoramento por Sat�elite, Campinas, S~ao Paulo, Brasil, 17Instituto Nacional de Pesquisas da Amazônia (INPA), Caixa Postal
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Abstract

Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system.

Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions

and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes

in carbon stocks and biodiversity due to degradation and recovery of tropical forests, focusing on three main areas:

(1) the combination of field surveys and remote sensing; (2) evaluation of biodiversity and carbon values under a uni-

fied strategy; and (3) research efforts needed to understand and quantify forest degradation and recovery. The

improvement of models and estimates of changes of forest carbon can foster process-oriented monitoring of forest

dynamics, including different variables and using spatially explicit algorithms that account for regional and local dif-

ferences, such as variation in climate, soil, nutrient content, topography, biodiversity, disturbance history, recovery

pathways, and socioeconomic factors. Generating the data for these models requires affordable large-scale remote-

sensing tools associated with a robust network of field plots that can generate spatially explicit information on a range

of variables through time. By combining ecosystem models, multiscale remote sensing, and networks of field plots,

we will be able to evaluate forest degradation and recovery and their interactions with biodiversity and carbon

cycling. Improving monitoring strategies will allow a better understanding of the role of forest dynamics in climate-
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change mitigation, adaptation, and carbon cycle feedbacks, thereby reducing uncertainties in models of the key

processes in the carbon cycle, including their impacts on biodiversity, which are fundamental to support forest gover-

nance policies, such as Reducing Emissions from Deforestation and Forest Degradation.
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Introduction

In 2010, total anthropogenic GHG emissions reached 49

(�4.5) Pg CO2 eq. yr�1, 76% of which consisted of CO2

emissions. Agricultural, forest, and other land-use

sectors (AFOLU) account for 20–25% (~10–12 Pg

CO2 eq. yr�1) of net anthropogenic GHG emissions, of

which 4.3–5.5 Pg CO2 eq. yr�1 is from forestry and

other land use (FOLU) (Smith et al., 2014). Estimates

indicate that there has been a recent decline in CO2

emissions, largely because the rate of tropical deforesta-

tion has decreased but forest degradation is likely

important but still poorly accounted for in current

FOLU emissions (Smith et al., 2014).

Globally, forest degradation affects approximately

100 million ha of forest per year (FAO, 2006; Nabuurs

et al., 2007). Indirect estimates of forest degradation,

expressed as a percentage of emissions from deforesta-

tion, are highly variable, ranging from 5% in the humid

tropics to 25–42% in tropical Asia and 132% in tropical

Africa [see Houghton (2005) for a review]. Conversely,

regrowth of secondary forests may remove consider-

able amounts of carbon from the atmosphere (Pan et al.,

2011), and extensive areas of regrowth have been

reported in the tropics (e.g., Aide et al., 2013a). Asner

et al. (2010) used high resolution (0.1 ha resolution)

satellite imagery to analyze 4.3 million ha in the Peru-

vian Amazon (1999–2009) and found that forest degra-

dation added ffi 47% more carbon to the atmosphere

than deforestation alone and that secondary regrowth

provided an 18% offset against total emissions in Peru,

a high forest cover, low deforestation country. Despite

some attempts to estimate carbon losses resulting from

forest degradation (Achard et al., 2004; Berenguer et al.,

2014), this is still a major challenge for national carbon

inventories. Carbon finance schemes, such as the

UN-led Reducing Emissions from Deforestation and

Forest Degradation (REDD+), require accurate

estimates of carbon emissions and robust monitoring

and reporting of changes in carbon stocks (Andersson

et al., 2009; UNFCCC, 2011).

Although satellite and airborne remote-sensing tech-

nologies associated with field measurements have

strong potential to assess large-scale (national and glo-

bal) carbon stocks (DeFries et al., 2007; Goetz et al.,

2009; Saatchi et al., 2011; Baccini et al., 2012), current

methods and data cannot deliver the desired precision

to assess and monitor forest stocks and changes due to

forest degradation and regrowth (Asner et al., 2009;

GOFC-GOLD, 2013). In fact, estimates of CO2 emissions

related to FOLU have uncertainties of the order of 50%

(IPCC, 2014). Quantifying forest degradation and

regrowth at large scales remains a major constraint in

the implementation of REDD+ mechanisms (Aguiar

et al., 2012; Mitchard et al., 2014; Ometto et al., 2014).

Important consequences of deforestation and forest

degradation include decreases in environmental, social

and economic functionalities (Nepstad et al., 2001; de

Mendonc�a et al., 2004; Tavani et al., 2009), increased

vulnerability to fire (Cochrane & Schulze, 1999; Nep-

stad et al., 1999; Matricardi et al., 2010; Alencar et al.,

2011), and doubling of net carbon emissions from regio-

nal land-use during severe El Ni~no episodes and other

drought years (Alencar et al., 2006; Chen et al., 2013;

Arag~ao et al., 2014). Reducing deforestation and

expanding secondary forests can increase forest resili-

ence to more frequent and severe droughts, which are

projected by the latest generation of climate models for

some tropical forest regions, and increasing the risk

from forest fires in coming decades. Thus, reducing

emissions from forest degradation, not only emissions

from deforestation, is essential to mitigate global cli-

mate change (Arag~ao & Shimabukuro, 2010) and its

impacts on forests and other ecosystems.

Forest resilience, and therefore its ability to retain

and accumulate carbon, depends on the composition

and key functional relationships between species.

Anthropogenic disturbance degrades forests by reduc-

ing taxonomic and functional diversity and ecological

redundancy and preventing recovery and destabilizing

forest ecosystems (Thompson et al., 2009). Forest biodi-

versity conservation is a critical component in the

development and implementation of REDD+ (D�ıaz

et al., 2009; Convention on Biological Diversity, 2011).

REDD+ projects have strong potential to conserve bio-

diversity and ecosystem services (Gardner et al., 2012).

Biodiversity conservation is often assumed to be a

cobenefit of activities that reduce forest carbon degra-

dation (Waldon et al., 2011), but REDD+ projects can

have detrimental impacts on biodiversity if low-car-

bon, high-biodiversity forests are replaced with high-

carbon, low-biodiversity land uses, or if protection of

high-carbon forests in one area leads to degradation of

areas with endemic species or high-diversity forests

© 2015 John Wiley & Sons Ltd, Global Change Biology, 22, 92–109

MONITORING FRAMEWORK FOR FOREST DYNAMICS 93



elsewhere. Thus, biodiversity monitoring within a

REDD+ framework is necessary to ensure that impacts,

beyond carbon, are positive (Harrison et al., 2012).

Future mitigation scenarios also rely on the central

role of land-cover/land-use changes (Smith et al., 2014).

Therefore, monitoring systems for forest dynamics rep-

resent an important interface between science and pol-

icy. To ensure that predictions of change for a given

action can be reconciled with actual changes in C

stocks, integrative and multiscale approaches are

needed to make systems applicable for a wide range of

national realities and capabilities. One option for effi-

cient and effective monitoring of forest dynamics is

wall-to-wall assessment and temporal reassessments,

using short time intervals to study forest recovery and

resilience. Currently, monitoring systems provide clas-

sification with well-developed land-cover and change

estimates but identification of changes in carbon stocks

needs to be based on more ground information.

Monitoring forest degradation and REDD+ monitor-

ing, reporting, and verification systems can be based on

two components: activity data, to assess changes in for-

est area over time (forest cover loss in ha per year); and

emission factors, to assess changes in average carbon

stocks per unit area over time (change in carbon stocks

in Mg C ha�1) (GOFC-GOLD, 2013). Activity data can

be readily obtained from remote-sensing imagery to

detect deforestation, but detecting forest degradation

with these data is still a challenge. Moreover, emission-

factor estimates for tropical forest deforestation and

degradation are far more challenging to obtain (Plugge

& K€ohl, 2012). Another important issue for REDD+ and

forest degradation is building appropriate reference

scenarios. REDD+ requires a reliable benchmark

against which emission reduction can be calculated.

This benchmark, sometimes termed a baseline or refer-

ence emission scenario, refers to how much emission

would occur in the absence of a project. Credits will be

based on the difference between this baseline and

project net removals. However, developing countries

frequently lack consistent historical monitoring and

land-cover data. Therefore, in assessing historical

degradation, they are forced to rely strongly on remote-

sensing approaches mixed with current field assess-

ments of carbon stock changes (Herold et al., 2011).

Given the lack of historical biomass data for appropriate

benchmarks and the limited capability for monitoring

degradation using remote sensing, Morales-Barquero

et al. (2014) proposed that forest degradation is best

measured against a local benchmark that represents

areas of low or no degradation and sharing comparable

biophysical characteristics.

Here, we review the main challenges to estimate

changes both in GHG fluxes associated with carbon

stocks, and biodiversity due to tropical forest degrada-

tion and regrowth. Three main points are stressed: (1)

the combination of field inventories and remote sens-

ing; (2) evaluation of biodiversity and carbon values

under a unified strategy; and (3) research efforts

needed to understand and quantify forest degradation

and recovery. When combined, these three points can

support the development and implementation of public

policies that ensure tropical nations compliance to

international commitments and efforts, such as those

established by REDD+ national strategies.

Evaluating changes in forests: combination of field

inventories and remote sensing

Forest degradation can be defined as the reduction of

the capacity of a forest to provide key ecosystem

services, such as carbon storage, and can be caused by

natural (e.g., landslides and hurricanes) or human dis-

turbances (e.g., selective logging and understory fires)

(Parrotta et al., 2012). Forest degradation, therefore,

implies that quantifiable forest variables, such as

canopy cover, remain above the threshold used to

define deforestation. However, measuring carbon-stock

changes due to different degrees of forest degradation

is more complex and more costly than measuring car-

bon loss due to deforestation. This is because, while

deforestation is highly visible for broadleaf tropical

forests (i.e., the complete forest cover of an area

disappears), degradation can be cryptic both to remote-

sensing techniques and field observation (Peres et al.,

2006; Barlow et al., 2010; Berenguer et al., 2014). Fur-

thermore, changes in forest structure following distur-

bance may not be very pronounced (Pereira et al.,

2002). Forest responses to disturbance depend on the

disturbance type, frequency, intensity, and extent, on

intrinsic site characteristics (e.g., climate, soil, topogra-

phy, species composition, and interactions), and on for-

est management (Fig. 1). Forest postdisturbance

trajectories can vary widely, and this variation needs to

be considered in carbon accounting exercises, including

patterns of regrowth over time (e.g., spatially explicit

map of secondary forest and their turnover, faunal

diversity, and nutrient availability). Events that are

associated with large changes in the forest C stock and

areas where carbon-storage changes are greatest, such

as areas undergoing deforestation, degradation, and

secondary forests dynamics, should be identified, quan-

tified, and monitored in detail, as well as their impacts

on long-term changes in community and key species

composition.

Countries can measure current rates of forest degra-

dation through field or remote-sensing data, but a com-

bination of the two types of data can reduce

© 2015 John Wiley & Sons Ltd, Global Change Biology, 22, 92–109
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uncertainties in regional and national estimates (Asner

et al., 2010). There is a direct relationship between an

accurate and precise assessment of changes in carbon

stocks and cost, with costs of measuring changes in car-

bon stocks increasing as both precision and landscape

heterogeneity increase (IPCC, 2000). Therefore, trade-

offs between measurement efforts and uncertainty

should be indicated when choosing spatial scales and

measuring methods in carbon accounting (Fig. 2).

Although field assessment and monitoring of carbon

stocks are relevant for small-scale projects, they are

impractical and too expensive at the national scale. Still,

field assessments and monitoring of forest carbon can

provide valuable information about local changes in

carbon stocks due to human disturbance (Barlow et al.,

2003; Berenguer et al., 2014), which may not otherwise

be detected. In many cases, significant cost savings can

be made by focusing on the largest stems, which store

the largest amount of carbon and are highly sensitive to

disturbance (E. Berenguer et al., unpublished results).

In addition, if field-based carbon assessments and mon-

itoring incorporate identification of plant species, they

can also deliver important information about changes

in species composition (Laurance et al., 2006), which in

turn can feedback into biological safeguards of each

carbon conservation project. This is particularly impor-

tant in secondary forests, where failure to incorporate

species identity can incur an error in aboveground car-

bon estimates of about 30% (E. Berenguer et al. unpub-

lished results).

Remote-sensing techniques can be a cost-effective

option to assess forest carbon stocks over very large

areas (e.g., nation-wide). Depending on the technique

used, remote sensing may provide data at regular inter-

vals, allowing countries to frequently monitor defor-

estation and degradation events, as well as subsequent

carbon loss (e.g., different systems used in Brazil for

monitoring of the Amazon forest, such as DEGRAD,

PRODES, and DETER). However, although optical sen-

sors can be used to identify forest degradation by selec-

tive logging and wildfires, as well as to estimate the

extent of affected areas, (Asner et al., 2005a; Souza et al.,

2005; Herold et al., 2011; Morton et al., 2011), they can

U
nc

er
ta

in
ty

Cost and time of field sampling

Low

High

Biomass estimation
Biodiversity estimation

Fig. 2 Relationship between accuracy and costs and time of

measuring forest carbon stocks and biodiversity.
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only detect changes that affect canopy properties, thus

neglecting changes in the understory. Furthermore, the

ability to detect changes in carbon stocks due to forest

degradation varies according to the technique used,

with some being more accurate than others (DeFries

et al., 2007; Gibbs et al., 2007).

Thus, changes in carbon stocks resulting from forest

degradation rely on a combination of field surveys

(site-specific biophysical field attributes) and remote

sensing. The choice of the method to monitor forest

degradation depends on multiple factors, such as type

of degradation, available data, capabilities and

resources (Herold et al., 2011). Challenges associated

with different methods include temporal thresholds

and spatial scales and integration of field and satellite

data sets (Fig. 3). Key issues to consider are which bio-

physical parameters should be measured and which

time windows are appropriate to integrate the two

approaches.

Remote-sensing methods for monitoring carbon-

stock changes and forest degradation have been exten-

sively reviewed and discussed (Lambin, 1999; IPCC,

2003; Boyd & Danson, 2005; DeFries et al., 2007; Gibbs

et al., 2007; Wertz-Kanounnikoff, 2008; Frolking et al.,

2009; Goetz et al., 2009; Herold et al., 2011; GOFC-

GOLD, 2013). Gibbs et al. (2007) outlined the benefits

and limitations of different methods to estimate carbon-

stock changes, concluding that there is no best method,

and most are complementary. In fact, the formula for

an effective monitoring system is consensual and seems

rather simple: combining satellite (and/or airborne)

remote sensing to (scale-up) allometric and statistical

models, developed and based on robust field-based

data sets (DeFries et al., 2007). Recently, this has been

successfully applied in Panama and Peru, resulting in

high-fidelity carbon maps for both countries (Asner

et al., 2013, 2014). However, even though carbon

dynamics in forests are far better understood than in

other vegetation types (grasslands/drylands, wet-

lands/peat lands) (Negra & Ashton, 2010), uncertain-

ties about forest carbon stocks are still very high.

Pelletier et al. (2011) synthesized the key sources and

associated explanations of uncertainty in the quantifica-

tion of emissions from land-cover change using

Panama as study case (Table 1). The combination of

errors drawn from allometric equations and sampling

can be as large as 20–50% of the aboveground-biomass

estimate. Other factors include historical map quality,

land-cover classification accuracy, the time interval

between two land-cover assessments, and the fallow C.

That study did not address forest degradation or soil C

estimates because of the lack of robust information on

these processes. Better ground observations that

include long-term field studies on soil C pools, which

cannot be monitored from space but are relevant,

would improve emissions accounting and the under-

standing of forest dynamics.

Most methods combine remote-sensing analyses with

field plots, which are limited (in number and spatial

distribution) and possibly biased (Marvin et al., 2014;

Saatchi et al., 2015), resulting in many divergent bio-

mass maps in the literature (Houghton et al., 2001,

2009; GOFC-GOLD, 2013; Mitchard et al., 2014; Ometto

et al., 2014). Estimates of aboveground carbon stocks

vary by over 100% in African forests (Lewis et al., 2009)

and by 60% in Amazonian forests (Houghton et al.,
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2000). Emission estimates calculated from land-cover

change in the Amazon remain markedly divergent and

are largely due to differences among biomass maps

(Aguiar et al., 2012; Ometto et al., 2014). Ometto et al.

(2014) emphasized the need for higher resolution bio-

mass maps, and for improving ground-truth data (e.g.,

via field networks), and post-processing data to include

variability, such as topography and soils. Uncertainty

associated with regional-scale values from different

sources (to quantify biomass and fluxes) is also high.

Wright (2013) argued that Pan et al. (2011) overesti-

mated terrestrial-carbon sinks because of incompatibil-

ity between the sources used for forest area and carbon

stocks. Forest area was based on FAO’s Forest Resource

Assessment (FAO-FRA), which defines forest as land

with trees >5 m of height and canopy cover ≥10%.

However, carbon stocks were derived from plots

located in tall, closed canopy forests, in which carbon

stocks and changes are potentially much larger than in

open forests (Wright, 2013).

Optical sensors can only detect changes that affect

upper canopy properties and have limited ability to

estimate C stocks and C-stock changes, especially for

dense forests, because spectral indices saturate at rela-

tively low C stocks. Estimating forest biomass requires

information on tree volume and wood density. In con-

trast to passive optical sensors, active sensors from

radar and LiDAR can provide data to estimate biomass

volume, but an estimate of wood density is still needed.

Large-scale estimates of forest biomass with active sen-

sors have been hampered by costs or operational limita-

tions. Despite these limitations, LiDAR is becoming a

useful tool that scientists use to understand physical

variation in tropical forests across space and time (Mas-

caro et al., 2014). Recent and future developments will

increasingly allow large-scale surveys (e.g., cost reduc-

tion of airborne surveys and European Space Agency

satellite LiDAR to be launched by 2020). To take full

advantage of such remote-sensing developments, well-

sampled and precisely located ground-truth data are

needed for calibration.

National forest inventories (NFIs) often comprise a

robust, large-scale (country level) and unbiased net-

work of permanent plots and could help to provide

much of the data needed for calibration for LiDAR and

radar derived properties (e.g., for estimating biomass

stocks and their changes). For this reason, they can help

integrate remote-sensing and field data on carbon

changes, especially if location of the plots is precisely

recorded. For example, with approximately 2000 mea-

suring plots, the Peru National Forest Inventory is

designed as a multipurpose inventory including the

state and valuation of forests, deforestation, forests

degradation, carbon sequestration and emissions, bio-

diversity, and socioeconomic relationship of forests.

Similarly, the Brazilian NFI, currently underway, will

provide continuously updated estimates of forest car-

bon density, tree species composition, soil, and socioe-

conomic variables, which are based on a massive

sample size (15 000 clusters with four subplots each), in

a systematic and unbiased sampling design that is lim-

ited mainly by land-access issues. The Mexican NFI

was based on the United States and Canada’s NFIs and

contains data on tree species, shrubs, and trees for

every forest vegetation type. In 2009, Mexico included a

soil survey with the National Forest Inventory quantify-

ing organic soil carbon pools and biomass carbon

ratios. Results are part of a national soil database.

Biomass maps should not be static but should be pro-

duced in time series, thereby capturing C-stock evolu-

tion across time as consequence of observed events (or

when time series are projected, using dynamic model-

ing, reflecting the risks of biomass loss). Forest plots

under different management regimes, environmental

Table 1 Key sources of uncertainty and their associated dif-

ference with the Reference Level for REDD+. From: Pelletier

et al. (2011)

Sources of error % Explanation

Mature forest

C density

54.5 No standardized methodology

and error-prone allometric

equations or biomass

emission factors

Deforested area 2.2–19.1 Error in land-cover classification

/Lack of classification

accuracy assessment

Snapshot effect 19.3 Long time interval between

two maps/Lack of knowledge

on land-cover dynamics

Land-cover map

quality (9

and 8 years)

15.6–35.2 Map based on a mosaic of

satellite image from very

different years

Low availability of useable

satellite imagery (cloud cover,

long revisiting time, seasonality)

Coarse-resolution imagery

(e.g., MODIS or AVHRR) with

more frequent revisit times

would not produce accurate

estimates of deforestation

Lack of receiving station for

Central America and

Central Africa

Fallow C

density

22.4 Lack of data availability for

fallow land

Likely to affect countries

where fallow occupies a

significant fraction of

the territory
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conditions, and disturbance trajectories are relevant for

ecological studies involving forest disturbance and

recovery. Building an observational network of forest

plots is a primary need that requires careful planning,

including landscape-level assessment, integration with

initiatives currently underway, and evaluation of time

intervals for temporal reassessments needed to examine

recovery and resilience of forests. The coordination

between detailed efforts (with more frequent and

detailed sampling) and NFIs that have less detail but

cover larger areas (including private lands) is highly

desirable, considering information consistency.

An effective program of monitoring of forest dynam-

ics must include the risk of fire, the fire regime, and

emissions-associated environmental impacts. Fires

affect large areas in the tropics (Morton et al., 2013) and

have a wide range of effects on forest structure, carbon

storage, and biodiversity (Barlow & Peres, 2008; Silveira

et al., 2013; Oliveiras et al., 2014). In the Amazon,

extreme droughts caused by ENSO or other climatic

phenomena boost fires (Arag~ao et al., 2007) and the

combined effect of drought and forest fires may turn

the Amazon into a carbon-source system (Arag~ao et al.,

2014; Gatti et al., 2014). For example, during the 1998

ENSO, forest fires affected an area twice as large as the

average deforestation in that decade, generating com-

mitted emissions of 0.16 Pg C, which is comparable to

the 0.2 Pg C emitted by deforestation in that period

(Alencar et al., 2006). Forest fires react to forest struc-

ture, drought, and fragmentation, generating distinct

spatial processes of degradation. Dense forests burn

more in ENSO years in small patches and at lower fre-

quencies (up to 6 times in 24 years) compared with

transitional forest that burn in large patches at a higher

frequency (up to 19 times in 24 years) [see Asner &

Alencar (2010) for a review]. However, in the last dec-

ade (2000–2010), large forest fires were observed even

in non-ENSO years (Alencar et al., 2011; Morton et al.,

2013). The carbon emissions due to fires in Amazonia

during 2010 and 2011, an extremely dry and wet year,

respectively, were estimated as 0.51 � 0.12 PgC yr�1 in

2010 and 0.25 � 0.14 PgC yr�1 in 2011. In addition, for-

est degradation caused by forest fires produces relevant

amounts of non-CO2 greenhouse gases. Forest fires

release CH4, N2O, ozone precursors, and aerosols (in-

cluding black carbon), whereas forest regrowth after

fire absorbs only CO2. Globally, in 2010, non-CO2 emis-

sions from deforestation and forest-degradation fires

totaled 0.1 PgCO2 eq. yr�1, with forest management

and peat land fires responsible for an additional

0.2 Pg CO2 eq. yr�1 (Smith et al., 2014).

Despite the recent quantification of fire-affected areas

by remote-sensing data, current methodologies are

unable to disentangle different fire intensities and their

on-the-ground impacts on forest structure and compo-

sition. In the Amazon region, understory fires burned

more than 85 500 km2 in the Amazon Basin south of

the main course of the Amazon River between 1999 and

2010 (>80% in Brazil). Only 2.6% of forests that burned

between 1999 and 2008 were deforested for agricultural

use by 2010 (Morton et al., 2013). Cumulative fire-in-

duced forest degradation needs to be quantified over

longer time scales. Multiple fires in the same forest are

rare but result in devastating effects on both forest bio-

mass and biodiversity (Barlow & Peres, 2004; Alencar

et al., 2011; Morton et al., 2013). Fire-induced tree mor-

tality is highly variable (from 5% to 90%) (Balch et al.,

2011; Brando et al., 2012) as are its effects on carbon

stocks and subsequent forest recovery. Key aspects to

be developed for efficient and effective monitoring pro-

grams of forest dynamics should include risk of fire

(climate and topography, forest structure and available

fuel material, and socioeconomic drivers), fire regime

(seasonality, frequency, and human-dominated fire

regimes), associated emissions (carbon, trace gases,

aerosols, and committed vs. net emissions), and ecosys-

tem impacts (burned area and severity, mortality,

post-fire succession, and recovery). Table 2 presents a

compilation of different remote-sensing products and

some field studies.

It is also important to consider that synergisms

among simultaneous disturbance vectors dramatically

increase rates of forest degradation. The combined

effects of drought and understory fires can lead to

abrupt and fundamental changes in vegetation struc-

ture and dynamics. In particular, droughts can trigger

fire-induced tree-mortality events that are large

enough to substantially reduce forest carbon stocks

(by killing trees and combusting woody debris) and

accumulation, increase forest flammability (by

increasing air dryness), and facilitate forest invasion

by flammable grasses (by increasing light availability

in the understory). Together, the modifications in for-

est structure and dynamics resulting from drought–
fire interactions can create positive feedbacks between

fire and grass invasion that lead to further degrada-

tion. For example, Silv�erio et al. (2013) showed that

grass invasion following fire-induced tree-mortality

events can increase the occurrence of high-intensity

fires, as grasses produce more fine fuel than forests.

These hot fires further increase tree mortality, the

likelihood of grass invasion, and the potential for

subsequent high-intensity fires, even in the absence

of droughts. Forest fragmentation interacts with fire

by creating flammable environments near forest edges

that dry during prolonged dry seasons, increasing the

fuel load and fire probability (Cochrane, 2001; Brando

et al., 2014).
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Interactions between degradation drivers were also

demonstrated in Eastern Amazonia (Berenguer et al.,

2014). In that study, forests submitted to both selective

logging and understory fires became structurally more

similar to secondary forests and stored, on average,

40% less aboveground carbon than undisturbed forests.

The understanding of the impacts of selective logging

as a degradation factor is still very limited (Sist et al.,

2014). Although some studies point to a high retention

of the biomass and biodiversity after logging (Putz

et al., 2012), they mainly encompass planned timber

harvesting rather than the widespread unsustainable

logging activities witnessed in the tropics. Addressing

this knowledge gap is important, especially considering

the magnitude of the disturbances caused by

unplanned logging operations (Asner et al., 2005a,b).

Furthermore, almost half of primary tropical forests

(+400 million ha) are considered for timber production

by national forest services (Blaser et al., 2011).

In terms of natural disturbances, windstorms are

another important ecological stressor that has been

shown to drive forest degradation, particularly when

these events are associated with forest fragmentation

and fire disturbances. Although wind-related distur-

bances differ widely in terms of magnitude and

intensity across the Amazon (Esp�ırito-Santo et al.,

2014), they may drive substantial losses in forest bio-

mass (Negr�on-Ju�arez et al., 2010; Esp�ırito-Santo et al.,

2014) and fragmented landscapes (Benchimol &

Peres, 2015). These losses could be higher in previ-

ously burned areas, given that the modifications in

forest structure caused by fires increase the exposure

of individuals to wind-related damages. Although it

is challenging and requires integration of different

methods, quantifying the individual and combined

effects of different drivers of forest degradation is

key to obtaining accurate estimates of their impacts

on carbon stocks.

Table 2 Components of a fire monitoring system associated to current capabilities and future needs of research and development

Current capabilities Gaps/future needs

Forecast NASA/UCI (SST)

INPE – Fire Danger Forecast (South America)

Short-term forecast (1 week) data integration

w/weather forecast

-Economic forecast

-Fragmentation, landscape-level risk for fire spread

-Characterization of fire regime (expected frequency,

seasonality, intensity, etc.)

Active Fires INPE – Monitoring of vegetation fires -Limited ~1 km late afternoon coverage

-Small fires

-Algorithms for understory fires

Burned Area NASA (MODIS): MCD64A1,

MCD45, Understory (250 m)

INPE, DEGRAD, PanAmazonia

-Attribution (separate by land cover and process)

-Agricultural fires, Pasture burning, deforestation process,

connecting BA to legal/permitted fires,

-Higher resolution mapping,

-Routine mapping of understory fires, validation/omission

Emissions GFED4

INPE-GMAI (Group Modeling of the

Atmosphere and its Interfaces) (South America)

NASA-QFED

*Spatiotemporal variability in combustion completeness,

mortality; *trace gas emissions ratios and their

diurnal/seasonal variability),

*fire duration (e.g., smoldering),

*fire return interval (fuel loads),

*validation (MOPITT, OCO-2, NO2, airborne,

in situ, and tower),

*resolution,
*missing fire types

Post-fire recovery

and impacts

-Tanguro Fire Experiment-IPAM (Brazil)

-INPE/Embrapa (Amazonian states, Brazil)

-IBAMA, PPCerrado

-LiDAR-Embrapa

-Cerrado Fire Experiment-UNB, USP (Brazil)

-RR – Embrapa

-IPEA/IPAM (Socioeconomic, health)

-Global Canopy Program (2005,

Socioeconomic/health)

Chronosequence of fire ages, intensities; postfire mortality,

biodiversity (phylogenetic and functional diversity, too)

Socioeconomic impacts (public health, transportation, etc.)

Ecological impacts
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Monitoring carbon and biodiversity – need for a

unified strategy

Unifying carbon and biodiversity monitoring is impor-

tant for two key reasons. First, although biodiversity

within (and often across) biomes is not necessarily cor-

related with carbon stocks (Strassburg et al., 2010),

there is growing evidence of a tighter link at local

scales, where higher carbon stocks are often associated

with forests that contain more endemic species or spe-

cies of conservation concern (Lima et al., 2013; Gilroy

et al., 2014). In this case, monitoring will be important

to identify the extent to which carbon conservation is

delivering the expected biodiversity cobenefits and to

assess whether the link may be modulated by anthro-

pogenic impacts such as hunting pressure (Peres &

Palacios, 2007) or landscape-level area and isolation

effects, such as time lags to species extirpation or colo-

nization (Gibson et al., 2013). Second, concerns about

integrating biodiversity and carbon are justified as

there is growing evidence that forest species composi-

tion and functional diversity are important for support-

ing forest carbon sequestration (Bunker et al., 2005;

Conti & D�ıaz, 2013) and key ecosystem functions, such

as secondary seed dispersal (Griffiths et al., 2015). In

this case, monitoring may be required to evaluate the

abundance of functionally relevant sets of species such

as seed dispersing mammals and birds, or to examine

how important ecosystem processes are mediated by

biodiversity.

The many linkages between carbon and biodiversity

mean that biodiversity monitoring should be consid-

ered in every stage of the REDD+ process, from plan-

ning and design to implementation and assessment

(Gardner et al., 2012). This could be achieved through a

common framework based on a tiered approach par-

tially analogous to the IPCC guidance on tiered-emis-

sions reporting, where the distribution of threats to

biodiversity and the corresponding responses could be

monitored simultaneously with carbon. As well as

answering important questions about carbon and biodi-

versity cobenefits, such long-term monitoring efforts

are also likely to be scientifically rewarding: some of

the most important insights regarding the ecological

consequences of human actions have come from long-

term assessments of human impacts in tropical forests

(e.g., Laurance et al., 2011; Gibson et al., 2013).

Nevertheless, designing effective biodiversity moni-

toring in degraded environments is challenging. Many

countries have developed standardized biodiversity

monitoring schemes to examine ecological change over

time. These include the National Ecological Observa-

tory Network in the USA and the breeding bird survey

in the UK. Within the tropics, existing biodiversity

monitoring initiatives focus mainly on undisturbed

sites, for example ‘Tropical Ecology Assessment and

Monitoring Network’, ‘Center for Tropical Forest

Science’, and ‘Program for Biodiversity Research Stud-

ies’. However, new initiatives are currently being estab-

lished to monitor biodiversity in degraded primary

forests and secondary forests, such as ECOFOR in Bra-

zil and Partners in Costa Rica. These initiatives indicate

that some taxa (e.g., frogs, birds, large vertebrates,

trees, ferns, ants, dung beetles, stream fish, and crus-

taceans) are particularly suitable for monitoring over

long time scales.

Within degraded forests, there is a tension between

adopting standardized approaches, thereby ensuring

comparability across sites and adopting methodological

protocols that are best able to respond to the most perti-

nent questions in the particular study landscape.

RAPELD, a sampling strategy combining rapid assess-

ments and long-term ecological research, is the domi-

nant long-term monitoring methodology in Brazil and

has the advantage of providing a modular system that

records many variables, including those related to car-

bon dynamics (Magnusson et al., 2013). There are simi-

lar opportunities to build on existing initiatives, such as

the NFIs (e.g., Brazil, Peru, Colombia, and Mexico), and

the PPBio in Brazil, Nepal, and Australia. Alternative

approaches involve organizing monitoring activities

around catchments, which is sensible where concerns

about forest carbon are linked to hydrological services

or freshwater biodiversity. This was the approach taken

by the Sustainable Amazon Network that assessed

responses of six taxonomical groups to gradients of for-

est disturbance across thirty-six 50-km2 catchments in

eastern Amazon (Gardner et al., 2013). This network

has revealed how forest degradation by fires, selective

logging, and fragmentation can profoundly impact both

biodiversity and carbon (e.g., Moura et al., 2013; Beren-

guer et al., 2014), with cascading consequences for the

integrity of aquatic systems (Leal, 2015). Whatever the

chosen sampling design, it is important that it captures

the main anthropogenic stressors in the system of inter-

est, which are likely to vary on a site-by-site basis. Fur-

thermore, monitoring efforts will need to be fully

integrated with local institutions to ensure longevity

and adequate taxonomic support and will often be reli-

ant on strong and long-lasting relationships with local

landholders. None of these activities is trivial and will

often require local training, capacity building as well as

knowledge exchange, and dissemination activities.

Biodiversity monitoring may be facilitated using

semi-automated approaches such as acoustic monitor-

ing and camera trapping, which have several advan-

tages in terms of cost-effectiveness over time and links

to data analysis (O’Brien et al., 2010; Aide et al., 2013a,
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b). Waldon et al. (2011) proposed a standardized proto-

col for monitoring biodiversity for REDD+ using cam-

era trapping for large vertebrates and bioacoustics for

bats. Camera traps have several advantages: they are

cost-effective over time; they can operate day and night

(infrared), all year round, in nearly any landscape; bat-

teries last for months; photos are automatically date/

time stamped; and images can be linked to data analy-

sis tools (Waldon et al., 2011). They may be particularly

useful for REDD+ biodiversity monitoring programs,

especially if capture rates of target species are high,

costs are relatively low, target species respond consis-

tently and rapidly to habitat condition changes, and

suitable flagship conservation species exist that can be

used to help raise the profile of a project. Bioacoustic

monitoring of target species is another powerful tool

for estimating faunal biodiversity. Birds and bats have

great potential as bioindicators for several reasons: they

have a broad pantropical distribution and comprise

many species, including threatened ones; they show

taxonomic stability; they provide important ecosystem

services and respond predictably to changes in habitat

conditions; and they can reflect changes in arthropod

prey communities and/or availability of fruit (Jones

et al., 2009; Waldon et al., 2011; Harrison et al., 2012).

Automated digital recording systems can monitor a

wide range of animal populations, and Web applica-

tions facilitate data management and tools for creating

species-specific algorithms to automate the identifica-

tion of birds, amphibians, and insects (Aide et al.,

2013a,b). Such studies of soundscapes can provide

useful information on biotic, environmental, and

human activities change through time (Pijanowski

et al., 2011).

These technological solutions are not without their

problems. The operational requirements and costs of

running camera trapping or bioacoustics surveys pro-

grams may limit their utility by REDD+ project stake-

holders (Harrison et al., 2012), and it can be difficult to

deploy expensive equipment such as camera traps in

human-modified landscapes where traps can be stolen

or vandalized by hunters and other forest users. Bioa-

coustic monitoring is also limited at present: ultrasonic

acoustic detectors cannot detect nonecholocating bats,

and many forest-dependent tropical species use rela-

tively quiet and short-duration echolocation pulses,

which are difficult to detect. Location-specific and spe-

cies-specific solutions are required to overcome such

constraints, such as additional monitoring of calls in

the nonultrasonic, physical trapping, and camera traps

(Harrison et al., 2012). Finally, bioacoustics and related

field-based biodiversity monitoring approaches retain a

spatial mismatch with most habitat remote-sensing

methods (Boelman et al., 2007).

While many modern methods can be very effective,

there are many uncertainties in biodiversity monitor-

ing that have little to do with technological or statisti-

cal aspects (Magnusson, 2014). Efforts have been

made to provide efficient methods suitable for com-

munity-based (Angelsen et al., 2012) and participatory

forest monitoring of carbon and biodiversity for

REDD+ (Casarim et al., 2013), including smartphone

applications for community-based biomonitoring (Mo-

ran et al., 2014). Yet, all fieldwork-based efforts will

be constrained by the challenges of covering huge

spatial areas and the limited expertise in species

identification. Remote-sensing techniques have been

experiencing some advance in recent years and may

provide solutions to some of these issues. In particu-

lar, airborne spectranomics approaches (Asner &

Martin, 2009) based on the leaf chemistry, physics,

and the taxonomy of canopy trees that are opening

new paths for tropical forests monitoring, including

plant diversity. Recent technologies can map chemical

and structural traits of plant canopies and are

promising for monitoring vegetation biodiversity, spe-

cies range, and functional traits (Goetz et al., 1985;

Schimel et al., 2013). In addition, a more coherent col-

lection of field trait data together with proximal and

remote-sensing observations will allow us to under-

stand the interaction between plant structural, physio-

logical, biochemical, phenological, and spectral

properties and then to develop robust scaling

schemes to support airborne and satellite-based meth-

ods of trait estimation (Homolov�a et al., 2013). Tech-

nologies such as imaging spectroscopy and LiDAR

can innovate airborne, tropical-forest diversity map-

ping. Recently, Asner et al. (2015), using visible-to

shortwave infrared imaging spectroscopy with

LiDAR, assessed the foliar traits of Amazonian and

Andean tropical forest canopies. This new airborne

approach could address limitations and sampling

biases associated with field-based studies of forest

functional traits in complex tropical canopies.

While indirect approaches using remote sensing offer

valuable information (derived from biophysical charac-

teristics and environmental parameters) about diversity

patterns, other approaches are addressing direct remote

sensing of certain aspects of biodiversity (Turner et al.,

2003; Pettorelli et al., 2005). Protocols that can integrate

remote sensing and on-the-ground biodiversity assess-

ments can be effective to evaluate both structural and

functional degradation. Cryptic mechanisms of forest

degradation, such as overhunting, could reduce the

strength and diversity of ecological interactions before

more detectable patterns of forest degradation occur

(Peres et al., 2006). Future development should consider

how to integrate requirements and protocols for carbon
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accounting, sociocultural/socioeconomic impacts, and

biodiversity outcomes.

A network of sites distributed across the tropics

would help to answer questions about trends in terres-

trial tropical biodiversity and calibration/validation of

remote-sensing tools if each site captured landscape

variation using a spatially explicit system, such as

RAPELD (Costa & Magnusson, 2010). These sites could

be used for a variety of purposes, but would need to

have a minimum set of essential biodiversity variables

(EBVs) measured at each site (Pereira et al., 2013). The

cost of setting up such sites is moderate depending on

the practicalities of logistical access, how frequently

surveys are repeated, and which vertebrate, inverte-

brate, and plant taxonomic groups are sampled (e.g.,

Gardner et al., 2008). For example, the installation of a

5-km2 RAPELD sampling module in Brazil by a team of

five experienced technicians is currently about US

$10 000, but varies depending on transport costs to the

site. This compares favorably with one-off or repeated

standardized line-transect surveys of medium- to large-

bodied vertebrates, including understory mist-netting

of birds, in many remote forest sites of lowland Amazo-

nia, each of which cost an average of US$6000 (C.A.

Peres, unpublished data). Monitoring of a suite of EBVs

could be performed for less than US$20 000 in general

operating costs per site per year because most EBVs can

be efficiently measured at intervals of 2–5 years. How-

ever, as with any in situ system, the highest costs are

associated with maintenance of scientific presence and

training. Inclusion of local researchers and students not

only reduces costs, but is typically critical to the success

of the sampling program. Many tropical countries

resent recent experiences with colonial domination and

intellectual imperialism and are unlikely to allow for-

eign researchers to access whether there are no per-

ceived capacity-building benefits to the country beyond

those of possible global governance of environmental

changes. Based on current costs in Brazil, the cost of

maintaining a field team capable of installing infras-

tructure and providing capacity building for five sites

per year is about US$1 500 000. Costs could possibly be

reduced by the use of previously installed capacity in

countries such as Australia and Nepal. There is also

much capacity already installed for data management

and analysis in networks such as Data Observational

Network for Earth (DataOne), Amazon Forest Inven-

tory Network (RAINFOR), and Amazon Tree Diversity

Network. These preliminary cost estimates indicate that

it is feasible for the world community to meet most of

its obligations relating to biodiversity under REDD+,
maximize the use of new remote-sensing tools, and

undertake the most ambitious capacity-building pro-

gram in biodiversity that has ever been undertaken.

Integrating monitoring and ecosystem modeling:

move toward more process-oriented approaches

A better understanding of forest dynamics requires the

transition from the concept of carbon stock change

toward a more process-oriented description of forest

dynamics (recruitment, mortality, growth dynamics,

and species composition), and how these processes are

modified by direct anthropogenic disturbances (e.g.,

fire, logging, edge effects, and land conversion) and

extreme climatic events (e.g., severe droughts, floods,

and storms). Accounting for environmental impacts on

forests over long time periods (at least several years)

requires the consideration of not only external environ-

mental changes (e.g., climate and deposition) but also

changes in the vegetation itself that affect microclimatic

conditions and carbon allocation (Grote et al., 2011).

Allocation in trees is often modeled under the assump-

tion that the ratios between leaves, stem, and roots

remain constant, within certain boundaries depending

on species, and that tree height is the main parameter

describing the effects of site-specific growing condi-

tions. Even though allometric functions describe total

biomass as a function of height and diameter over a

surprisingly large range of conditions (Wirth et al.,

2004), these functions do not predict tree age, which is

important for estimating carbon turnover (Schulze,

2014), or wood density, critical for carbon content.

Forest inventories and eddy covariance measure-

ments contribute to sustainability assessments as well

as carbon accounting. A differentiation between ecosys-

tem compartments of carbon, such as soil and vegeta-

tion, or above- and belowground storages, nevertheless

requires further empirical estimates or model simula-

tions. However, models to estimate carbon balances

often do not account for carbon export during logging

or the direct and indirect impacts of forest management

(Grote et al., 2011). In addition, observational or experi-

mental studies of ecosystems focus on local scales of

less than a hectare for measurements of vegetation and

<1 km2 when using flux towers. The extrapolation to

landscapes remains uncertain, because we do not know

the spatial variation in environmental conditions and

how this might affect ecosystem processes. Thus, there

is a scaling problem when moving from plot-scale stud-

ies to landscapes. Scaling could be facilitated by the use

of remotely derived variables, such as leaf area index

from NDVI data (Schulze, 2014).

The integration of ecosystem models on a spatially

explicit basis with monitoring systems represents a

promising pathway to move toward a more process-

oriented description of forest dynamics. Figure 4 repre-

sents the integration of field and remotely sensed data

and ecosystem modeling to understand forest degrada-
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tion and recovery. In many cases, the modeling frame-

work exists, but appropriate parameterizations and

data assimilation are still needed as more explicit repre-

sentation of soil/plant water relations (from ‘big leaf’ to

tree model) and stand dynamics (e.g., demography

models) to allow the treatment of recruitment/mortal-

ity, and forest structure. These models will be more

diagnostic and not prognostic, but could be appropriate

for understanding C-balance change in the kind of

operational mode described here (e.g., spatially explicit,

with ecosystem models improving estimates of fluxes).

An analysis of the approaches currently underway

with focus on carbon stocks and fluxes, biodiversity,

and drivers of forest degradation indicates that the

major limitations for all model types are the lack of data

for parameterization and the cost to run models at high

spatial resolution. This brings the question about the

appropriate spatial resolution. Current book-keeping

approaches provide land-use transition and estimates

of C emission/regeneration at spatial scales of 5 km

resolution (e.g., INPE-EM, Aguiar et al., 2012).

Although some book-keeping models include socioeco-

nomic information, such as repeated cutting of sec-

ondary vegetation, they do not consider climate

interaction or soil fertility. Fire models are also spatially

explicit but provide emissions only. The application of

ecological models at this scale would add information

on nutrient limitation, decomposition rates, and growth

rates, among other variables for the estimation of spa-

tial variation in NPP and regrowth dynamics. Never-

theless, data assimilation capability is not currently

implemented in ecosystem models.

Quantitative models are frequently employed to

address the complexities associated with disturbance

processes. Seidl et al. (2011) reviewed the variety of

approaches to modeling natural disturbances in forest

ecosystems (from single events to integrated distur-

bance regimes) in relation to disturbance agents and

mechanisms. The number of disturbance-modeling

approaches emerging over the last 15 years has

increased strongly but statistical concepts for descrip-

tive modeling are still largely prevalent over mecha-

nistic concepts for explanatory and predictive

applications that are crucial for understanding and

coping with change in forest ecosystems. The authors

also identified the current challenges for disturbance

modeling in forest ecosystems as the following: (1) to

overcome remaining limits in process understanding,

(2) to further a mechanistic foundation in disturbance

modeling, (3) to integrate multiple disturbance pro-

cesses in dynamic ecosystem models for decision

support in forest management, and (4) to bring

together scaling capabilities across several levels of

organization with a representation of system com-

plexity that captures the emergent behavior of distur-

bance regimes.

Modification of current models to first address the

largest unknowns should be prioritized, recognizing

that different model development/information

streams will be required for a synthesis framework.

Advances in the current state of knowledge involve

complementary efforts for field collection to supply

needed parameters, the use of already installed per-

manent plots to support functional trait-based

approaches, as well as the use of available data bases

(e.g., converting taxonomic information into func-

tional groups, trait data bases), and the analysis of

what traits could be extracted from new data streams
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(e.g., LiDAR, hyperspectral data). Soil data from for-

est inventories could be used to improve the analysis

of spatial and temporal variation in soil nutrients.

Significant efforts need to be put toward model

development/validation, especially toward exploring

how to better apply data assimilation.

A synthesis of data from areas identified as being

most dynamic in terms of biomass change is also rele-

vant for understanding the spatial configuration of bio-

mass loss. Biomass data will ultimately be provided by

remote sensing (e.g., ESA Biomass mission will provide

data after 2020, LiDAR in 2019), but the models have to

contribute to explanations of why the biomass is dis-

tributed the way it is and also how biomass relates to

function, resilience to disturbance, and biodiversity

metrics. Rates of biomass accumulation following dis-

turbance and how those are influenced by climatic and

soil parameters as well as the pattern of landscape dis-

turbance (e.g., distance to seed source) affect how much

C is released (net emissions).

Research priorities for forest monitoring systems

The determination of ecosystem carbon balances is a

major issue in environmental research. Research on dis-

turbances inducing forest degradation and subsequent

recovery is necessary to understand the causal factors

related to C-stock changes and associated emissions.

Although the assessment of deforestation due to clear-

cutting is well developed, monitoring of degradation,

regeneration of forests and their environmental conse-

quences also requires greater efforts. Current monitor-

ing methods (remote-sensing and field data) have

shortcomings in the assessment of temporal changes of

forest inventories associated with degradation, as well

as forest regeneration. The limitations on the quantifica-

tion of degradation and forest recovery remain major

constraints for the verification of results required by the

REDD+ mechanism. Additional research efforts could

help to augment long-term monitoring efforts with a

focus on important aspects of the carbon loss pathways

(e.g., combustion, decomposition, and soil carbon

dynamics) and on direct manipulation experiments or

space-for-time studies.

It is crucial to quantify and reduce uncertainties in

relation to fire effects and their impacts. Future research

should move to improve validation (active fires, burned

area, emissions ratios, fire effects – short and long

term), downscaling (higher resolution mapping, attri-

bution to specific land-cover types, and processes of

degradation/deforestation/management), and data

integration (scales, models, networks linking ground

data, national monitoring efforts, and also international

networks of fire research).

Forest monitoring captures human impacts and other

biotic and abiotic influences on forests. Detailed data

are collected at stand level, and often integrated in lar-

ger forest-observation networks, which feeds into for-

est-ecosystem models. However, forests exist in a

constantly changing societal context, and the direct or

indirect impact of human activity has become a crucial

driver of all types of ecosystems (Daume et al., 2014).

History of disturbance/regrowth/deforestation

depends on social, economic and climate drivers.

Socioeconomic drivers are also important to determine

the future trajectories of land use and, thus, should be

coupled to dynamic ecosystem models. Socioeconomic

drivers (e.g., the advance of the agricultural frontier,

the installation of infrastructure projects or population

movements) (Perz & Skoleb, 2003; Perz et al., 2011;

Walker et al., 2013) also require research and perhaps

can be modeled more explicitly in concert with ecologi-

cal models. Emissions are often more dependent on

socioeconomic causes than natural ones. To explicitly

refine estimations, these factors need to be spatialized.

Monitoring must be consistent and continuous. There

are new perspectives both with regard to the availability

of data, and processing approaches and capacity. In par-

ticular, there is the expectation about the synergy

between the Landsat 8 – began normal operations on

May 2013, and provides seasonal coverage of the global

landmass at a spatial resolution of 30 m (visible, NIR,

SWIR), 100 m (thermal), and 15 m (panchromatic) (Roy

et al., 2014) – and the two new Sentinel 2 satellites (Sen-

tinel 2a was successfully launched on June 23, 2015, and

Sentinel 2b should be released in April, 2016) (Drusch

et al., 2012). Working as a constellation, they could pro-

vide data for the same area over five to ten days (the

sensors of these three satellites were previously precali-

brated). This means that the temporal resolution of

MODIS (via time series) will be replicated to a spatial

resolution (at least) 64 times higher. Data of this nature

will be extremely useful to map processes related to

plant traits and cryptic degradation. As for the process-

ing capacity, platforms using cloud computing (e.g.,

Google Earth Engine) can process Landsat 8 images

rapidly and could improve spatial resolutions of models

and interactions involving a much larger number of

variables. While potential contributions from new satel-

lite missions are recognizable, we also must be realistic

about how some of these future efforts will be translated

in operational forest monitoring systems (e.g., a 1-year

GEDI LiDAR mission in 2018–2020). However, the com-

bination of field inventories and ecosystem modeling

with new remote-sensing tools can open new opportuni-

ties for faster progress of operational systems. Comple-

mentary efforts of field collection are needed to provide

more precise parameters and contribute to the explana-
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tion of how the growth performance is influenced by cli-

mate and soil aspects. The ecological modeling should

add information on processes that influence the

responses of forests to disturbances, such as nutrient

limitation, decomposition rates, and growth rates.

A way forward to an integrated framework

While assessment of deforestation is well developed,

forest degradation is neither well assessed nor vali-

dated adequately. Forest degradation (unlike deforesta-

tion) is not binary, but rather a continuum. Monitoring

systems for forest degradation, whether based on

in situ or remotely sensed data (or more likely a combi-

nation) depend upon operational definitions limited by

the sensitivity of the measurement approaches

employed. Current degradation estimates differ due to

the interaction between different processes, such as log-

ging and fire, temporal mismatch, scale of analysis, and

threshold effects. Successful monitoring of degradation

will have to be linked to viable quantitative-measure-

ment approaches. A summary of the main points on

how to move forward with the scientific agenda and

implementation of improved monitoring systems of

forest dynamic is presented in Table 3. The recommen-

dations were divided into the following topics: (1)

Mobilization of stakeholders and scientific community

to include an integrated framework in the political

agenda, (2) Harmonization of national monitoring pro-

grams and existing initiatives, (3) Integration and opti-

mization of ecosystem models to improve process-level

understanding carbon and forest dynamics, (4) Devel-

opment of a permanent plot field network to calibrate,

validate, and combine multiscale sampling and moni-

toring methods, (5) Improvement of the understanding

of forest drivers and postdisturbance trajectories, (6)

Inclusion of parameters related to forest fire drivers

and impacts in a monitoring program, and (7) Evalua-

tion of biodiversity and carbon values under a unified

strategy.

Building an integrated monitoring framework

requires adequate and long-term financing. Strong

efforts are needed to include it in the political agenda

and stimulate the scientific collaboration community

and harmonize existing monitoring programmes. The

development of such framework can be separated into

four main strategies: (1) integration and optimization of

ecosystem models to improve process-level under-

standing; (2) development of a permanent plot field

network to calibrate, validate, and combine multiscale

sampling and monitoring methods; (3) optimizing scal-

ing up methods to extrapolate estimates for larger

scales; and (4) defining how a monitoring system will

assist public policy actions.

Efficient monitoring systems must have the following

characteristics: representative spatial coverage, stan-

dard sampling, long term, consistency, precision, cali-

bration, openness/transparency, and good

documentation. Many monitoring systems are designed

for specific purposes (such as reporting for specific

variables) and, thus, include a limited number of vari-

ables or parameters. Harmonization will require

changes to monitoring programs and inventory

systems, which might lead to resistance, due to lack of

funding or institutional barriers (Magnusson et al.,

2013). At the country level, harmonizing monitoring

programs into a national system, instead of indepen-

dent initiatives, would be helpful to minimize such bar-

riers. It is important to open up pathways to discuss

future synergistic efforts (e.g., biodiversity and other

variables in field surveys, integrating field-based sys-

tems to remote-sensing efforts, opportunities, and

tradeoffs for multitaxa field surveys).

Important recommendations to foster new monitor-

ing strategies to address to new environmental and

societal needs are a comprehensive survey of different

ongoing initiatives (e.g., NFIs), improvement of techni-

cal and scientific exchange to gather the information

available and definition of how to use them in the

development of integrative approaches. In this context,

developers and end users need to interact to establish

clear guidelines for the development of reliable prod-

ucts. Validation and calibration of monitoring systems

are an essential part and should include an appropriate

and robust design (number of points, areas – including

those with existing studies, cover all biomes) as well as

the verification of outputs of each model ensuring the

quality and transparency of results.

The design of monitoring programs must also con-

sider that in addition to capturing valuable information,

it is central to inform communities and social groups

and so encourage their qualified participation in deci-

sion-making processes relating to the environment.

Attributes to ensure the effectiveness of monitoring pro-

grams include explicit articulation of how the monitor-

ing will inform environmental policies and programs,

clear specification of thresholds that affect the implemen-

tation of strategic interventions from monitoring pro-

grams, and a precise quantification of the ability to

achieve early detection of changes being monitored.
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Table 3 Summary of research priorities and practical recommendations to help achieve an integrated framework

Mobilization of stakeholders and scientific community to include an integrated framework in the political agenda

1 Define objective-oriented research efforts (problem and goals) in an integrated framework

2 Survey institutions, researchers, and ongoing research projects to capitalize on proven monitoring strategies and accompany testing

of new, state-of-the-art methods

3 Solicit input through workshops of experts and stakeholders to hone the design of multi-purpose monitoring programs, with careful

attention to implementation networks at national, regional, and local scales

4 Secure funding for long-term monitoring efforts, based on key products and outcomes of the integrated framework

5 Develop specific proposals and defining possible products and outcomes

6 Establish a program within the network that can be integrated with other objectives and goals

7 Establish a national-level, long-term program involving different government levels, research institutions and international coopera-

tion

8 Include explicit articulation of how the monitoring programs will inform environmental policies

9 Specify thresholds that should guide the implementation of strategic interventions from monitoring programs (periodic reviews of

protocols and achievements)

10 Foster local capacity and integrate monitoring efforts with local institutions and communities to inform and encourage communities

and social groups to participate in decision-making processes related to the environment

Harmonization of national monitoring programs and existing initiatives

1 Make a comprehensive survey of different ongoing initiatives

2 Improve technical and scientific exchange to gather and process information for integrative approaches

3 Promote the interaction of developers and end users of monitoring programs to establish clear guidelines for the development of

monitoring systems and their products

4 Promote free data access by data-use policy

Integration and optimization of ecosystem models to improve process-level understanding carbon and forest dynamics

1 Identify primary modeling research needs: which models are needed and which data are required to parameterize, calibrate, and val-

idate models

2 Promote combined efforts for model development/validation, especially toward exploring how to best apply data assimilation

3 Integrate ecosystem models on a spatially explicit basis with monitoring systems

4 Use taxonomic data from installed permanent plots to support functional trait-based approaches

5 Determine traits that could be extracted from new data streams (e.g., LiDAR, hyperspectral data)

Development of a permanent plot field network to calibrate, validate, and combine multiscale sampling and monitoring methods

1 Survey of existing permanent plot networks and important information to build upon existing initiatives, such as spatial location of

plots, network objectives, variables, sampling methods, frequency, institutions, and publications

2 Use remote-sensing and ancillary data to help select strategic areas and stratify areas of interest, such as degraded forests, according

to research and modeling needs, knowledge gaps, and regional differences

3 Select areas and plots for multiple purpose field surveys (forest structure, soil, social and economic data, landscape, etc.) and for vali-

dation of airborne and satellite remote sensing

4 Integrate airborne and satellite campaigns on selected plots for calibration and validation

Improvement of the understanding of forest drivers and postdisturbance trajectories

1 Identification, quantification, and monitoring of forests undergoing deforestation, degradation, and recovery

2 Develop a spatially explicit map of secondary forest and their turnover, plant and faunal diversity, and nutrient availability

3 Evaluate appropriate time intervals for temporal reassessments needed to examine recovery and resilience of forests

4 Make wall-to-wall assessments and temporal reassessments, using appropriate time intervals to study forest recovery and resilience

5 Include socioeconomic drivers of land use trajectories to dynamic ecosystem models

6 Determine how climatic and soil parameters and landscape disturbance affect postdisturbance dynamics

7 Quantify combined effects of different drivers of forest degradation, such as effects of drought and understory fires on forest degra-

dation and dynamics

8 Determine the impacts of unplanned logging operations as a degradation vector

Inclusion of parameters related to forest fire drivers and impacts in a monitoring program

1 Improve validation (active fires, burned area, emissions ratios, fire effects – short and long term)

2 Include risk of fire parameters (climate and topography, forest structure and available fuel material, and socioeconomic drivers) and

fire regimes (seasonality, frequency, and human-dominated fire regimes)

3 Determine associated emissions: carbon, trace gases, aerosols, and committed vs. net emissions
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