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Abstract: Changes in tropical-forest structure and aboveground biomass (AGB) contribute directly
to atmospheric changes in CO2, which, in turn, bear on global climate. This paper demonstrates
the capability of radar-interferometric phase-height time series at X-band (wavelength = 3 cm) to
monitor changes in vertical structure and AGB, with sub-hectare and monthly spatial and temporal
resolution, respectively. The phase-height observation is described, with a focus on how it is related
to vegetation-density, radar-power vertical profiles, and mean canopy heights, which are, in turn,
related to AGB. The study site covers 18× 60 km in the Tapajós National Forest in the Brazilian
Amazon. Phase-heights over Tapajós were measured by DLR’s TanDEM-X radar interferometer
32 times in a 3.2 year period from 2011–2014. Fieldwork was done on 78 secondary and primary
forest plots. In the absence of disturbance, rates of change of phase-height for the 78 plots were
estimated by fitting the phase-heights to time with a linear model. Phase-height time series for
the disturbed plots were fit to the logistic function to track jumps in phase-height. The epochs of
clearing for the disturbed plots were identified with ≈1-month accuracy. The size of the phase-height
change due to disturbance was estimated with ≈2-m accuracy. The monthly time resolution will
facilitate REDD+ monitoring. Phase-height rates of change were shown to correlate with LiDAR RH90
height rates taken over a subset of the TanDEM-X data’s time span (2012–2013). The average rate of
change of phase-height across all 78 plots was 0.5 m-yr−1 with a standard deviation of 0.6 m-yr−1.
For 42 secondary forest plots, the average rate of change of phase-height was 0.8 m-yr−1 with a
standard deviation of 0.6 m-yr−1. For 36 primary forest plots, the average phase-height rate was
0.1 m-yr−1 with a standard deviation of 0.5 m-yr−1. A method for converting phase-height rates to
AGB-rates of change was developed using previously measured phase-heights and field-estimated
AGB. For all 78 plots, the average AGB-rate was 1.7 Mg-ha−1-yr−1 with a standard deviation of
4.0 Mg-ha−1-yr−1. The secondary-plot average AGB-rate was 2.1 Mg-ha−1-yr−1, with a standard
deviation of 2.4 Mg-ha−1-yr−1. For primary plots, the AGB average rate was 1.1 Mg-ha−1-yr−1 with
a standard deviation of 5.2 Mg-ha−1-yr−1. Given the standard deviations and the number of plots in
each category, rates in secondary forests and all forests were significantly different from zero; rates in
primary forests were consistent with zero. AGB-rates were compared to change models for Tapajós
and to LiDAR-based change measurements in other tropical forests. Strategies for improving AGB
dynamical monitoring with X-band interferometry are discussed.
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1. Introduction

Tropical forests, which account for about 50% of the world’s forested biomass, play a critical
role in the control of atmospheric carbon dioxide through emissions from forest removals and uptake
through forest accruals [1]. Some hypotheses suggest that some of the missing carbon sink is due
to uptake in mature tropical forests [2,3]. Monitoring of changes in aboveground biomass (AGB) in
tropical forests at the fine spatial scales at which disturbance takes place, 25–100 m [4], is required for
global carbon cycle characterization. Climate change mitigation efforts designed to reduce emissions
from deforestation and forest degradation (REDD+) will require monitoring much more frequently
than the ≈1 time per year realized by optical satellites in the tropics [5]. Monitoring on the temporal
scales at which disturbance takes place, ≈1 month, will be required to enable REDD+ [6].

Interferometric SAR (InSAR), with its broad, all-weather coverage, and sensitivity to vegetation
vertical structure [7,8], has the potential to play a key role in AGB-change monitoring strategies at
local to regional to global scales. We present interferometric phase-height change from the 2-spacecraft,
X-band TanDEM-X system [9], over Tapajós National Forest in Brazil. Interferometric phase-height is
related to vertical-profile-averaged height, as described in Section 2.3. Phase-heights were measured up
to 15 times per year from 2011–2014 on 0.25-ha plots. The high temporal density of measurements was
possible because, unlike optical signals, radar signals at X-band are not attenuated by clouds and rain.
Unlike radar power measurements, InSAR measurements of phase-height and coherence are directly
sensitive to vertical structure, from which AGB can be estimated. (See discussion of (1) in Section 2.2
for definitions of “phase-height” and “coherence”). While X-band power has proven inaccurate for
forest AGB measurement, InSAR phase-height and InSAR coherence produce reasonable (≈30%,
57 Mg-ha−1) single-epoch AGB estimates for tropical forests at X-band [10]. At Tapajós the rates for
various LiDAR metrics were available over the 2012 and 2013 period and were compared to the InSAR
phase-height rates. Using time series of phase-heights, we found that we could estimate changes
in AGB 2–4 times more accurately than we could estimate single-epoch, static AGB from a single
measurement of phase-height.

The purpose of this paper is to assess and demonstrate the potential accuracy of rates of
change of tropical-forest structure and AGB estimation available from an X-band interferometer
with aggregated spatial resolution of 0.25 ha and temporal resolution of≈1 month. One previous study
used 10 observation epochs of TanDEM-X data spanning 2 years in the tropics to gauge the stability
of an 800 m × 800 m area [11], but the referenced study showed stability levels of the large area,
rather than rates of change at the ha scale. Other studies [12,13] used multi-temporal TanDEM-X data
in boreal forests largely to demonstrate stability rather than change. Another study used X-band InSAR
from SRTM and TanDEM-X to measure forest change over an 11-year period, 2000 to 2011 [14], in
boreal forests. Studies have been done which use TanDEM-X InSAR data to estimate AGB in the tropics
at single-epochs [10,15,16]. One study combined LiDAR and TanDEM-X interferometry [17], but,
again for single-epoch, and for temperate forests. LiDAR has been used to infer AGB change from
chronosequences in the tropics [18]. AGB tropical dynamics measured directly with LiDAR have been
addressed by [19,20]. However, as opposed to this study which had multiple observation epochs per
year, these two LiDAR studies had two observations each, separated by 7 and 10 years in La Selva,
Costa Rica, and Barro Colorado Island, Panama, respectively. Thus the current study using TanDEM-X
phase-height seems to fill a gap of reporting significant structure and AGB-rates in both primary and
secondary tropical forests with a temporal resolution of ≈1 month.

An ancillary objective of this paper is to describe a general framework for transforming
phase-height rate to AGB-rate. Various semi-empirical expressions exist to give standing, single-epoch
AGB in terms of height, Lorey’s height, or phase-height, e.g., [12,16,21], but we describe general



Forests 2017, 8, 277 3 of 28

considerations for transforming phase-height rates to AGB-rates. While we use a power law to
describe the mass density function in (11), the formalism described shows how any functional form for
the density function could be accommodated.

Section 2 describes Tapajós National Forest and TanDEM-X. It relates the InSAR phase-height to
vertical characteristics of the forest, and to the power-averaged mean canopy height, which is defined in
(2) in Section 2.3. After discussing the estimation and calibration of phase-height data from TanDEM-X
raw data, Section 3 shows phase-height time series results over the 2011–2014 period for secondary and
primary forest plots. It further shows rates of phase-heights from linear fits over time, as a function
of field-estimated AGB, suggesting that TanDEM-X phase-height can distinguish between the faster
growth of secondary plots, and the slower rate of change of old growth. Phase-height rates over one
year—August 2012–August 2013—are compared to the rates of LiDAR’s RH90—the height below
which 90% of the LiDAR power is returned, starting from the peak of the ground signal. A conversion
factor is derived to convert phase-height rates of change to AGB-rates of change, and AGB-rates are
calculated for the 78 plots. Section 4 is a discussion of the results, the choice of phase-height rate to
estimate AGB rate, error analysis, and future improvements.

2. Materials and Methods

This section describes Tapajós National Forest, field vegetation measurements, the InSAR
phase-height, and how it is related to radar-power profiles, and the power-averaged mean in particular.
It also describes the LiDAR data used for verification of InSAR phase-height rate.

2.1. Tapajós National Forest and Field Measurements

The Tapajós National Forest is ≈50 km south of Santarem, Pará, in the central Brazilian Amazon.
Its climate, rainfall, and vegetation are as described in [10]. Field measurements were taken in
September 2010 on 26 plots (50 m × 50 m = 0.25 ha) and on 52 plots of the same size in August 2013.
The maximum value of AGB was 738 Mg-ha−1, and averaged 189 Mg-ha−1. The plots were primary
and secondary forests, and included some selective logging sites. Througout this paper, “primary”
means a forest that has never been logged and has developed following natural disturbances and
under natural processes. “Secondary” means a forest developing after a stand-replacing disturbance
(i.e., a disturbance that eliminated all, or most, previous trees in the stand) such as logging or
the clearing of land for agriculture or cattle. Figure 1 shows the locations of 78 plots along with the
large rectangle corresponding to TanDEM-X coverage used in this study, and the small red rectangles
indicating LiDAR coverage in 2012 and 2013. The field plots were representative of the variety of
the area observed by TanDEM-X and LiDAR. Field measurements for each tree included total height,
height-to-base-of-crown, tree diameter at breast height, species (to assign wood density values derived
from the literature), crown dimensions, and location. The crown dimensions were the distance between
extrema of leaf area as viewed from the ground, along two orthogonal axes [22]. The diameter, height,
and wood density were used with allometric equations [23] to estimate AGB. The accuracy of the AGB
estimates was 25% [24]. Plots were geolocated with sub-meter accuracy using differential GPS and
a total station.
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Figure 1. The Tapajós National Forest covered by TanDEM-X (large white rectangle) in this study.
Yellow dots are 78 field plots, and the smaller red rectangles are areas of LiDAR coverage.

2.2. TanDEM-X, The Interferometric Phase-Height and Its Relation to Radar Power Vertical Profiles

Built and operated by the German Aerospace Center (DLR), the TanDEM-X interferometer is
the only 2-spacecraft interferometer to orbit the Earth to date [9]. Depending on the technical objective
(e.g., forest research, digital elevation map), the vector separation of the two spacecraft, called the
“baseline”, can be adjusted to have lengths under 50 m up to several kilometers. For our forest data
over Tapajós, baseline separations ranged from 30 m to 150 m, but were mostly in the 90-m range.

The phase-height, the principal indicator of change in this paper, results from the interferometric
phase of forests, which have vertically distributed vegetation. In order to understand the phase of
a forest with many vertically distributed scatterers, first consider the interferometric measurement of
a single scatterer, at a single altitude, say, the top of the tree in Figure 2. The ends of the TanDEM-X
interferometer labeled 1 and 2 in Figure 2 receive the signals E1 and E2, which propagate along the two
paths, of lengths r1 and r2. The single-scatterer interferometric phase is proportional to the difference
r1–r2, which, in turn, depends on the height of the scatterer; thus the InSAR phase depends on
the height of the scatterer. The single-scatterer interferometric phase is obtained by cross multiplying
E1 and E∗2 , where the star is the complex conjugate. For forests consisting of many vertically distributed
scatterers (leaves, branches, etc.) the interferometric phase results from all scatterers, and is obtained
from the complex cross correlation of E1 and E∗2 as in (1) below.
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Figure 2. Schematic representation of the InSAR scattering geometry. The fields scattering from
a single scattering element, the top of the tree, travel along the distances r1 and r2 to the ends of
the interferometer. This difference is proportional to interferometric phase and to the height of
the single scattering element. The interferometric phase resulting from many scattering elements
(the volume of the forest) is used to characterize vertical structure in this paper.

In order to show the relationship between interferometric phase-height and the radar power
profile p(z′) for the forest, the cross correlation of the E1 and E2 signals is expressed as proportional to
the sum (integral) of the contributions from scatterers at z’, extending from the ground up to a forest
height of hv [7]:

< E1E∗2 >∝
∫ hv

0
< p(z′) > eiαzz′ dz′ ≡ Aeiφint ≡ Aeiαzhφ (1)

where the ensemble average brackets indicate spatial averaging over scatterer positions and strengths
from different small (few-meter) looks to aggregate to the plot size—0.25 ha in this study. The integral
can be seen as summing the contributions at each altitude z′ of a phasor (complex exponential) to
the InSAR cross correlation with phase αzz′. The constant αz is the derivative of InSAR phase with
respect to altitude, also known as the “vertical wavenumber”. It is proportional to the length of
the baseline, B, and other geometric factors. It can also be thought of as the Fourier frequency over
which < p(z′) > is Fourier transformed in (1). The integral’s aggregate amplitude A and phase, φint,
are indicated. The phase-height, hφ, is the single-scatterer height which would produce the same
phase as that of the entire forest, and, as indicated in (1), hφ = φint/αz. The coherence is A divided
by the same integral with αz = 0. The often-used quantity, the ambiguity height, hamb ≡ 2π/αz,
is the height at which interferometric phase winds through a cycle. For many of the measurements
in this report, hamb ≈ 80 m, meaning the top and bottom of an 80 m tree would have the same phase
(0◦ = 360◦). Trees of the order of the ambiguity height would complicate interpretations of phase,
so, for the most part, only hamb taller than the tallest trees in Tapajós (≈45 m), which are of utmost
importance in the structural arrangement of the forest, were used. A list of dates of passes with
ambiguity heights is in Table A1. The amplitude of each phasor’s contribution in (1) at z′—the average
radar power < p(z′) >—depends on three fundamental descriptors common to virtually all remote
sensing: (1) the spatial density of scatterers—leaves, branches, trunks, ground, as a function of height,
(2) the electromagnetic strengths of those scatterers, and (3) the attenuation of incident or scattered
fields in the medium.



Forests 2017, 8, 277 6 of 28

2.3. The Relationship of Phase-Height to Mean Canopy Height and AGB

Each of the three descriptors on which radar power depends has biological analogues. The spatial
density of scatterers (number of scatterers per unit volume) is related to leaf-area-density (LAD), in that
LAD depends on both the area of leaves and the number of leaves per unit volume. Qualitatively,
the larger the values of the spatial density profile at high altitudes, contributing to p(z′), the taller
the vegetation, and the higher the AGB, where the ensemble average brackets are understood
from here on. The second descriptor contributing to p(z′), the brightness profile, bears on leaf
area density also, as larger leaves have larger area and are frequently better backscatterers of
the radar. The third descriptor, the attenuation, like the scatterer density, has a simple biological
analog. Attenuation increases when scatterer/vegetation density increases, and/or when the water
content of the leaves increases, both of which can conceivably correlate with AGB increase.
Because radar-power-profile-averaged canopy height (defined in (2) below)—called “mean canopy
height” or “MCH”—depends on the vertical distribution of scatterer density and brightness in p(z′),
and because the distribution of scatterer density is related to AGB, it is plausible that AGB can be
associated with some function of radar MCH. The MCH is

MCH ≡
∫ hv

0 z′p(z′)dz′∫ hv
0 p(z′)dz′

(2)

and, in part for its relation to AGB stated above, we postulate that some function of the radar MCH
is a good indicator of AGB. Another reason to postulate the utility of the radar MCH is based on the
LiDAR MCH. It is given by (2), replacing p(z′) with the LiDAR waveform. Linear, logarithmic,
or power-law functions of the LiDAR MCH have been used as significant AGB independent
variables [20,25–27]. The success of the above-mentioned functions of LiDAR MCH to predict AGB
in part prompts exploring functions of the radar MCH to monitor AGB change in this paper. If we
therefore want to model changes in AGB based on changes in radar MCH but, from (1) we only have
phase-height at our disposal, a natural question is, for a given p(z′), how close is phase-height from
(1) to MCH from (2)? And how close are phase-height rates to MCH rates? Section 2.3.1 presents a
qualitative argument that phase-height is close to MCH. Section 2.3.2 presents quantitative scenarios
where MCH is exactly equal to phase-height, and Section 2.3.3 quantitatively investigates the general
magnitude of the differences between phase-height and MCH, as well as differences in their rates.

2.3.1. Qualitative Relationship Between Phase-Height and Mean Canopy Height

In order to qualitatively address the proximity of phase-height to MCH, Figure 3 is a graphic
representation of the integral in (1), for a profile p(z′) with just 3 thin vegetation layers at z′1, z′2,
and z′3. Then the integral in (1) becomes a sum of 3 vectors in the complex plane, with the length of
each black vector given by the power coming from that layer, p(z′1), p(z′2), and p(z′3); and the phase
of each layer—the angle between the vector and the x-axis— proportional to each layer’s vertical
position, αzz′1, αzz′2, and αzz′3. The vector in red, with total phase, φint, and amplitude, A, is the value
of the integral. The total phase-height, φint/αz = hφ, is between the lowest (z′1) and highest (z′3) values
of the heights in the profile, while MCH is also between the extrema of the profile. Furthermore,
the phasor corresponding to each phase-height z′ is vectorially added with a strength proportional
to p(z′), while in the expression for MCH, (2), the term for each height z′ is linearly added with
a strength proportional to p(z′). Figure 3 and the form of (1) and (2) therefore suggest the plausibility
that phase-height is related to radar MCH.
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Figure 3. A graphic representation of the integral in (1) for a 3-thin-layer radar power profile.
The ntegral is a sum of the three black vectors in the complex plane, each with amplitude equal
to the power of the layer, and phase proportional to the altitude of the layer. The red vector is the total,
the value of the integral in (1). The phase-height corresponding to this red vector, φint/αz, is between
that of the lowest and the highest layers.

2.3.2. Quantitative Relationship Between Phase-Height and Mean Canopy Height: Conditions for Equality

A more quantitative examination of the relationship between phase-height (hφ) and MCH starts
with the expression for MCH above, and, from (1), the phase-height:

hφ ≡
1
αz

arctan[
Im< E1E∗2 >

Re< E1E∗2 >
] =

1
αz

arctan[
Im
∫ hv

0 p(z′) eiαzz′ dz′

Re
∫ hv

0 p(z′) eiαzz′ dz′
] (3)

There are two conditions when hφ is exactly equal to MCH. The first is when αzhv is very small
and only the first two terms of the Taylor expansion of the complex exponential are kept in (3):

hφ ≈ 1
αz

arctan[
Im
∫ hv

0 p(z′) (1 + iαzz′) dz′

Re
∫ hv

0 p(z′) (1 + iαzz′)dz′
]

=
1
αz

arctan[
αz
∫ hv

0 p(z′) z′ dz′∫ hv
0 p(z′)dz′

]

≈
∫ hv

0 z′p(z′)dz′∫ hv
0 p(z′)dz′

= MCH (4)

In order for αz to be very small, hamb must be very high. For a given level of phase noise, very
high hamb (low αz) will induce high levels of noise in phase-height, which is in part why using very
large hamb is not always practical.

The second condition is if p(z′) is symmetric about some value of z′, say z0:

p(z′) = p(z0) + g(|z′ − z0|) (5)

where g is any real function, as long as it depends only on the magnitude of the difference between z′

and the symmetry point z0. Inserting (5) into (2) confirms that MCH = z0, if the lower and upper limits
of integration are extended to ±∞ and p(z′) constrains the integral. Inserting (5) into (1), extending
the lower and upper limits to ±∞ again, the integral becomes proportional to
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eiαzz0

∫ ∞

z0

(p(z0) + g(|z′ − z0|) cos αz(z′ − z0) dz′ (6)

which is a real integral multiplying a complex phasor. Only the complex phasor determines the phase,
and therefore the phase-height, in (3), which is hφ = z0. The phase-height equals the symmetry height,
which equals MCH.

2.3.3. Quantitative Relationship: The Magnitude of Differences Between Phase-Height and Mean
Canopy Height

In general, the two conditions in (4) and (5) are not met, αzhv is not <1, and p(z′) is not perfectly
symmetric; and the phase-height is not equal to MCH, nor are their rates equal. In order to get
an estimate of the order of magnitude of the differences between hφ and MCH due to asymmetry in
p(z′), we inserted the following model radar power profile into (2) and (3), which were numerically
integrated to calculate MCH and hφ:

p(z′) ∝ e
−(z′−z0)

2

2σ2
le f t ; z′ < z0

∝ e
−(z′−z0)

2

2σ2
right z′ > z0 (7)

where σle f t and σright are the left- and right-handed standard deviations. σle f t was held at 2 m, and z0,
the symmetry point when σle f t = σright, was set equal to 12.5 m for this calculation. Figure 4 was
generated by starting with σright = 2 m, which is the symmetric profile of p(z′) versus altitude in meters,
in the lefthand inset. The right-hand standard deviation, σright, was then stepped from 2 m to 12 m,
which resulted in the maximally asymmetric profile in the right-hand inset. Any further extension of
σright would lead to a more symmetric profile. As σright was increased from 2 m, the MCH increased
and was plotted on the x-axis. The y-axis is the phase-height—MCH difference obtained by inserting
(7) into (3) and (2). The resulting hφ-MCH differences are shown for two values of hamb, 60 m and
250 m, which nearly bracket the range of hamb used in the hφ-versus-time results in the next section
(see Table A1). Note that for σright = 2 m, on the far left of Figure 4, the difference hφ-MCH = 0 on the
y axis of Figure 4, as in (6), for the symmetric profile. When asymmetry is introduced into p(z′) by
letting σright increase, the hφ −MCH difference departs from zero, and for the most asymmetric profile,
that difference is ≈−0.6 m for hamb = 60 m and ≈−0.035 m for hamb = 250 m.

Because hamb’s for different epochs were provided by the TanDEM-X mission, the differences in
hφ in a time series arise in part due to different departures of hφ from MCH owing to hamb diversity.
It is therefore the difference in the curves in Figure 4 that constitutes an estimate of the error in using
hφ instead of MCH. That is, if over the 3.2-year observation period, forest structure of a particular
plot did not change, 0.6 m is a worst-case estimate of the RMS scatter of the fit of phase-height to
time, due to changes in observation baseline (and hamb) causing changes in hφ. This scatter would
be due to changes in the observing instrument and not in the forest itself. Similarly, from Figure 5
which gives phase-height rate errors and RMS scatters about a linear fit to time, a 0.6 m scatter for all
points would generate about 0.1 m-yr−1 rate error in using hφ instead of MCH. These are worst-case
estimates for volume asymmetries because the actual temporal distribution of ambiguity heights did
not begin and end with the extremes of 50 m and 250 m. Rather these extremes were imbedded in
a more even 70–140 m range (Table A1). hamb’s will therefore not generally differ from each other
as much as the extreme case used for illustration in Figure 4. Also, the most extreme asymmetric
profile (right-hand inset of p(z’) versus altitude above the ground) leads to the magnitude 0.6 m
hφ-MCH difference. Actual p(z′)s will probably not be as asymmetric as the right-hand inset, though
this should be checked with radar and LiDAR profiles [22]. That 0.6 m and 0.1 m-yr−1 are smaller
than the scatter and rate error observed in fits of phase-height to time, and that these values are
worst case, suggests that phase-height can be taken as nearly the same as MCH for phase-height rate
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analysis. Excluding very high hamb from the analysis did not change results very much, and this is
another suggestion that the order of magnitude of the differences between phase-height and MCH
is at the meter level. However, the simple test with (7) does not treat possible asymmetric ground
contributions, under the assumption that at X-band, we are mostly seeing the volume. The key point
of Figure 4 is that asymmetry in p(z′) is the major contributor to differences between phase-height
and MCH, and volume asymmetry causes a meter-level order-of-magnitude difference between MCH
and hφ, with ≈0.1 m-yr−1 differences in rates. Note that in a future mission with forest structure and
biomass dynamics as a priority, this source of error in using hφ could be greatly reduced by using
the same hamb for all observation epochs. Then, for the hamb used, only the derivative of the curve like

those in Figure 4, dhφ−MCH
dMCH is relevant. The derivative gives the change in the difference between hφ

and MCH due to changes in MCH, i.e. due to changes in forest structure. Analysis of this derivative for
hamb = 60 m suggests that less than ≈0.1 m errors result from using hφ relative to using the radar MCH.

Figure 4. The calculated difference between phase-height and mean canopy height
(power-profile-averaged height), realized for an asymmetric-Gaussian hypothetical model of the
volume radar power profile p(z′) as in (7). σle f t is held at 2 m. When σle f t = σright, p(z′) is symmetric,
the hφ-MCH difference is zero, and MCH = 12.5 = z0. The symmetric profile of p(z′) versus altitude in
meters is in the left-hand inset. With σright = 12, the right-hand inset shows the highly asymmetric
power profile as a function of altitude in meters, and the hφ-MCH difference is −0.6 m. The hφ-MCH
difference is plotted against MCH, which goes from 12.5 to 20 m when σright is increased from 2 to
12 m. The difference is shown for two heights of ambiguity.

2.4. LiDAR Data for Phase-Height Rate Verification

In the next section, rates of LiDAR metrics were compared to phase-height rates. LiDAR data
available for 25 of the plots were taken by GEOID Laser Mapping Ltda. in 2012 and 2013. They
were acquired in 2012 using an ALTM 3100 (Teledyne Optech, Concord, ON, Canada), and data
acquired in 2013 used ALTM Orion M-200 (Teledyne Optech). Instruments were flown at 850–900 m
above the ground, with swath side overlap of 65% and a field of view of 11◦. For each LiDAR pulse,
up to 4 returns were recorded, with approximately 25–39 returns m−2. A minimum return density
of ≥4 m−2 was realized over 99.5% of the LiDAR area.

3. Results: Time Series of Phase-Height and Aboveground Biomass

This section describes how phase-heights are derived from raw InSAR data. It also describes how
systematic trends not related to the target are removed from the data. It then shows phase-height
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versus time and phase-height rate estimates. A model is introduced to convert phase-height rate to
AGB-rate, and AGB-rates are produced for the 78 plots.

3.1. Phase-Height Rate from Raw Interferometric SAR Data

The area of Tapajós analyzed (See Figure 1) was observed 32 times in 3.2 years (Table A1).
The amplitude and phase were supplied by DLR for each spacecraft for small areas called “looks”.
A look extends 2.5 m in the azimuth direction (along the spacecraft flight line) and 1.4 m in
the range direction (perpendicular to the flight line). Data presented in this format are called
“single-look-complex”. The data were referenced to radar coordinates of “azimuth” and “range”,
the number of looks along each direction. The amplitude-phase data, actually given as complex
numbers with real and imaginary parts, were cross correlated by complex multiplication of the signals
from each spacecraft e.g., [7] and averaged (as in (1)) over 50 × 50 m, 0.25-ha. In this process, an
interferometric phase trend pertaining to the flat Earth was removed [28], leaving the phase of each
0.25 ha carrying only information about the altitude of the surface or vegetation. An amplitude and
phase-height (phase/αz) are available, for each of 32 epochs, for each of the 78 plots for which we
have field-measured AGB. The amplitude and phase-height together have been used to estimate
single-epoch AGB [10], but to estimate structural change in this work we use the phase-height only. As
mentioned in Sections 2.2 and 2.3.3, each epoch of measurement corresponded to a different baseline,
with a resulting different hamb, though the hamb’s are mostly in the 70–100 m range (Table A1). A
reference epoch, called t0, of 22 September 2011 was adopted. Phase-heights from the reference epoch
were subtracted from all other phase-heights and those differences, for each of 78 plots, were fit to
time to extract a slope (rate).

3.2. Removal of Systematic Trends in Phase-Height Data

Before fitting phase-heights to time, a systematic, planar offset in phase-height for each baseline
was removed. This offset depends on the range and azimuth, and has nothing to do with topography
or vegetation structure, and therefore must be removed before measuring vegetation-related changes
in phase-height. The offset is most likely due to unmodeled spacecraft and/or plot coordinates,
as described below. This offset can be fit by a plane in the range and azimuth and then subtracted from
the phase-heights [16,29]. The planar model of the phase-height of plots i at time tj (hφ,i,j) in terms of
the phase-height of plots i at t0 (hφ,i,0) is

hφ,i,j = hφ,i,0 + aj + bj ∗ rangei + cj ∗ azimuthi + δi,j (8)

where rangei, azimuthi are the radar coordinates of plots i, and aj, bj, and cj define the offset, range
slope, and azimuth slope of the plane formed by the difference of phase-heights at tj and t0. They are
estimated from the phase-heights of nearly all of the plots. The optimal solutions for 70 equations like (8)
determine the plane parameters for each time tj. The jump stands, with abrupt discontinuities, are not
used to estimate the parameters in (8), as they will cause rate biases, as explained in the next paragraph.
The overall offset aj results from one arbitrary phase offset per baseline, typical of interferometric data.
The bj and cj slopes can result from unmodeled drifts in the spacecraft positions and/or imperfections
in the flat-Earth phase removal mentioned above. In (8), δi,j is the departure from the average plane
of the phase-height for plots i at time tj. This residual is determined by inserting the aj, bj, and cj
parameters estimated from 70 plots into an equation like (8) for each plot i. The phase-heights hφ,i,j
and hφ,i,0 are known from the data, leaving the residual δi,j the only unknown in (8). This residual for
each stand, with one further correction, will be plotted versus time to determine phase-height rate.

The prescription of (8) yields phase-heights with the right spatial relative differences for a scene
at a single epoch (a single j). For a series of times tj, it produces δi,j’s with the correct absolute rate for
plots i only if the rates averaged over all plots used to estimate aj were zero. For nonzero average rates
over the 3.2 years of observation, the prescription of (8) yields relative rates of the δi,j’s only. This is
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because the time sequence of aj parameters will absorb the overall rate of growth of the plots used to
estimate δi,j, leaving the rate of the δi,j’s artificially reduced (for positive overall growth) or augmented
(for negative overall growth). In order to produce the absolute rates of the next section, two buildings
were located in the InSAR data and their “growth rates” estimated as in the first line of (9) below
from a time sequence of δi,j’s from (8). The phase-height rate of the buildings should be zero, but the
average of their phase-height rates was −0.45 m/yr. This negative phase-height change probably
results from an overall growth of the vegetated plots used to do the estimation in (8). A constant
0.45 m/yr was added to the slopes of all time series of δi,j by adding terms of the form 0.45 × (tj − t0)

to each stand’s time series. The buildings’ individual slopes were −0.4 and −0.5 m/yr, so 0.05 m/yr
can be regarded as a possible systematic error in the rates of Figures 5 and 7. The means of arriving
at this rate correction factor, by observing the time history of parts of the InSAR data known to be
stationary (or some other known rate value), is potentially a way to assess overall change in the region
spanned by the InSAR data, which appears to be positive (increasing vegetation height and consequent
AGB; see Tables 1 and 2) for the sample of Tapajós in this study. This overall rate could in principle
also be estimated by tagging trees and remeasuring heights for a few years, as described in Section 4.3.

3.3. Phase-Height Time Series and Rates

Figure 5 shows phase-height versus time for 9 examples drawn from the 78 field plots for which
phase-height rate was estimated. Estimates of slope (phase-height rate) and slope error, along with
the RMS scatter and AGB are shown in the text for each plot. The red lines show the best fit model,
whether linear or the “jump” (i.e., logistic) model. Note that for some linearly fit plots, such as the one
in the upper right or right middle of Figure 5, less than 3.2 years—1–2 years—of data would probably
yield an acceptable rate error, of, say 0.5 m/yr. For most plots, a simple linear trend is the better fit,
but for the top two middle plots in Figure 5, there was a clear jump. The two models, δm,i,j used for
plots i at time point j were

δm,i,j = inti + mi ∗ tj linear
and

δm,i,j = di + ei ∗ tj +
fi

1 + exp(−gi ∗ (tj − hi))
logistic function (9)

where inti is the linear-fit intercept, mi is the phase-height rate parameter. For the logistic function,
di is a bias parameter, ei is the phase-height rate both before and after the jump in m/yr, fi is the “size”
of the jump in meters, gi is related to the width or abruptness of the jump in yr−1, and hi is a parameter
specifying the epoch of the jump in years. The linear model is the default. The logistic model is chosen
in Figure 5 if the size of the jump (the fi parameter) is greater than 4 m, and if the rms scatter of
the logistic fit was at least 33% lower than that from the linear fit. A total of 8 disturbed plots were
identified using these criteria.
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Figure 5. Phase-height versus time in years for 9 of 78 plots. All heights are differences relative to 22
September 2011. Red lines are linear fits of phase-height to time for plots without a jump. “Slope"
is the fit linear rate. The number after the ± sign is the formal error on the slope. Plots with mass
<250 Mg-ha−1 tend to have more positive rates than those with AGB > 250 Mg-ha−1. Two plots with
jumps, due to agricultural clearing are in panels 2 and 5. The red line for those plots is the logistic
function. For those plots, “slope" is a single rate estimated with the logistic function applied before
and after the jump. The AGB (before clearing for jump plots) is also shown, and the RMS about the fit
function is also shown.

The fits adjusted parameters in (9) to minimize the reduced χ2 using the errors bars in Figure 5,
with reduced χ2 for N observation epochs given by

Reduced χ2 ≡ 1
N −m

N

∑
j=0

(δi,j − δm,i,j)
2

σ2
i,j

where σi,j are the observational errors for stand i at time point j, and m is the number of parameters in
the fit (2 for linear fits, 5 for logistic fits). Those observational errors were calculated by simulating
the interferometric response of a forest of 100 randomly distributed particles and producing coherence
and corresponding phase statistics. A lookup table was created giving phase-height scatter for each
value of coherence, and phase-height error was thereby determined from the coherence data. For each
stand, a single additional, unmodeled error, of order 0.5 to 1 m, was added in quadrature with
the coherence-based error to each time point to bring the reduced χ2 close to 1. The errors on the slope
parameters shown for each plots are based on the observational phase-height errors. For the plots
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described by a linear fit, rate errors (after the ± symbols) were calculated using standard least-squares
methods [30]. For the plots described by the logistic function, errors in rates were calculated by Monte
Carlo techniques. Errors in the hi parameters were about 1 month. Being able to identify the epoch of
disturbance with this accuracy is a considerable gain for REDD+ monitoring over optical techniques
which are plagued by nearly constant cloud cover in the tropics. Landsat, for example, had two clear
observations in September 2013 and June 2014, compared to 11 over the same interval with TanDEM-X.
Clearing indications were found in Landsat for all 8 plots with jumps. Some of the plots in Figure 5,
for example the lower left, seem to show systematic effects which have few-month or annual time
scales. Future analyses should include taking the Fourier transform of the traces in Figure 5 to see if
annual or seasonal trends emerge. The rates for the complete set of 78 plots, along with their errors,
latitudes and longitudes are shown in Table A2 in the Appendix A.

The rate of lidar RH90 was found to correlate with phase-height rate better than any other RH
metric. The analysis which led to Figure 5 and Table A2 was redone including only those epochs
between August of 2012 to August 2013 to match the lidar data. The TanDEM-X phase-height rate over
this one year period is plotted versus the lidar RH90 rate in Figure 5, demonstrating a 0.5 correlation,
with a probability of 1 part in 104 of realizing the Figure by accident. The RMS about the y=x line
is 1.2 m-yr−1.

Figure 6. TanDEM-X phase-height rates, evaluated over August 2012– August 2013 period versus
RH90 rates estimated by lidar (red rectangles in Figure 1) over the same time period. The dashed line
is y=x.

Figure 7 shows the estimated phase-height rates, a sample of which are portrayed in Figure 5,
versus field AGB. The plots with AGB <250 Mg-ha−1 show a higher phase-height rate than the plots
with AGB > 250 Mg-ha−1. There seem to be significant peaks and dips for phase-height rates for AGB
less than 100 Mg-ha−1. A substantial number of points with AGB lower than 250 Mg-ha−1 are above
the zero line by more than an error bar.
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Figure 7. The phase-height rates estimated from (9) versus field AGB. Many of the points below
250 Mg-ha−1 are above the dashed zero line by more than an error bar, suggesting higher phase rates
at lower values of AGB.

Table 1 shows the average phase-height rate for secondary, primary, and all plots. The standard
deviation and the standard deviation of the mean are shown in the 3rd and 4th columns. The standard
deviation of the mean is the error in the average phase-height, given by the standard deviation divided
by the square root of the number of plots in each category. Table 1 shows that secondary forest plots
have a factor of ≈8 faster phase-height rate of change than primary plots.

Table 1. Average, standard deviation, and standard deviation of the mean of phase-height rate for
secondary forests, primary forests, and all plots.

Forest Type Avg Phase-Height Rate (m-yr−1) Standard Dev (m-yr−1) Standard Dev of Mean (m-yr−1)

Secondary 0.8 0.6 0.1
Primary 0.1 0.5 0.1
All Plots 0.5 0.6 0.1

Some of the plots in Figure 5, such as the upper left panel, show statistically significant rates
of change of phase-height, relative to the error in the rate parameter. Others, like the lower left
panel, show insignificant rate. In Figure 7, many points are several error bars away from zero, and
are therefore significant. Comparing columns 2 and 4 in Table 1, the average phase-height rate for
secondary plots and that for all plots are significantly different from zero (column 2 is much greater
than column 4). The average primary rates are consistent with zero. Note that systematic errors
discussed in subsection 4.3 have not been addressed in the above discussion of significance.

3.4. From Phase-Height Rate to AGB Rate

This subsection derives the conversion from phase-height rate to AGB-rate. Given the closeness of
phase-height to radar MCH discussed in Section 2.3, and given the many studies that have expressed
AGB as a function of LiDAR MCH [20,25–27], we start with AGB as an arbitrary function f of hφ and
take the time derivative for AĠB:

AGB = f (hφ)

dAGB
dt

=
d f (hφ)

dhφ

dhφ

dt

AĠB =
dAGB(hφ)

dhφ
ḣφ
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AĠB = Conversion factor(AGB) ḣφ (10)

The conversion factor from phase-height rate to AGB-rate is the derivative of AGB with respect
to phase-height. However, note that (10) refers to one plot. The derivative of AGB with respect
to phase-height means the derivative with respect to changes in phase-height within a plot, not,
for example, to changes in phase-height due to lateral displacement. As discussed in Section 3.4.1,
this conversion factor can be taken as constant for each plot, over the ≈3-year period over which
phase-height rates are estimated, for undisturbed plots. For jump plots, this approximation is strictly
not true, in that AGB changes substantially for a jump and the conversion factor on the right side
of jumps in Figure 5 should be different than that on the left. However, because the jumps happen
in ≈2014, the linear rates are more established by the “before clearing” vegetation dynamics. In a
more general formulation, the before- and after-jump AGB-rates could be calculated separately. In
(10), the conversion factor is anticipated to be a function of AGB, as will be shown in Section 3.4.1. The
conversion factor is derived in Section 3.4.1. The conversion factors are applied to the phase-height rate
results to derive AGB-rates in Section 3.4.2. Section 3.4.3 is about the relative accuracy of single-epoch
versus differential AGB estimates.

3.4.1. Model for Deriving Phase-Height-Rate to AGB Rate Conversion Factors

The conversion factor for transforming from phase-height rate to AGB-rate for a given plot is
based on a model illustrated in Figure 8. Figure 8 shows an older (higher AGB) plot on the left and
a lower-AGB plot on the right. They are both the same lateral size, 50 m × 50 m. The older one on
the left has more growth than the one on the right, where the number of tree icons is schematically
related to vegetation density at the top of the plot, z′. The top height, z′, is the height beyond which
the mass density is zero. It is expected that the increment in AGB due to a change in top height z′ by
∆z′ will be larger for the left-hand plot than for the right-hand. This would certainly be true if, by
increasing ∆z′, the plot replicated another layer with the vegetation (and consequent mass) density
characteristics at z′. The increase in AGB would then be ρ(z′)∆z′, with ρ(z′) the plot’s mass density
at z′. However, it is also possible that the increase in mass density in going from z′ to z′ + ∆z′ occurs
lower in the canopy, near the base of the trunks, for example. In general, therefore, ρ(z′) is to be
interpreted as the quantity by which ∆z′ must be multiplied to give the mass/area increase of the plot when the
top altitude z′ → z′ + ∆z′.

Δ"′

Δ"′z’

z’

Figure 8. Schematic illustration of two stands with an increment of ∆z′ in top height. The number of
tree icons represents vegetation and consequent mass density in the stand near the physical top height
z′ . The same change in top height, ∆z′, will produce less AGB change in the shorter plot on the right
than in the taller one on the left.
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In either case, the AGB needed to evaluate the derivative in (10) is an integral over top heights z′:

AGB =
∫ hv

0
ρ(z′)dz′

with ρ(z′) = ηz′β−1

AGB =
ηhβ

v
β

(11)

where ρ(z′) is now restricted in the second line of (11) to be a power law for each stand. The rationale
for plot-level mass density being proportional to a height metric to a power is loosely based on the
notion that individual tree mass goes as a power of height [23]. However, that a collection of power-law
trees sum to a power-law plot has not been demonstrated; it is taken as an empirical model. The
exponent β in (11) in the literature has taken on values of 1–3 [12,14,16], exponentiating total height,
Lorey’s height, or phase-height. It is conceivable that β varies from plot to plot, or has an AGB
dependence. In what follows, however, β will be taken to be common to all plots. The amplitude is η,
which will be allowed to vary between plots. In (11), hv is the total physical height. We will express the
conversion factor in terms of phase-height below.

In order to evaluate the conversion factor derivative in (10), a small change in a single plot’s AGB,
∆AGB is considered in response to a small change in total height, ∆hv:

∆AGB = = ηhβ−1
v ∆hv = β

AGB
hv

∆hv

⇒ ∆AGB
∆t

= β
AGB

hφ

[
hφ

hv

∆hv

∆hφ

]
∆hφ

∆t

AĠB =

{
β

AGB
hφ

[
hφ

hv

dhv

dhφ

]}
ḣφ

⇒ Conversion Factor =
AĠB

ḣφ
=

dAGB
dhφ

=

{
β

AGB
hφ

[
hφ

hv

dhv

dhφ

]}
(12)

The motive for writing the conversion factor in curly brackets as in the last line of (12) is to
express AĠB in terms of accessible quantities from TanDEM-X. Because it is expected (and suggested
in Section 4.2) that model-based total physical height estimates perform poorly for AGB-rate estimation
from this data set, we use phase-height, a more direct product of TanDEM-X. This study is therefore
pitched at potential missions where phase-height is readily available, while multiple baselines and
polarizations needed for total-height estimation may not be available. The term in square brackets
will be applied as an over-all correction factor. For no attenuation or infinite attenuation, the term in
square brackets is unity. A random-volume model calculation shows that the term in square brackets
depends on extinction and forest height, neither of which are readily available for all of our plots
via remote sensing. Averaging over extinction coefficients from 0.1 to 0.5 dB-m−1 and heights from
0 to 40 m, it was found that the term in square brackets is on average 0.85 with a standard deviation of
0.05. In the absence of detailed extinction or hv information, this 0.85 factor was applied to all stands
and ±0.05 will be considered a source of error.

From (12), in order to arrive at the conversion factor, the quantity AGB/hφ must be estimated.
AGBs from field measurements were combined with two sources of hφ. In previous work, 30 plots
from Tapajós (our first 26 + 4 more outside of the rectangle of Figure 1) were analyzed for hφ. It was
obtained visually by looking at the lower extrema of look phase-heights to calibrate the ground
phase-height [10]. The ratio of the field-measured AGB to phase-height for those plots is plotted in
Figure 9 in red. Another potential source of phase-height can be gotten from the jump plots in this
analysis. For each of the 8 plots with jumps, the phase-height change can be considered the total
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phase-height before the clearing event; this is true if all of the AGB was taken away. AGB/hφ ratios
from those 8 plots are shown in black in Figure 9.

Figure 9. The term in the conversion factor (12) AGB/phase-height. This term is proportional to
the derivative of AGB with respect to phase-height, if a polynomial model is used as in the second
line of (11). The red points are from InSAR phase-heights calibrated with visual ground finding in
another study [10]. The black points are the “ fi” parameters (see (9)) from logistic-fit jump events.
The dashed red line is the fit in (13) based on the red calibrated points. Because the black points seem
to lie consistently above the red points, it was assumed that the total AGB was not removed for some
of them. They were not used in developing the conversion factor in (12).

The black points being consistently higher than the red points calibrated for ground location
suggests the possibility that all the AGB was not removed in some of the jump events. It was
determined that about 25% of the AGB would have to have been left behind to get the black points to
lie on the red ones in Figure 9. The red, calibrated points were therefore chosen for the dashed-line fit,
which describes the AGB/hφ term in the conversion factor as a function of AGB:

AGB/hφ =
1− e−0.0025∗AGB

0.041
(13)

The RMS AGB/phase-height about the line in (12) was 0.3 Mg-ha−1-m−1 and is considered a
source of error in Section 4.3. This small RMS suggests that the correction factor (β multiplied by (13)
times the square bracket term in (12) of 0.85) can be considered just a function of AGB and need not be
considered a function of phase-height. This is probably because, for any AGB, the range of possible
hφs is restricted. Thus, specifying AGB automatically specifies the allowed hφ values.

AGB could be provided by, for example, the Global Ecosystem Dynamics Investigation (GEDI), but
acquiring spatially and temporally dense phase-height from any other sensor but a radar interferometer
would be much more difficult operationally. That the conversion factor can be modeled as a function of
AGB only could have beneficial operational consequences. However, measurements of AGBs and hφs
would have to establish a curve like (13) for each region. The universality of (13) is not known; a plot
like Figure 9 should be generated from other tropical areas. The conversion factor at Tapajós ranged
from 1 to 9.5 Mg-ha−1-yr−1/(m-yr−1) for the jump plots, and up to ≈17 for the calibrated plots.

For each plot, the conversion factor can be considered constant over the 3.2-yr observation period,
if the AGB in the conversion factor is taken to be that at the middle of the observation period (3.2 years
in our case). If, for example, a 10 Mg-ha−1 plot went from 0 Mg-ha−1 to 20 Mg-ha−1 over 3.2 years, the
asymmetry of (13) about the midpoint of 10 Mg-ha−1 would cause 1% error in AĠB. For higher AGBs,
the asymmetry effect would be even smaller.
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3.4.2. Applying Conversion Factors to Estimate AGB Rate

Figure 10 shows AGB-rate, calculated from the points in Figure 7, with conversion factors based
on AGB as in (12) and (13), with β = 1. We take β = 1 in part because it has been used in the
literature [14,16], but mainly because the results are then easily scalable to any value of β. The results
using β between 1 and 2, as will be seen below, are within a reasonable range of other external measures
of tropical-forest rate. From (12), the conversion factor for an arbitrary β is just the product of that β

and the β = 1 factor. Using β = 1, the average rate is 1.7 Mg-ha−1-yr−1 with a standard deviation of
4.0 Mg-ha−1-yr−1. The distribution of rates is shown in Figure 11.

Figure 10. The AGB rates estimated from the phase-height rates multiplied by the conversion factor
in (12), plotted against AGB. The green curve is the site-specific, stand-level growth model of Neeff
and Santos [31] based on field data at Tapajoś.

Figure 11. Histogram of the AGB rates of Figure 10 for the 78 plots in this study.

The AGB-rates for AGB < 250 Mg-ha−1 are on average positive, and become close to zero
for AGB > 250 Mg-ha−1. Table 2 below summarizes secondary-, primary-, and all-forest average
AGB-rates.
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Table 2. Average, standard deviation, and standard deviation of the mean of AGB-rate for secondary,
primary, and all forest plots.

Forest Type Avg AGB Rate (Mg-ha−1-yr−1) Standard Dev (Mg-ha−1-yr−1) Standard Dev of Mean (m-yr−1)

Secondary Forest 2.1 2.4 0.4
Primary Forest 1.1 5.2 0.9

All Plots 1.7 4.0 0.4

Using the same considerations as after Table 1, the secondary-forest and all-plot average AGB
rates are significantly different from zero; the primary-forest AGB rate is not.

Note that the average rates are of the order of those of Dubayah et al. [19], measuring 1 ha plots in
tropical wet forests of Costa Rica with LiDAR, and Meyer et al. [20], measuring 10–50 ha plots in moist
forests of Panama. In [19], secondary plots had average rates of 3.6 Mg-ha−1-yr−1 and primary plots
0.3 Mg-ha−1-yr−1. In [20], secondary plots had an average AGB-rate of 1.8 Mg-ha−1-yr−1 primary-plot
rate was −0.7 Mg-ha−1-yr−1.

It should also be noted that if a curve were fit through the jump plots, the black points in Figure 9
instead of the red, average conversion factors and AGB-rates could change by ≈ 30%. Biases in ground
finding in producing the red points could contribute to the red points being lower than the black.
The selection of red or black points to produce Figures 10 and 11 therefore is a potential source of
systematic error at the level of 30%.

The green curve in Figure 10 is the stand-level growth model of Neeff and Santos [31], which
was based on field measurements at Tapajós and allometrics. It was derived from chronosequences.
The curve demonstrates that the AGB-rates estimated here are of the order of the modeled rates,
with the model giving higher growth rates for the secondary plots, possibly arguing for β > 1.
The reference does not supply rates for AGB > 200 Mg-ha−1. Note that Figure 10 is also consistent with
Feldpausch [32] where upper limits of about 10 Mg-ha−1-yr−1 are quoted for tropical moist forests.
These four external measures could be seen as constraining the value of the exponent β in the second
line of (11) to between 1 and 2. Both the TanDEM-X AGB-rates and those of the green-line model
show a rising rate from 0 to about 80 Mg-ha−1-yr−1. The model takes a downturn at ≈80 Mg-ha−1,
the TanDEM-X AGB-rates show some indication of a downturn as well, but then show a higher
rate contribution starting at around 200 Mg-ha−1, and eventually decreasing for more massive plots.
The error bars are the slope errors multiplied by the correction factors of (12). Recall that the slope
error bars include an added unmodeled error to make the reduced χ2 close to 1. The AGB-rate error
bars therefore reflect the goodness of fit (RMS scatter) of the linear or logistic model. There appear
to be significant trends, given the error bars. For example, as noted above, around 200 Mg-ha−1

there appears to be a collection of points significantly positive (their error bars do not clip zero).
The significant departures of points from any group could be 1) due to using different ambiguity
heights for different epochs, as mentioned in Section 2.3.3. While the error introduced by using
different ambiguity heights seems small, based on considerations in Section 2.3.3, it is possible that
pathological asymmetries in radar power profiles, p(z′), could couple with multiple hambs to cause
experimental errors. In addition to experimental errors, some of the apparently significant points
in Figure 10 could in fact 2) be indicative of real structual dynamics. They could also result from 3)
seasonal dielectric change, which could change p(z′) and thereby phase-height. In the absence of
plot-by-plot field rate measurements, we cannot discriminate against these three possibilities.

3.4.3. The Relative Accuracy of Single-Epoch and Differential (Rate) AGB Estimates

Each point in Figure 10 is derived from a phase-height versus time graph, as in Figure 5,
converted to AGB versus time by multiplying by the conversion factor in (12). The RMS scatter
of the AGBs in a fit is the RMS of the phase-height fit multiplied by the conversion factor. The average
AGB RMS in those 78 fits is 12 and 24 Mg-ha−1, for β = 1 and β = 2, respectively. In contrast,
using phase-height and coherence to estimate single-epoch AGB, the RMS of 30 plots’ AGB about
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field-estimated AGB is 57 Mg-ha−1 [10] with data from the same Tapajós set. If the linear (or logistic)
trend here and the field-measured AGB in the other work are regarded as truth, the scatter about
the truth is roughly 2–4 times greater for the single-epoch measurement than for the rate (differential)
measurement. This could be due to the fact that the location of the ground had to be estimated
for the single-epoch measurement for each stand. For the differential measurement, the difference
between each phase-height and that of the reference date, ground-finding errors common-mode cancel.
In addition to effects of imperfect ground finding, single-epoch studies are subject to plot-to-plot
differences in complex structure. The radar response to those differences—whether in coherence,
phase-height, or power—can trigger erroneous biases in AGB estimated from the radar signals at
a single epoch. In contrast, the differential measurement is not sensitive to plot-to-plot structural
biases, as long as those biases persist over time.

4. Discussion

The methods and results of this paper suggest that measurements of X-band phase-height are
potentially an indicator of tropical-forest structure and AGB change. The efficacy of using X-band in
tropical forests with interferometry will be discussed below, as well as the use of phase-height from
InSAR. Future improvements to the study described here follow.

4.1. X-Band Interferometry for Tropical-Forest Structure and Biomass

It has long been thought that X-band signals would not penetrate the tropical forest sufficiently to
sense AGB much above 30 Mg-ha−1 [33]. Because interferometry involves phase, it has been suggested
that interferometry, even at higher frequencies, has more of a “height perception” [34]. A simple
way to envision the gains by using phase is to imagine that the forest is a nearly impenetrable layer.
If radar only sees the top few cm, say, power measurements will be the same if that impenetrable layer
is displaced vertically by a few meters. However, if the nearly impenetrable layer is raised by 1 m,
the InSAR phase-height will change by 1 m. InSAR is sensitive to the spatial origins of the return
radiation, and this is the big difference between interferometry and traditional power-based radar.
The origins of return radiation—whether from InSAR or LiDAR [35]—bear on AGB estimation. In
fact, the X-band signal does appear to penetrate, yielding a vertical diversity of returns. Although
not used in this paper, X-band coherence should decrease as plot AGB goes up, if there is penetration.
Coherence was shown to decrease with increasing AGB for a subset of the plots in this study [10].

Signals attenuate more at higher frequencies principally because the absorption by water increases
with frequency [36]. However, as frequency goes up, the ability of the signal to penetrate holes in the
medium increases. Thus modeling suggests that an X-band signal appears to be able to penetrate 50 cm
holes e.g., [37], even though it may be severely attenuated by vegetation in its path. The inspection of
TanDEM-X data suggests that the tropical-forest signal at X-band is consistent with hard, attenuating
targets and significant gaps, allowing more penetration than previously suspected [38,39].

4.2. Using Phase-Height to Measure Tropical Forest Dynamics

The time evolution of phase-height was chosen for AGB-rate estimation. It was chosen because
phase-height is close to the radar-power-averaged mean canopy height, which, in turn, is plausibly
connected to profiles of the density of scatterers, as detailed in Section 2.3. Phase-height was chosen
in part because the median 1.3-m RMS scatter about a linear or logistic model is smaller than errors
attained using other height metrics with InSAR alone, as detailed below.

Phase-height is one of two observations from interfermetric SAR. Coherence, the normalized
amplitude of the InSAR cross correlation in (1), is the other. Coherence has been used along with
phase-height in simple models—e.g., Random Volume Over Ground (RVOG)—to estimate forest
height, extinction, and underlying topography [7,40,41]. Forest height RMS’s of RVOG height about
LiDAR had values of 2 m in boreal forests, 2–4 m in tropical forests when used in conjunction with
LiDAR, and >5 m for InSAR alone in tropical forests [42]. In [17], 3–4 m RMS’s for forest height were
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demonstrated with (3.5 m) and without (4.3 m) LiDAR in temperate forests. TanDEM-X phase-height,
in addition to its correspondence with MCH and density profiles, produces lower RMS’s than most of
the height estimates arrived at by modeling. This study investigated a monitoring scenario with the
temporal frequency of Figure 5, and therefore focused on “InSAR-only” phase-height rate monitoring,
which motivated the focus on the high-performing phase-height for dense temporal measurements.
This work initiates a thorough understanding of phase-height for change measurements, and begins to
ask whether that might lead to approaches for monitoring dynamics that are complementary to model
approaches such as RVOG. The RVOG performance might be improved if there were more frequent
HV (horizontal send, vertical receive) polarization data, and simultaneous, baseline acquisitions. The
RVOG attempts to date with TanDEM-X have used only the dominant HH and VV signals at one
baseline per epoch, and this could be part of the reason for the poorer performance. It could also be
that the RVOG model best estimates structure for more penetrating frequencies, such as L-band, for
which ground returns will contribute more polarimetric diversity, and thereby lower the errors on
height estimates.

4.3. The Performance of Phase-Height and AGB Rate and Future Enhancements

All estimates of the performance of phase-height and AGB rates for measuring slow change
are based on a 3.2 year observing period, with 32 observations, as in Figure 5. An indication of
the phase-height rate performance is the array of formal error bars in Figure 7. Recall that these
errors result from phase-height errors, which had an added component to account for unmodeled
scatter. The average formal error is 0.27 m-yr−1 with a standard deviation of 0.15 m-yr−1. The
scatter of phase-height rate about the y = x line in Figure 6 provides another approach to assessing
phase-height rate error. The 1.2-m-yr−1 scatter of InSAR phase-height rates about LiDAR RH90 rates
can be interpreted as the 1-yr error in phase-height rate (assuming LiDAR errors are much smaller than
those of InSAR). Assuming a time interval−1.5 dependence of the rate error estimate, an error estimate
of 0.21 m-yr−1 is derived for a 3.2-yr interval, which is of the order of the formal error bar based on the
phase-height fit alone. Similarly, the performance of AGB-rates from the array of error bars in Figure 10
is indicated by the average error of 1.9 Mg-ha−1-yr−1 with a standard deviation of 2.2 Mg-ha−1-yr−1.
From an average phase-height rate error of 0.27 m-yr−1, with an average conversion factor of 7, an
AGB-rate error estimate of about 1.9 Mg-ha−1-yr−1 results, equal to the rate error above. A source
of systematic error in the phase-height rate is in the correction derived from the two buildings. The
correction of 0.45 m-yr−1 was the average of 0.5 and 0.4 m-yr−1 of the two buildings. A phase-height
systematic error of about 0.05 m-yr−1 can be assumed in the phase-height rate, which, multiplied by
the average conversion factor of 7, gives a possible AGB-rate systematic error of ≈0.4 Mg-ha−1-yr−1.
In the future, many buildings or ground control points could be sought to drive this error lower.

The AGB-rate error of 1.9 Mg-ha−1-yr−1 is based on the scatter about a linear or logistic
phase-height fit and does not account for important systematic errors in the conversion from
phase-height rate, including model assumptions in (10)–(12). The largest systematic effect in AGB-rate
is the choice of β in (11). The green curve in Figure 10 argues for a higher β to bring the low-AGB red
points closer. The study which generated the green line did not use the same plots as in this study,
nor was it done at the same general epoch. Other studies mentioned in Section 3.4.2 suggest limiting
β. A range of 1–2 seems plausible. The black curve of Figure 9, based on cleared areas in this study,
suggests a 30% increase in the conversion factor, and hence all AGB-rates. In general, there are many
alternatives to the treatment of the conversion factor in (10). The density function, for example, in
(11) could be some other function of z′ and not a power law at all. Differential fieldwork, on so-called
“permanent plots” with tagged trees, could suggest other functional forms for ρ(z′), including values
for β. The scatter of the red points about the dashed line of Figure 9 is 0.3 Mg-ha−1-m−1, which, when
multiplied by the average phase-height rate (from Table 1) of 0.5 m-yr−1 yields a 0.15 Mg-ha−1-yr−1

systematic effect. This scatter is in part due to the error in measured AGB of 25% [24]. In looking up
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a plot’s AGB/hφ, a 25% error will be made in the AGB argument of (13). This translates to a 15–25%
error in AGB/hφ.

Another source of systematic error is the treatment of the square-bracket term in (12). It was
assigned an average value of 0.85, with a standard deviation of 0.05, based on modeling attenuation
and a random volume. Using this value of 0.85 therefore constitutes a 6% systematic error. The
permanent-plot fieldwork could help to model this term as a function of AGB, and apply the functional
form of the term without having to resort to just an average value.

Most systematic errors would take the form of overall scale factors. Given that all the systematic
effects (except for assignment of β) cause <1 Mg-ha−1-yr−1 errors, the AGB-rate error from the
error bars or LiDAR comparison of ≈2 Mg-ha−1-yr−1 quoted here is plausible, but probably an
underestimate by 1–2 Mg-ha−1-yr−1.

The best indicator of the error is a comparison to field estimates of change, as mentioned repeatedly.
In fieldwork done in 2010 and 2013, there were a few plots repeated, but not tagged, so AGB errors
were about 25%, as noted above, and therefore too large to be an indicator of truth AGB-rate. We never
intended to re-measure the 2010 plots and that is why they were not marked. The comparison to
external reports mentioned just below Table 2 shows that all approaches, in Tapajós, Costa Rica,
and Panama, get the same order of secondary-forest and primary-forest change [19,20].

Estimates of the performance of phase-height for measuring jumps, or abrupt disturbance, entail
errors in the epoch of the event and the magnitude of the phase-height change. From Figure 5 and
Monte Carlo error analysis, the epoch and magnitude of disturbance can be determined with about
1 month and 2 m accuracy, respectively. All of the 8 jump events, 2 of which are shown in Figure 5, were
seen in Landsat images, with temporal resolution of about 1 year. The ability to establish a 1-month
window for clearing events seems a strength of phase-height measurements, and will be of considerable
use to REDD+ mitigation activities.

On the data acquisition side, an improvement could be to use the same hamb for each epoch.
The model calculations leading to Figure 4 suggest that even with extremely asymmetric radar
power profiles, only a 0.6 m difference arises between MCH and InSAR phase-height. This 0.6 m
could be contributing to the RMS phase-height scatters in 5, but it seems unlikely as the MCH-hφ

comparison was a worst-case result for the volume calculation of (7). It is also possible that pathological
asymmetries could result from adding ground contributions to the model in (7). In one variant of the
analysis, extremely large height ambiguities of 250 m were removed without appreciable difference in
phase-height rate. It does appear that phase-heights from similar hamb exhibited some clumping in
plots like those of Figure 5. If, in the future, all hambs were the same, this worst-case RMS contribution
would drop to 0.1 m for the phase-height scatter.

Although the revisit intervals and accuracy of current TanDEM-X measurements is sufficient to
detect the epochs of observed jumps to within about a month, the error estimates above for measuring
growth or gradual degradation of 2–4 Mg-ha−1-yr−1 or more apply to a 3.2 year period. The average
ratio of the magnitude of estimated AGB slope to slope error bar is 2.9. Assuming a time-span−1.5 error
dependence again, almost a factor of two accuracy would be lost in going to a 2-yr delivery period.
This factor of two could probably be recouped by using 1 ha sample instead of 0.25 ha of this study.

5. Conclusions

This study suggests that InSAR phase-height rate from TanDEM-X, which is close to radar MCH
rate, can be determined by time series of phase-heights to about 0.25 m-yr−1. In Tapajós, secondary
plots averaged a phase-height rate of 0.8 m-yr−1, while primary plots averaged 0.1 m-yr−1. This study
further proposes a model in which AGB-rate is proportional to phase-height rate, with the conversion
factor between the two rates dependent on AGB. AGB-rate errors of 2-4 Mg-ha−1-yr−1 for 3.2-year
time spans and 0.25-ha plots were based on error modeling. The average secondary-forest AGB-rate
was 2.1 Mg-ha−1-yr−1 and primary-stand rate of 1.1 Mg-ha−1-yr−1. The AGB-rates are subject to as
much as a factor of 2 systematic effects due to power-law model assumptions and other systematic
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effects as in section 4.3. Other systematic effects are less than 1 Mg-ha−1-yr−1. The epochs and sizes of
disturbance events were determined with 1-month and 2-m accuracy, respectively. Permanent plot
fieldwork will facilitate analysis approaches with smaller systematic effects. TanDEM-X is scheduled
to provide more forest data in 2017. If this continues to 2018 and beyond, it affords an opportunity to
do accurate permanent-plot fieldwork to support new TanDEM-X acquisitions.

The scenario suggested in this paper for converting phase-height rate to AGB-rate (10) requires
a single-epoch measurement of AGB for each plot as input to the conversion factor in (12). More
elaborate models than (10)–(12) will probably also require a single-epoch measurement. The InSAR
coherence and phase-height from TanDEM-X or a similar mission could be used to generate a 30%
AGB as in [10]. However, in that work, a by-hand method was used to find the ground to calibrate the
phase-height (to realize the red points in Figure 9). An automated method, sufficiently accurate, would
have to be developed to facilitate the AGB estimates. Another possibility is to use single-epoch LiDAR
measurements of AGB from a GEDI-type mission, along with phase-height from an X-band InSAR
mission, to arrive at conversion factor components as in (13). GEDI measurements in the tropics will
probably be infrequent due to cloud coverage, but for undisturbed plots, an accurate measurement of
AGB within 1 year will be sufficient (AGB will not have changed, on average, by more than 2–3 Mg-ha)
to find the conversion factor. Combining LiDAR’s accurate but infrequent AGB measurement, with
InSAR’s frequent phase-height, could be an efficient scenario. Yet another possibility for accurate
single-epoch measurements would be an L-band, fully polarimetric 2-spacecraft InSAR mission, which
could undoubtedly find the ground better than an X-band mission.

The approaches presented here, and alternatives to them which might use model-based height
metrics from InSAR, should be tried at various radio frequencies. There is no firm argument
for a correspondence between the “hard scattering” at X-band discussed in Section 4.1 and
the performance of phase-height rate and AGB-rate. The estimated heights from InSAR based
on RVOG perform poorly at X-band with low polarimetric and baseline diversity, as noted in
Section 4.2. However, heights from RVOG or other models will almost certainly produce more accurate
single-epoch stock measurements at lower radio frequencies such as L-band. Whether the meter-level
scatters in Figure 5 at X-band would improve at L-band should be studied. More elaborate models of
the dependence of AĠB on ḣφ than (10) through (13) should be tried with InSAR time series.
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Appendix A

Table A1. List of observation epochs (baselines) used. The columns are (1) Pass number; (2) Year of
pass; (3) Month; (4) Day; (5) Ambiguity Height (m).

1 2011 9 22 73.400
2 2011 6 15 57.900
3 2011 8 20 70.400
4 2011 10 14 83.000
5 2011 12 8 153.700
6 2011 12 30 154.400
7 2012 1 21 249.900
8 2012 2 12 252.500
9 2012 3 16 260.700

10 2012 3 27 246.500
11 2012 10 22 47.100
12 2012 11 2 49.300
13 2012 12 5 60.700
14 2013 3 25 194.200
15 2013 5 30 80.700
16 2013 7 13 117.300
17 2013 8 4 130.600
18 2013 8 26 72.500
19 2013 9 6 84.400
20 2013 9 28 95.000
21 2013 12 3 196.500
22 2013 12 14 169.300
23 2014 1 5 93.900
24 2014 2 7 71.300
25 2014 4 14 128.600
26 2014 5 6 83.300
27 2014 5 17 78.800
28 2014 5 28 78.900
29 2014 6 30 65.600
30 2014 7 22 69.500
31 2014 8 2 77.400
32 2014 9 15 134.300
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Table A2. Phase-height results. The columns are 1) Plot number, 2) longitude, 3) latitude,
4)Phase-Height Rate (m-yr−1), 5) Phase-Height Rate Error (m-yr−1), 6) epoch of jump (years, jump
plots only), 7) size and direction of jump (m, always negative), 8) RMS about model (m), 9) Field AGB
(Mg-ha−1). The stars indicate plots for which there was an abrupt jump in phase-height. Plot 44 does
not have a star because the coordinates were very close to plot 22.

1 −3.130910 −54.953098 0.454607 0.193582 0.000000 0.000 0.965 40.400
2 −3.133010 −54.952702 0.784603 0.174644 0.000000 0.000 1.071 136.200
3 −3.133860 −54.952599 0.068583 0.149540 0.000000 0.000 0.905 129.100
4 −3.027960 −54.967098 0.856066 0.194395 0.000000 0.000 1.237 233.000
5 −3.029510 −54.966900 0.478339 0.359500 0.000000 0.000 2.319 227.800
6 −3.024850 −54.967499 0.110787 0.191887 0.000000 0.000 1.210 294.100
7 −3.020170 −54.968201 −0.194923 0.241532 0.000000 0.000 1.540 380.300
8 −2.937600 −54.979401 −0.581948 0.265151 0.000000 0.000 1.854 314.800
9 −2.936040 −54.979599 0.275688 0.182756 0.000000 0.000 0.767 308.500

10 −2.934480 −54.979801 0.043263 0.198722 0.000000 0.000 1.083 421.000
11 −2.939160 −54.979198 0.112345 0.196660 0.000000 0.000 1.126 336.900
12 −3.026400 −54.967300 0.673636 0.166502 0.000000 0.000 1.021 193.000
13 −3.017020 −54.968601 0.460963 0.181941 0.000000 0.000 0.900 287.200
14 −3.135420 −54.952400 0.481861 0.163645 0.000000 0.000 1.022 78.400
15 −3.015530 −54.968899 −0.121053 0.171038 0.000000 0.000 0.907 429.200
16 −3.152580 −54.950001 1.543710 0.641120 2013.880371 −17.113 1.947 150.400 *
17 −3.149420 −54.950401 0.844270 0.158688 0.000000 0.000 0.967 52.400
18 −3.115120 −54.955200 0.686952 0.292748 2013.848145 −8.752 1.093 43.600 *
19 −3.116720 −54.955002 0.926217 0.129313 0.000000 0.000 0.732 71.300
20 −3.118330 −54.955002 0.184325 0.219348 0.000000 0.000 1.287 310.400
21 −3.112970 −54.983601 1.270890 0.263002 2014.181519 −8.050 1.278 8.900 *
22 −3.114550 −54.983799 1.067040 0.394613 2014.178345 −6.581 1.057 19.100 *
23 −3.111410 −54.983299 1.609308 0.195239 0.000000 0.000 0.980 11.500
24 −3.125350 −54.985401 −0.317946 0.243731 2011.947632 −5.442 0.814 47.800 *
25 −3.123850 −54.985100 0.984695 0.157564 0.000000 0.000 0.887 27.000
26 −3.122300 −54.984901 0.916722 0.151511 0.000000 0.000 1.032 51.300
27 −3.056510 −54.987499 0.640870 0.925907 0.000000 0.000 7.166 289.500
28 −2.930880 −55.000099 0.345566 0.280541 0.000000 0.000 1.733 345.300
29 −2.943690 −55.026299 1.353852 0.304138 0.000000 0.000 2.226 221.400
30 −2.934300 −54.990601 −0.417227 0.232297 0.000000 0.000 1.487 333.800
31 −3.124310 −54.961102 1.397861 0.248493 0.000000 0.000 1.170 0.800
32 −3.128890 −54.958900 0.961846 0.381249 2013.832886 −10.488 1.304 38.500 *
33 −3.110410 −54.985600 2.107846 0.264627 0.000000 0.000 1.351 7.100
34 −3.357990 −54.996601 0.087855 0.199023 0.000000 0.000 1.117 343.500
35 −3.358430 −54.991402 −0.040254 0.238347 0.000000 0.000 1.517 453.500
36 −3.358000 −54.987400 0.272680 0.199662 0.000000 0.000 1.397 333.800
37 −3.138950 −55.027802 0.882286 0.309965 0.000000 0.000 2.096 202.800
38 −3.118990 −55.054199 1.847912 0.461109 0.000000 0.000 3.334 43.100
39 −3.107810 −55.081902 0.964537 0.335342 0.000000 0.000 1.565 0.700
40 −3.059210 −55.006500 −0.233490 0.214971 0.000000 0.000 1.457 239.900
41 −2.950610 −54.924702 −0.095074 0.225523 0.000000 0.000 1.462 116.800
42 −2.915720 −54.919899 0.966455 0.261321 0.000000 0.000 1.521 1.500
43 −2.914300 −54.905399 0.218828 0.222246 0.000000 0.000 1.151 34.700
44 −3.114580 −54.983799 1.497180 0.350418 2014.177979 −7.178 1.100 11.100
45 −3.133010 −54.952702 0.823535 0.186343 0.000000 0.000 1.141 149.800
46 −3.130910 −54.953098 0.385443 0.184383 0.000000 0.000 0.941 40.800
47 −3.206300 −54.995602 0.619866 0.275334 0.000000 0.000 1.619 462.900
48 −3.221620 −54.993801 0.215504 0.209776 0.000000 0.000 1.290 457.400
49 −3.224370 −54.994202 0.788685 0.393887 0.000000 0.000 2.555 639.200
50 −3.116710 −54.955002 0.896724 0.129154 0.000000 0.000 0.811 104.400
51 −3.118320 −54.955002 0.159074 0.213723 0.000000 0.000 1.219 380.800
52 −3.122100 −54.987598 1.292980 0.403824 2013.798828 −15.656 1.143 86.700 *
53 −3.051970 −54.979401 0.429349 0.238099 0.000000 0.000 1.541 387.900
54 −2.938070 −54.933800 −0.013126 0.167420 0.000000 0.000 0.954 167.600
55 −2.928430 −55.021599 0.164560 0.251267 0.000000 0.000 1.638 179.700
56 −2.909920 −55.039001 0.095907 0.145083 0.000000 0.000 1.026 110.800
57 −3.129750 −54.952301 0.174746 0.213031 0.000000 0.000 1.100 40.000
58 −3.128970 −54.948700 0.834410 0.178792 0.000000 0.000 1.095 60.500
59 −3.113640 −54.979599 0.897366 0.187097 0.000000 0.000 1.158 42.600
60 −3.108400 −54.992100 0.735734 0.276439 0.000000 0.000 1.719 20.900
61 −3.124500 −54.990898 −0.338942 0.266088 0.000000 0.000 1.441 9.700
62 −3.126430 −54.960098 0.063191 0.208251 0.000000 0.000 1.489 93.800
63 −3.131600 −55.007099 0.358451 0.158200 0.000000 0.000 0.972 109.400
64 −3.137290 −55.039001 −1.000995 0.511155 0.000000 0.000 3.598 266.800
65 −3.114210 −55.068699 0.991243 0.428841 0.000000 0.000 2.641 38.900
66 −2.978960 −54.982899 −0.481809 0.266980 0.000000 0.000 1.697 331.300
67 −3.006480 −54.973301 0.190774 0.202528 0.000000 0.000 1.307 312.100
68 −2.989900 −54.929199 1.636473 0.153530 0.000000 0.000 0.958 11.000
69 −3.084400 −54.926701 0.375553 0.143178 0.000000 0.000 1.118 77.800
70 −3.084200 −54.928799 0.977014 0.212756 0.000000 0.000 1.323 60.400
71 −2.940900 −55.025299 0.287384 0.272711 0.000000 0.000 1.799 75.300
72 −2.931070 −55.009399 1.596654 0.240939 0.000000 0.000 1.673 43.500
73 −3.191080 −54.995300 −0.370769 0.228089 0.000000 0.000 1.386 451.900
74 −3.207900 −54.998600 −0.408313 0.865851 0.000000 0.000 5.597 430.200
75 −3.209040 −55.000999 −0.539660 0.240988 0.000000 0.000 1.836 738.400
76 −3.068920 −54.925598 1.085426 0.194411 0.000000 0.000 1.312 201.200
77 −3.125470 −54.957100 0.015487 0.675524 0.000000 0.000 4.816 538.100
78 −3.123570 −54.987900 0.214025 0.454257 2013.909058 −17.267 0.969 143.900 *
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Table A3. AGB results. The columns are 1) Plot number, 2) AGB (Mg-ha−1), 3) AGB-rate
(Mg-ha−1-yr−1), 4) Error in AGB-rate (Mg-ha−1-yr−1 ), 5) RMS about model (Mg-ha−1).

1 40.400 0.905 0.386 1.922
2 136.200 4.694 1.045 6.408
3 129.100 0.392 0.855 5.175
4 233.000 7.836 1.779 11.322
5 227.800 4.306 3.236 20.875
6 294.100 1.196 2.071 13.060
7 380.300 −2.479 3.072 19.589
8 314.800 −6.573 2.995 20.940
9 308.500 3.072 2.037 8.548

10 421.000 0.584 2.682 14.615
11 336.900 1.326 2.321 13.289
12 193.000 5.346 1.321 8.102
13 287.200 4.896 1.932 9.558
14 78.400 1.778 0.604 3.771
15 429.200 −1.651 2.333 12.373
16 150.400 10.030 4.166 12.650
17 52.400 2.149 0.404 2.461
18 43.600 1.471 0.627 2.340
19 71.300 3.135 0.438 2.478
20 310.400 2.063 2.455 14.402
21 8.900 0.580 0.120 0.583
22 19.100 1.031 0.381 1.022
23 11.500 0.946 0.115 0.576
24 47.800 −0.742 0.569 1.901
25 27.000 1.332 0.213 1.200
26 51.300 2.288 0.378 2.575
27 289.500 6.843 9.887 76.521
28 345.300 4.142 3.363 20.774
29 221.400 11.931 2.680 19.616
30 333.800 −4.895 2.725 17.446
31 0.800 0.058 0.010 0.048
32 38.500 1.830 0.725 2.481
33 7.100 0.769 0.097 0.493
34 343.500 1.050 2.378 13.346
35 453.500 −0.566 3.351 21.329
36 333.800 3.199 2.342 16.390
37 202.800 7.274 2.556 17.282
38 43.100 3.913 0.976 7.060
39 0.700 0.035 0.012 0.057
40 239.900 −2.183 2.010 13.624
41 116.800 −0.499 1.184 7.675
42 1.500 0.075 0.020 0.118
43 34.700 0.377 0.383 1.983
44 11.100 0.849 0.199 0.624
45 149.800 5.333 1.207 7.389
46 40.800 0.775 0.371 1.892
47 462.900 8.811 3.914 23.014
48 457.400 3.044 2.963 18.221
49 639.200 13.043 6.514 42.254
50 104.400 4.271 0.615 3.862
51 380.800 2.025 2.721 15.518
52 86.700 5.224 1.631 4.618
53 387.900 5.526 3.065 19.834
54 167.600 −0.093 1.188 6.770
55 179.700 1.235 1.885 12.289
56 110.800 0.481 0.728 5.146
57 40.000 0.345 0.420 2.170
58 60.500 2.428 0.520 3.187
59 42.600 1.879 0.392 2.425
60 20.900 0.777 0.292 1.814
61 9.700 −0.168 0.132 0.716
62 93.800 0.274 0.902 6.453
63 109.400 1.778 0.785 4.822
64 266.800 −10.101 5.158 36.308
65 38.900 1.904 0.824 5.074
66 331.300 −5.626 3.117 19.814
67 312.100 2.142 2.274 14.678
68 11.000 0.920 0.086 0.539
69 77.800 1.376 0.525 4.097
70 60.400 2.839 0.618 3.844
71 75.300 1.022 0.970 6.400
72 43.500 3.411 0.515 3.574
73 451.900 −5.203 3.201 19.450
74 430.200 −5.577 11.827 76.453
75 738.400 −9.422 4.207 32.054
76 201.200 8.895 1.593 10.752
77 538.100 0.237 10.357 73.837
78 143.900 1.341 2.845 6.070
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