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Studies of land surface dynamics inheterogeneous landscapes often require remote sensing datawith high acqui-
sition frequency and high spatial resolution. However, no single sensor meets this requirement. This study pre-
sents a new spatiotemporal data fusion method, the Flexible Spatiotemporal DAta Fusion (FSDAF) method, to
generate synthesized frequent high spatial resolution images through blending two types of data, i.e., frequent
coarse spatial resolution data, such as that from MODIS, and less frequent high spatial resolution data such as
that from Landsat. The proposed method is based on spectral unmixing analysis and a thin plate spline interpo-
lator. Compared with existing spatiotemporal data fusion methods, it has the following strengths: (1) it needs
minimum input data; (2) it is suitable for heterogeneous landscapes; and (3) it can predict both gradual change
and land cover type change. Simulated data and real satellite images were used to test the performance of the
proposed method. Its performance was compared with two very popular methods, the Spatial and Temporal
Adaptive Reflectance Fusion Model (STARFM) and an unmixing-based data fusion (UBDF) method. Results
show that the new method creates more accurate fused images and keeps more spatial detail than STARFM
and UBDF. More importantly, it closely captures reflectance changes caused by land cover conversions, which
is a big issue with current spatiotemporal data fusion methods. Because the proposed method uses simple
principles and needs only one fine-resolution image as input, it has the potential to increase the availability of
high-resolution time-series data that can support studies of rapid land surface dynamics.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Dense time-series data composited by satellite imageswith frequent
coverage are important sources for studying land surface dynamics,
such as for monitoring vegetation phenology (Shen, Tang, Chen, Zhu,
& Zheng, 2011), mapping shrub encroachment into grassland (Zhou,
Chen, Chen, Cao, & Zhu, 2013), detecting land cover and land use change
(Yang & Lo, 2002), and estimating agriculture intensity (Galford et al.,
2008). In heterogeneous areas, these studies also require dense time-
series data with high spatial resolution so that land surface dynamics
can be characterized at fine scales related to human activities,
e.g., from a few meters to tens of meters. However, no single satellite
sensor currently provides global coverage of dense time-series data
with this fine of a spatial resolution due to the tradeoff between pixel
m Science and Sustainability,
livery, Fort Collins, CO 80523-
size and swath width as well as cloud contamination (Gevaert &
García-Haro, 2015).

For applications requiring imagery from the past several decades,
there are two types of satellite images, one with frequent coverage of
every 1–2 days, but coarse spatial resolution of 250 m to 1 km, such as
imagery from the MODerate resolution Imaging Spectroradiometer
(MODIS) images (hereafter referred to as “coarse-resolution” images),
and the other with fine spatial resolution of 10–30 m, but a long revisit
cycle of ~16 days, such as Landsat images (hereafter, “fine-resolution”
images). In the last decade, spatiotemporal data fusion methods have
been developed to blend these two types of satellite images to generate
synthesized data with both high spatial resolution and frequent cover-
age (Fu, Chen, Wang, Zhu, & Hilker, 2013; Gao, Masek, Schwaller, &
Hall, 2006; Gevaert & García-Haro, 2015; Hilker, Wulder, Coops, Linke,
et al., 2009; Huang & Zhang, 2014; Song & Huang, 2013; Wu, Wang, &
Wang, 2012; Zhu, Chen, Gao, Chen, &Masek, 2010; Zurita-Milla, Clevers,
& Schaepman, 2008). These synthesized data can support the investiga-
tion of land surface dynamics in heterogeneous landscapes (Hilker,
Wulder, Coops, Seitz, et al., 2009; Senf, Leitão, Pflugmacher, van der
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Linden, & Hostert, 2015; Walker, de Beurs, Wynne, & Gao, 2012; Watts,
Powell, Lawrence, & Hilker, 2011).

Existing spatiotemporal data fusion methods can be categorized
into three groups: weighted function based, unmixing based, and
dictionary-pair learning based (Table 1). All of these methods need
one or more observed pairs of coarse- and fine-resolution images for
training and a coarse-resolution image at prediction date as input
data. The output of these methods is a synthetic fine-resolution image
at prediction date. Intrinsically, all spatiotemporal data fusion methods
use spatial information from the input fine-resolution images and
temporal information from the coarse-resolution images.

Among the weighted function based methods, the spatial and tem-
poral adaptive reflectance fusionmodel (STARFM) is the one developed
first (Gao et al., 2006). STARFM assumes that changes of reflectance are
consistent and comparable at coarse and fine resolutions if pixels in
coarse-resolution images (hereafter referred to as “coarse pixels”) are
“pure” pixels, in that one coarse pixel only includes one land cover
type. In this case, changes derived from coarse pixels can be directly
added to pixels in fine-resolution images (hereafter referred to as
“fine pixels”) to get the prediction. However, this ideal situation cannot
be satisfied when coarse pixels are mixed, having a mixture of different
land cover types. Therefore, STARFMpredicts pixels with a function that
gives a higher weight to purer coarse pixels based on information from
neighboring fine pixels. STARFM was later modified and improved for
more complex situations, resulting in the spatial temporal adaptive al-
gorithm for mapping reflectance change (STAARCH), which improves
STARFM's performance when land cover type change and disturbance
exist (Hilker, Wulder, Coops, Linke, et al., 2009), and the Enhanced
STARFM (ESTARFM), which improves STARFM's accuracy in heteroge-
neous areas (Zhu et al., 2010).

Among the unmixing basedmethods, themultisensormultiresolution
technique (MMT) proposed by Zhukov et al. (1999) is perhaps the first
one to fuse images acquired at different times and with different resolu-
tions. MMT has four steps to predict a fine-resolution image: (1) classify
the inputfine-resolution data to define endmembers at coarse resolution;
(2) compute endmember fractions of each coarse pixel; (3) unmix the
coarse pixels at the prediction date within a moving window; (4) assign
unmixed reflectance to fine pixels (Zhukov et al., 1999). In recent years,
MMT has been modified by several studies to improve its accuracy.
Zurita-Milla et al. (2008) introduced constraints into the linear
unmixing process to ensure that the solved reflectance valueswere pos-
itive and within an appropriate range. Wu et al. (2012) estimated re-
flectance change through unmixing endmember reflectance at both
input and prediction date and then added the estimated change back
to the base fine-resolution image to get the prediction. Amorós-López
et al. (2013) modified the cost function to prevent the solved
endmember reflectance from being greatly different from a predefined
endmember reflectance. Gevaert and García-Haro (2015) directly
unmixed the change of coarse pixels to estimate the change of
endmembers and applied Bayesian theory to constrain the estimation.
Table 1
Summary of main spatiotemporal data fusion methods: W = weighted function based, U = u

Name of method Category Input requirement⁎

STARFM W One or more pairs
STAARCH W Two fine images and a time
ESTARFM W Two pairs
MMT U One fine image
Constrained unmixing U One fine image
STDFA U Two or more pairs
Spatial unmixing U A time-series of fine image
STRUM U One pair
SPSTFM D Two pairs
One-pair learning D One pair

⁎ Allmethodsneedone coarse image at prediction date as input, so the only other required inp
one image with coarser spatial resolution acquired on the same or nearly the same date as the
Compared with weighted function and unmixing based methods,
dictionary-pair learning based spatiotemporal data fusion methods are
relatively new. Dictionary-pair learning based algorithms establish cor-
respondences between fine- and coarse-resolution images based on
their structural similarity, which can be used to capture the main fea-
tures, including land cover type changes, in the predictions. The
Sparse-representation-based SpatioTemporal reflectance Fusion Model
(SPSTFM) is perhaps the first to bring dictionary-pair learning tech-
niques from natural image superresolution to spatiotemporal data fu-
sion (Huang & Song, 2012). SPSTFM establishes a correspondence
between the change of two fine-resolution images and two coarse-
resolution images through dictionary-pair learning, and then the
trained dictionary is applied to predict a high-resolution image at the
prediction date. Following SPSTFM, Song and Huang (2013) developed
another dictionary-pair learning based fusion method which uses only
one pair of fine- and coarse-resolution images. This method trains a dic-
tionary pair on the input fine- and coarse-resolution image pair, and
then downscales the coarse-resolution image at the prediction date by
a sparse coding technique. Due to the large scale difference between
MODIS and Landsat, this method is implemented in a two-layer frame-
work, i.e., it first predicts an image with a middle-resolution between
the fine- and coarse-resolution and then predicts the fine-resolution
image based on the middle-resolution image (Song & Huang, 2013).

Studies have demonstrated that all of the above spatiotemporal data
fusionmethods from the three groups can improve the spatial and tem-
poral resolution of satellite images for specific applications (Gao et al.,
2006; Song & Huang, 2013; Zhu et al., 2010; Zurita-Milla et al., 2008).
However, they face challenges in heterogeneous regions with abrupt
land cover type changes. Most weighted function based methods as-
sume no land cover type changes between input and prediction date
(Fu et al., 2013; Gao et al., 2006; Weng, Fu, & Gao, 2014; Zhu et al.,
2010). As a result, they can successfully predict pixels with changes in
attributes like vegetation phenology or soil moisture, because these
changes are strongly related to the changes in similar pixels selected
from the input imagery. However, current methods are not effective
for predicting spectral changes that are sudden or not observed in
input imagery, in that the changes are not predictable from pixels that
were similar in the input date. These changes include urbanization, de-
forestation/reforestation, wildfires, floods and land cover transitions
caused by other forces. Song and Huang (2013) applied STARFM in an
urbanized area and found that it failed to recover pixels with land
cover type changes. Emelyanova, McVicar, Van Niel, Li, and van Dijk
(2013) conducted a comprehensive study to investigate the perfor-
mance of STARFM and ESTARFM in two landscapes with contrasting
spatial and temporal dynamics. Their results demonstrate that the per-
formance of data fusion methods is strongly associated with land cover
spatial and temporal variance. ESTARFM is better than STARFM in het-
erogeneous landscapes, but it is evenworse than STARFM for predicting
abrupt changes in land cover types (Emelyanova et al., 2013). STAARCH
can handle land cover changes or disturbances if they are predictable
nmixing based, and D = dictionary-pair learning based.

Reference

Gao et al. (2006)
-series of coarse images Hilker et al. (2009a)

Zhu et al. (2010)
Zhukov, Oertel, Lanzl, and Reinhäckel (1999)
Zurita-Milla et al. (2008)
Wu et al. (2012)

s Amorós-López et al. (2013)
Gevaert and García-Haro (2015)
Huang and Song (2012)
Song and Huang (2013)

ut data are listed in the table. “Onepair”meansone imagewithfiner spatial resolution and
finer resolution image.



Fig. 1. Flowchart of the proposed spatiotemporal data fusion method.
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from one of the input Landsat images (i.e. recorded as spectrally differ-
ent from surrounding areas due to earlier disturbance, for example), but
it requires two Landsat images, one from before and one from after the
change (Hilker, Wulder, Coops, Linke, et al., 2009). Unmixing based fu-
sion methods also require that no land cover type change occurs be-
tween the input and prediction dates (Amorós-López et al., 2013; Wu
et al., 2012; Zhukov et al., 1999; Zurita-Milla et al., 2008). In addition,
to capture the spatial variability of each class, these unmixing based
methods solve fine-resolution reflectance locally using a moving win-
dow which may produce unrealistic results because of co-linearity
problem and noises contained in both fine- and coarse-resolution data
(Gevaert & García-Haro, 2015). Dictionary-pair learning methods only
use statistical relationships between fine- and coarse-resolution images
rather than any physical properties of remote sensing signals (Huang &
Song, 2012; Song & Huang, 2013). Although they can better predict
pixels with land cover type changes, they do not accurately maintain
the shape of objects, especially when the scale difference between fine
and coarse-resolution images is large (see Fig. 3 in Song&Huang, 2013).

Besides the above-mentioned intrinsic problems of the methods in
each group, most spatiotemporal data fusion methods suffer another
limitation: they require two or more fine-resolution images as input
data (Table 1). For example, both ESTARFM and STAARCH (as men-
tioned above) need at least two pairs of fine and coarse-resolution im-
ages to improve the performance of STARFM (Hilker, Wulder, Coops,
Linke, et al., 2009; Zhu et al., 2010). Huang and Zhang (2014) also
need two Landsat images to improve the performance of unmixing-
based method in a situation where land cover type has changed. How-
ever, in many regions, it is not easy to collect two pairs of available im-
ages within a reasonable period (e.g., a season or a year) because of
cloud contamination, sub-optimal acquisition schedule, data archive ac-
cess restrictions or other reasons (Ju & Roy, 2008; Senf et al., 2015). The
scan-line corrector failure on Landsat 7 in May of 2003 led to regular
data gaps in all scenes collected since then. In addition, Landsat 5 data
are sparse in regions with no local receiver, and these places include
many of the places with persistent cloud cover. This problem is more
serious when these spatiotemporal data fusion methods are applied to
regions with rapid seasonal changes or frequent disturbances, such as
cropland (Watts et al., 2011). The data record is poor in many ecologi-
cally important areas on the planet (Yu, Shi, & Gong, 2015), and we
sought a method that would require only one cloud-free observation
at the spatial resolution of Landsat.

To overcome the above-mentioned limitation of current spatiotem-
poral data fusion methods, we propose a Flexible Spatiotemporal DAta
Fusion (FSDAF) model in this paper. Its goal is to more accurately pre-
dict fine-resolution images in heterogeneous areas by capturing both
gradual and abrupt land cover type changes and it requires minimal
input data. In particular, it requires only one imagewith fine spatial res-
olution. We test FSDAF with simulated images and real Landsat images
and then compare it with other methods that require only one fine res-
olution image as input: we compare it with STARFM and an unmixing
based method. In the rest of the paper, we will introduce steps of
FSDAF in Section 2, describe the test experiments and results in
Sections 3 and 4, and discuss the strengths and limitations of FSDAF in
the last section.

2. Methodology

2.1. Notations and definitions

Before describing the details of FSDAF, some notations and defini-
tions are given here for convenience.

m the number of fine pixels (also named as subpixels) within
one coarse pixel;

(xi, yi) coordinate index of the ith pixel;
i index of a coarse pixel;
j index of a fine pixel within one coarse pixel, j = 1,…, m;
C1(xi, yi, b) and C2(xi, yi, b) band b value of coarse pixel (e.g., MODIS) at

location (xi, yi) observed at t1 and t2 respectively;
F1(xij, yij, b) and F2(xij, yij, b) band b value of the jth fine pixel

(e.g., Landsat) within the coarse pixel at location (xi, yi)
observed at t1 and t2 respectively;

fc(xi, yi) the fraction of class c of the (xi, yi) coarse pixel;
ΔC(xi, yi, b) change of band b value of the (xi, yi) coarse pixel between t1

and t2;
ΔF(c, b) change of band b value of class c at fine resolution between t1

and t2.

2.2. FSDAF

In FSDAF, the input data include one pair of coarse- and fine-
resolution images acquired at t1 and one coarse-resolution image at t2
(Fig. 1). The output is a predicted fine-resolution image at t2. Before
the implementation of FSDAF, both coarse- and fine-resolution images
should be calibrated to the same physical quantity, such as top-of-
atmosphere reflectance or surface reflectance, and they need to be co-
registered. The co-registration process can be done in the following
steps: re-projecting coordinates of coarse-resolution image to that of
the fine-resolution image if they are different, resampling coarse-
resolution image to fine resolution by nearest neighbor algorithm,
geo-referencing one image to another one by selecting control points
or maximizing correlation between the two images, and then cropping
them to cover the same area (Emelyanova et al., 2013; Gevaert &
García-Haro, 2015). To further reduce the difference between coarse-
and fine-resolution data caused by sensor configuration and processing
chains, a radiometric normalization can be applied by assuming a linear
relationship between both data sets (Gao,Masek,Wolfe, &Huang, 2010;
Gevaert & García-Haro, 2015). FSDAF includes sixmain steps: (1) classi-
fy the fine-resolution image at t1; (2) estimate the temporal change of
each class in the coarse-resolution image from t1 to t2; (3) predict the
fine-resolution image at t2 using the class-level temporal change and
calculate residuals at each coarse pixel; (4) predict the fine-resolution
image from the coarse image at t2with a Thin Plate Spline (TPS) interpo-
lator; (5) distribute residuals based on TPS prediction; and (6) get the
final prediction of the fine-resolution image using information in neigh-
borhood. Detailed descriptions of each step in FSDAF are given below.

To intuitively illustrate procedures of the proposed FSDAF method,
we use simulated images to show the outputs of intermediate steps.
The two pairs of simulated images include both gradual change
(e.g., phenology) and land cover type change. Fig. 2 shows the two
pairs of simulated images with only one band. Fig. 2(a) and (b) are
two Landsat-like images at t1 and t2 (30 m resolution, size 480 × 480
pixels), while Fig. 2(c) and (d) are their corresponding MODIS-like
images (480 m resolution) which were aggregated from Fig. 2(a) and



Fig. 2. Simulated Landsat-like images at t1 (a) and t2 (b) and their corresponding MODIS-
like images (c) and (d).
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(b) by averaging values of all fine pixels inside a coarse pixel. There are
three objects simulated: a circle, a rectangle, and a line. From t1 to t2, the
circle increases its radius from 56 pixels to 72 pixels, and its reflectance
value increases from 0.01 to 0.05. The rectangle and the line remain the
same size but change their values from 0.3 to 0.2. The background has a
constant value of 0.5. Randomnoise of less than±0.001was also added
to the simulated Landsat-like images.

2.2.1. Classify fine-resolution image at t1
To get the fraction of each class within one coarse pixel, the fine-

resolution image at t1 is classified by either supervised or unsupervised
algorithms using all image bands. The selection of a classification
algorithm depends on the specific application and data availability. If
the ground reference data are available, supervised classifiers such as
support vector machines and maximum likelihood classifiers can be
used. Otherwise, unsupervised classifiers can automatically divide the
fine-resolution image into several spectral classes. In this study, an un-
supervised classifier, i.e., ISODATA, is used to classify the input fine-
resolution image tomake FSDAF automatic. Users need to set minimum
andmaximum number of classes in ISODATA, which can be determined
by users' prior knowledge of the study area or visual inspection of the
input fine-resolution image. ISODATA outputs optimal classification re-
sults throughmerging and splitting classes according to the distribution
of pixel values in feature space (Ball & Hall, 1965). The simulated fine
image at t1 (Fig. 2(a)) was finally classified into three spectral classes:
the circle object is class 1, the background is class 2, and the rectangle
and the line are class 3.

After classification of thefine-resolution image at t1, we can calculate
the class fractionswithin a coarse pixel through counting the number of
fine pixels of each class:

f c xi; yið Þ ¼ Nc xi; yið Þ=m ; ð1Þ

where Nc (xi, yi) is the number of fine pixels belonging to class cwithin
the coarse pixel at (xi, yi).
2.2.2. Estimate the temporal change of each class
For band b, the temporal change of the coarse pixel at (xi, yi) is:

ΔC xi; yi; bð Þ ¼ C2 xi; yi; bð Þ−C1 xi; yi; bð Þ : ð2Þ

According to spectral linear mixing theory, the temporal change of a
coarse pixel is the weighted sum of the temporal change of all classes
within it:

ΔC xi; yi; bð Þ ¼
Xl
c¼1

f c xi; yið Þ � ΔF c; bð Þ: ð3Þ

where l is the number of classes. Eq. (3) is valid onlywhen no land cover
type change happens between t1 and t2. Theoretically, in order to solve
for ΔF(c, b), c = 1,…, l, we need at least l equations. Assuming that the
temporal change of each class is the same among all coarse pixels, we
can select n (n N l) coarse pixels to compose a system of linear mixture
equations:

ΔC x1; y1; bð Þ
⋮

ΔC xi; yi; bð Þ
⋮

ΔC xn; yn; bð Þ

2
66664

3
77775 ¼

f 1 x1; y1ð Þ f 2 x1; y1ð Þ ⋯ f l x1; y1ð Þ
⋮ ⋮ ⋮

f 1 xi; yið Þ f 2 xi; yið Þ ⋯ f l xi; yið Þ
⋮ ⋮ ⋮

f 1 xn; ynð Þ f 2 xn; ynð Þ ⋯ f l xn; ynð Þ

2
66664

3
77775

ΔF 1; bð Þ
⋮

ΔF c; bð Þ
⋮

ΔF l; bð Þ

2
66664

3
77775
ð4Þ

ΔF(c, b), c=1,…, l, can be solved through the inversion of Eq. (4) by
computing a least squares best fit solution. However, there are two fac-
tors which will affect the accuracy of inversion: collinearity and land
cover type change. First, the collinearity problem happens when the
fractions of one class in these selected coarse pixels have a linear rela-
tionship with fractions of any other classes. To avoid this situation, for
each class k coarse pixels are selected that have the highest fraction of
a given class, i.e., k purest coarse pixels of that class. Second, for these
k purest coarse pixels, if some of them have land cover type change,
the temporal changeΔC of these coarse pixels would be outliers assum-
ing that land cover type change happens in a relatively small portion of
the whole image and pixels with the largest changes are relatively rare.
Accordingly, of the k purest coarse pixels of each class, the ones with
ΔC outside of the range of 0.1–0.9 quantiles (or a narrower range,
e.g., 0.25–0.75, if land cover type change is large through inspecting
the two coarse-resolution images) are excluded. After the above two-
step selection, a total of n coarse pixels are used to compose Eq. (4).
For the simulated images in Fig. (2), the solved change ΔF of the three
classes are 0.03998, −0.00002, and −0.09998, while the true change
values are 0.04, 0.00, −0.10 respectively, indicating that the change
values at fine resolution have been accurately estimated from the linear
equation system.

2.2.3. Predict fine-resolution image and residuals from temporal changes
The temporal change of each class can be assigned to relevant fine

pixels without considering the within-class variability. If land cover
types do not change between t1 and t2, adding the temporal change to
values of fine pixels observed at t1 can obtain the prediction of values
of fine pixels at t2:

FTP2 xij; yij; b
� �

¼ F1 xij; yij; b
� �

þ ΔF c; bð Þ if xij; yij
� �

belongs to class c :

ð5Þ

where F2
TP(xij,yij,b) is referred to as the temporal prediction because

it only uses the temporal change information between input and
prediction dates rather than any spatial information, such as spatial
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dependence. Fig. 3(a) shows the temporal production of simulated
Landsat-like image at t2. Compared with the true image in Fig. 2(b),
we can see that temporal prediction has accurately estimated the
value of pixels without land cover type change but it failed to predict
the expanded circle object.

For each coarse pixel, its value is equal to the sum of values of all fine
pixels inside it and a bias factor ξ which is the system difference be-
tween two sensors caused by differences in bandwidth and solar geom-
etry (Gao et al., 2006). This system difference can be considered
constant between t1 and t2, so the values of coarse pixels at t1 and t2
can be written as:

C1 xi; yi; bð Þ ¼ 1
m

Xm
j¼1

F1 xij; yij; b
� �

þ ξ ; ð6Þ

C2 xi; yi; bð Þ ¼ 1
m

Xm
j¼1

F2 xij; yij; b
� �

þ ξ : ð7Þ

We already have a temporal prediction of the fine-resolution image
at t2, but it is not a very accurate prediction where land cover type
change has occurred and large within-class variability exists. We intro-
duce a residual term R between the true values and temporal prediction
of fine pixels:

1
m

Xm
j¼1

F2 xij; yij; b
� �

¼ 1
m

Xm
j¼1

FTP2 xij; yij; b
� �

þ R xi; yi; bð Þ : ð8Þ

From Eqs. (6)–(8), we can derive:

R xi; yi; bð Þ ¼ ΔC xi; yi; bð Þ− 1
m

"Xm
j¼1

FTP2 xij; yij; b
� �

−
Xm
j¼1

F1 xij; yij; b
� �#

:

ð9Þ
Fig. 3. Temporal prediction (Eq. (5)) (a) and spatial prediction (Eq. (13)) (b) of simulated
Landsat-like image at t2, the homogeneity index image (Eq. (16)) (c) and estimation of
total change (Eq. (20)) (d).
From Eq. (8), we can see that distributing residual R(xi, yi, b) to fine
pixels within a coarse pixel is a key step to improve the accuracy of
temporal prediction of fine pixel value at t2.

2.2.4. Get TPS interpolation for guiding residual distribution
As described above, residuals of the temporal prediction mainly

come from land cover type change and within-class variability. Howev-
er, since the fine-resolution image is unknown at t2, all true information
about land cover type change andwithin-class variability is contained in
the coarse-resolution image at t2. Therefore, downscaling the coarse-
resolution image at t2 to fine resolution can get another prediction of
the fine-resolution image at t2, which further helps to distribute the
residuals from the temporal prediction. Since this prediction only uses
spatial dependence among the coarse pixels at t2, rather than any
information at t1, we refer to this prediction as the spatial prediction.

In this method, we adopt a thin plate spline (TPS) method to down-
scale the coarse-resolution image at t2. TPS is a spatial interpolation
technique for point data based on spatial dependence (Dubrule,
1984). The value of each coarse pixel is attributed to the location at
the center to get a regular point data set. TPS first fits a spatial depen-
dent function using known point data through minimizing an energy
function. Given N known points, the basic TPS function for band b is
defined as:

f TPS−b x; yð Þ ¼ a0 þ a1xþ a2yþ 1
2

XN
i¼1

bir2i log r2i ; ð10Þ

with the constraints:

XN
i¼1

bi ¼
XN
i¼1

bixi ¼
XN
i¼1

biyi ¼0 ; ð11Þ

where ri
2=(x−xi)2+(y−yi)2. The coefficients in Eq. (10) are

optimized by minimizing:

ETPS−b ¼
XN
i¼1

C2 xi; yi; bð Þ− f TPS−bðxi; yiÞk k2 : ð12Þ

After optimizing the parameters in the TPS function, it is then used to
predict the values of each fine pixel:

FSP2 xij; yij; b
� �

¼ f TPS−b xij; yij
� �

: ð13Þ

Since TPS prediction only uses spatial dependence of the coarse
pixels, it produces a smooth result. In other words, TPS prediction cap-
tures the spatial patterns shown in the coarse image but cannot retrieve
all spatial details. The strength of TPS prediction is that it maintains the
land cover type change signals and local variability in the result. This is
the very limitation of the temporal prediction. Compared with the tem-
poral prediction (Fig. 3(a)), we can see that spatial prediction of the
simulated Landsat-like image at t2 (Fig. 3(b)) better captures the
expanded circle object, but it has larger errors in the small or narrow
objects (i.e., the line in the simulated image) and boundaries between
two classes.

2.2.5. Distribute residuals to fine pixels
As mentioned before, the distribution of the residuals from the tem-

poral prediction to individual fine pixels inside each coarse pixel is the
key step to improving the accuracy of the temporal prediction. Existing
downscaling approaches distribute residuals to subpixels equally (Chen,
Li, Chen, Rao, & Yamaguchi, 2014), orweighted by the initial estimate of
each subpixel (Liu & Zhu, 2012). These simple strategies ensure that the
re-aggregated fused fine-resolution image exactly matches the original
coarse-resolution image, but they may not give help to improve



Fig. 4. Diagram of similar pixels selected in a neighborhood of the target pixel.
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accuracy of individual subpixels, because they do not consider the real
sources of where the residuals come from. Errors of temporal prediction
(Eq. 9) are mainly caused by land cover type change and within-class
variability across the image. Therefore, this study designs a newweight-
ed function to distribute more residuals to the subpixels with larger
errors.

In the case of the homogenous landscape, we can assume that the
TPS spatial prediction best represents true values of the fine pixels at
t2, and the error of the temporal prediction can be estimated as:

Eho xij; yij; b
� �

¼ FSP2 xij; yij; b
� �

−FTP2 xij; yij; b
� �

: ð14Þ

However, the error estimated fromEq. (14) is not valid forfinepixels
in heterogeneous landscapes, or at edges between two land cover types,
because TPS prediction smoothes these edges in space. Where the land-
scape is heterogeneous, or at land cover edges, assuming that all fine
pixels within a coarse pixel with equal error is reasonable if we have
no other information available:

Ehe xij; yij; b
� �

¼ R xi; yi; bð Þ : ð15Þ

To integrate the two cases into one weighted function to guide the
residual distribution, here we introduce a homogeneity index:

HI xij; yij
� �

¼
Xm
k¼1

Ik

 !,
m ; ð16Þ

where Ik=1when the kth fine pixels within amovingwindow (its size
is one coarse pixel) with the same land cover type as the central fine
pixel (xij, yij) being considered, otherwise Ik = 0. HI ranges from 0
to 1, and larger values indicate a more homogenous landscape
(see Fig. 3(c)). The weight for combining the two cases through HI is:

CW xij; yij; b
� �

¼ Eho xij; yij; b
� �

� HI xij; yij
� �

þ Ehe xij; yij; b
� �

� 1−HI xij; yij
� �h i

ð17Þ

The weight is then normalized as:

W xij; yij; b
� �

¼ CW xij; yij; b
� �,Xm

j¼1

CW xij; yij; b
� �

: ð18Þ

Then, the residual distributed to jth fine pixel is:

r xij; yij; b
� �

¼ m� R xi; yi; bð Þ �W xij; yij; b
� �

: ð19Þ

Summing the distributed residual and the temporal change, we can
obtain the prediction of the total change of a fine pixel between t1 and t2
(see Fig. 3(d)):

ΔF xij; yij; b
� �

¼ r xij; yij; b
� �

þ ΔF c; bð Þ if xij; yij
� �

belongs to class c:

ð20Þ

2.2.6. Obtain a robust prediction of fine image using neighborhood
Theoretically, adding the total change term obtained in Eq. (20) to

the value of fine pixel at t1 can get the final prediction at t2. However,
this prediction is on a pixel-by-pixel basis, which inevitably has many
uncertainties caused by errors in previous steps and noise contained
in all input images. In addition, the distribution of residuals is imple-
mented within each coarse pixel, which leads to block effects as
shown in Fig. 3(d). STARFMand ESTARFMboth use additional neighbor-
hood information to reduce the uncertainties in final predictions and
while mitigating block effects (Gao et al., 2006; Zhu et al., 2010). In
this study, we employ a similar strategy as STARFM and ESTARFM to
get a more robust prediction of fine pixel values at t2. First, in the fine
image at t1, for a target fine pixel (xij, yij), we select n fine pixels
(named as similar pixels including the target pixel itself) of the same
class and with the smallest spectral difference from the target fine
pixel within its neighborhood (Fig. 4). The spectral difference between
kth fine pixel and the target pixel is defined as:

Sk ¼
XB
b¼1

½ F1 xk; yk; bð Þ−F1ðxij; yij; bÞ
�� ��=F1 xij; yij; b

� �
� : ð21Þ

For the number of similar pixels n, there is a tradeoff between accu-
racy of the fused results and computing time. Through trial-and-error
experiments, we found that the accuracy of fused results will be stable
with n N 20, so we recommend selecting 20 similar pixels in practice.

Second, the weight of each similar pixel is determined by the spatial
distance between similar pixels and the target pixel. The spatial distance
of kth similar pixel Dk is a relative distance defined in ESTARFM (Zhu
et al., 2010):

Dk ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk−xij
� �2 þ yk−yij

� �2r �
w=2ð Þ ; ð22Þ

wherew is the size of neighborhood,which is determined by the homo-
geneity of the study area and commonly the size of one to three coarse
pixels. Using a larger size in more heterogonous areas ensures that
enough similar pixels are selected (Zhu et al., 2010). Dk is a relative
distance ranging from 1 to 1+

ffiffiffi
2

p
. Assuming that similar pixels that

are further away contribute less to estimate target pixel, the weight
for the kth similar pixel is calculated as:

wk ¼ 1=Dkð Þ
�Xn

k¼1

1=Dkð Þ : ð23Þ

Change information of all similar pixels is summed by weight to get
the total change value of the target pixel. Adding this final estimate of
total change to the initial observation at t1 yields the final prediction
of the target pixel value at t2:

F̂2 xij; yij; b
� �

¼ F1 xij; yij; b
� �

þ
Xn
k−1

wk � ΔF xk; yk; bð Þ : ð24Þ

3. Testing experiment

3.1. Study area and data

FSDAF was tested by both simulated data in Fig. 2 and real satellite
images. For the real satellite images, fine-resolution images are Landsat
images, while corresponding coarse-resolution images are simulated
MODIS-like images aggregated from the original Landsat images. In
this study, we used simulated MODIS-like images rather than real
MODIS images for algorithm tests because the accuracy of spatiotempo-
ral data fusion algorithms are affected by the radiometric and geometric
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inconsistencies between two sensors (Gevaert & García-Haro, 2015).
Using simulated coarse-resolution images can eliminate the interfer-
ence of these confounding factors so that we can directly compare the
performance of different methods given that the difference in accuracy
is only caused by different methods themselves. This strategy was used
in recent studies to assess the performance of spatiotemporal data fu-
sion methods (Gevaert & García-Haro, 2015; Wu et al., 2012). Applica-
tion of the proposed method to real coarse-resolution images and
assessment of the influence of radiometric and geometric inconsis-
tencies on the accuracy are beyond the objectives of this study, but
they will be explored in our future studies.

Landsat imageswere provided by Emelyanova et al. (2013) and have
been atmospherically corrected. These Landsat images cover two study
sites with contrasting spatial and temporal dynamics, i.e., one with het-
erogeneous landscape and another with land cover type change. These
two sites have been used to evaluate different spatiotemporal data fu-
sion methods, including STARFM and ESTARFM, in a previous study
(Emelyanova et al., 2013), and the authors make these data sets freely
available to remote sensing community. These data sets can be used
as benchmark for comparing or testing spatiotemporal data fusion
methods. For example, these data were used to test a newly developed
method for blending MODIS NDVI time-series and Landsat images
(Rao, Zhu, Chen, & Wang, 2015).

In the first site with heterogeneous landscape, we used two cloud-
free Landsat 7 ETM+ images (excluding the 6th thermal band and 8th
panchromatic band) covering an area of 20 km × 20 km in southern
New South Wales, Australia (145.0675°E, 34.0034°S). The false color
composite of Landsat images and their corresponding aggregated
MODIS-like images were shown in Fig. 5. The two Landsat images
Fig. 5. Test data in a heterogeneous landscape: Landsat images (800 × 800 pixels) acquired on (
aggregated from (a) and (b). All images use NIR-red-green as RGB, and MODIS-like images are
(Path/Row 93/84) were acquired on November 25, 2001 (Fig. 5(a))
and January 12, 2002 (Fig. 5(b)) respectively. The major land cover
types in this area are irrigated rice cropland, dryland agriculture, and
woodlands. Rice croplands are often irrigated in October–November
(Emelyanova et al., 2013). In Fig. 5, we can see that there are many
small parcels of cropland in this site. These cropland parcels range in
size from one to several MODIS pixels, have irregular shapes and are
spatially scattered. Comparing the two Landsat images, it is clear that ir-
rigated cropland (i.e., darker pixels in Fig. 5(a)) has larger reflectance
changes than surrounding dryland agriculture or woodlands. In this
experiment, we used the pair of images on November 25, 2001
(Fig. 5(a) and (c)) and the MODIS-like image on January 12, 2002
(Fig. 5(c)) to predict the Landsat image in Fig. 5(b). In the process of
FSDAF, Fig. 5(a) was classified into three spectral classes by ISODATA
method.

The second site with land cover type change is located in northern
New South Wales, Australia (149.2815°E, 29.0855°S). This site covers
an area of 20 km × 20 km and is relatively homogenous, with large
parcels of croplands and natural vegetation (Fig. 6). Two Landsat
images were acquired on November 26, 2004 and December 12, 2004
(Path/Row 91/80). A large flood occurred in December 2004. From the
Landsat image of December 12, 2004 (Fig. 6(b)), we can see a large in-
undated area. The flood event caused land cover type change to water
in some pixels from Fig. 6(a) to (b). In this experiment, the pair of
Landsat and MODIS-like images of November 26, 2004 (Fig. 6(a) and
(c)) and the MODIS-like image of December 12, 2004 (Fig. 6(d)) were
used to predict the Landsat image of December 12, 2004 (Fig. 6(b)). In
the process of FSDAF, Fig. 6(a) was classified into four spectral classes
by ISODATA method.
a) November 25, 2001 and (b) January 12, 2002, (c) and (d) are 500mMODIS-like images
resampled to have same image size as the Landsat images.



Fig. 6. Test data in areawith land cover type change: Landsat images (800× 800 pixels) acquired on (a) November 26, 2004 and (b) December 12, 2004, (c) and (d) are 500mMODIS-like
images aggregated from (a) and (b). All images use NIR-red-green as RGB and MODIS-like images are resampled to have the same image size as the Landsat images.
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3.2. Comparison and evaluation

The performance of FSDAF was also compared with the STAFRM al-
gorithm (Gao et al., 2006) and an unmixing-based data fusion (UBDF)
algorithm (Zurita-Milla et al., 2008), because both algorithms have
been widely used, and each of them only needs one-pair of fine- and
coarse-resolution images. The fine-resolution images predicted by all
methods were compared with the true images quantitatively and
visually. Several indices were calculated to represent different aspects
of accuracy. Root mean square error (RMSE) was used to gauge the dif-
ference between the predicted reflectance and the actual reflectance.
Correlation coefficient r was used to show the linear relationship
between predicted and actual reflectance. Average difference (AD) be-
tween predicted and true images was used to represent the overall
bias of predictions. Positive AD indicates that the fused image generally
overestimates the actual values, while negative ADmeans underestima-
tion. Besides the above quantitative assessment, a visual assessment
index, structure similarity (SSIM) (Wang, Bovik, Sheikh, & Simoncelli,
2004), was also used to evaluate the similarity of the overall structure
between the true and predicted images:

SSIM ¼ 2μXμY þ C1ð Þ 2σXY þ C2ð Þ
μ2
X þ μ2

Y þ C1
� �

σX þ σY þ C2ð Þ ; ð25Þ

where μX and μY aremeans,σX and σY are variance of true and predicted
images, σXY is the covariance of the two images, C1 and C2 are two small
constants to avoid unstable results when the denominator of Eq. (25) is
very close to zero. A SSIM value closer to 1 indicates more similarity be-
tween the two images. To better demonstrate the effectiveness of data
fusion methods, these four accuracy indices were also calculated be-
tween the actual fine-resolution image at prediction time and the
input fine-resolution image. Indices from two actual fine-resolution im-
ageswere used as baseline to evaluatewhether data fusionmethods can
add correct temporal information to the input fine-resolution image.

Images produced by spatiotemporal data fusion methods have vari-
ous applications (Emelyanova et al., 2013). Land cover classification is
one important application of these fused images. To evaluate whether
or not FSDAF can benefit the further applications, we classified the orig-
inal Landsat image and all predicted images of the second site experi-
enced a large flood in December 2004 (Fig. 6) to get land cover maps.
To exclude effects from other factors, we applied the same classifier,
i.e., support vector machine (SVM), and the same set of training data
to all images. These images were classified into vegetation, low-
vegetation, inundated land, andwater. The classificationmap of original
Landsat image was used as reference map to quantitatively assess the
agreement between it and other three classification maps of predicted
images by error matrix (Liu, Frazier, & Kumar, 2007). Overall accuracy
(oa) and kappa coefficient derived from error matrix were reported to
evaluate the agreement at map level. For the category level, the average
value of user's and producer's accuracy (aup) was used to assess the
agreement of each class (Liu et al., 2007).

4. Results

4.1. Test with simulated data

Through visually comparing the predicted results via the three
methods (Fig. 7), we can see that all of them canmaintain spatial details



Table 2
Accuracy assessment of three data fusion methods applied to the simulated dataset in
Fig. 2. The units are reflectance (RMSE = Root Mean Square Error, r = correlation coeffi-
cient, AD= average difference from true reflectance, SSIM= structural similarity).

Method RMSE r AD SSIM

Input fine image 0.0846 0.836 0.0251 0.8129
STARFM 0.0405 0.9617 0.0020 0.9592
UBDF 0.0583 0.9187 0.0003 0.9131
FSDAF 0.0256 0.9841 0.0001 0.9843

Fig. 7. Comparisons between the original and the predicted Landsat-like images for the simulated data set: (a) original simulated Landsat-like image at t2, (b) predicted image by STARFM,
(c) predicted image by UBDF, and (d) predicted image by the proposed FSDAF method.
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where no land cover type change happens. For the expanded circle
object, however, UBDF produced a blurred zone around the circle
(Fig. 7(c)). STARFM produced a less blurry zone than UBDF, but the cir-
cular object is still very different from the true image. In contrast, the
circle object predicted by FSDAF is much more similar in shape to the
true image than the object predicted by other two methods, suggesting
that FSDAF is able to produce a satisfactory simulation of the shape of
objects that have undergone land cover type change. Quantitative com-
parisons show that predicted images by all data fusion methods have
smaller RMSE and AD, and higher r and SSIM than those computed be-
tween the input fine-resolution image and the actual fine-resolution
image at prediction time (Table 2), which implies that all data fusion
methods can more or less gain temporal information from coarse-
resolution images to adjust the values of fine pixels between t1 and t2.
Fig. 8. Original Landsat image of January 12, 2002 (a) and its p

Fig. 9. Zoom in scenes of area marked in Fig. 8(a): original Landsat image of November 25, 20
(c), UBDF (d), and FSDAF (e).
Among the three methods, FSDAF has the smallest errors and highest
similarity to the true image. STARFM performed worse than FSDAF but
better than UBDF. The prediction of both FSDAF and UBDF is nearly
unbiased, while STARFM overestimated the true values.

4.2. Test with satellite images in heterogeneous landscape

Fig. 8 presents the Landsat-like image on January 12, 2002 predicted
by the threemethods. A zoom-in areawas also used to highlight the dif-
ference between predicted images and the actual image (Fig. 9). From
the visual comparison, the images that the three methods predict are
generally similar to the original Landsat image in Fig. 8(a), suggesting
that all methods are able to capture the general temporal change in
croplands from November 25, 2001 to January 12, 2002. However, the
predicted image of FSDAF is more similar to the original image than
are the images predicted by STARFM and UBDF in regards to spatial de-
tails, which can be seen from the zoom-in images in Fig. 9. Particularly,
comparing zoom-in area of the two original Landsat images, we can see
that there is a parcel of cropland changed from vegetation to non-
vegetation. For this small parcel, both STARFM and UBDF cannot accu-
rately predict its pixel values. In addition, a block effect can be seen in
the result of UBDF. In contrast, FSDAF is better at preserving the shapes
of small objects. Comparing the quantitative indices calculated using the
input Landsat image from November 25, 2001 with the fused results
redicted images by STARFM (b), UBDF (c), and FSDAF (d).

01 (a), original Landsat image of January 12, 2002 (b), and predicted images by STARFM



Table 3
Accuracy assessment of three data fusionmethods applied to the heterogeneous study site (Fig. 8). The units are reflectance (RMSE=RootMean Square Error, r= correlation coefficient,
AD= average difference from true reflectance, SSIM = structural similarity).

Landsat 11/25/2001 STARFM UBDF FSDAF

RMSE r AD SSIM RMSE r AD SSIM RMSE r AD SSIM RMSE r AD SSIM

band1 0.028 0.596 −0.016 0.473 0.018 0.771 0.000 0.738 0.019 0.781 0.000 0.780 0.014 0.872 0.000 0.867
band2 0.045 0.603 −0.028 0.447 0.028 0.775 0.000 0.741 0.030 0.756 0.000 0.755 0.022 0.872 0.000 0.865
band3 0.068 0.728 −0.038 0.555 0.045 0.825 0.000 0.806 0.052 0.778 0.001 0.778 0.034 0.900 0.000 0.894
band4 0.131 0.093 −0.092 0.087 0.061 0.506 −0.001 0.482 0.065 0.416 0.000 0.392 0.045 0.743 0.000 0.718
band5 0.092 0.798 −0.065 0.769 0.052 0.860 0.000 0.859 0.061 0.814 0.001 0.814 0.044 0.901 0.000 0.899
band7 0.062 0.803 −0.036 0.784 0.041 0.865 0.000 0.863 0.046 0.838 0.001 0.838 0.035 0.903 0.000 0.902
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(Table 3), we can see that all three methods have successfully added
certain temporal change information to the input Landsat image to get
the prediction on January 12, 2002. For all 6 bands, the fused results of
FSDAF have smaller RMSE and higher r and SSIM than STARFM and
UBDF (Table 3), suggesting that FSDAF predictions are more accurate
than those of STARFM andUBDF. Among all bands, the 4th near infrared
(NIR) band has the largest difference in accuracy between FSDAF and
other two methods (RMSE 0.045 vs. 0.061 and 0.065, r 0.743 vs. 0.506
and 0.416, SSIM 0.718 vs. 0.482 and 0.392). The scatter plots of actual
vs. predicted NIR band by the three methods also confirmed that values
predicted by FSDAF are closer to the actual values than the other two
methods (Fig. 10). The two Landsat images were acquired within the
early growing season of crops, so the NIR band experienced larger
reflectance change than other bands. Compared with STARFM and
Fig. 10. Scatter plots of the actual and predicted values for NIR band (darker color indicates a
Fig. 8(b)–(d), respectively.

Fig. 11.Original Landsat image of December 12, 2004 (a) and its predicted images by STARFM (
The lower row images are zoom-in scenes of area marked in the upper row images.
UBDF, the large improvement in predicting the NIR band by FSDAF indi-
cates that it is more capable of capturing large temporal change be-
tween input and prediction dates. For the overall prediction bias, all
methods can obtain nearly unbiased results for each band (|AD|b0.001).

4.3. Test with satellite images experiencing land cover type change

Fig. 11 presents Landsat-like images predicted by the threemethods,
the original Landsat image of December 12, 2004, and zoom-in scenes of
the region inundated by floods to showmore details. It is apparent that
the Landsat-like image predicted by FSDAF seems to be closer to the
true image than are those predicted by STARFM and UBDF. The zoom-
in images show that FSDAF successfully captures reflectance changes
in pixels that have been inundated. In contrast, STARFM predicted a
higher density of points, and the line is 1:1 line). Panels (a)–(c) are the scatter plots of

b), UBDF (c), and FSDAF (d). White line in (a) delineates the boundaries of inundated area.



Table 4
Accuracy assessment of three data fusion methods applied to the study site with land cover type change (Fig. 11). The units are reflectance (RMSE = Root Mean Square Error, r =
correlation coefficient, AD= average difference from true reflectance, SSIM= structural similarity).

Landsat 11/26/2004 STARFM UBDF FSDAF

RMSE r AD SSIM RMSE r AD SSIM RMSE r AD SSIM RMSE r AD SSIM

band1 0.030 0.420 0.023 0.394 0.011 0.816 0.000 0.803 0.018 0.506 0.000 0.505 0.010 0.855 0.000 0.848
band2 0.040 0.395 0.030 0.368 0.016 0.812 0.000 0.800 0.025 0.552 0.000 0.551 0.013 0.865 0.000 0.857
band3 0.053 0.378 0.041 0.350 0.019 0.792 0.000 0.778 0.030 0.524 0.000 0.523 0.016 0.852 0.000 0.843
band4 0.072 0.601 0.057 0.534 0.026 0.875 0.000 0.868 0.045 0.682 0.000 0.679 0.022 0.917 0.000 0.910
band5 0.147 0.426 0.124 0.346 0.045 0.841 0.000 0.828 0.071 0.613 0.001 0.610 0.040 0.881 0.001 0.872
band7 0.121 0.441 0.106 0.348 0.033 0.839 0.000 0.827 0.052 0.607 0.001 0.604 0.030 0.874 0.001 0.864
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more “blurry” image with less clear boundaries for the inundated area
and UBDF predicted an image with very large errors in the inundated
area. The quantitative indices calculated from fused results and from
the input Landsat image on November 26, 2004 demonstrate that all
data fusion methods have captured certain temporal change informa-
tion between the input and prediction images (Table 4). For all 6
bands, FSDAF provided the most accurate predictions with the smallest
RMSE and highest r and SSIM. STARFMhas lower accuracy than FSDAF in
terms of quantitative assessment but it performed much better than
UBDF. Scatter plots of NIR bands shown in Fig. 12 also suggest that
values predicted by FSDAF are closer to actual values than the other
two methods. For the overall bias of the prediction, the small AD values
reveal that all three methods obtained nearly unbiased results. Table 4
shows quantitative assessment for the whole image. To better compare
their performance for predicting pixels at the boundaries of the inun-
dated area, we also calculated accuracy indices of all methods only
using pixels within the region marked in Fig. 11(a) (Table 5). The im-
provement in accuracy with FSDAF is most obvious for the marked
boundaries of inundated area. The 5th band is the onewithmost change
when flooded. For this band, the SSIM values of FSDAF, STARFM, and
UBDF are 0.787, 0.563, and 0.303 respectively, suggesting that FSDAF
is more powerful for predicting pixels located in a complex area, i.e., a
transitional area of change vs. non-change, which is a condition that
challenges existing spatiotemporal data fusion methods.

Table 6 indices of agreement between the classifications of the pre-
dicted images (Fig. 11(b)–(d)) and classification of the original Landsat
image (Fig. 11(a)) using the same training data. Higher values of oa and
kappa suggest a higher similarity between the classification map of a
given predicted image and the original image. Classification of the
FSDAF-predicted image has the largest values oa and kappa, followed
by FSTARFM, and UBDF has lowest indices of agreement. For individual
classes, FSDAF also has higher agreement than STARFM and UBDF for all
four of the classes. In particular, inundated land and water mapped in
image predicted by FSDAF has much higher agreement than the other
two methods, suggesting that FSDAF can better retrieve pixels that
have undergone land cover type change during the flooding event.
Fig. 12. Scatter plots of the actual and predicted values for NIR band (darker color indicates a
Fig. 11(b)–(d), respectively.
5. Discussion and conclusions

To increase our ability to monitor rapid land surface dynamics in
heterogeneous areas, spatiotemporal data fusion methods have been
developed to blend satellite images with different spatial and temporal
resolutions. However, previous methods have difficulties predicting
pixel values at fine resolution in heterogeneous areas where land
cover type change happens during the period between the input and
prediction dates when a fine spatial resolution image is only available
before the change. To overcome this limitation, this study proposed a
new spatiotemporal data fusion method, FSDAF, to blend temporally
sparse fine-resolution images with temporally dense coarse-resolution
images. FSDAF integrates ideas from unmixing based methods, spatial
interpolation, and STARFM into one framework. FSDAF was tested
here in a simple simulated scenario and two real landscapes and com-
pared with two popular spatiotemporal data fusion method, STARFM
and the unmixing-based data fusion method that also can use only
one fine resolution image as input. All results demonstrate that FSDAF
can achieve higher accuracy, keep more spatial details, and better re-
trieve land cover type changes in the predicted fine-resolution images.
The better results obtained by FSDAF can be attributed to the strengths
described next.

First, the temporal change of endmembers solved in FSDAF is more
robust than other unmixing based methods because of the following
strategies: 1) FSDAF solves the temporal change globally, avoidingmiss-
ing the small objects. Existing unmixing based methods often discard
endmembers with small fractional abundance (e.g., less than 0.1) in a
moving window to avoid unrealistic estimates (Gevaert & García-
Haro, 2015),which results inmissing temporal change for small objects.
It is common for endmembers with small fractional abundance in one
coarse pixel to be more abundant in other coarse pixels. In our method,
for each endmember, we seek a certain number of coarse pixels which
contain each endmember from the whole image, so we can predict
the changes for small objects. 2) FSDAF uses the purest coarse pixels
to compose the linear equation system,minimizing the impact of collin-
earity among coarse pixels on the solution. Existing unmixing methods
higher density of points, and the line is 1:1 line). Panels (a)–(c) are the scatter plots of



Table 5
Accuracy assessment of three data fusion methods only using pixels within the boundaries of inundated area marked in Fig. 11(a). The units are reflectance (RMSE= Root Mean Square
Error, r = correlation coefficient, AD= average difference from true reflectance, SSIM= structural similarity).

Landsat 11/26/2004 STARFM UBDF FSDAF

RMSE r AD SSIM RMSE r AD SSIM RMSE r AD SSIM RMSE r AD SSIM

band1 0.007 0.434 0.024 0.328 0.004 0.662 0.004 0.596 0.006 0.367 0.005 0.366 0.003 0.872 0.000 0.857
band2 0.010 0.363 0.031 0.259 0.006 0.622 0.005 0.572 0.008 0.384 0.007 0.382 0.005 0.875 0.000 0.859
band3 0.013 0.303 0.043 0.225 0.007 0.589 0.006 0.544 0.010 0.347 0.008 0.345 0.006 0.873 0.000 0.858
band4 0.022 0.532 0.091 0.371 0.007 0.693 0.008 0.659 0.012 0.497 0.014 0.474 0.005 0.872 0.002 0.854
band5 0.049 0.222 0.208 0.095 0.013 0.598 0.014 0.563 0.019 0.315 0.022 0.303 0.010 0.806 0.005 0.787
band7 0.037 0.291 0.156 0.125 0.008 0.638 0.009 0.600 0.013 0.321 0.015 0.310 0.007 0.804 0.003 0.779
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use coarse pixels within a moving window, which will usually be spa-
tially autocorrelated, causing collinearity in the equation system.
3) FSDAF refines the selected purest coarse pixels to avoid the effects
of land cover type change on temporal change estimation. Existing
unmixing based methods use endmember fractions obtained directly
from the input fine-resolution image, assuming no land cover type
change between the input image and the prediction date. However,
this assumption may be not valid in areas with frequent disturbance
or land cover type change, or a long time interval between input and
prediction dates. If no land cover type change happens, the temporal
change of selected purest coarse pixels for each endmember should be
similar to each other. In addition, pixels with land cover type change
are often rare compared with the no-change pixels in an image. There-
fore, it is reasonable to use quantiles to exclude coarse pixels with prob-
able land cover type change based on their relative abundance.

Second, local variability of temporal change caused by land cover
conversions orwithin-class differences ismodeledwell through the dis-
tribution of residuals. STARFM and unmixing based methods estimate
reflectance change within a moving window to account for within-
class differences. However, this moving-window strategy leads to inac-
curate estimates in highly mixed landscapes in STARFM and unrealistic
solutions for pixelswith high correlation in unmixing basedmethods. In
addition, these methods do not consider land cover type change. The
proposed method decomposes the total change of each fine pixel into
global change and local change. The local change, including both
within-class differences and land cover type change, is estimated
through distribution of the residuals from the temporal prediction. Be-
cause the coarse-resolution image is the only available information
showing the situation at the prediction date, it is used to guide the dis-
tribution of residuals. Assuming both within-class differences and land
cover type change have spatial dependence, FSDAF applies the TPS
method to downscale the coarse-resolution image at the prediction
date to fine resolution. The downscaled image can help us to judge
which pixels have land cover type change or within-class variance so
that we can better distribute residuals.

Third, FSDAF predicts images with good spatial continuity through
bringing in neighborhood information. This strategy has been used in
STARFM and STARFM-like methods but never in unmixing based
methods. Current unmixing based methods are implemented one
coarse pixel at a time. Although they use neighboring coarse pixels in
a moving window to solve spectral values or temporal change of
endmembers, the neighboring coarse pixels are not involved in
predictingfine pixelswithin the coarse pixel at the center of themoving
window. In other words, fine pixels with the same class in one coarse
Table 6
Indices of agreement between land cover classification of each predicted image in
Fig. 11(b)–(d) as compared with the actual Landsat image in Fig. 11(a).

oa kappa
aup

Vegetation Low-vegetation Inundated Water

FSTARFM 0.783 0.66 0.790 0.844 0.770 0.588
UBDF 0.650 0.47 0.649 0.752 0.595 0.356
FSDAF 0.835 0.74 0.815 0.875 0.820 0.689
pixel use the same solved values which are more or less different from
the neighboring coarse pixels. When the solved values between two
neighboring coarse pixels are significantly different from each other,
there inevitably exists discontinuity between fine pixels crossing the
boundaries of two neighboring coarse pixels. This discontinuity causes
block effects, i.e., the visible trace of coarse pixels. Like these unmixing
based method, the distribution of residuals in FSDAF is also done for
each individual coarse pixel. If we use the result after residual distribu-
tion as the final prediction, it may also have block effect. Considering
that closer same-class fine pixels should have similar temporal change
patterns, for each fine pixel, FSDAF uses the weighted average of its
surrounding fine pixels to obtain its total change. This step ultimately
improves the spatial continuity of predicted fine-resolution images.

Last, FSDAF has comparable efficiency with STARFM and unmixing
based methods, even though it seems to have more steps. Through
checking the computing time of each step in FSDAF, we found that the
last step, i.e., final prediction using information in neighborhood, is the
most time-consuming one. This is because other steps are implemented
in coarse pixels while the last step is done for each fine pixel. Actually,
the last step is like the procedure of STARFM. However, FSDAF only
uses 20 selected similar pixels while STARFM uses much more similar
pixels. In other words, FSDAF only needs to perform the neighborhood
calculation for a small portion of the similar pixels used in STARFM. As
a result, FSDAF needs nearly equal time as STARFM even though it has
more steps. For unmixing based methods, most computing time is
used to invert the linear equation system to obtain endmember values
at fine resolution for each coarse pixel. In contrast, FSDAF only needs
to invert the linear equation system one time, because it uses global
change values of endmembers. Therefore, FSDAF only needs about one
third more processing time than unmixing based methods despite its
additional steps.

Although FSDAF can predict both gradual reflectance change and
land cover type change between the input and prediction dates, it
cannot capture tiny changes in land cover type, for example if only a
few fine pixels experienced land cover type change and the change is
invisible in the coarse-resolution image. For the tiny change, a possible
solution is bringing another available fine-resolution image acquired
after the change into the process. With a later image, change detection
between the two fine-resolution images could identify fine pixels with
land cover type change, and then values could be predicted for these
pixels. However, this solution has challenges in cloudy regions where
it is hard to acquire another cloud-free fine-solution image, and it also
does not work if the change was short-lived, as might happen, for
example, with small flood events.

Like STARFM and unmixing based methods, FSDAF is not only
designed for fusing reflectance data of different sensors, it can also be
directly applied to any products derived from reflectance data if these
products are linearly additive in space, such as some simple spectral in-
dices, leaf area index, and fraction of photosynthetically active radiation.
A current study suggests that spatiotemporal data fusion methods di-
rectly applied to vegetation indices could obtain higher accuracy than
blending reflectance of individual bands and then calculating indices,
because of less error propagation (Jarihani et al., 2014). Some other
products, such as NDVI and LST, are intrinsically nonlinearly additive,
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but assuming them to be linearly additive would probably introduce
only very small errors, such that these products with different spatial
and temporal resolutions can also be fused by the proposed method.
In addition, similar to STARFM, FSDAF could be extended to use two
pairs offine and coarse-resolution images as input data. In this situation,
FSDAF can be applied to each pair of input to get two separate predic-
tions. Then, a temporal weight can be used to combine the two predic-
tions (Gao et al., 2006; Zhu et al., 2010). It may get more accurate and
robust results if the second pair can provide complementary informa-
tion. The code of FSDAF is available by sending request to authors. In
conclusion, the proposed FSDAF method needs minimal input data
and is able to capture both gradual change and land cover type change.
It is an important supplement to the family of spatiotemporal data fu-
sionmethods to support studies of land surface dynamicswhich require
satellite imageswith high frequency and high spatial resolution. The po-
tential applications of synthetic high-spatial resolution data include
monitoring forest disturbance and phenology, mapping land cover and
land use change, real-time disaster detection, and tracking crop
progress and condition.
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