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Abstract: Hurricanes are an important disturbance in the tropics that can alter forest ecosystem
properties and processes. To understand the immediate influence of hurricane disturbance on carbon
cycling, we examined soil labile organic carbon (LOC) in a Canopy Trimming Experiment (CTE)
located in the Luquillo Experimental Forest of Puerto Rico. We trimmed tree canopy and deposited
debris (CTDD) on the forest ground of the treatment plots in December 2014, and collected floor mass
samples and 0–10 cm soil samples three weeks before the treatment, as well as at scheduled intervals
for 120 weeks after the treatment. Within the first week following the CTDD treatment, the mean
soil microbial biomass carbon (MBC) and soil LOC in the CTDD plots were significantly greater than
in the control plots (soil MBC: 2.56 g/kg versus 1.98 g/kg, soil LOC: 9.16 g/kg versus 6.44 g/kg,
respectively), and the mean turnover rates of soil LOC in the CTDD plots were significantly faster
than in the control plots. The measured indices fluctuated temporally more in the CTDD plots than in
the control plots, especially between the 12th and 84th week after the CTDD treatment. The treatment
effect on soil LOC and its turnover rate gradually disappeared after the 84th week following the
treatment, while higher levels of soil MBC in the CTDD plots than in the control plots remained high,
even at the 120th week. Our data suggest that hurricane disturbance can accelerate the cycling of soil
LOC on a short temporal scale of less than two years, but might have a longer lasting effect on soil
MBC in a tropical wet forest.

Keywords: canopy trimming and debris deposition; floor mass; hurricane disturbance; Luquillo
Experimental Forest; Puerto Rico; soil LOC; soil MBC; soil moisture; subtropical wet forest; turnover
rate of soil LOC

1. Introduction

Natural disturbances often deposit massive amounts of litterfall in forests, such as in the case of
drought [1], wind [2], rainstorms [3], and ice storms [4]. Severe hurricane-force winds instantaneously
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strip foliage and uproot many trees, depositing massive amounts of litterfall on the forest ground.
Such canopy flux induces changes in forest structure and processes for a period ranging from short to
long-term [5]. As a frequent source of disturbance in the Caribbean, hurricanes dramatically change
forest dynamics and processes throughout the area covered by hurricane tracks [5–7].

Hurricanes deposit a large amount of fine litter and coarse woody debris on the forest ground.
Hurricane Hugo deposited 1.08 kg/m2 total litterfall, which is equal to 1.25 times of annual litterfall
production in the Bisley Experimental Watersheds in the Luquillo Experimental Forest of Puerto Rico
in 1989 [8]. In the northeastern Yucatan Peninsula, Hurricane Gilbert defoliated almost all of the trees
in 1988 [9]. Hurricane Iniki generated an instantaneous fine litterfall that was equivalent to 1.4 times
the annual fine litterfall input in the Na Pali-Kona Forest Reserve of Hawaii in 1992 [10]. During the
period from 1992 to 2000, 16 typhoons deposited hurricane-induced debris varying from 10,800 to
3020 kg/ha in the Fushan Experimental Forest of northern Taiwan [3]. In 2017, Hurricane Irma and
Hurricane Maria deposited a total amount of 32,225 kg/ha fine litter debris, which was equivalent
to 1.61 times the annual litterfall production in the Luquillo Experimental Forest in Puerto Rico [11].
A massive input of hurricane debris provides a pulsed input of carbon and nutrients to forest soils.

Nutrient input to soil from hurricane-induced litterfall is well understood. A large-scale long-term
manipulation experiment of canopy and deposited debris (CTDD) that spanned from 2003 to 2007
in the same research site demonstrated that the CTDD treatment had large and lasting effects on
carbon and nutrient cycling [12], and soil microbial communities had strong resilience to the CTDD
treatment [13]. However, the dynamics and degree of soil microbial community between the control and
CTDD treatments were incomplete, because the study started too late after the CTDD treatment [13].
Although litter invertebrate [14], nutrient dynamics [12], soil microbial community [13], fungal
connectivity [15], and tree recruitment [16] were studied in the canopy trimming experiment, studies
on the impact of hurricane-induced litterfall on soil LOC and its turnover rate are still rare [8,9,17].
Soil microbial biomass carbon (MBC) is defined as the total carbon contained in the living component
of soil organic matter [18,19], comprising only 1.4% of the world’s total soil organic carbon [20], but
it is the most active component of soil organic carbon, and plays an important role in regulating
biogeochemical processes in terrestrial ecosystems [21–23]. Soil LOC is defined as the fraction of soil
organic carbon that is degradable during soil microbial growth [24]. The definition and explanation
of soil labile organic carbon (LOC) are still controversial [25–27], but it is widely acknowledged that
soil LOC is an important component of soil organic carbon with rapid turnover rates, which can
be drastically changed by disturbance and management [24,28,29]. Other indices of soil LOC rarely
provide estimates of relative turnover rates.

Around 800 severe disturbances of hurricane and tropical storm have crossed the Caribbean
region over the last 100 years, resulting in dynamic changes in forest structure and processes [5,6].
Our objective in this study is to examine the influence of hurricane disturbance on below-ground
ecosystem properties in forests. Specifically, we hypothesize that hurricane disturbance increases the
pools of soil MBC and soil LOC because of the sudden massive input of hurricane-induced litterfall,
thus leading to the alteration of the turnover rate of soil LOC. For testing our hypothesis, we conducted
this study and measured soil MBC and soil LOC immediately after the CTDD treatment and during
the initial period of forest recovery.

2. Materials and Methods

2.1. Study Sites

This study was conducted in the Canopy Trimming Experiment (CTE) plots, which are located in
the Luquillo Experimental Forest, Puerto Rico [30]. This forest is a subtropical wet forest, according to
the landscape life zone classification system of Holdridge, and is characterized as a tabonuco forest
type [14]. The dominant tree species include Dacryodes excelsa Vahl, Sloanea berteriana Choisy ex DC.,
Manilkara bidentata (A.DC) A. Chev., and Prestoea acuminata (Wildenow) H.E. Moore (=Prestoea montana
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(Graham) A. Henderson and G. Galeano) [31]. Mean air temperature was 24 ◦C [31], and mean annual
precipitation was 3500 mm [32]. Although this is a non-seasonal forest, there is typically a weak dry
season from December to March [14]. Two litterfall peaks normally occur in April and August, and
the lowest litterfall rate is between December and February [23,33,34]. Soils are classified as highly
weathered Oxisols derived from volcaniclastic sediments [35,36]. Three complete replicated blocks of the
CTE plots were located in the northeastern and eastern areas of El Verde Field Station (18◦19′16.37′′ N,
65◦49′11.21′′ W) in El Yunque National Forest around 1 km apart, at 340–470 m a.s.l. [14].

2.2. Study Design

The three replicated blocks of the CTE are located in areas of tabonuco forest with similar biotic
and abiotic factors, such as plant species, soil type, temperature, and precipitation. The original design
of the CTE included four plots (i.e., four treatments) in each block: without canopy trimming or debris
deposition (control), without canopy trimming and with debris deposition, with canopy trimming
and without debris deposition, and a simulated hurricane treatment with canopy trimming and debris
deposition (CTDD) [14,37]. Each plot of the treatment is 30 m × 30 m, with a central 20 m × 20 m
measurement plot divided into 16 subplots (each subplot: 5 m × 5 m). Since the most common effect
of hurricane disturbance on forest is canopy defoliation and massive amounts of debris deposition,
we conducted this study using only two treatments: control and CTDD. Three subplots in each plot
were randomly assigned for taking soil samples to study below-ground processing.

2.3. Soil Sampling and Processing

In the CTDD plots, forest canopy was trimmed, and debris was deposited on the forest ground in
December 2014 (Figure 1). We collected floor mass and 0–10 cm deep volumetric soil cores three weeks
before the treatment, and in the first, second, third, fifth, 12th, 24th, 36th, 48th, 60th, 72nd, 84th, 96th,
108th, and 120th weeks after the treatment.

Each time, we randomly threw a round plastic dish with a 0.2-m diameter onto the ground surface,
cut the leaves and wood along the dish margin with a knife, and collected the forest floor mass under
the dish in each of three subplots. Soil samples were collected to 10-cm depth using a PVC pipe with
0.05-m inner diameter. All of the samples of floor mass and soil were immediately processed at the
field station. We weighed floor mass samples before and after they were oven-dried at 65–70 ◦C to
constant weight for obtaining their dry weights. We weighed the soil cores, removed all of the roots,
plant debris, rocks, and visible soil animals from each soil sample, weighed each component, pooled
the three soil samples from the three subplots in the same plot to form one composite pool soil sample,
and transported them to the lab in University of Puerto Rico-Río Piedras campus for further analysis.
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Figure 1. Photos of the canopy trimming and debris deposition (CTDD) plots before and after the
CTDD treatment in the Luquillo Experimental Forest, Puerto Rico. (a) Dense forest canopy before the
CTDD treatment; (b) Bare trunks after the CTDD treatment; (c) Thick litter deposition on the forest
ground after the CTDD treatment; and (d) Recovery of trimmed forest after 12 weeks following the
CTDD treatment. These photos were taken by Sarah Stankavich.

We determined soil MBC by the modified Jenkinson and Powlson’s fumigation–incubation
method [38,39]. For each soil sample, we weighed two 30-g fresh soil subsamples, one for the
fumigation and incubation treatment, and one for the control sample. Soil MBC was calculated by
the difference of CO2 released from the control and fumigated soil samples during a period of 10-day
incubation using the following equation:

B = F/K (1)

where B was soil MBC (g/kg); F was the difference of CO2 released from two copies of soil
sample; and K = 0.45, which was the rate of the biomass carbon mineralization during the
fumigation—incubation process.

We measured soil LOC and its turnover rate using the sequential fumigation–incubation
method [24]. We fumigated and incubated each soil sample repeatedly for eight cycles (10 days
for each cycle), and calculated soil LOC and its turnover rate by the released CO2 from the fumigation
and incubation soil sample relative to the control soil sample over all eight fumigation and incubation
cycles. We calculated soil LOC and its turnover rate using the following equation:

Ln (Ct) = Ln(kClabile)− kt (t = 1, 2, 3, . . . . . . , 8) (2)

where Ct was soil MBC at the fumigation and incubation t cycle; k was the slope, or the turnover
rate of soil LOC; Clabile was soil LOC; Ln(kClabile) was the intercept (a); and t was the fumigation and
incubation cycle. Clabile = ea/k.

2.4. Data Analysis

Values of soil MBC and soil LOC were expressed at a dry soil basis (oven-dried for 24 h at
110 ◦C to constant weight). We compared floor mass, soil moisture, soil MBC, soil LOC, and its
turnover rate between the control and CTDD plots three weeks before and one week following the
CTDD treatment using one-way ANOVAs (Statistical Package for the Social Sciences 20, SPSS 20, IBM
Corporation, Chicago, IL, USA), and employed mixed-model ANOVA using SPSS 20 to analyze the
influence of the CTDD treatment on floor mass, soil moisture, soil MBC, soil LOC, and the turnover rate
of soil LOC. Dependent variables were floor mass, soil moisture, soil MBC, soil LOC, and its turnover
rate. The within-subject factor was week. Independent variables were treatment (control versus CTDD
treatment). All of our data for ANOVA met the homogeneity (Levene’s test [40]), normality (Shapiro–Wilk
test [41]), and sphericity (Mauchly’s test [42]) assumptions. Significance level was set at α < 0.05.
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We constructed Figures 2 and 3 using SigmaPlot 10.0 (Systat Software, Richmond, CA, USA).
Figure 2 was constructed by the multiple-scatter method, and Figure 3 was constructed using a 3D
mesh plot [43]. The 3D mesh plots were interpolated based on our experimental data. A uniformly
spaced grid was divided into 50 intervals from the minimum raw to maximum raw data in the x and
y-dimensions. At the intersection of the x and y-grids, interpolated z-values were calculated using an
inverse distance method [43–45].
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Figure 2. Dynamics of (a) floor mass, (b) soil moisture, (c) soil microbial biomass carbon (MBC), (d) soil
labile organic carbon (LOC), and (e) turnover rate of soil LOC three weeks before and after the canopy
trimming and debris deposition (CTDD) treatment for 120 weeks in the control and CTDD plots in
the Luquillo Experimental Forest, Puerto Rico. Note: The week marked by the vertical dashed line
was the week to trim forest canopy and deposit debris on the forest ground in the CTDD plots; the
value marked by the horizontal dotted line was the corresponding value of floor mass, soil moisture,
soil MBC, soil LOC, and the turnover rate of soil LOC measured in the control and CTDD plots three
weeks before the CTDD treatment. Error bars represent the standard error.
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We conducted the multiple linear regression analysis including floor mass, soil moisture, soil
MBC, soil LOC, turnover rate of soil LOC, and time (in weeks) after the CTDD treatment between the
control and CTDD plots, using SPSS 20. The independent variables were floor mass, soil moisture,



Forests 2018, 9, 420 7 of 14

soil MBC, week after the CTDD treatment, and the treatment of CTDD. The dependent variables
were soil LOC and its turnover rate. Our data met the assumptions of linearity (scatter plots [46]),
normality (Kolmogorov-Smirnov test [47]), and homoscedasticity of variance (Goldfeld-Quandt
test [48]). Significance level was set at p < 0.05.

3. Results

3.1. Data Collected Three Weeks before the CTDD Treatment

All of the soil parameters were statistically similar between the control and CTDD plots prior to
the CTDD treatment, which meant that we started our study from the similar levels of floor mass, soil
moisture, soil MBC, soil LOC, and turnover rate of soil LOC in the control and CTDD plots (Table 1).
However, one week after the CTDD treatment, most of the soil parameters differed significantly
between the control and CTDD plots.

Table 1. One-way ANOVA statistical analyses of floor mass, soil moisture, soil MBC, soil LOC, and
turnover rate of soil LOC three weeks before and one week after the CTDD treatment in the control and
treatment plots in the tabonuco forest, Puerto Rico. Dependent variables are floor mass, soil moisture,
soil MBC, soil LOC, and turnover rate of soil LOC. Independent variables are the control and CTDD
treatment. The same superscripts indicate no significant difference between the control and CTDD
plots at α = 0.05. Same superscripts (a and b) indicate no significant difference between the control and
CTDD plots.

Source
Average (±SE)

Degree of Freedom Mean Squares F p
Control CTDD

Floor mass (kg/m2)

Three weeks before 1.08 a (0.26) 0.83 a (0.15) 1 0.96 0.72 0.44
One week after 0.93 b (0.11) 3.13 a (0.38) 1 7.21 29.35 0.006

Soil moisture

Three weeks before 0.45 a (0.03) 0.39 a (0.02) 1 0.01 3.03 0.16
One week after 0.46 a (0.01) 0.43 b (0.01) 1 0.01 71.22 0.001

Soil MBC (g/kg)

Three weeks before 2.09 a (0.02) 2.03 a (0.06) 1 0.01 0.81 0.42
One week after 1.98 b (0.01) 2.56 a (0.14) 1 0.49 15.42 0.01

Soil LOC (g/kg)

Three weeks before 7.04 a (0.37) 6.75 a (0.16) 1 0.12 0.52 0.51
One week after 6.44 b (0.03) 9.16 a (0.31) 1 11.03 74.72 0.001

Turnover time of soil LOC (/cycle)

Three weeks before 0.48 a (0.01) 0.51 a (0.01) 1 0.01 3.79 0.12
One week after 0.50 b (0.01) 0.87 a (0.02) 1 0.20 161.38 <0.001

3.2. Floor Mass and Soil Moisture after the CTDD Treatment

Floor mass in the CTDD plots differed significantly from the control plots, and varied significantly
with time following the CTDD treatment (Table 2). Compared with the control plots, changes of
floor mass in the CTDD plots during the study period could be divided into three phases: before
the treatment of CTDD, between the first and 48th week after the treatment, and after the 60th week
following the treatment (Figure 2a). During the first phase, mean floor mass in the CTDD plots
was 0.83 (±0.15) kg/m2, and did not differ significantly from the control plots (1.08 ± 0.26 kg/m2).
During the second phase, mean floor mass in the CTDD plots was 2.53 (±0.26) kg/m2, and was
significantly greater than 0.92 (±0.08) kg/m2 in the control plots. During the third phase, mean floor
mass in the CTDD plots was 0.54 (±0.06) kg/m2, and was significantly lower than 0.90 (±0.07) kg/m2

in the control plots.
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Table 2. Effects of canopy trimming and debris deposition (CTDD) treatment and time after the
CTDD treatment as well as their interactions on floor mass, soil moisture, soil MBC, soil LOC, and the
turnover rate of soil LOC by the mixed-model ANOVA in the Luquillo Experimental Forest, Puerto Rico.
The within-subject factor is week. The dependent variables are floor mass, soil moisture, soil MBC, soil LOC,
and turnover rate in the CTDD plots. Independent variables are treatment (control vs. CTDD treatment).

Source Week Trimming + Debris Week × Trimming + Debris

Floor mass <0.001 0.03 0.001
Soil moisture <0.001 0.01 0.10
Soil MBC <0.001 <0.001 <0.001
Soil LOC <0.001 0.007 0.26
Turnover rate of
soil LOC <0.001 0.01 0.001

Mean floor mass did not differ among these three phases in the control plots. Mean floor mass
in the CTDD plots was significantly lower during the first phase than the second phase, but was
not significantly different from the third phase, showing an apparent interaction between treatment
and time.

Soil moisture in the CTDD plots differed from the control plots, and varied with weeks following
the CTDD treatment (Table 2). Considering fluctuations in both the control and CTDD plots, we
divided soil moisture status into four phases: before the treatment, between the first and 12th week
after the treatment, between the 24th and 96th week after the treatment, and after the 108th week
following the treatment (Figure 2b). During the first and second phases, mean soil moisture in the
control plots was not different from the CTDD plots. During the third phase, mean soil moisture in the
control plots was 45% (±1), which was significantly lower than the 49% (±1) recorded in the CTDD
plots. In contrast, mean soil moisture in the control plots was 49% (±1) during the last phase, which
was significantly higher than the 42% (±1) recorded in the CTDD plots.

There was a strong seasonal drop in soil moisture in the both control and CTDD plots between the
20th and 50th week caused by a drought with no interactions between treatment and time, regardless
of the shift in relative value of soil moisture during the third and fourth phases. Between the 24th and
36th week, the mean soil moisture in both the control and CTDD plots was lower than in the other
weeks. The variation of soil moisture in the CTDD plots was slightly more pronounced than in the
control plots.

3.3. Soil MBC after the CTDD Treatment

Soil MBC in the CTDD plots differed significantly from the control plots, and varied significantly
with time after the CTDD treatment (Table 2). Mean soil MBC in the CTDD plots was significantly
higher than in the control plots on every sampling date during the study period, except for the 96th
week and three weeks before the CTDD treatment (Figure 2c). According to the ratio between soil MBCs
in the CTDD plots and the control plots, changes of soil MBC could be divided into four following
phases: the first phase occurred during the period three weeks before the treatment, with insignificant
difference in the soil MBC between the control and CTDD plots; the second phase occurred between
the first and 12th week after the treatment, during which period the mean soil MBC in the CTDD plots
was 1.20 times that of the control plots; the third phase occurred between the 24th and 72nd week after
the treatment, during which period the mean soil MBC in the CTDD plots was 1.47 times that of the
control plots; and the fourth phase occurred after the 84th week following the treatment, during which
period the mean soil MBC in the CTDD plots was 1.14 times that of the control plots. The third phase
corresponded largely to the drought.

In the control plots, the only significant difference in mean soil MBC was between the third
(drought) phase and the fourth phase. In the CTDD plots, the mean soil MBC in the first phase was
significantly lower than the second and third phases, but was insignificantly different from the fourth
phase. There is a strong interaction between treatment and time for soil MBC.
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3.4. Soil LOC and Its Turnover Rate after the CTDD Treatment

Soil LOC in the CTDD plots differed significantly from the control plots, and varied greatly with
time of the CTDD treatment (Table 2), showing both treatment and time effects. We divided the entire
study period into four phases: the first phase, three weeks before the treatment; the second phase,
from the first to fifth week after the treatment; the third phase, from the 12th to 72nd week after the
treatment; and the fourth phase after the 84th week following the treatment (Figure 2d). Among these
four phases, the mean soil LOC of the CTDD plots during the third phase was significantly higher than
the control plots, and did not differ from the control plots during the other three phases. The mean
soil LOC in both the control and CTDD plots was significantly lower in the fourth phase than in the
other three phases, and did not differ among the other three phases. There is a significant interaction
between treatment and time on soil LOC.

The turnover rate of soil LOC in CTDD plots also differed significantly from the control plots,
and varied significantly with time after the CTDD treatment (Table 2). According to the differences
between the control and CTDD plots, the mean turnover rate of soil LOC showed dynamic changes in
four phases: the first phase during the three weeks before the treatment, the second phase from the first
to fifth week after the treatment, the third phase between the 12th and 72nd week after the treatment,
and the fourth phase after the 84th week since the treatment started (Figure 2e). Among these four
phases, the mean turnover rate of soil LOC during the second and third phases in the CTDD plots
was significantly higher than the control plots, and was significantly faster than during the first and
fourth phases. The turnover rate of soil LOC did not differ among the four phases in the control plots,
showing apparent treatment and time interactions.

3.5. Correlation Analysis

Using data pooled from both the control and CTDD plots, we found that soil LOC correlated
significantly with floor mass, soil MBC, and time after the CTDD treatment, but was not correlated with
soil moisture (Table 3). In contrast, soil MBC was only correlated with the turnover rate of soil LOC.

Table 3. Linear correlations of soil LOC and its turnover rate with floor mass, soil moisture, soil
moisture, soil MBC, for the week after the CTDD treatment in the control and CTDD plots in the
Luquillo Experimental Forest, Puerto Rico.

Source Regression Coefficient p-Value Correlation Coefficient p-Value

Soil LOC
Floor mass −0.39 0.002 −0.13 0.03
Soil moisture 3.68 0.10 0.26 0.008
Soil MBC 1.92 <0.01 0.68 <0.001
Week −0.01 0.006 −0.22 0.01
Constant 2.05 0.05

Turnover rate of soil LOC
Floor mass 0.01 0.15 0.27 0.006
Soil moisture 0.02 0.89 0.14 0.09
Soil MBC 0.12 <0.001 0.56 <0.001
Week 0.01 0.59 −0.22 0.02
Constant 0.21 0.03

Soil LOC was apparently affected by both floor mass and soil microbial activity in both the
control and CTDD plots (Figure 3a,b). This influence was more pronounced in the CTDD plots than
in the control plots, which was largely due to the extrapolated scales in both floor mass and soil
MBC. Soil LOC also fluctuated with time, and this fluctuation was more pronounced in the CTDD
plots than the control plots, too (Figure 3c–f). High levels of soil LOC occurred about 10 months
after the deposition of canopy debris (Figure 3d). High soil MBC was associated with high soil LOC
immediately or 60 weeks after the CTDD treatment (Figure 3f).
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4. Discussion

The pulsed input of vast litter debris generated by hurricanes provides sources of soil LOC and
food for soil communities. It is consequently expected that soil LOC and soil MBC will increase
following hurricanes. Indeed, our manipulated hurricane disturbance showed an immediate increase
in both soil LOC and soil MBC. As hurricane-induced debris decomposition proceeds, the increased
soil LOC and soil MBC are expected to decrease, and eventually return to background levels or fall
below pre-hurricane levels. Our data showed that soil LOC returned to control plot levels after
82 weeks, and remained at the control plot levels thereafter. Soil MBC behaved differently from soil
LOC; although it decreased at week 82, it remained higher than in the control plots even at 120 weeks,
showing a much longer residual effect from the pulse of hurricane-induced debris. This lasting residual
effect on soil MBC following hurricane disturbance suggested an alteration of other soil physical and
biological factors during forest recovery following hurricane disturbance.

The rates of forest canopy recovery after hurricanes vary among forests and storm events.
After Hurricane Hugo crossed Puerto Rico in September 1989, it took 60 months for the total litterfall
(fallen leaves and fine wood) to return to the pre-hurricane level in a tabonuco forest of the Bisley
Experimental Watersheds [49]. After Hurricane George defoliated the tabonuco forest in Puerto Rico in
September 1998, total forest floor mass and fallen leaves continually decreased to below pre-hurricane
levels during the first year [50]. In our study, total floor mass in the CTDD plots continually decreased
after the CTDD treatment in December 2014, with elevated floor mass lasting for only 65 weeks, after
which it fell below litter standing stocks in the control plots. Total floor mass had not returned to the
control plot level, even after 120 weeks. The slow recovery of forest litterfall and floor mass might
result the decline of soil LOC in the CTDD plot during the later phase of forest recovery.

In previous studies, litterfall accumulation was shown to decrease solar radiation on mineral soil
surface, together with reduced forest transpiration in the trimmed plots, causing soil to retain more
moisture [14,50,51]. However, during our study, soil moisture did not differ significantly between
the control and CTDD plots until the 12th week after treatment. An extreme drought that started in
March 2015 (12 weeks after the CTDD treatment) and lasted until November 2015 (around the 50th
week after the CTDD treatment) might have caused soil moisture to converge between treatments
during this period. Convergence in soil moisture is also seen after torrential rain. In addition,
the complicated differences in terrain among the three replicate blocks may have contributed to higher
variation and a lack of soil moisture differences between treatments. Between the 24th and 96th week
after the treatment, mean soil moisture in the CTDD plots was significantly higher than in the control
plots, perhaps because dense canopy in the control plots intercepted rainfall water [48], soil in the
CTDD plots received more rainfall, and the trimmed trees in the CTDD plots transpired less water
than the untrimmed trees in the control plots. However, the situation after the 108th week following
the CTDD treatment was reversed, with significantly higher mean soil moisture in the control plots
compared with the CTDD plots. It might be because of a stronger transpiration rate at a lower canopy
height of the recovering trees and dense understory tree seedlings, shrubs, and herbs in the CTDD
plots than at a higher canopy height in the control plots [52–54], or because the reduced floor mass in
the CTDD plots allowed for greater evaporation than the control plots with thicker floor mass cover.

Multiple factors can influence soil MBC. A previous study conducted in the same area showed that
soil MBC was not directly regulated by soil temperature, moisture, or litterfall input [23]. Soil fungal
biovolume was previously found to vary directly with soil moisture [55], and soil bacteria in this forest
was also found to be sensitive to drought stress [56]. This study showed that soil MBC peaked when
both soil LOC and soil moisture were high. Mean soil MBC in the CTDD plots was significantly higher
than in the control plots in every sampling week, except for the three weeks before the treatment and
the 96th week after the treatment. A sudden deposition of massive hurricane-induced litterfall in
various forests was shown to increase soil carbon input and the heterogeneity of the microenvironment
for soil microbes [5], change soil C/N ratios [3,8], increase and then decrease competition for soil
nutrients between soil microorganisms and plant species [23,57], and alter the biomass and biodiversity
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of litter invertebrates [14], all of which could be potential factors that might have jointly elevated
soil MBC. These potential factors in the CTDD plots may lead to a persistent higher soil MBC in the
CTDD plots.

Permanganate oxidizable carbon was revealed as a more sensitive fraction of the soil organic
carbon [58], and soil LOC was believed to be an active component to trigger increases in soil
MBC [59,60]. In our study, soil LOC was significantly related to soil MBC (Table 3). However,
other factors can also influence soil MBC. It was found that soil MBC fluctuated one month ahead
of plant litterfall in the same forest [23], but soil MBC in this study increased immediately after the
treatment of CTDD, and this increase persisted to the end of this study. Unlike soil MBC, soil LOC
increased beginning 12 weeks after treatment, and returned to the control level 84 weeks following the
CTDD treatment. This might be because the more recalcitrant carbon in the CTDD plots continually
stimulated soil MBC accumulation after the initial pulse of debris deposition even after the 84th
week, or because the reduced floor mass in CTDD plots might have fewer predators for microbes [61].
A long-term study is needed to follow changes in soil MBC and floor mass in order to detect the lasting
effect of CTDD treatment to forest ecosystems.

Since soil LOC in this study was defined as the fraction of soil organic carbon that was degradable
during soil microbial growth [24], the factors controlling the growth and reproduction of soil microbes
would also affect the dynamics of soil LOC. In addition, the altered accompanying environmental
factors with the CTDD treatment played an important role in regulating soil LOC. Unlike the significant
soil MBC difference persisting to the 120th week after the treatment, soil LOC in CTDD plots converged
on that of the control plot 96 weeks after the treatment. This suggests that other factors may have
played a more important role than soil LOC in regulating soil MBC during the later stages after the
CTDD treatment. Except for the uneven distribution of litter deposition in forest, hurricanes changed
the microenvironmental conditions in forest ecosystem over the long term [5], which might be explain
the complex relationship between soil LOC, its turnover rate, and the other factors such as floor mass,
soil moisture, and soil MBC.

The turnover rate of soil LOC is predominately determined by the quality of soil LOC (e.g.,
C/N) [62,63]. It was demonstrated that fresh debris decayed faster than senesced litter, and fresh debris
released more N, P, K, Mg, Mn, Na, and S than senesced litter [8,61]. These additional materials with
high decomposition rates elevate the decomposition rate of the total soil carbon and non-hydrolyzable
carbon at the surface soil layer [64]. Compared with the control plots, the CTDD plots deposited thick
green debris, which might decay faster and release more nutrients into soil than senesced litter in the
control plots. This quickly decaying debris released mineral nutrients as well as labile carbon, which
stimulated soil MBC more than soil LOC in our study, thus elevating the turnover rate of soil LOC
at the initial stage. As the green CTDD debris gradually disappeared, sources of soil LOC gradually
reverted back to plant litterfall with no difference in litter quality between the CTDD plant control
plots, leading to the convergence in the turnover rates of soil LOC between these treatment plots.

5. Conclusions

It has been previously demonstrated that hurricanes can induce short and long-term changes in
forest structure and composition, nutrient cycling, physical environmental conditions, animal biomass
and diversity, and forest developmental process and successional trajectories. Our study suggested
that extensive canopy removal, together with sudden massive amounts of debris deposition after a
simulated hurricane treatment, significantly increased soil MBC, soil LOC, and the turnover rate of
soil LOC. Soil MBC in the CTDD plots was still significantly higher than in the control plots after
120 weeks following the CTDD treatment, whereas soil LOC returned to background levels after
96 weeks. Massive accumulation of both soil LOC and recalcitrant pools offered abundant available
carbon resource for soil microbes during an extended period. The elevated turnover rate of soil
LOC shortened the recycling time of organic carbon, caused the pulse of soil microbial growth and
reproduction, and might have mobilized more stable soil carbon pools. Our data suggest that the
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pulsed input of green debris and nutrients from the simulated hurricane input can alter carbon cycling
by increasing the production of soil LOC and elevating its turnover rate in tropical forests.
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