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ABSTRACT

The potential ecological and economic effects of climate change for tropical islands were studied using

output from 12 statistically downscaled general circulation models (GCMs) taking Puerto Rico as a test case.

Two model selection/model averaging strategies were used: the average of all available GCMs and the av-

erage of the models that are able to reproduce the observed large-scale dynamics that control precipitation

over the Caribbean. Five island-wide and multidecadal averages of daily precipitation and temperature were

estimated by way of a climatology-informed interpolation of the site-specific downscaled climate model

output. Annual cooling degree-days (CDD) were calculated as a proxy index for air-conditioning energy

demand, and two measures of annual no-rainfall days were used as drought indices. Holdridge life zone

classification was used to map the possible ecological effects of climate change. Precipitation is predicted to

decline in bothmodel ensembles, but the decrease wasmore severe in the ‘‘regionally consistent’’ models. The

precipitation declines cause gradual and linear increases in drought intensity and extremes. The warming

from the 1960–90 period to the 2071–99 period was 4.68–98C depending on the global emission scenarios and

location. This warmingmay cause increases in CDD, and consequently increasing energy demands. Life zones

may shift fromwetter to drier zones with the possibility of losing most, if not all, of the subtropical rain forests

and extinction risks to rain forest specialists or obligates.

1. Introduction

Anthropogenic increases in atmospheric CO2 are

projected to drive significant changes in temperature

and precipitation patterns, means, and extremes (IPCC

2014), which will in turn affect a wide range of social

and ecological systems (Mideksa and Kallbekken 2010;

Grimm et al. 2013). Tropical islands are among the most

vulnerable areas in terms of climate change effects on

biodiversity, vegetation, and economy (e.g., Fordham

and Brook 2010; Jennings et al. 2014; Singh and Bainsla

2015). Assessing and communicating these potential

effects in a way that allows land managers, planners,

governments, and the public tomake informed decisions

requires a cascade of modeling efforts that can include

several tiers: 1) physically based general circulation

models (GCMs) tied to greenhouse gas (GHG) emission

scenarios that reflect potential future human and soci-

etal choices, 2) downscaled climate model projections

based on GCMs and GHG scenarios that take finer-

scale information and physical processes into account,

3) modeling the conditional effects of projected climatic

change onto a wide range of social and ecological

drivers, and 4) model output that specifically ad-

dresses decision-maker questions—for example, timing,
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thresholds, cumulative effects, human and other species’

responses to potential future conditions, feedbacks

from potential response scenarios to climate, and con-

founding effects of complex decision scenarios. Making

global climate projections useful to decision-makers is

a multifaceted endeavor that requires expertise in many

fields, from physics to ecology to social science, and

communication with decision-makers to develop

knowledge relevant to decision needs (Gould et al.

2016). The scale and content of the management in-

formation needs are typically finer and more variable

as information cascades to lower tiers and targeting

users at all stages improves science delivery. While

global-scale products are by nature globally applicable,

there is considerable regional variation in the avail-

ability and applicability of appropriately scaled in-

formation for management decisions. Tropical islands

often have both finescale spatial variability with steep

gradients in climate and heterogeneous land use, and

lack detailed downscaled climate projections. These is-

lands harbor a large number of endemic species that are

acutely vulnerable to global climate change (Fordham

and Brook 2010), highlighting the importance of inter-

preting the geospatial aspects of the global-scale climate

projections at the local scales within the islands. An

example of such a heterogeneous tropical island is the

Caribbean island of Puerto Rico (Fig. 1). Modeling

finescale implications of global projections has been

problematic in Puerto Rico as the resolution of global-

scale predictions is too coarse for evaluating the effects

on local dynamics. Harmsen et al. (2009) used the sta-

tistical downscaling approach of Miller et al. (2008) to

downscale the twenty-first-century predictions from a

global-scale GCM to three locations in Puerto Rico,

while Hayhoe (2013) used an asynchronous regional

quantile regression-based model (Stoner et al. 2013)

for the statistical downscaling of global-scale GCMs to

the Caribbean region and Puerto Rico. The develop-

ment of these downscaled datasets has allowed for the

first time a more decision-relevant analysis of the po-

tential effects of anthropogenic climate change for

Puerto Rico’s socioecological ecosystems.

In this study, we used the predictions from 12 GCMs

under three global GHG emission scenarios of the

United Nation’s Intergovernmental Panel on Climate

Change (IPCC) (Nakicenovic and Swart 2000), down-

scaled to station locations in Puerto Rico by Hayhoe

(2013). The objectives were 1) to create continuous

gridded surfaces of the predicted climatic variables by

interpolating the downscaled GCM predictions at sta-

tion locations to the entire island; 2) to assess how cli-

mate scenarios and model selection strategies influence

subsequent effect projections; 3) to estimate the

potential societal consequences of changes in pre-

cipitation and temperature in Puerto Rico through the

end of the current century by using climatic indices;

and 4) to estimate the ecological consequences of pre-

cipitation and temperature changes by mapping the

potential bioclimatic zones for certain vegetation types

called life zones (Holdridge 1947) under the climate

change scenarios. The Holdridge life zones system has

been used to map life zones at a given time based on

measurements of climatic variables [e.g., Ewel and

Whitmore (1973) in Puerto Rico and the U.S. Virgin

Islands; Sawyer and Lindsey (1963) in the eastern and

central United States; and Lugo et al. (1999) in the

conterminous United States]. It was also used as a cri-

terion to map the ecological effects of climate change

at a global scale (e.g., Emanuel et al. 1985; Sisneros et al.

2011) or at the scale of some countries (e.g., China; Yue

et al. 2001; Chen et al. 2003). But the modeled climate

change effects on life zone distribution in tropical is-

lands have not been examined so far. The Holdridge life

zone of a particular area implies the potential vegetation

type that can dominate in terms of the basic climatic

conditions if local conditions (e.g., edaphic, topographic,

and socioeconomic conditions) also coexist with the

climatic condition. Therefore, changes in the Holdridge

life zones due to climate change imply eventual shifts

in the potential climatic support for different vegetation

types and species. The remainder of the paper is struc-

tured as follows. In section 2, we describe the statistically

downscaled climate data used and model selection

strategies, and then we describe the methods used for

interpolating climatic variables and mapping Holdridge

life zones. Section 3 presents the projected maps of

precipitation, temperature, and life zones. In section 4,

we discuss some further implications of the projected

changes in the climatic variables, indices, and life zones,

and describe potential sources of uncertainties. Section 5

presents our conclusions.

2. Materials and methods

a. Study area

The island of Puerto Rico is located at ;(178450–
188300)N, ;(658450–678150)W in the Caribbean region

(Fig. 1). Its size is about 8740km2, and it has a pre-

dominately maritime climate (Daly et al. 2003). Island

temperatures have a linear negative relationship with

elevation (Goyal 2014). Puerto Rico is topographically

diverse in terms of elevation and slope. Elevation ranges

from sea level to 1338m above the sea level in the cen-

tral mountains. Therefore, climatic conditions across the

island are highly variable. The latest ecological life zone

map of Puerto Rico showed six life zones ranging from
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subtropical dry forests to subtropical rain forests (Ewel

and Whitmore 1973) (Fig. 1).

b. Downscaled climate data

Downscaled climate model output for individual loca-

tions in Puerto Rico were taken from Hayhoe (2013)

based on the Asynchronous Regional Regression

Model (ARRM; Stoner et al. 2013). This is a statistically

downscaled dataset of GCMs from phase 3 of the Cou-

pledModel IntercomparisonProject (CMIP3) using three

IPCC global GHG emission scenarios: mid-high (A2),

mid-low (A1B), and low (B1) (Nakicenovic and Swart

2000). The ARRM method uses a piecewise regression

method to predict daily temperature and precipitation

values based on the relationship between observations

and coarse-scale GCM output. An attractive feature of

this method is improved accuracy in simulating extremes,

an important consideration given the occurrence of very

large 24-h precipitation events (.100mm) across the

island. The GCM outputs for precipitation and temper-

ature were downscaled to 72 and 29 station locations

(Fig. 1) respectively by Hayhoe (2013).

Fig. 1. (top) Location of Puerto Rico in the Caribbean region and (bottom) Holdridge life zones of the island mapped by Ewel and

Whitmore (1973) with the downscaled station locations for precipitation.
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For each GCM (Table 1) the downscaled daily out-

puts were available for 140 yr (1960–2099) and three

variables: precipitation and maximum and minimum

temperature. Because life zones represent successional

climaxes that evolve over decades, we calculated mul-

tidecadal means for each variable for five time intervals:

1960–90, 1991–2010, 2011–40, 2041–70, and 2071–99.

The downscaled projections were expected to match the

reality better if used as 20–30-yr averages (Hayhoe

2013). The duration of the first period was set to match

the climate layermeans used for spatial variability (Daly

et al. 2003). For the rest of the time span the 30-yr av-

erages were set for later periods to allow better com-

parison between the first and last periods of the century.

The difference among the climate scenarios does not

apply to the first time interval (1960–90). The mean

annual temperature was derived from maximum and

minimum temperatures and the averages were calcu-

lated for the same intervals. Then, for each variable after

calculating the multidecadal mean for a downscaled

GCM, we calculated the multimodel mean of all se-

lected climate models under each scenario and time

period (Table 1).

c. Climate model selection

Differing GCM parameterizations lead to substantial

structural uncertainty formany climate variables at local

and regional scales (cf. Masson and Knutti 2011; Cook

et al. 2010). The result is that in some instances, a subset

of the full GCM ensemble may be more skillful at sim-

ulating important regional climate features, which may

warrant the inclusion of model selection or model

weighting strategies (Knutti 2010). Annual rainfall sea-

son in the Caribbean region has a bimodal pattern with

the early precipitation mode from May to June, a

‘‘midsummer drought’’ (MSD) in July, and the late

precipitation mode from August to November (Angeles

et al. 2010). Ryu and Hayhoe (2014) examined CMIP3

and CMIP5 GCM performance in the context of the

ability to reproduce the bimodal pattern in the region

and found distinct differences between GCMs. Models

with higher skill had features that included more accu-

rate representation of the westward extension of the

North Atlantic subtropical high into the Caribbean ba-

sin in early summer and higher sea surface temperatures

that more closely match observed conditions. Accord-

ingly, GCMs were segregated into three categories:

‘‘bimodal’’ models that simulated both precipitation

modes and the MSD, ‘‘single with MSD’’ models that

simulated theMSDbut only the late precipitationmode,

and ‘‘single’’ models without the MSD and only the late

precipitation mode.

Given these results, we used two different types of

GCM ensembles: skill-based ensemble and an ensem-

ble of all available downscaled GCMs. The first model

selection strategy uses the subset of CMIP3 bimodal

GCMs available in the downscaled dataset from

Hayhoe (2013). Figure 2 shows annual precipitation at

two locations with different climatic conditions: Rio

Blanco Lower station (18814035.8800N, 6584705.999400W)

nearElYunqueNational Forest in theLuquillomountains

and Ensenada station (17858022.079400N, 66856044.8800W)

TABLE 1. The downscaled general circulation models used in each scenario and variable. (See http://www.ametsoc.org/PubsAcronymList

for expansions of acronyms.)

Model selection strategy Variable

Scenario

A2 B1 A1B

Bimodal models Tmax and Tmin CGCM3 (T47) CGCM3 (T47) CGCM3 (T47)

HadCM3 HadCM3 HadCM3

HadGEM1 HadGEM1

Precipitation CGCM3 (T47) CGCM3 (T47) CGCM3 (T47)

HadCM3 HadCM3 HadCM3

HadGEM1 MIROC (hires) HadGEM1

MIROC (hires)

All models Tmax, Tmin, and precipitation CCSM3 CCSM3 CCSM3

CGCM3 (T47) CGCM3 (T47) CGCM3 (T47)

CGCM3 (T63) CGCM3 (T63) CGCM3 (T63)

CNRM-CM3 CNRM-CM3 CNRM-CM3

CSIRO Mk3.0 CSIRO Mk3.0 CSIRO Mk3.0

ECHAM5 ECHAM5 ECHAM5

ECHO-G ECHO-G ECHO-G

GFDL CM2.1 GFDL CM2.1 GFDL CM2.1

HadCM3 HadCM3 HadCM3

MIROC (medres) MIROC (medres) MIROC (medres)

MRI-CGCM2 MRI-CGCM2 MRI-CGCM2

PCM PCM PCM
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in southern dry region. The downscaled precipitation by

the three categories of the models for A2 scenario is

compared with the available observations from 1960 to

2014. Bimodal models show a higher range of variability

through time than do the other two categories [standard

deviations (SD) are 684.6, 494.1, and 392.1mm for av-

erage bimodal, single with MSD, and single models at

RioBlancoLower station; SD: 287.5, 269.5, and 200.7mm

for the same model sets at Ensenada station]. Table 2

compares the projected precipitation changes from the

period 1960–90 to 2070–99 for the same sets of models,

the climate scenario, and stations used in Fig. 2. The

multimodel precipitation projection for the bimodal

GCMs showed larger declines than for the other two

categories (Table 2). The second model selection strat-

egy we employed was to use all 12 available downscaled

CMIP3 GCMs for the three scenarios regardless of

the model categorization to maximize the sample space

of projected climate change.

d. Climatologically aided interpolation

Interpolation is required to transform the downscaled

climatic predictions at station points to a continuous

surface. Kriging is a widely used interpolation method

that results in unbiased optimal estimates of climatic

variables based on the spatial correlation between

values, assuming a Gaussian distribution of the variable

(Cressie 1993). However, kriging and other traditional

interpolation methods may result in too much smooth-

ing of surfaces (Brown and Comrie 2002) and in cases

of inadequate station densities with distributions un-

representative of topographic variability and geographic

features the outputs may become even smoother and

less representative (Daly et al. 2002). An alternative

to the kriging-only method is climatically aided in-

terpolation (CAI) (Willmott and Robeson 1995), which

results in the interpolation errors not highly correlated

with the number of stations. The CAI has been used

by some studies as a multivariate method to reduce

the between station uncertainty by incorporating the

spatial variability related to elevation and topography

(Willmott andRobeson 1995; Hunter andMeentemeyer

2005; Wilson and Silander 2014). In the CAI approach

spatial variability can be incorporated from other spa-

tially rich datasets.We used output from the Parameter–

Elevation Regressions on Independent Slopes Model

Fig. 2. Predicted annual precipitation from (a) three bimodal models that better simulate the eastern Caribbean

bimodal precipitation pattern with MSD, (b) three single models with MSD that simulate the MSD but have only

one precipitation peak, and (c) three single models with no MSD and only one precipitation peak at Rio Blanco

Lower station in comparison with the NOAAmeasurements from 1960 to 2014 (red line). (d)–(f) As in (a)–(c), but

for Ensenada station.
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(PRISM; Daly et al. 2003) as the basis of the CAI in

order to transform the original downscaled GCM out-

puts into interpolated surfaces of climate variables.

PRISM is based on spatial dependence of climatic var-

iables on elevation, topography, and coastal proximity.

Using PRISM, Daly et al. (2003) mapped the monthly

averages of maximum and minimum temperature and

precipitation of the island from 1963 to 1995 at a spatial

resolution of ;450m. Our use of the PRISM output for

CAI assumes that the relationship between climate and

the physiographic covariates remains stationary through

time. The final outputs are the interpolated downscaled

climate variables, with most of the spatial variability

being captured by the PRISM layers. First, the down-

scaled climate variable means for each time interval at

each location were transformed into anomalies from the

1963–95 PRISM gridded means [Eqs. (1) and (2)]:

P
a
5P

d
/P

p
and (1)

T
a
5T

d
2T

p
, (2)

where Pa is the transformed anomaly for precipitation,

Pd is the downscaled precipitation mean at each station,

Pp is the mean precipitation from the PRISM grid at

the station’s location, Ta is the temperature anomaly, Td

is the downscaled temperature mean at each station,

and Tp is the mean temperature from the PRISM grid at

the station’s location.

We used ordinary kriging to interpolate the anomalies

across the island to the same spatial resolution as the

PRISM grid. The semivariogram was plotted for each

variable and time interval and an exponential model

was chosen for all of the variograms because their

change patterns in autocorrelation by changes in dis-

tance lags were exponential. Two fitting methods were

compared to fit the exponential model to the vario-

grams: the residual maximum likelihood and ordinary

least squares method (Stein 1999). We applied one-out

cross-validation of the observations in both methods

using the ‘‘krige.cv’’ function in the ‘‘gstat’’ package

(Pebesma 2004) in R (R Development Core Team

2013). We selected the fitting method based on the

goodness of fits of the cross-validation procedure—

that is, the method which resulted in higher Pearson’s

R2 (the full goodness-of-fit results are given in the

supplemental material). The chosen kriging model was

then applied to the means of the anomalies at station

points. The interpolated anomalies were then converted

back to the original units by inverting the relationships

in the Eqs. (1) and (2):

P
CAI

5P
ai
3P

pg
and (3)

T
CAI

5T
ai
1T

pg
, (4)

where PCAI is the final precipitation projection for

each scenario and time interval, Pai is the transformed

anomaly for precipitation interpolated to the surface

grid, Ppg is the PRISM surface for mean precipitation,

TCAI is the final temperature projection for each sce-

nario and time interval, Tai is the transformed anomaly

TABLE 2. Precipitation decline in A2 scenario at two stations in Luquillo Mountains and the south coast calculated from ensembles of the

three GCM categories: bimodal models, single models with MSD, and single models.

Time interval Bimodal models P (mm) Single with MSD models P (mm) Single models P (mm)

Rio Blanco Lower station

1960–90 CGCM3 (T47) 2654 MIROC (medres) 2680 CGCM3 (T63) 2693

HadCM3 2906 GFDL CM2.1 2710 CCSM3 2956

HadGEM1 2632 ECHAM5 2672 PCM 2537

Avg of models in 1960–90 2731 2687 2805

2071–99 CGCM3 (T47) 1580 MIROC (medres) 1667 CGCM3 (T63) 1977

HadCM3 1288 GFDL CM2.1 2323 CCSM3 2276

HadGEM1 1256 ECHAM5 2116 PCM 2159

Avg of models in 2071–99 1375 2036 2321

Change from 1960–90 to 2071–99 (%) 49.7 24.0 17.3

Ensenada station

1960–90 CGCM3 (T47) 881 MIROC (medres) 827 CGCM3 (T63) 795

HadCM3 782 GFDL CM2.1 891 CCSM3 883

HadGEM1 853 ECHAM5 821 PCM 837

Avg of models in 1960–90 839 846 838

2071–99 CGCM3 (T47) 361 MIROC (medres) 366 CGCM3 (T63) 516

HadCM3 333 GFDL CM2.1 654 CCSM3 436

HadGEM1 290 ECHAM5 842 PCM 827

Avg of models in 2071–99 328 621 593

Change from 1960–90 to 2071–99 (%) 60.9 27.0 29.3
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for temperature interpolated to the surface grid, and

Tpg is the PRISM surface for mean temperature.

e. Accuracy assessment

We compared the interpolated downscaled GCM

means for the two historic time intervals (1960–90 and

1991–2010) with the observedmeans taken fromNOAA’s

Global Historical Climatology Network (GHCN) daily

dataset (Menne et al. 2012). We calculated the total an-

nual precipitation and mean annual maximum and mini-

mum temperature from the daily observations at each

station and calculated the average for each time period

after removing the years with missing records for more

than 10% of the days. For each variable we plotted the

interpolated and downscaled GCM mean in each time

interval against the observed mean in all measured years

of the time interval.

f. Climatic indices

We derived three annual indices from the climatic

variables (mean daily temperature and precipitation) to

transform the changes in the variables to more ecolog-

ically and economically oriented measures. We calcu-

lated them for each available downscaled station, and

also did a trend analysis on the changes in the indices for

the average of all available stations versus time.

Cooling degree-days (CDD) were calculated annually

using the mean daily temperature [Eq. (5)]. It is defined

as the annual sum of differences between mean daily

temperature and a base temperature Tb above which in-

door cooling is assumed to be needed. Note that Tb is

based on the geographic locations.We used the commonly

used Tb of 188C (Rosenthal et al. 1995; Isaac and van

Vuuren 2009). CDD is widely used as a proxy for air-

conditioning energy demand as it indicates building cool-

ing requirements (e.g., Zhou et al. 2013; Zubler et al. 2014):

CDD5 �
n

i51

d
i
(T

i
2T

b
) , (5)

where Ti is mean daily temperature (8C), Tb is the base

temperature (188C), n is the total number of days each

year, and di 5 1 if Td,i . Tb or else di 5 0.

Annual maximum number of consecutive dry days

(MCDD)measures themaximum length of dry spell each

year. It is the longest period of consecutive days with no

precipitation or less than 1mm of precipitation. MCDD

was listed as a climate index for estimating drought in the

IPCC special report on extreme events (Seneviratne et al.

2012), and it has been used as an index of extreme

drought conditions (e.g., Nakaegawa et al. 2014b).

Total annual dry days (TDD) is a measure of drought

intensity, unlike MCDD, which is a measure of drought

extremes. We calculated MCDD and TDD values using

the ‘‘run length encoding’’ (rle) function inR that counts

the consecutive repetitions of the values for a variable,

in this case days with no or less than 1mm precipitation.

We calculated the percentage of changes in the climate

indices from 1960 to 2099. We applied the non-

parametric Mann–Kendall (MK) test (Mann 1945;

Kendall 1975) to see if there was a monotonic trend of

increase in the climate indices. Tau (t) in the MK test is

analogous to the correlation coefficient in regression

analysis. We also applied linear regression to assess for

linear trends after checking for normality of the calcu-

lated indices (Shapiro test, p , 0.05).

g. Life zones mapping

The boundaries of life zones in the Holdridge system

are based on three climatic measurements: annual

precipitation, biotemperature, and the ratio of poten-

tial evapotranspiration (PET) to annual precipitation

(Holdridge 1947). The all model selection averages were

used for life zone mapping. Biotemperature is an annual

temperature index with values below 08C adjusted to

08C and values above 308C adjusted to 308C. We calcu-

lated sea level temperature from the mean annual

temperature and elevation layers using a lapse rate of

6.08Ckm21. Then we created a biotemperature layer

for each scenario and time interval from the sea level

temperature layer by adjusting values above 308C to

308C. To estimate the annual PET we applied the

Hargreaves–Samani temperature difference method

(Hargreaves and Samani 1985) for daily PET and multi-

plied the result by 365 to get the annual amount [Eq. (6)]:

PET5 0:00233R
A
3TD0:5 3 (T1 17:8)3 365, (6)

where PET is annual potential evapotranspiration

(mm),RA is extraterrestrial radiation (mmday21), TD is

(Tmax 2 Tmin) (8C), and T is mean annual temperature

(8C).
Extraterrestrial radiation (RA) is the solar radiation at

the top of the atmosphere on a horizontal surface. It is

a function of latitude, sunset angle, solar declination,

and the relative Earth–sun distance (Allen et al. 1998).

It was calculated for the 15th day of each month at dif-

ferent latitudinal degrees in the Northern and Southern

Hemispheres (Allen et al. 1998). For the purpose of

calculating average annual PET in Puerto Rico we used

the average of all monthly values of RA at 188 latitude in
the Northern Hemisphere. The Hargreaves–Samani

method is considered a simple and practical method

(Lu et al. 2005; Ramírez et al. 2011). The ratio of PET to

mean annual precipitation acts as an aridity index in

mapping Holdridge life zones.
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We used the three variables for classifying the life zones

in eCognition Developer software v8 (www.ecognition.

com), which provides hierarchical classification in an

object-based classification approach. First, we applied a

multiresolution segmentation process (Blaschke et al. 2004)

to create image objects as the areas with homogeneous

values of PET ratio, biotemperature, and precipitation.

Then, we assigned the created objects to different life zone

hexagons based on the thresholds in each of the three

variables in the Holdridge framework. Since the three

variables are not orthogonal, the life zones can be mapped

by any two of the three variables (Lugo et al. 1999; Sisneros

et al. 2011). We labeled the life zones based on the PET

ratio or humidity index and the latitudinal regions defined

by biotemperature. We applied a fuzzy adjustment defined

in Lugo et al. (1999) to biotemperature thresholds before

using in naming the life zones.

3. Results

a. Accuracy assessment of downscaled climate means

Downscaled and interpolated variables for A2 sce-

nario in the first two time intervals are plotted against

their observed values (Fig. 3). The climate scenarios do

not apply to the first time interval and the scenario dif-

ferences were very low at station locations in the second

time interval. For precipitation 59.85% and 43.90% of

the stations in the first and second periods had modeled

values with under 100-mm difference with the observa-

tions (Figs. 3a,b; 132 stations in the first and 82 stations

in the second time interval). The temperature difference

between the model projections and the observations in

the first and second periods were under 18C at 90.38%

and 68.57% of the stations for maximum temperature,

and at 86.54% and 68.57% of the stations for minimum

temperature (Figs. 3c–f; 52 stations in the first and

35 stations in the second period).

b. Precipitation and drought

GCM selection made large differences in the calcu-

lations for precipitation. The mean pixel decline in

rainfall was 510.67, 354.60, and 312.57mm for A2, A1B,

and B1 scenarios respectively from the first to the last

time interval based on the multimodel average of all

12 models (Fig. 4a), whereas the corresponding declines

were 916.30, 842.62, and 619.58mm using the bimodal

Fig. 3. The interpolatedmodel predictions at station locations plotted against their observedmeans for (a), (c), (e) 1960–90 and (b), (d), (f)

1991–2010.
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Fig. 4. The total changes in precipitation, mean temperature and PET ratio from the first time interval (1960–90) to

the last time interval (2071–99) based on the multimodel average of (a) all 12 models and (b) the bimodal models.
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models (Fig. 4b). Precipitation was projected to de-

crease faster in the wetter regions of the island such as

Luquillo and the central mountains. Figure 5 shows the

projected annual precipitation in the five time intervals

using the average of all model predictions (the results

for the bimodal models are in the supplemental mate-

rial). Precipitation is projected to change gradually in

the entire area and the GHG emission scenarios showed

more difference in later periods of the century (Fig. 5).

The TDD index as a measure of drought intensity

showed a monotone and linear increase for all three

scenarios at all station locations (Fig. 6). There was a

gradual increase in the mean of MCDD as the measure

of drought extremes (Table 3, Fig. 7) with the highest

total change for the A2 scenario (71.61%). The mean

station trends for all three scenarios were significant and

linear (Table 3). However, the trends of change were

different for different geographic areas. The interannual

variability increased and dominated from the wet to dry

stations with the highest fluctuations in the south coast

(Fig. 7). The climate scenarios showed similar patterns

of changes in precipitation and drought intensity and

Fig. 5. Downscaled and interpolated annual precipitation from the average of all model projections under the three

emissions scenarios (the emission scenarios do not apply to the first time interval).
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extremes but total increases from 1960 to 2099 were

higher for the A2 scenario (Figs. 6–8, Table 3).

c. Temperature

The projected means from the all-model ensemble

showed increases of 7.58–98, 6.48–7.68, and 4.68–5.48C
under the A2, A1B, and B1 scenarios respectively. The

bimodal models gave similar results except for the B1

scenario, which showed a 5.58–78C increase (Fig. 4). The

scenarios differentiate the most from each other in the

last time interval (Figs. 8e,j,o). The last two time in-

tervals in the A2 scenario (Figs. 8d,e) showed higher

rates of changes relative to the other period of the

century (Figs. 8a–c) and also relative to the last two

periods in the A1B and B1 scenarios. This higher tem-

perature change rate in the A2 scenario in the late time

intervals is also shown in the CDD index in the late

decades of the century (Fig. 9). The total change in

CDD from 1960 to 2099 was dependent on the GHG

emission scenarios. There was more than 100% total

increase in CDD in the A2 scenario (Fig. 9, Table 3).

The CDD increased in all 28 stations located across the

island. The south coast showed the highest annual CDD

from 1960 to 2040 after which the San Juanmetropolitan

area was the highest location (Fig. 9).

d. Life zones under changing climate

Dramatic changes were projected in the life zone

distributions in Puerto Rico in this century (Fig. 10).

The general pattern is similar to the changes in the

climatic variables since life zones were derived from

those variables. The humidity shifting from rain, wet,

and moist zones to drier zones was identified by the

changes in annual precipitation and PET ratio. The

changes from subtropical to tropical were identified by

the changes in adjusted biotemperature. The sub-

tropical rain forest, which was mapped in the life zone

maps of 1973 (Fig. 1), disappears after the first time

interval. Generally, decreasing trends were observed in

the areas of wet and moist zones while increasing

trends were observed in the areas of dry zones in all

three scenarios.

4. Discussion

Temperature projections showed good accuracy based

on the comparison of projected model means with real

observations from station locations. The precipitation

accuracy assessment showed that 59.85% and 43.90% of

the modeled stations fall under 100-mm precipitation

difference with the measured observations for the same

stations in the first and the second time intervals. This

level of accuracy shows a high potential uncertainty in

modeling precipitation in the region. Caribbean rainfall

is influenced by complexities in large-scale atmosphere

and ocean dynamics and the results are impacted by

systematic biases in model structure (Ryu and Hayhoe

2014). The projected amount of precipitation decline was

highly dependent on the model selection strategies. The

average of bimodal models showed twice as much

precipitation loss as the average of all models. The

all-model selection showed a gradual effect of GHG

emission increase with lower rainfall for higher emis-

sion scenarios through time (Fig. 5). In total the

warming and drying were more prominent in the late

periods of the century, which may be because most

climate models predict increased warming of the at-

mosphere by shortwave radiation after midcentury

(Donohoe et al. 2014). The immediate potential con-

sequences of precipitation decline are shown by the

measures of drought intensity and extremes. The an-

nual total dry days increased almost monotonically at

all station locations in the island (Fig. 6). Drier

Fig. 6. Total dry days (TDD) from the multimodel average of all

12 GCMs under the (a) A2, (b) A1B, and (c) B1 scenarios at 72

stations and their averages. Major geographic locations are high-

lighted with colors as in Fig. 1.
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locations such as the south coast showed more in-

terannual fluctuations in the annual maximum number

of consecutive dry days when compared to wet regions

such as the central mountains (Fig. 7). MCDD is an

extreme drought index and changes in its severity are

most notable in drier areas (e.g., Nastos and Zerefos

2009). Polade et al. (2014) examined the trends of TDD

at the global scale using CMIP5model predictions from

1960 to 2089 and suggested a future increase in the

index in Central America and the Caribbean. The in-

creases in predicted MCDD and TDD imply rising

probability of annual wildfires. Changes in TDD also

imply interannual precipitation variability as more dry

days means fewer precipitation events (Polade et al.

2014). Warming will tend to accelerate the overall hy-

drological cycles, which means intensifying the wet ex-

tremes in addition to dry extremes (Allan and Soden

2008), that is, increasing the likelihood of floods.

In contrast to precipitation, the projected changes in

temperature were not dependent on model selection

because GCMs could not be differentiated based on

their ability to reproduce the climatology of tempera-

ture in the region (Hayhoe 2013). The projected

warming in Puerto Rico was greater than the global

averages. For example, for A2 scenario there was 8.168C
mean pixel warming for the entire island from the first

to the last time interval, whereas the predicted global

warming is 38–48C for the same climate scenario in this

century (IPCC 2007). This projected warming may fur-

ther impact the changes in precipitation in both space

and time (Hayhoe 2013). The projected increase in

temperature and CDDs suggests energy demand will

increase on this tropical island. The total increase in

CDD was high for all three scenarios at all locations.

Air-conditioning energy consumption is often assumed

to be approximately proportional to CDD in a way

that a one percent increase in degree-days corresponds

to one percent increase in energy demand (e.g., Zubler

et al. 2014). However, detailed calculation of building

energy demand would also require predicting wind cli-

matology, which is not possible with the statistically

downscaled GCMs. The total climate change effect on

building energy demand also depends on the scale of

the observation. Zhou et al. (2013) found that in the

conterminous United States and China the increased

cooling requirements in hot areas are balanced with

TABLE 3. Total change and trend analysis of annual changes in the climatic indices based on the all model selection: cooling degree-days

(CDD), maximum consecutive dry days (MCDD), and total dry days (TDD).

Climate index Scenario Total increase (%)

Mann–Kendall Linear regression

t P value R P value

CDD A2 107.832 0.943 0.000 0.967 0.000

A1B 92.374 0.943 0.000 0.979 0.000

B1 67.718 0.922 0.000 0.981 0.000

MCDD A2 66.044 0.594 0.000 0.603 0.000

A1B 34.322 0.597 0.000 0.607 0.000

B1 21.121 0.495 0.000 0.450 0.000

TDD A2 21.407 0.667 0.000 0.7129 0.000

A1B 16.760 0.587 0.000 0.600 0.000

B1 17.723 0.511 0.000 0.493 0.000

Fig. 7. As in Fig. 6, but for maximum number of consecutive dry

days (MCDD).
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decreased heating demands in cold areas and the overall

effect is modest (6% or less). Rosenthal et al. (1995)

suggested that climate change could reduce rather than

increase energy costs to the U.S. economy at large. But

at the local scale for Puerto Rico with its hot and humid

climate, the effect is focused on air-conditioning energy

demand, which at present is met by burning fossil fuels

to produce electricity and is significantly more expensive

than the average heating energy (Energy Information

Administration 1994).

The projected changes in the life zones of Puerto Rico

based on the all-model selection showed a shift among

nine life zones, switching from humid to drier life zones

(Fig. 10). This includes changes in the relative area and

distribution pattern of the life zones and disappearance

of the humid life zones. The Holdridge life zone names

of an area do not necessarily imply that a particular

vegetation type dominates as they only depict the con-

ditions that regulate ecosystem functions (Lugo et al.

1999). Other local conditions such as soil, proximity to

water, and even other climatic conditions affect the ac-

tual vegetation types of a given area at a particular time.

However, changes in the life zones show the shifts in

climatic support for different vegetation types. For ex-

ample, the areas projected to shift from moist forest to

dry forest will not have sufficient climatic support for

moist forests regardless of the local conditions. This may

suggest future loss of large forested areas particularly

rain and moist forests. The predicted forest loss may fur-

ther contribute to global climate change by 1) decreasing

local carbon sequestration capacity (e.g., Backéus et al.

2005) and 2) exacerbating effects of land-use and land-

cover change on air temperature (e.g., Comarazamy

et al. 2013).

The wide variety of potential local consequences

would be particularly severe for the island’s natural

environment and society. Puerto Rico has unique eco-

systems and species that provide natural and cultural

capital for the economic, social, and environmental well-

being of the island’s communities. Decreased rainfall

Fig. 8. As in Fig. 5, but for mean annual temperature.

FEBRUARY 2016 HENAREH KHALYAN I 277



may turn the rain forest in northeastern Puerto Rico to

wet forests, which will alter the environmental gradients

and cause migration, distribution changes, and potential

extirpation of many species that depend on the unique

environmental constraints of the rain forest (Weaver

and Gould 2013). Endemic species abound in this region,

as exemplified in the El Yunque National Forest, which

harbors 8 tree species, 12 avian species, 1 reptile species,

and 11 amphibians (Weaver 2012). The existence of these

species will depend on their potential to survive in wider

climatic ranges.

Results from this study have implications for impacts

on socioeconomic sectors of the region such as agricul-

ture, health, energy, and natural resources. In the case of

Puerto Rico and other Caribbean islands, impacts will

be exacerbated because small island states are especially

vulnerable, given limited resources, markets, and their

relative isolation (IPCC 2014). The anticipated drier and

hotter conditions can be expected to produce severe

yield losses in agriculture production (e.g., Jones and

Thornton 2003). Animal production in the future may

require enclosed structures with climate control, which

is currently not a common practice in Puerto Rico. In-

creasing tree mortality in forests can be expected due to

physiological stress related to climate-related interactions

such as insect pressure and forest fires (Allen et al. 2010).

Complex changes can be expected to occur in the eco-

systems of the island related to altered timing of growth

stages in flora and fauna (McMichael and Haines 1997).

Increased temperatures may increase illness and mortal-

ity among the young, elderly, and poor (McGeehin and

Mirabelli 2001). Insufficient water supply is currently a

significant problem in the island. Based on experience

from droughts (previous and currently during 2015), a

large-scale redesign of the island’s water supply system

will be required. Coupling the threat of drier conditions

from climate change with the need to significantly in-

crease local food production (approximately 85%of food

in PuertoRico is currently imported), providing a reliable

future water supply represents one of the greatest chal-

lenges to the island.

The first and largest source of uncertainty for end-of-

centuryprojections is associatedwith the choiceof long-term

GHG emission pathway. The results are also accompanied

by systematic biases in the structure of the CMIP3

GCMs (Ryu and Hayhoe 2014). Furthermore, these

uncertainties are difficult to quantify inGCM ensembles

where traditional forecast verification is typically not

possible and model dependence, bias, and tuning are all

present (Tebaldi and Knutti 2007; Wilson and Silander

2014). The choice of downscaling method adds yet an-

other source of uncertainty. For example, the maximum

average temperature of the PCM for Lajas station using

the ARRM method of Stoner et al. (2013) was more

than 18C higher than in Harmsen et al. (2009), which

used the method of Miller et al. (2008) for statistical

downscaling.

Another limitation is the limited number of locations

where downscaled projections were available. For ex-

ample, we had no model output in the El Yunque Na-

tional Forest, which experiences the peak rainfall

amounts on the island and is an important ecological site.

The predicted values of the climatic variables at this lo-

cation were derived from the values of the closest stations

and spatial covariance dependence using PRISMdatasets

in the CAI approach. Other uncertainties are related to

projecting the possible shifts in future life zones.We chose

to apply the Hargreaves–Samani method for estimating

PET ratios based on the limited number of downscaled

climatic variables. The Hargreaves–Samani method has

been shown to overestimate PET in humid regions and

underestimate PET in arid regions when compared to the

Penman–Monteith method (Jensen et al. 1990; Harmsen

Fig. 9. Cooling degree-days (CDD) form themultimodel average

of all 12 GCMs under the (a) A2, (b) A1B, and (c) B1 scenarios at

28 stations and their averages. Major geographic locations are

highlighted with colors as in Fig. 1.
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et al. 2002). Furthermore, life zones are a broad-scale

overview of the environmental conditions. The Holdridge

life zones are based on annual means of climatic variables

(here the annualmeans ofmultidecadalmeans) and ignore

extreme events and seasonality, which can have more in-

fluence in the distribution of woody plant species than

annual means (Ohmann and Spies 1998). We stress that

the Holdridge system is not used in this research to map

the real life zones. Instead, we applied it as a criterion or

scale to map the possible ecological effects of a changing

climate. More work is needed to periodically update the

life zone maps using the observed climatic variables.

However, the question of how often the life zones should

be updated remains open and is dependent upon esti-

mating the time scale under which significant life zone

changes can occur due to shifts in the underlying climatic

conditions.

The original data and the projected results of this study

are publicly accessible (data accessed 15 September 2015

from http://caribbeanlcc.org/data-center/). The methods

can be repeated to reproduce new maps using other cli-

mate models and downscaling methods and to compare

the new results with themaps presented in this study. The

ability of the CMIP ensembles as a whole has improved

over time. It is likely thatCMIP3models overestimate the

projected precipitation decreases in wet seasons and in

extreme rainfall events because they are driven by changes

in carbon dioxide as compared with the CMIP5 model

projections, which are driven by changes in both car-

bon dioxide and aerosols (Hayhoe 2013). However, the

Fig. 10. Projected life zones from the average of all models under the three emissions scenarios

(the emission scenarios do not apply to the first time interval).
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downscaled CMIP5 projections are not still available for

Puerto Rico. Also, different projections would almost cer-

tainly result from the use of dynamic downscaling instead of

statistical downscaling, as dynamic downscaling directly

models the entire system instead of regressing spatial pat-

terns. Although, Nakaegawa et al. (2014a) indicated that

dynamic downscaling does not necessarily provide better

information and improvements will depend on the type of

applications and variables being analyzed. Future work will

examine these differences upon completion of a suite of

high-resolution (2km) dynamically downscaled models.

The dynamically downscaled results include more climatic

variables, which can improve the potential evapotranspira-

tion calculation and life zone projection.

5. Conclusions

We examined the potential effects of climate change on

ecological life zones, increasing energy demands, and

drought indices in Puerto Rico from 1960 to 2099 using a

suite of statistically downscaled CMIP3 GCMs. The full

model ensemble projected a 130- to 1397-mm decrease in

precipitation (from 1960–90 mean to 2071–99 mean) de-

pending on location and GHG emission scenario. The bi-

modal model selection projected almost twice this decline.

Furthermore, there were projected gradual linear in-

creases in drought intensity and extremes with their end of

the century increases depending on the emission scenarios.

The consequences could include water supply deficits in

the future and attendant consideration of adaptation

strategies to mitigate these impacts (e.g., water harvest

practices). The projected warming in the same period was

4.68–98C depending on the geographic location and emis-

sion scenarios, and was insensitive to the model selection

criteria. We illustrated potential implications using en-

ergy demands for air conditioning, and projections sug-

gested that there could be a greater than a 100% increase

in energy demand in the absence of intervening changes

in technology and consumer behavior. Climate change

may alter the life zones of the island with shifts from rain,

wet, andmoist zones to drier zones. This includes the loss

of the subtropical rain, moist, and wet forests and ap-

pearance of tropical wet, moist, dry, and very dry forests.

New ecological conditions may result in new ecosystems

and new communities. For example, present trees that

require soil moisture throughout the year may be re-

placed by other tree and shrub species. Our results point

to severe vulnerabilities that exist for the rain forests in

the area in the future, which could endanger the endemic

species of the island and changes their distributions.
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