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A B S T R A C T

NASA's Black Marble nighttime lights product suite (VNP46) is available at 500m resolution since January 2012
with data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) onboard the Suomi
National Polar-orbiting Platform (SNPP). The retrieval algorithm, developed and implemented for routine global
processing at NASA's Land Science Investigator-led Processing System (SIPS), utilizes all high-quality, cloud-free,
atmospheric-, terrain-, vegetation-, snow-, lunar-, and stray light-corrected radiances to estimate daily nighttime
lights (NTL) and other intrinsic surface optical properties. Key algorithm enhancements include: (1) lunar ir-
radiance modeling to resolve non-linear changes in phase and libration; (2) vector radiative transfer and lunar
bidirectional surface anisotropic reflectance modeling to correct for atmospheric and BRDF effects; (3) geo-
metric-optical and canopy radiative transfer modeling to account for seasonal variations in NTL; and (4) tem-
poral gap-filling to reduce persistent data gaps. Extensive benchmark tests at representative spatial and temporal
scales were conducted on the VNP46 time series record to characterize the uncertainties stemming from up-
stream data sources. Initial validation results are presented together with example case studies illustrating the
scientific utility of the products. This includes an evaluation of temporal patterns of NTL dynamics associated
with urbanization, socioeconomic variability, cultural characteristics, and displaced populations affected by
conflict. Current and planned activities under the Group on Earth Observations (GEO) Human Planet Initiative
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are aimed at evaluating the products at different geographic locations and time periods representing the full
range of retrieval conditions.

1. Introduction

The Day/Night Band (DNB) sensors of the Visible Infrared Imaging
Radiometer Suite (VIIRS), on board the Suomi-National Polar-orbiting
Partnership (S-NPP) and Joint Polar Satellite System (JPSS) satellite
platforms, provide global daily measurements of nocturnal visible and
near-infrared (NIR) light that are suitable for earth system science and
applications studies. Since the launch of the S-NPP satellite in 2011,
multiple studies have used the VIIRS DNB as primary data source
covering a wide range of topics. These include: (1) feature extraction
techniques, based on manual or semi-automated interpretation of the
underlying VIIRS DNB radiances, to detect severe weather impacts to
urban infrastructure (Cao et al., 2013; Cole et al., 2017; Mann et al.,
2016; Molthan and Jedlovec, 2013); (2) detection of sub-pixel scale
features, e.g., fires (Polivka et al., 2016), shipping vessels (Asanuma
et al., 2016; Elvidge et al., 2015; Straka et al., 2015), lightning flashes
(Bankert et al., 2011), surface oil slicks (Hu et al., 2015), and gas flares
(Elvidge et al., 2015; Liu et al., 2017, 2017); and (3) techniques for
monitoring nighttime atmospheric optical properties, including clouds
(Minnis et al., 2016; Walther et al., 2013), aerosols (Johnson et al.,
2013; McHardy et al., 2015), particulate matter (Wang et al., 2016),
and gravity waves in the upper atmosphere via nightglow (Miller et al.,
2015).

As with early research that utilized the Defense Meteorological
Satellite Program's Operational Line Scanner (DMSP/OLS) (Huang
et al., 2014), recent studies using the VIIRS DNB have employed sta-
tistical analyses and correlation discovery methods to confirm estab-
lished empirical relationships with a wide range of human-linked pat-
terns and processes. These include socioeconomic variables (Chen and
Nordhaus, 2015; Chen et al., 2015; Levin and Zhang, 2017; Li et al.,
2013; Ma et al., 2014; Shi et al., 2014; Yu et al., 2015), as well as
changes driven by urban built-up expansion (Guo et al., 2015; Sharma
et al., 2016; Shi et al., 2014), energy use (Coscieme et al., 2014; Román
and Stokes, 2015), and carbon emissions (Oda et al., 2017; Ou et al.,
2015).

In order to make timely and quantitative use of nighttime lights
(NTL), one must first quantify the subset of variations that are corre-
lated to human-linked patterns and processes from those that are not.
This requirement is especially true for products derived from the VIIRS
DNB, given its ultra-sensitivity in low-lit conditions, and the resulting
influence of extraneous light emission sources on the NTL time series
record. Such artifacts can lead to discrepancies, e.g., when using moon-
free NTL composites as proxies to regional-scale socioeconomic features
(Bickenbach et al., 2016; Chen and Nordhaus, 2015). To resolve re-
trieval uncertainties and measurement errors, the quality assurance of
NTL products also needs to be emphasized, e.g., by encouraging usage
of quality flags that indicate the reliability of individual pixel values, or
if retrievals are possibly affected by extraneous artifacts. More broadly,
a meta-analysis of 132 research articles revealed the need to better
trace the quality and provenance of NTL products as one of the most
pressing areas of focus for future studies (Huang et al., 2014).

There is also a need to characterize uncertainties stemming from
angular, diurnal, and seasonal variations in atmospheric and surface
optical properties. This is crucial since, as we will present in this paper,
NTL cannot be constrained directly from at-sensor top-of-atmosphere
(TOA) radiances in part because of: (1) environmental factors, such as
moon light, aerosols, and surface albedo whose reflectance contributes
to the observed signal, and (2) errors stemming from seasonal varia-
tions and associated surface properties, which can significantly affect
estimates of long-term trends. While it is generally neither desirable nor

practical to delay the applied use of NTL products until they are proven
to be error-free, or until known sources of error have been removed by
product reprocessing, it is important to note that space agencies, co-
ordinated by the Committee of Earth Observation Satellites (CEOS),
place strong emphasis on product accuracy and performance. This in-
formation is needed by decision makers so they can trust the accuracy
of the derived products, and by the science community, both to identify
poorly performing products and opportunities for improvements, and to
draw meaningful inferences from the long-term product records as they
relate to trends in human settlements and urbanization.

There is increasing agreement in the growing body of literature
concerning factors that govern the utilization of the VIIRS DNB for long-
term analyses and applications. Recent studies have introduced a
number of quantitative remote sensing techniques, including: (1) ter-
rain-correction and trending of the VIIRS DNB geolocation (Wolfe et al.,
2013); (2) establishing the calibration performance of the VIIRS DNB
High Gain Stage (HGS), both in absolute terms and relative to future
VIIRS flight units (Lee et al., 2015; Liao et al., 2013; Xiong et al., 2014;
Zhang et al., 2016); (3) determining the effective spatial resolution and
the impacts of spatial sampling on the VIIRS instrument and higher-
level (Level 3) gridded products (Campagnolo et al., 2016; Pahlevan
et al., 2017); (4) predicting the DNB's geometric characteristics (i.e.,
time-varying Sun/Earth/Moon geometry, moon-illuminated fraction,
phase, and albedo) (Miller et al., 2012a, 2012b); (5) estimating the
highly variable TOA lunar spectral irradiance (Miller and Turner,
2009); (6) correcting for surface Bidirectional Reflectance Distribution
Function (BRDF) effects caused by varying illumination conditions –
namely moonlight and reflected airglow from the Earth's upper atmo-
sphere (Cao et al., 2013; Cao and Bai, 2014; Román and Stokes, 2015;
Zeng et al., 2018); and (7) assessing seasonal biases caused by sensor-
specific stray light (Lee et al., 2015; Liao et al., 2013; Mills and Miller,
2016), as well as other biogeophysical processes, such as vegetation
(Levin, 2017; Levin and Zhang, 2017) and snow cover (Bennett and
Smith, 2017).

Despite this progress, substantial gaps remain in the quantification
and documentation of uncertainty for NTL data and products. Such
information is required by space agencies, such as the CEOS Working
Group on Calibration and Validation (CEOS-WGCV). This development
is particularly relevant if these products are to be used to establish
global metrics and indicators for achieving a myriad of goals identified
under the United Nations Agenda 2030 for Sustainable Development
(Griggs et al., 2015). These sustainable development goals (SDGs) in-
clude: (1) addressing the needs of conflict-affected populations (SDG-1);
(2) quantifying the effectiveness of local electrification projects in the
developing world (SDG-7); (3) building resilient infrastructure, pro-
mote inclusive and sustainable industrialization and foster innovation
(SDG-9); and (4) ensuring that cities and human settlements are in-
clusive, safe, resilient, and sustainable (SDG-11).

While the current Joint Polar Satellite System (JPSS) requirements
establish performance metrics for the VIIRS DNB calibration and sensor
characteristics, the current DNB-associated key performance require-
ments are tied strictly to nighttime imagery for short-term operational
weather applications at high latitudes (Hillger et al., 2013). Whereas
these formalized performance metrics correspond to the “Threshold”
requirements of Table 1, the “Breakthrough” and “Goal” values point to
1–2 orders of magnitude improvement in sensitivity and spatial re-
solution. Here, “Threshold” is defined as the minimum requirement to
be met to ensure that NTL time series data are useful, and is based on
the current JPSS on-orbit performance requirements for the VIIRS
DNB's High Gain Stage (HGS) calibration (Liao et al., 2013). The “Goal”
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is an envisioned ideal requirement above which further improvements
are not necessary to achieve all the science and applications under-
pinning global NTL data products. The “Breakthrough” is an inter-
mediate level between “Threshold” and “Goal”, which, if achieved,
would result in a significant improvement (WMO, 2016). Lmin is the
minimum detectable NTL radiance and L0 is the robustness or un-
certainty (standard deviation) with respect to Lmin. All values in Table 1
pertain to Land-based NTL detections.

To realize the full potential of the VIIRS DNB time series record for
NTL applications, a new suite of standard products, hereby termed
NASA's Black Marble product suite (VNP46) and representing the cur-
rent state-of-the-art, was developed (Fig. 1). Key capabilities of the
VNP46 products, described in subsequent sections, include:

(i) Daily frequency: The VNP46 product suite provides high-quality
nightly NTL characterization based on cloud-free, atmospheric-,
terrain-, vegetation-, snow-, lunar-, and stray light-corrected DNB
radiances. This product enables first-ever detection of all nighttime
light-related changes (i.e., abrupt-, seasonal, and gradual changes –
see examples in Figs. 15-16), at the native DNB pixel scale, in
analysis-ready file formats (Level 3 gridded products).

(ii) Atmospheric correction: The VNP46 algorithm relies on the use of
vector radiative transfer modeling of the coupled atmosphere-
surface system (Vermote and Kotchenova, 2008) to compensate for
aerosols, water vapor, and ozone impacts on the nighttime lights
radiances (see Section 2.1). This correction mitigates errors stem-
ming from poor-quality TOA retrievals, especially across regions
with heavy aerosol loadings and at Moon/sensor geometries
yielding stronger forward scatter contributions.

(iii) BRDF correction: The VNP46 algorithm estimates the actual
moonlight, aerosol, and surface albedo contribution through ana-
lytical BRDF model inversion. This model has proven effective in
removing biases introduced by extraneous sources of nighttime
lights emissions (see Section 2.2).

(iv) Seasonal correction: Independent studies have demonstrated the

need to correct for uncertainties stemming from seasonal varia-
tions in NTL time series data (Bennett and Smith, 2017; Bennie
et al., 2014; Cinzano et al., 2000; Katz and Levin, 2016; Levin,
2017; Levin and Zhang, 2017). The VNP46 algorithm routinely
accounts for these effects using well-established canopy radiative
transfer methods applied using VIIRS data (see Section 2.3).

In this paper, we provide an overview of NASA's Black Marble re-
search activities to-date. This includes a description of the algorithm
and processing strategy (Section 2), details of the product suite based
on six years of reprocessed data (Section 3–4), evaluation of its per-
formance (Section 5), and example case studies illustrating the scien-
tific utility and potential applications of the products (Section 6). The
current (Collection V001) NASA Black Marble product suite, including
daily at-sensor TOA nighttime radiances (VNP46A1) and daily moon-
light adjusted NTL (VNP46A2), will begin operational processing in
2018. These data will be made available both retrospectively, via NA-
SA's Level 1 and Atmosphere Archive and Distribution System (LAADS),
and in forward (near-real time) data streams, via NASA's Land, Atmo-
sphere Near Real-time Capability for EOS (LANCE).

2. Retrieval strategy

The operational NASA Black Marble product suite (VNP46) ingests
multiple source datasets and ancillary data to output the highest quality
pixel-based estimates of NTL. These NTL estimates are accompanied by
pixel-level quality flags (see Appendix). The principal features of the
algorithm are illustrated in Fig. 3, and are summarized in the following
sections.

2.1. Atmospheric correction

NASA's Black Marble retrieval strategy combines daytime VIIRS
DNB surface reflectance, Bidirectional Reflectance Distribution
Function (BRDF), Surface Albedo, Nadir BRDF-Adjusted Reflectance

Fig. 1. NASA Black Marble composite images for year 2016 provide full-hemisphere views of Earth at night. Natural surfaces, clouds, and sun glint— added here for aesthetic effect— are
derived from the MODIS Blue Marble Next Generation imagery products. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Table 1
Key performance metrics established for NASA's Black Marble product suite.

Key performance metrics Threshold Breakthrough Goal

NTL detection limit (Lmin) 3.0 nW·cm−2·sr−1 0.5 nW·cm−2·sr−1 0.25 nW·cm−2·sr−1

NTL robustness (L0) ± 3.0 nW·cm−2·sr−1 ± 0.10 nW·cm−2·sr−1 ± 0.05 nW·cm−2·sr−1

Stray light error 0.45 nW·cm−2·sr−1 0.25 nW·cm−2·sr−1 < 0.1 nW·cm−2·sr−1

Spatial resolution 742m (±5%) 500m (± 5%) ≤200m (±5%)
Temporal resolution Monthly Daily Hourly
Geolocation uncertainty 133m 50m 20m
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(NBAR), and Lunar irradiance values to minimize the biases caused by
extraneous artifacts in the VIIRS NTL time series record.

Using this novel “turning off the Moon” approach, illustrated in
Fig. 2, the surface upward radiance from artificial light emissions, LNTL
[units of nWatts·cm−2·sr−1], can be extracted from at-sensor nighttime
radiances at TOA, LDNB, using the following equation:

⎜ ⎟= ⎡
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where Lpath is the nighttime path radiance (i.e., the radiance generated
by scattering within the atmosphere), and a(θm) is the VIIRS-derived
actual (or Blue-Sky) surface albedo; incorporating the directional in-
fluence of sky radiance and multiple scattering effects between the
ground and the atmosphere (Román et al., 2010). For the latter, a snow
albedo retrieval scheme is used if the VIIRS current day snow status flag
is activated (Klein and Stroeve, 2002; Liu et al., 2017, 2017; Moustafa
et al., 2017; Wang et al., 2012). P↑(θv) is defined in Eq. (10) (see Section
2.3 for details). The atmospheric backscatter is given by ρa, and T↓(τ,θv)
and T↑(τ,θv) are the total transmittances (including direct and diffuse
radiation) along the lunar-ground and ground-sensor paths (respec-
tively). The latter two are a function of view-illumination geometry and
the total atmospheric column optical depth (τ) due to mixed gases,
water vapor, and aerosol particles. The retrieval uses a modified algo-
rithm based on the heritage VIIRS Surface Reflectance product (VNP09)
to estimate the values of Lpath, ρa, T↓(τ,θv), and T↑(τ,θv) for a given set of
surface and atmospheric conditions (Roger et al., 2016; Skakun et al.,
2018). Additional input datasets include the standard VIIRS Cloud Mask
(VCM) (Kopp et al., 2014), atmospheric profiles obtained from National
Centers for Environmental Prediction (NCEP) model inputs (i.e., water
vapor, ozone, and surface pressure) (Moorthi et al., 2001), and the
VIIRS aerosol model combined with daytime-to-daytime averaged
Aerosol Optical Depth (AOD 0.550 μm) to extrapolate the nighttime
AOD.

2.2. BRDF correction

The surface Bidirectional Reflectance Distribution Function (BRDF,
or reflectance anisotropy) is governed by the angle and intensity of il-
lumination – whether that illumination be solar or lunar or from air-
glow emissions – and by the structural complexity of the surface, re-
sulting in variations in brightly illuminated regions and darkly
shadowed areas. The semi-empirical RossThick-LiSparse Reciprocal
(RTLSR, or Ross-Li) BRDF model (Román et al., 2010; Roujean et al.,
1992; Schaaf et al., 2002, 2011; Strahler et al., 1999) is advantageous in
this regard, since (1) it is the most likely kernel-driven combination to
capture the wide range of conditions affecting the VIIRS DNB on a
global basis; (2) it allows robust analytical model inversion with a pixel-
specific estimate of uncertainty in the model parameters and linear
combinations thereof (Lucht and Roujean, 2000); and (3) the scheme is
flexible enough that other kernels can be easily adopted should any
become available and should they be shown to be superior for a par-
ticular scenario.

For VIIRS DNB acquisitions over snow-free and snow-covered sur-
faces, we define the spectral radiance contribution from moonlight, Lm,
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Fig. 2. Overview of NASA's Black Marble retrieval strategy (cf., Eq. (1)). During the ~50% portion of the lunar cycle when moonlight is present at the time of satellite observation, the
surface upward radiance from artificial light emissions, LNTL [units of nWatts·cm−2·sr−1], can be extracted from at-sensor nighttime radiances at TOA (LDNB). Lpath is the nighttime path
radiance, a(θm) is the VIIRS-derived actual surface albedo. The atmospheric backscatter is given by ρa. T↓(τ,θv) and T↑(τ,θv) are the total transmittances along the lunar-ground and
ground-sensor paths (respectively). P↑(θv) is the probability of the upward transmission of NTL emissions through the urban vegetation canopy. Additional factors accounted for in the
Level 1 process (Section 3.1) include correction for stray light and South Atlantic Anomaly (SAA) hits.
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Here, we define the wavelength for the narrowband instrument of

interest as the weighted center, Λ, of the VIIRS DNB spectral band
[0.5–0.9 μm]. Parameter fiso(Λ) is the isotropic scattering component
and equal to the bidirectional reflectance for a pixel viewing zenith
angle θv=0 and a lunar zenith angle θm=0. Parameter fgeo(Λ) is the
coefficient of the LiSparse-Reciprocal geometric scattering kernel Kgeo,
derived for a sparse ensemble of surface casting shadows on a
Lambertian background (Li and Strahler, 1992). Parameter fvol(Λ) is the
coefficient for the RossThick volume scattering kernel Kvol, so called for
its assumption of a dense leaf canopy (Ross, 2012). Δϕ is the relative
view-sun azimuth angle (Δϕ= ϕm− ϕv) and ξ is the scattering phase
angle between moon and view directions. The two constants, di-
mensionless crown relative height (P4= h / b) and shape (P5= b / r)
parameters, have been fixed at h / b=2 and b / r=1 to invert the

Table 2
Summary statistics for Benchmark test #1; NTL (VZA, AOD). Values describe two key performance metrics for NASA's Black Marble product
suite: (1) detection limit (Lmin) and (2) robustness (L0). Results are based on a discrete range of View Zenith Angles (VZA < 45°, VZA≥ 45°)
and Aerosol Optical Depths (AOD < 0.5, AOD≥ 0.5) captured from all available (2012-YTD) cloud-corrected background NTL pixels for 30
VIIRS Level 3 tiles (10°× 10°).

TILE ID

Minimum detectable radiance (L)min Retrieval uncertainty @ Lmin (L0)

TOA VNP46A2 TOA VNP46A2 TOA VNP46A2 TOA VNP46A2

Moon fraction < 50% Moon fraction ≥ 50% Moon fraction < 50% Moon fraction ≥ 50%

h10v05 0.558 0.370 1.829 0.255 0.052 0.050 1.040 0.021

h11v07 0.752 0.617 2.921 0.420 0.075 0.055 1.768 0.046

h12v09 0.331 0.203 2.411 0.140 0.076 0.019 1.687 0.012

h12v10 0.322 0.188 2.340 0.127 0.077 0.016 1.668 0.012

h12v11 0.400 0.289 2.384 0.156 0.062 0.036 1.601 0.032

h13v11 0.636 0.520 2.663 0.331 0.076 0.041 1.645 0.033

h17v08 0.400 0.252 2.910 0.154 0.095 0.031 2.009 0.020

h18v04 0.692 0.540 2.162 0.355 0.069 0.157 1.211 0.055

h18v05 0.563 0.336 3.968 0.210 0.136 0.075 2.869 0.013

h19v04 0.763 0.610 2.223 0.419 0.088 0.091 1.248 0.089

h20v11 0.336 0.221 2.475 0.124 0.065 0.022 1.734 0.023

h21v05 0.641 0.435 3.255 0.279 0.065 0.042 2.158 0.031

h22v05 0.714 0.535 3.398 0.319 0.077 0.032 2.229 0.043

h22v06 0.581 0.440 4.572 0.255 0.117 0.028 3.399 0.034

h23v05 0.543 0.350 2.844 0.208 0.073 0.040 1.964 0.027

h23v06 0.595 0.451 3.954 0.269 0.131 0.033 2.918 0.033

h24v05 0.446 0.226 2.963 0.129 0.070 0.039 2.132 0.024

h24v06 0.428 0.254 2.983 0.145 0.090 0.042 2.190 0.029

h25v05 0.517 0.296 3.023 0.169 0.045 0.047 2.055 0.018

h25v06 0.647 0.484 2.994 0.293 0.079 0.058 1.959 0.030

h25v07 0.641 0.521 2.715 0.317 0.076 0.048 1.725 0.032

h25v08 0.501 0.413 2.181 0.268 0.081 0.039 1.408 0.031

h26v05 0.425 0.206 3.142 0.110 0.092 0.040 2.335 0.019

h26v06 0.568 0.405 2.682 0.233 0.080 0.057 1.740 0.028

h26v07 0.428 0.326 2.051 0.188 0.067 0.041 1.325 0.026

h27v05 0.416 0.191 3.001 0.098 0.072 0.034 2.215 0.016

h27v06 0.410 0.241 2.494 0.122 0.066 0.037 1.733 0.023

h28v08 0.457 0.342 2.515 0.241 0.055 0.028 1.686 0.025

h29v05 0.580 0.359 2.379 0.204 0.058 0.053 1.444 0.022

h32v12 0.290 0.153 2.262 0.076 0.074 0.029 1.692 0.021
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angular radiance data from the VIIRS DNB (Wanner et al., 1997). For
these two parameters, h is the variable for height at which a crown
center is located, b is the vertical half axis of the modeled ellipsoid, and
r is its horizontal radius. In Eq. (2), d is the Earth-Sun distance Em(Λ)
[units of nW·m−2] is the downwelling TOA sensor response function-
weighted lunar irradiance (Miller and Turner, 2009), and BRF is the
surface bidirectional reflectance factor – the ratio of the BRDF to that of
a perfect Lambertian reflector (i.e., BRF≈ πBRDF) (Nicodemus, 1977;
Schaepman-Strub et al., 2006).

To achieve a high-quality BRDF retrieval, the NASA Black Marble
algorithm collects all available daytime, atmospherically-corrected,
VIIRS DNB BRFs over a multi-date period (normally 16-days) to es-
tablish the analytical solution for the Ross-Li BRDF model parameter
values, fk(Λ). Note that during moon-free nights, when atmospheric air
glow is the dominant emission source, the VNP46 algorithm sets the
illumination geometry to near-nadir (θm=10°) and the Lunar
Irradiance to Em(Λ)= 0.26 nW·m−2 (Liao et al., 2013). This enables a
BRDF correction even in the absence of moonlight.

2.3. Seasonal vegetation correction

Another known source of uncertainty in the retrieval of satellite-
derived NTL is the influence of canopy-level foliage along the ground-
to-sensor geometry path (Román and Stokes, 2015). This effect, which
has been shown to reduce the magnitude of NTL at city-wide scales
(Levin, 2017; Levin and Zhang, 2017), is most pronounced in temperate

urban regions; where mixed and deciduous vegetation are most per-
vasive. Given its seasonal dependence, this occlusion effect (obscura-
tion of surface light by foliage) should be proportional in magnitude to
the density and vertical distribution pattern of leaves within a given
VIIRS DNB pixel. Hence, while the effect may be non-linear (due to the
confluence of factors that control the seasonality, physiognomy, and
vertical distribution of urban vegetation canopies), the effect can be
parameterized using analytical models which aim to retrieve canopy
structure parameters from multi-angle remote sensing data (Chopping,
2006). With this concept in mind, we are employing a vegetation dis-
persion parameter, known as the clumping index, ψ, to parameterize
the confined distribution of foliage within distinct canopy structures
(Chen et al., 2005; Chen and Black, 1991; Jiao et al., 2018; Leblanc
et al., 2005; Nilson, 1971):

=↑
−P θ e( )v

G v LAI
cos v

ψ (θ )
(θ ) (10)

Here, P↑(θv) is the probability of the upward transmission of NTL
emissions through the urban vegetation canopy (known as the gap
fraction probability and hereafter termed the Pgap equation), G(θv) is the
extinction coefficient that expresses the mean area projection of plant
elements in the direction θv (being 0.5 for canopies with a random
distribution of leaf angles), and LAI is the Leaf Area Index. If LAI=0,
then P↑(θv)= 1 and a correction is not performed. When LAI > 0, and
foliage grouping has a random distribution, then the clumping index
ψ=1 and Eq. (10) returns to the original Beer's law. The latter includes
areas with single ground-layers (e.g., peri-urban vegetation).

Fig. 3. Algorithm processing cycle and ancillary parameters used by NASA's Black Marble product suite (VNP46).
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Conversely, if the distribution is not random, then the clumping index
can be larger or smaller than unity. In the case that the leaf distribution
is more regular (leaves side by side) than random, then the clumping
index ψ > 1. As such, the same value of LAI over a given VNP46 pixel,
can intercept more NTL emissions originating from the ground surface;
thus, making P↑(θv) smaller, and the corresponding adjustment to LNTL
(P↑(θv) in Eq. (1)) is larger.

The Pgap equation can be inverted from available daily VIIRS BRDF-
derived clumping index values, as done in Hill et al. (2011) and He
et al. (2012). The VIIRS LAI retrievals are based on the current standard
product (VNP15) (Park et al., 2017). In the case of poor-quality or
missing LAI values (e.g., when LAI is not retrieved over dense urban
areas), we are employing the VIIRS LAI backup algorithm by using a
Look-up Table (LUT) (Knyazikhin et al., 1999; Xiao et al., 2016) with
Normalized Difference Vegetation Index (NDVI) generated from high
quality retrievals from the VIIRS NBAR product (Shuai et al., 2013).
Using this approach, we can define the clumping index based on Chen
et al. (2005) as:

= +ψ C θ NDHD D θΩ Ω Λ( ) ( , , ) ( )v v m v (11)

= −
+

NDHD BRF BRF
BRF BRF

Ω Ω Λ Ω Ω Λ Ω Ω Λ
Ω Ω Λ Ω Ω Λ

( , , ) ( , , ) ( , , )
( , , ) ( , , )v m

hot v m dark v m

hot v m dark v m (12)

Here, NDHD is the Normalized Difference between Hotspot and
Darkspot (NDHD) – an angular index used to characterize the aniso-
tropic behavior of vegetation, which has been related to ground based
measurements of clumping index (He et al., 2012; Jiao et al., 2016,
2018; Lacaze et al., 2002; Leblanc et al., 2005; Zhao et al., 2012). BRFhot

and BRFdark are the reflectances at the ‘hotspot’ and ‘darkspot’, re-
spectively. Thus, NDHD can be estimated directly from the retrieved
VIIRS BRDF model parameters (fiso, fvol, fgeo in Eq. (3)) by specifying the
RTLSR model kernels for the corresponding hotspot and darkspot geo-
metries. The values of C (θv) and D (θv) in Eq. (1) are estimated by
applying the linear coefficients of the line of best fit to the VIIRS-de-
rived NDHD values (see Table 2 in Chen et al., 2005). For the VNP46
implementation, we chose the coefficients of regression based on a full
ellipsoid shape in the Red spectral region [0.662–0.682 μm]. The Pgap
effect is dominant across NTL pixels with lower build-up densities (e.g.,
small cities and suburban areas), where green spaces are often pro-
tected from development. In contrast, Pgap values are often closer to
unity (no correction) near densely built city centers.

3. Product generation

3.1. Level 1 calibrated DNB radiances

The VIIRS DNB sensor is a temperature controlled Charge Coupled
Device (CCD) that has 672 sub-pixel detectors along-track, which are
aggregated on-board to create 16 nearly constant 742m along-track
pixels for each along-scan frame (Wolfe et al., 2013). These observa-
tions are acquired at three different stages of Low- Mid- and High-Gain
(LGS, MGS, and HGS, respectively) with high sensitivity for low NTL
conditions (Mills and Miller, 2016). With the aggregation mode, de-
tector, gain stage, and Half-angle Mirror (HAM)-side dependent cali-
bration performed, the VIIRS DNB degradation was conclusively traced

Fig. 4. VNP46 product suite components for a 10°× 10° Level 3 tile over France and the Balearic Sea region (h18v04; DOY 2015-091). The full-moon-illuminated and 51% cloud-
contaminated scene illustrates the challenges of nighttime cloud masking over snow-covered surfaces (e.g., the French Alps and the Pyrenees).
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and has been well characterized (Chen et al., 2017; Xiong et al., 2014).
The stray light contamination on the DNB, which is a transient issue
affecting up to 25% of night scenes in the mid-to-high latitude regions
(Chen et al., 2017; Mills et al., 2013), is also being routinely corrected
by the VIIRS Calibration Support Team (VCST) (Chen et al., 2017; Lee
et al., 2014). Results from ongoing collection V001 reprocessing of the
NASA Level 1 product include additional updates to the VIIRS DNB
terrain-corrected geolocation, stray light, and calibration LUTs. Finally,
routine reporting and removal of bad DNB granules (e.g., resulting from
Suomi-NPP calibration maneuvers or Rotating Telescope Assembly
(RTA)/HAM sync loses) is being conducted by the VCST using specia-
lized software to mitigate leakage into the VNP46 product suite.

3.2. Algorithm processing cycle

NASA's Black Marble (VNP46) algorithm processing cycle is divided
into daytime and nighttime branches (Fig. 3). Each processing branch
produces a unique set of ancillary and quality assurance (QA) flags.

For the daytime branch, science product generated executables
(PGEs) based on the standard suite of VIIRS Land products are in-
tegrated as part of NASA's Black Marble processing chain. First, a
modified version of the operational VIIRS Surface Reflectance algo-
rithm (Roger et al., 2016; Vermote et al., 2014) is used to generate the
DNB surface bi-directional reflectances (BRFs) using NASA's Level 1B
calibrated radiance product as input (i.e., 6-minute granules, or
2366 km along track and ~3100 km across-track). Level 2G DNB Sur-
face Reflectances are then generated by performing spatial and

temporal aggregation to 500m grid cells over daily time periods
(Campagnolo et al., 2016; Pahlevan et al., 2017; Wolfe et al., 1998;
Yang and Wolfe, 2001). Daily Level 3 DNB BRDF/Albedo data are then
retrieved using the heritage MODIS/VIIRS algorithm (MCD43/VNP43)
(Liu et al., 2017, 2017; Wang et al., 2018), and corresponding Snow
Flags are estimated using the heritage VIIRS Normalized Difference
Snow Index (NDSI) algorithm (VNP10) (Riggs et al., 2016, 2017). The
NDVI and NDSI values are used to determine the growing, dormant, and
snow periods to routinely update the a priori global database of the DNB
BRDF product (Cescatti et al., 2012; Liu et al., 2017, 2017; Román
et al., 2009). Surface BRFs from the VIIRS I1 (red) and I2 (NIR) chan-
nels are used to obtain daily estimates of LAI (Knyazikhin et al., 1999;
Park et al., 2017; Xiao et al., 2016). The retrieved LAI and clumping
index values are then used to calculate the gap fraction probability
(Pgap).

The nighttime branch describes the path followed to generate the
final VNP46 products. We begin with the at-sensor TOA nighttime ra-
diances (VNP46A1), along with the corresponding nighttime cloud
mask, multiple Solar/Viewing/Lunar geometry values (including moon-
illuminated fraction and phase angles), and the daily snow and aerosol
status flags. These additional Science Data Sets (SDS) enable open ac-
cess to the primary inputs used to generate the NASA Black Marble NTL
time series record; thus, ensuring reproducibility of the final outputs.
For example, using VNP46A1 as input, end-users seeking to employ
NTL data in light pollution studies can develop different variations of
the products under different sky-illumination conditions (e.g., daily
retrievals in which atmospheric, topographic and cloud effects are

Fig. 5. VNP46 product suite components for a 10°× 10° Level 3 tile over Sweden and Finland (h20v02; DOY 2013-080). The half-moon-illuminated and 30% cloud-contaminated scene is
shown to capture extraneous light emissions north of the Gulf of Bothnia caused by the Aurora Borealis.
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removed, but seasonal and lunar-related changes are not removed).
Algorithm developers also interested in contributing additional refine-
ments to the VNP46 product suite, or in developing their own series of
higher-level DNB products (e.g., for nighttime aerosol, cloud optical
properties, and ocean NTL applications), can also make use of these SDS
layers; thus, greatly reducing the complexity of science data processing.

A series of temporal and spatial gap-filling techniques are also
employed to improve the coverage of the VNP46 NTL product. The
approach, based on the asymmetric Gaussian fitting method from the
TIMESAT package (Jönsson and Eklundh, 2002, 2004; Tan et al., 2011)

and used by the heritage MODIS BRDF/Albedo/NBAR, land surface
phenology, and LAI product suites (Gao et al., 2008; Sun et al., 2017;
Tan et al., 2008), is also applied to the VIIRS DNB BRDF model para-
meters (to calculate the appropriate gap-filled albedo values) and the
corresponding Pgap values.

Results shown in Figs. 4 and 5 illustrate the key processing steps
used to retrieve high-quality NTL as part of NASA's Black Marble pro-
duct suite. Cloud-free, atmospheric-, seasonal-, and moonlight BRDF-
corrected DNB nighttime radiances are produced using the nighttime
DNB Level 1 at-sensor radiances, nighttime cloud mask, aerosol optical

Fig. 6. Benchmark test #1: NTL (View Zenith Angle (VZA), Aerosol Optical Depth (AOD). (Left and Center) Daily VIIRS TOA (cloud-corrected at-sensor DNB radiances in nW·cm−2·sr−1)
and VNP46A2 scenes (cloud-free, atmospheric-, seasonal-, and moonlight BRDF-corrected DNB nighttime radiances) are shown in red and blue (respectively) for three Level 3 tiles
exhibiting near- to full-moon conditions. Cloudy pixels were left visible in the TOA product for viewing purposes. (Right) Benchmark test #1 plots corresponding to each scene. For
reference, the threshold (Lmin= 3.0 nW·cm−2·sr−1) and breakthrough (Lmin= 0.5 nW·cm−2·sr−1) performance specifications are shown as black-dotted and solid horizontal lines (re-
spectively). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

M.O. Román et al. Remote Sensing of Environment 210 (2018) 113–143

121



(caption on next page)

M.O. Román et al. Remote Sensing of Environment 210 (2018) 113–143

122



depth values, snow status flag, Ross-Li DNB BRDF model parameters
and albedo values, Pgap, and per-pixel estimates of DNB Lunar irra-
diance and corresponding geometries. A mandatory quality assurance
(QA) flag is then provided to establish the pixel-specific estimates of
retrieval performance. Note that, when the temporal gap-filling routine
is called upon, as reported in the Mandatory Quality Assurance (QA)
Flags (Table A4), the latest high-quality date observed, based on re-
trievals using the main algorithm, is reported as a separate SDS layer. If
an outlier is still detected after temporal gap-filling, then the VNP46
algorithm defaults to a monthly climatology based on the most recent
available moonless high QA values. Thus, through judicious use of the
VNP46 product quality flag, the end-user can establish whether a par-
ticular temporally-gap filled NTL value is based on a recent date or not.
This results in a traceable moonlight-adjusted NTL product to assess
current versus recent NTL conditions, while reducing persistent data
gaps caused by nighttime clouds, snow, and other ephemeral artifacts
(e.g., the Aurora Borealis - cf., Fig. 5). The reader is referred to the
Appendix for additional details regarding the individual VNP46 pro-
ducts, including a full description of quality flags and controls exercised
through the NTL retrieval process.

4. Evaluation of product performance

The overarching goal of NASA's Black Marble science product de-
velopment efforts is to achieve a “Breakthrough” performance specifi-
cation (cf., Table 1) by conducting the following tasks: (1) long-term
stability monitoring of the entire VNP46 algorithm processing chain,
including the fundamental (Level 1B) VIIRS DNB time series record,
terrain-corrected geolocation, stray light correction, and calibration
LUTs; and (2) global quality assessment, uncertainty quantification, and
product validation. To assess progress on these tasks, we have devel-
oped a series of seven benchmark tests to quantify product performance
at representative spatial and temporal scales. This comprehensive suite
of benchmark tests and assessment metrics is meant to ensure that
variations in VNP46 product performance can be identified quickly, so
that improvements can be implemented in a timely fashion. It also
enables the end-user to consider the products in their appropriate
context, e.g., by anticipating appropriate noise reduction levels under
specific retrieval conditions.

4.1. Detection limit and robustness

To enable quantitative uses of NTL time series data, one must first
establish the robustness of the algorithm with appropriate detection
limits that are globally applicable and temporally consistent. This is
particularly true when using NTL to characterize abrupt short-term
changes (e.g., power outages) or to quantify low-lit NTL across areas of
concentrated energy poverty (see examples in Figs. 15–16). Accord-
ingly, we conducted a series of benchmark tests to address the following
questions:

– Benchmark test #1: How do daily variations in aerosol optical
depth, under varying view-illumination conditions, influence NTL
retrieval performance?

– Benchmark test #2: How do daily variations in surface albedo,
under varying view-illumination conditions, influence NTL retrieval
performance?

– Benchmark test #3: Is there a dependence between NTL and daily
variations in anisotropic diffuse moon-illumination and multiple
scattering (i.e., albedo-aerosol coupling effects)?

The goal of benchmark tests #1 to #3 is to assess variations in low-
lit NTL emissions; hereby expressed in terms of the background noise,
or floor, of a NTL product; where both Lmin and L0 should equal to
0.0 nW·cm−2·sr−1. For each benchmark test, we employed a large
spatial sample of 30 Level 3 tiles (each sized: 10°× 10° - cf., highlighted
red tiles in Fig. 17) using the entire available VIIRS DNB (Collection
V001) time series. This augmented analysis was necessary to capture a
diverse range of geographic locations and time periods representing
global conditions. To further establish whether a correction resulted in
improved performance, each benchmark test was conducted at two
different levels of the NASA Black Marble algorithm processing chain:
(1) at the upstream level, using cloud-corrected at-sensor TOA ra-
diances (hereby termed, TOA), and (2) at the final processing level;
using cloud-, atmospheric-, seasonal-, and moonlight BRDF-corrected
NTL data (VNP46A2).

We used the following sampling scheme to produce statistical me-
trics for each benchmark test: (1) Background NTL pixels contained
within each sampled Level 3 tile (30 in total) were identified using the
Global Urban Footprint (GUF) product (Esch et al., 2013, 2017) and
removing 1% of outliers. (2) The samples were partitioned into 12
groupings, each representing a discrete range of daily black-sky albedo
(BSA, BSA < 0.2, BSA≥ 0.2), viewer zenith angle (VZA, VZA < 45°,
VZA≥ 45°), and aerosol optical depths (AOD, AOD < 0.5, AOD≥ 0.5)
(see plot legends in Figs. 6–11). (3) For each of these groupings, the
average TOA and VNP46A2 radiance was estimated for instances with
matching illumination conditions. (4) Finally, each of these instances
was then paired with sample data from the entire available DNB time
series record (2012–mid 2017), corresponding to the full range of il-
lumination conditions (i.e., average values for samples with moon il-
luminated fractions from 0% to 100%, with a precision of± 1.5°).
Results for benchmark tests #1 to #3 (Figs. 6–11), as well as summary
statistics extracted for four final groupings (i.e., TOA vs VNP46A2, for
moon illuminated fraction<50% and moon illuminated fraction
≥50%) (Tables 2–4), illustrate the highly non-linear dependence of
background DNB pixels to BSA, VZA, AOD, and combinations thereof.

The individual (tile-based) benchmark test results in Figs. 7, 9, and
11 (which plot background NTL pixels as a function of moon-illumi-
nated fraction) help illustrate how the refined product (VNP46A2)
maintains a near constant background radiance profile across the entire
lunar illumination cycle; well within the “Breakthrough” and the “Goal”
performance requirements for Lmin and L0, respectively. In contrast,
when using the cloud-corrected TOA product, only 27% of reported
cases (all based on moonless periods, where Moon Fraction< 50%) met
the “Goal” requirement, while 37% of cases (all based on moonlit
conditions, where Moon Fraction ≥50%) failed to meet the minimum
“Threshold” requirement; indicating the TOA product's lack of con-
sistency (in a global sense), and its inaptness for applications requiring
a stable NTL time series record for accurate characterization of change.

The albedo effect is shown to significantly influence NTL product
performance, particularly during moonlit periods (Moon Fraction
≥50%). For most VIIRS Level 3 tiles, Lmin values for TOA data with
albedos< 0.2 were consistently lower than values with BSA data
higher than 0.2. For TOA products during moonlit periods, the influ-
ence of albedo was also more pronounced compared to AOD. Both the
detection limit (Lmin) and robustness (L0) were also found to be larger
(and therefore worse) over desert regions, e.g. the Saharan Desert
(h18v05), the Middle East (h21v05, h22v05, h22v06, and h23v06), and
the Tibetan Plateau (h26v05, h26v06, h27v05, and h27v06). For these
cases, Lmin and L0 often failed to meet their “Threshold” performance
requirements. While the increased level of measurement error in the

Fig. 7. Results for Benchmark test #1: NTL (VZA, AOD). A globally representative spatial sample of 30 VIIRS Level 3 tiles provides insights into the performance of the NASA Black Marble
NTL radiance product (VNP46A2: shown in blue) compared to cloud-corrected at-sensor radiances (TOA: shown in red) (both shown in units of nW·cm−2·sr−1). Results are plotted along
the full range of illumination conditions experienced by the DNB time series record (X-axis=Moon Illuminated Fraction %). For reference, the threshold (Lmin= 3.0 nW·cm−2·sr−1) and
breakthrough (Lmin= 0.5 nW·cm−2·sr−1) performance specifications are shown as black-dotted and solid horizontal lines (respectively). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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TOA data can be anticipated for bright surface conditions, the fact that
equally higher degradations for L0 were observed suggests that addi-
tional higher-order effects (e.g., increased influence of anisotropic dif-
fuse illumination and multiple scattering) are also impacting NTL re-
trieval quality. This was especially true for desert areas, where the total
uncertainty of the product (Lmin+ L0) is shown to be higher than the
Lmin “Threshold” performance requirement by a factor of at 1.6× to
2.0×.

We also found that the restricted use of TOA data under moonless
nights does not necessarily result in a higher-quality NTL retrieval; even
for conditions experiencing lower AOD and albedos (Figs. 7 and 9). In
fact, 98.3% of VNP46A2 benchmark test results under moonlit condi-
tions, for both Lmin and L0, were actually lower (and thus better) than

the TOA benchmark test results under moonless conditions (Tables 2, 3,
and 4). These benchmark tests, therefore, help confirm the temporal
consistency of the VNP46A2 product across the entire moon-illumi-
nated cycle.

4.2. Performance of the VIIRS nighttime cloud mask

Another key factor that affects the quality of NTL products is the
performance of the VIIRS Nighttime Cloud Mask (VCM). Accordingly,
we conducted the following benchmark test to establish the following
question:

- Benchmark test #4: What is the fraction of confidently clear land-

Fig. 8. Benchmark test #2: NTL (VZA, BSA). Note the dynamic range used for the Daily TOA and VNP46A2 scenes (Left and Center) is [0 to 20 nWatts·cm−2·sr−1]. Otherwise, setup is the
same as Fig. 6.
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Fig. 9. Results for benchmark test #2: NTL (VZA, BSA). Set up is the same as Fig. 7.
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based nighttime VCM detections that were flagged by the VNP46
algorithm as less than a high-quality NTL retrieval?

The goal of this test is to establish the overall skill of the VCM to
correctly map confidently clear nighttime pixels, which (in the absence
of additional post-processing steps) can lead to a high-quality NTL re-
trieval. The performance metric is expressed in terms of the probability
of correct typing (PCT) (Kopp et al., 2014). We established PCT values
by counting the total number of confidently clear VCM pixels that were
subsequently flagged for additional inspection. Flagging of suspect VCM
detections is done in the Lunar BRDF correction process (nighttime
branch, Section 3.2), which outputs a poor-quality mandatory QA flag
when the VNP46 algorithm fails to produce a reliable NTL result, and

through additional consistency checks conducted during the temporal
gap-filling process.

Results for benchmark tests #4 (Tables 5-6) illustrate how the
performance of the nighttime VCM varies significantly depending on
factors such as moon-illumination conditions, surface albedo (e.g., re-
trieval conditions with high albedos, e.g., desert and snow have worst
PCT values), as well as atmospheric, climatic, and geographic condi-
tions. The VCM performance requirement established by the JPSS
program is ≥88% PCT. This requirement only applies to thick clouds
optical thickness (COT)> 1.0 tau. This is a challenge for NTL time
series detection, particularly since thin cirrus and low cloud fields often
lead the VCM to think that the NTL pixel is clear. In addition to NTL
attenuation caused by clouds with COT values< 1.0 tau, the scattering

Fig. 10. Benchmark Test #3: NTL (BSA, AOD). Note the Daily TOA and VNP46A2 scenes (Left and Center) exhibit half-moon to moonless conditions (Moon Fraction ≤50%). Otherwise,
setup is the same as Fig. 6.
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Fig. 11. Results for benchmark test #3: NTL (BSA, AOD). Set up is the same as Fig. 7.
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effects in terms of light diffusion and even side-illumination can in-
troduce spurious results.

Results point to a PCT of 89.03% under moonless conditions,
81.92% under moonlit conditions, and a global PCT of 85.5% under all
conditions tested. Note that the PCT values reported in this test only
describe the overall performance of the VCM vis-à-vis the NASA Black
Marble NTL data processing chain. As such, results are not re-
presentative of the true performance characteristics of the nighttime
VCM product. This is particularly the case since NTL artifacts (e.g.,
Aurora and mid- to high-latitudes), while temporary in nature, can also
set off the product's QA flags; thus, resulting in slightly lower VCM PCT
values. Nevertheless, this benchmark test provides insights into po-
tential areas for improvement in the VCM algorithm. In particular, the
comparatively lower PCT values under moonlit conditions underscore

the need for considering variations in surface brightness, as routinely
done in daytime VCM processing.

4.3. Pixel-based variations in NTL

The increased utility of the VIIRS Day/Night Band sensor to capture
sub-pixel NTL features, has led to a considerable number of studies that
have utilized the underlying radiances directly at the pixel-level (Cao
and Bai, 2014; Chen et al., 2015; Elvidge et al., 2015; Guo et al., 2015;
Hu et al., 2015; Lee et al., 2014; Mann et al., 2016; Ou et al., 2015;
Sharma et al., 2016; Shi et al., 2014; Straka et al., 2015; Zhao et al.,
2016). The wide range of applications makes it therefore necessary to
establish the sensitivity of residual errors and extraneous artifacts in the
NTL retrievals through explicit assessment of product performance at

Table 3
Summary statistics for benchmark test #2 – NTL (VZA, BSA) – based on a discrete range of View Zenith Angles (VZA < 45°, VZA≥ 45°) and
Black-Sky Albedos (BSA < 0.2, BSA≥ 0.2). Set up is the same as Table 2.

TILE ID

Minimum detectable radiance (Lmin) Retrieval uncertainty @ Lmin (L0)

TOA VNP46A2 TOA VNP46A2 TOA VNP46A2 TOA VNP46A2

Moon fraction < 50% Moon fraction ≥ 50% Moon fraction < 50% Moon fraction ≥ 50%

h10v05 0.645 0.406 2.373 0.326 0.089 0.045 1.360 0.029

h11v07 0.694 0.542 3.217 0.364 0.102 0.044 2.053 0.058

h12v09 0.378 0.243 2.520 0.154 0.085 0.033 1.747 0.015

h12v10 0.333 0.195 2.641 0.134 0.097 0.015 1.929 0.010

h12v11 0.391 0.267 2.538 0.164 0.085 0.027 1.761 0.034

h13v11 0.821 0.698 2.975 0.421 0.126 0.109 1.879 0.069

h17v08 0.419 0.267 2.948 0.160 0.100 0.032 2.010 0.018

h18v04 0.766 0.512 2.793 0.468 0.100 0.097 1.597 0.095

h18v05 0.661 0.417 3.512 0.278 0.116 0.084 2.394 0.014

h19v04 0.820 0.669 2.793 0.477 0.076 0.117 1.619 0.115

h20v11 0.356 0.232 2.958 0.135 0.085 0.019 2.196 0.018

h21v05 0.716 0.504 3.293 0.335 0.073 0.052 2.115 0.023

h22v05 0.720 0.531 3.326 0.321 0.068 0.025 2.198 0.049

h22v06 0.581 0.440 3.890 0.259 0.105 0.020 2.831 0.043

h23v05 0.545 0.339 2.963 0.200 0.076 0.028 2.071 0.031

h23v06 0.599 0.440 3.709 0.266 0.118 0.030 2.695 0.037

h24v05 0.462 0.236 2.983 0.137 0.068 0.036 2.143 0.024

h24v06 0.440 0.256 3.186 0.146 0.098 0.039 2.374 0.029

h25v05 0.542 0.307 3.231 0.188 0.065 0.040 2.237 0.019

h25v06 0.656 0.485 3.262 0.307 0.097 0.049 2.176 0.031

h25v07 0.697 0.552 3.166 0.337 0.089 0.054 2.038 0.032

h25v08 0.525 0.415 2.589 0.282 0.108 0.036 1.550 0.038

h26v05 0.442 0.215 3.222 0.118 0.095 0.041 2.415 0.022

h26v06 0.555 0.374 3.279 0.226 0.099 0.035 2.292 0.035

h26v07 0.573 0.437 2.786 0.272 0.098 0.052 1.793 0.030

h27v05 0.430 0.195 3.109 0.105 0.077 0.035 2.319 0.017

h27v06 0.429 0.242 3.290 0.125 0.076 0.037 2.428 0.020

h28v08 0.617 0.495 2.793 0.328 0.071 0.068 1.791 0.050

h29v05 0.617 0.370 2.746 0.221 0.070 0.063 1.749 0.021

h32v12 0.305 0.156 2.667 0.083 0.085 0.030 2.082 0.022

M.O. Román et al. Remote Sensing of Environment 210 (2018) 113–143

128



the native pixel scale. Accordingly, we conducted a series of pixel-based
benchmark tests to address the following three questions:

– Benchmark test #5: What is the fraction of the variation in the pixel-
based NTL time series that can be explained by variations in moon-
illuminated reflectance anisotropy (hereby termed the lunar BRDF
effect)?

– Benchmark test #6: What is the fraction of the variation in the pixel-
based NTL time series that can be explained by changes in snow
cover?

– Benchmark test #7: What is the fraction of the variation in the pixel-
based NTL time series that is explained by seasonal changes in ca-
nopy-level foliage?

The performance metrics for benchmark tests #5 and #6 are both

expressed in terms of the square of Pearson coefficient (R2× 100%)
between the 5-year NTL daily time series data and the periodicity of the
lunar cycle (defined using daily values of moon-illumination fraction).
To estimate the R2, we fitted a 5th order polynomial between these two
variables - i.e., NTL(Moon Illuminated Fraction) – to establish the same
relationships observed in Figs. 6–11 at the individual pixel-level.

For these three tests, we employed a random stratified sample of
72,000 individual TOA and VNP46A2 grid cells representing a diverse
range of urban covers, surface conditions, and latitudinal gradients. As
with benchmark tests #1 to #3, these tests were based on the entire
available Collection V001 DNB time series record (2012–mid 2017),
comprising the same sample Level-3 tiles listed in Tables 2–4. In order
to establish realistic NTL detection limits relative to anticipated
changes in NTL, we used the Global Urban Footprint product (Esch
et al., 2013, 2017) to ensure that the stratified sample was also spatially

Table 4
Summary statistics for benchmark test #3 – NTL (BSA, AOD) – based on a discrete range of Black-Sky Albedos (BSA < 0.2, BSA≥ 0.2) and
Aerosol Optical Depths (AOD < 0.5, AOD≥ 0.5). Set up is the same as Table 2.

TILE ID

Minimum detectable radiance (Lmin) Retrieval uncertainty @ Lmin (L0)

TOA VNP46A2 TOA VNP46A2 TOA VNP46A2 TOA VNP46A2

Moon fraction < 50% Moon fraction ≥ 50% Moon fraction < 50% Moon fraction ≥ 50%

h10v05 0.513 0.320 1.865 0.247 0.065 0.037 1.040 0.023

h11v07 0.684 0.532 3.059 0.387 0.114 0.048 1.934 0.058

h12v09 0.346 0.215 2.368 0.146 0.067 0.023 1.624 0.015

h12v10 0.313 0.175 2.480 0.127 0.085 0.012 1.791 0.009

h12v11 0.367 0.256 2.357 0.153 0.075 0.040 1.565 0.033

h13v11 0.819 0.691 2.753 0.415 0.107 0.117 1.694 0.078

h17v08 0.383 0.239 2.793 0.151 0.092 0.027 1.887 0.017

h18v04 0.678 0.484 2.646 0.382 0.082 0.116 1.590 0.091

h18v05 0.618 0.384 3.230 0.247 0.109 0.085 2.197 0.017

h19v04 0.738 0.549 2.715 0.393 0.076 0.080 1.661 0.075

h20v11 0.326 0.204 2.646 0.122 0.070 0.025 1.903 0.022

h21v05 0.638 0.422 3.009 0.276 0.064 0.048 1.942 0.023

h22v05 0.712 0.511 3.202 0.302 0.071 0.033 2.068 0.043

h22v06 0.618 0.451 3.997 0.286 0.099 0.023 2.879 0.039

h23v05 0.542 0.344 2.779 0.200 0.066 0.039 1.916 0.028

h23v06 0.604 0.454 3.593 0.281 0.121 0.029 2.575 0.045

h24v05 0.447 0.225 2.863 0.127 0.061 0.037 2.029 0.023

h24v06 0.431 0.255 2.986 0.146 0.090 0.041 2.197 0.029

h25v05 0.509 0.271 3.260 0.161 0.045 0.040 2.254 0.017

h25v06 0.631 0.466 3.065 0.291 0.083 0.057 2.014 0.024

h25v07 0.587 0.463 2.698 0.298 0.089 0.048 1.705 0.033

h25v08 0.467 0.372 2.047 0.252 0.091 0.044 1.281 0.036

h26v05 0.426 0.201 3.067 0.112 0.087 0.037 2.263 0.019

h26v06 0.519 0.337 3.150 0.204 0.091 0.040 2.181 0.033

h26v07 0.406 0.302 2.063 0.193 0.068 0.034 1.300 0.021

h27v05 0.419 0.187 3.073 0.099 0.070 0.033 2.282 0.016

h27v06 0.409 0.220 3.166 0.114 0.070 0.032 2.337 0.017

h28v08 0.531 0.409 2.537 0.284 0.064 0.054 1.673 0.044

h29v05 0.601 0.365 2.646 0.216 0.066 0.060 1.674 0.024

h32v12 0.289 0.143 2.484 0.076 0.080 0.028 1.916 0.021
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representative of different stages of urban growth – from sparse rural
(% Urban= 0) to densely built-up pixels (% Urban=100%).

Results for benchmark test #5 are illustrated in Fig. 12a. Note that,
in the case of the TOA product, benchmark test #5 measures the degree
of dependence in LDNB (cf., Eq. (1)) to Lunar BRDF effects (after cloud
correction) for a wide range of percent urban covers.

Conversely, for the refined product (VNP46A2), this test measures
the residual variance in LNTL caused by lunar reflectance anisotropy
effects after cloud-, atmospheric-, BRDF-, and seasonal (Pgap) correc-
tion. Results for the VNP46A2 product, therefore, demonstrate how the
lunar BRDF effect can be reduced down to a Pearson R2 coefficient of
0.37, across low-density urban pixels (and thus, low-intensity NTL), and
even lower (< 0.10) for high-density urban pixels (and thus, high-in-
tensity NTL). The VNP46A2 product enhancements, therefore, result in
a substantial reduction of residual lunar contamination relative to the
cloud-cleared TOA data, which had high R2 values, ranging from [0.4,
0.9], for DNB pixels experiencing both low to high percent urban
covers. The Lunar BRDF effect is further illustrated in Figs. 15–16;

where the TOA time series exhibits large bumps and wiggles that trail
the lunar cycle.

Results for benchmark test #6 illustrate the TOA and VNP46A2
products' performance as a function of observed variations in snow
cover (Fig. 12b). The dependence of the pixel-based values to Lunar
BRDF effects, resulting from moon-reflected snow surfaces, remained
well< 0.30 (Pearson R2 coefficient), a substantial enhancement re-
lative to the cloud-cleared TOA data. Since the Lunar BRDF effect was
measured as a function of the number of cloud-free snow-covered days
within each DNB grid cell, benchmark test #6 can be used to assess the
ability of the NASA Black Marble algorithm to effectively capture snow-
covered surfaces. The comparatively lower R2 values across VNP46A2
pixels with short snow days (< 10% of the S-NPP time series) demon-
strate the VNP46A2 product's ability to correctly activate the current
day snow status flag – a critical step for triggering the snow BRDF/
albedo algorithm process necessary to mitigate downstream errors in
the VNP46 product. This is particularly relevant for NTL conditions
experiencing short but intense periods of snow cover, where highly

Table 5
Summary statistics for benchmark test #4 (VCM Performance Test). Values describe the total probability of correct typing
(PCT) corresponding to each sample VIIRS Level 3 tile, as well as for six different groupings (as done in benchmark tests #1 to
#3) based on a discrete range of BSA, VZA, and AOD values observed for moon illuminated fractions< 50%.

TILE ID Total PCT

PCT by grouping (moon fraction < 50%)

VZA < 45° VZA ≥ 45° BSA < 0.2 BSA ≥ 0.2 AOD < 0.5 AOD ≥ 0.5

h10v05 90.46% 91.30% 89.01% 94.27% 67.27% 90.85% 88.65%

h11v07 92.66% 94.22% 91.00% 95.69% 69.37% 92.98% 91.82%

h12v09 92.62% 95.72% 89.37% 94.64% 74.81% 93.14% 91.02%

h12v10 92.96% 94.19% 91.59% 96.07% 71.10% 92.95% 92.99%

h12v11 91.62% 91.83% 91.35% 96.89% 62.01% 91.59% 91.81%

h13v11 93.62% 93.48% 93.78% 97.17% 70.21% 93.88% 92.32%

h17v08 93.15% 95.29% 90.92% 95.57% 72.54% 94.42% 91.30%

h18v04 82.26% 88.05% 69.71% 85.31% 71.55% 83.58% 72.15%

h18v05 87.17% 87.13% 87.25% 87.92% 87.02% 87.44% 86.67%

h19v04 80.86% 88.28% 66.12% 82.93% 72.94% 82.79% 68.63%

h20v11 79.90% 88.50% 70.65% 82.86% 71.53% 79.04% 83.19%

h21v05 83.64% 85.39% 81.26% 88.56% 80.00% 84.67% 81.15%

h22v05 86.43% 86.89% 85.69% 92.07% 83.33% 87.06% 85.16%

h22v06 86.91% 86.87% 86.96% 80.91% 87.54% 86.62% 87.38%

h23v05 85.63% 86.20% 84.72% 91.16% 82.21% 86.34% 84.18%

h23v06 85.70% 86.33% 84.91% 85.82% 85.67% 85.74% 85.63%

h24v05 86.00% 86.62% 84.99% 90.53% 83.73% 86.63% 84.53%

h24v06 85.85% 86.41% 85.10% 90.23% 82.00% 85.91% 85.76%

h25v05 89.09% 89.46% 88.51% 92.04% 86.06% 89.28% 88.46%

h25v06 90.55% 90.82% 90.21% 96.78% 78.38% 90.65% 90.42%

h25v07 92.54% 93.38% 91.62% 96.76% 66.31% 92.91% 91.93%

h25v08 94.65% 95.78% 93.47% 96.99% 77.40% 95.50% 92.59%

h26v05 89.36% 89.93% 88.45% 88.66% 89.63% 89.39% 89.26%

h26v06 91.08% 91.21% 90.91% 95.80% 70.67% 91.59% 90.32%

h26v07 91.67% 92.50% 90.73% 95.53% 62.05% 92.75% 89.97%

h27v05 90.26% 90.65% 89.65% 92.76% 88.23% 90.54% 89.25%

h27v06 92.84% 93.75% 91.69% 95.43% 77.05% 93.51% 90.60%

h28v08 94.48% 97.20% 91.72% 95.85% 83.87% 95.24% 91.62%

h29v05 89.69% 90.76% 88.01% 94.56% 66.68% 90.30% 88.30%

h32v12 87.32% 86.92% 87.97% 93.90% 57.94% 87.36% 87.06%
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reflective snow can introduce large positive biases in the final NTL
estimates (Bennett and Smith, 2017; Levin, 2017; Román and Stokes,
2015). It is also necessary for robust outlier detection; where the actual
moon/aerosol/albedo contribution is needed to establish the boundary
NTL conditions. This latter idea is demonstrated in Fig. 5, where ex-
traneous light emissions caused by the Aurora Borealis north of Lake
Superior were located over snow- and cloud-contaminated DNB pixels.
This would have led to significant errors of cloud-, snow-, and aurora-
leakage, which, due to the use of BRDF corrected pixels as a baseline,
were correctly classified as outliers by the VNP46 algorithm. Such
higher order effects, which are common at daily time scales, underscore
the need to routinely retrieve daily DNB BRDF quantities to better ac-
count for these rapidly changing scenarios. In fact, we found that a
standalone climatology, based on a-priori (annual or monthly) DNB
BRDF values, while useful for helping mitigate data gaps in the daily
BRDF time series, resulted in increased contamination from ephemeral
snow and other changing conditions.

Results for benchmark test #7 illustrate how the seasonal increase

in canopy-level foliage during the winter and summer months (as de-
scribed in Section 2.3) does not affect the trend in the VNP46A2 NTL
time series record. This refinement is illustrated in the sample plots
shown in Fig. 13, where the pixel-level VNP46A2 values (blue points)
do not predominate along the central region of the 2nd quadrant
(X≤ 0; Y≥ 0, or the area inside the dotted black circles in Fig. 13),
where increases in the magnitude of NTL during winter periods track
corresponding increases in green foliage between summer and winter
periods. The seasonal effect was found to be most pronounced across
temperate regions (e.g., US, European, and Asia tiles: h10v05; h18v04;
h18v05; h24v05; h25v05; h26v05; h29v05) as confirmed by previous
studies (Bennett and Smith, 2017; Levin, 2017; Levin and Zhang, 2017).
We also found additional deviations across sample Level 3 tiles in West
Africa (h17v08) and South Africa (h20v11); suggesting that seasonal
variations in NTL are likely to be more pervasive than originally
thought. Previous assessments had thus far examined the seasonal
variations using spatially- and temporally-aggregated NTL products
(e.g., monthly moon-free composites at city-wide scales). The results

Table 6
Summary statistics for benchmark test #4 (VCM Performance Test) describe the total probability of correct typing (PCT)
under moon illuminated fractions ≥50%. Setup is the same as Table 5.

TILE ID Total PCT

PCT by grouping (moon fraction ≥ 50%)

VZA < 45° VZA ≥ 45° BSA < 0.2 BSA ≥ 0.2 AOD < 0.5 AOD ≥ 0.5

h10v05 84.77% 86.50% 81.79% 87.26% 68.86% 85.09% 83.23%

h11v07 82.06% 83.75% 80.23% 83.52% 71.17% 82.91% 79.84%

h12v09 86.83% 88.74% 84.90% 88.23% 72.55% 87.65% 84.49%

h12v10 85.99% 86.36% 85.59% 87.14% 77.57% 86.27% 84.94%

h12v11 88.76% 88.93% 88.55% 91.03% 74.63% 89.15% 86.66%

h13v11 88.17% 87.89% 88.53% 89.93% 74.51% 88.56% 86.38%

h17v08 87.70% 89.51% 85.85% 88.92% 76.23% 90.60% 83.55%

h18v04 79.38% 85.41% 66.37% 79.63% 78.58% 80.40% 70.96%

h18v05 75.68% 76.27% 74.78% 76.70% 75.50% 76.38% 74.37%

h19v04 77.97% 85.35% 62.87% 78.46% 76.18% 79.84% 65.17%

h20v11 74.69% 83.05% 65.54% 72.00% 82.14% 74.16% 76.62%

h21v05 76.44% 79.30% 72.56% 76.98% 76.10% 77.28% 74.32%

h22v05 78.79% 79.66% 77.37% 81.41% 77.69% 79.55% 77.19%

h22v06 71.92% 72.46% 71.24% 69.30% 72.16% 72.65% 70.73%

h23v05 79.71% 80.16% 78.99% 78.86% 80.09% 79.81% 79.49%

h23v06 71.90% 72.57% 71.08% 73.19% 71.56% 71.68% 72.32%

h24v05 80.22% 80.99% 78.94% 78.09% 80.97% 80.16% 80.37%

h24v06 77.88% 78.63% 76.88% 76.30% 78.96% 77.77% 78.04%

h25v05 82.40% 83.31% 80.91% 83.63% 81.34% 82.07% 83.55%

h25v06 81.95% 83.19% 80.39% 82.41% 81.22% 82.81% 80.86%

h25v07 83.58% 85.01% 82.02% 84.82% 76.21% 85.63% 80.36%

h25v08 86.40% 88.96% 83.76% 86.91% 82.59% 88.31% 82.39%

h26v05 82.11% 82.98% 80.75% 79.72% 82.76% 81.93% 82.96%

h26v06 82.74% 84.03% 81.12% 83.94% 77.77% 84.43% 80.14%

h26v07 84.30% 85.50% 82.96% 85.50% 73.18% 87.66% 79.46%

h27v05 82.47% 83.00% 81.61% 84.16% 81.41% 82.58% 82.04%

h27v06 85.45% 86.27% 84.42% 86.29% 79.72% 86.34% 82.45%

h28v08 90.59% 92.61% 88.55% 90.96% 87.12% 92.15% 84.73%

h29v05 83.75% 85.80% 80.51% 85.02% 78.30% 85.17% 80.24%

h32v12 82.89% 83.38% 82.09% 83.95% 79.19% 83.82% 76.30%
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from benchmark test #7, however, provide additional new insights of
the variations at finer spatial and temporal scales.

5. Validation efforts

The series of benchmark tests introduced in Section 4.1–4.3 were
designed to quantify errors inherited from the upstream products (i.e.,
VIIRS calibrated radiances, cloud mask, aerosol retrieval, etc.) These
evaluations, however, only provide a relative assessment of NTL pro-
duct performance. To establish the absolute accuracy of the final NTL
retrievals, one must also assess the NTL products against an in-
dependent source of reference data. Unfortunately, quality-assessed in-
situ NTL measurements are not widely available; let alone, at the spatial
and temporal densities necessary to capture the full range of retrieval
conditions. Recent NASA Black Marble product validation efforts have
therefore focused on developing guidelines for accuracy assessment of
NTL products through a number of international initiatives described in
the following subsections.

5.1. GEO's nighttime product validation task

Under the Group on Earth Observations (GEO) Human Planet
Initiative's 2017–2019 Work Programme, a Nighttime Product
Validation (NPV) task was recently established to foster the develop-
ment of advanced accuracy assessment of NTL time series products. A

key deliverable of the NPV task is the development of a good practices
protocol focusing on quantitative validation of satellite-derived NTL
products. Key components to be included as part of this protocol, are:
(1) variable definitions and accuracy metrics following traceable units
of the Système Internationale (SI); (2) best practice guidelines for field
sampling and scaling techniques; (3) recommendations for reporting
and use of accurate information; (4) guidelines for product inter-com-
parison exercises; and (5) recommendations for data and information
exchange.

5.2. Pitahaya field experiment

Under technical guidance from GEO Human Planet Initiative's NPV
task, Puerto Rico's Working Group on Light Pollution (PRWGLP) seeks
to develop measurement standards and protocols for in-situ data col-
lection. The primary driver for this activity is the development of a
sustainable development indicator, based on NTL time series data, to
meet the multiple regulatory and scientific aspects of PR's light pollu-
tion laws and ordinances. To that end, a number of scoping exercises
were recently conducted across multiple light pollution abatement
zones in Puerto Rico. This included a successful deployment of a stable
point source at the Pitahaya Farmland site in Cabo Rojo, PR (Fig. 14).

During the night of 2 March 2017, at 2:00 local time, the PRWGLP
team conducted a validation experiment at the aforementioned
Pitahaya site. A stable point source was reflected by a 30m2 Lambertian
target to generate an in-band DNB radiance at sensor (LDNB) of
~0.45nW·cm−2·sr−1. Additional Sky-Quality Meter (SQM) data re-
cordings (Falchi et al., 2016; Kyba et al., 2011, 2013; Schnitt et al.,
2013) with specialized filters matching the VIIRS relative spectral re-
sponse (RSR), as well as atmospheric measurements from nearby
AERONET sun photometers (Holben et al., 1998) were used to char-
acterize atmospheric conditions.

The validation approach follows the assessment method first de-
scribed in Cao and Bai (2014), which relies on quantitative analysis and
stability monitoring of stable light point sources. We used the following
parameters to generate our radiative transfer calculations: (1) atmo-
spheric transmittance=0.8 (based on 6S radiative transfer code and
AERONET calculations), a target reflectance=0.8, and 16W of total
effective irradiance incident on the reflective surface. Results in Fig. 14
also illustrate how the detected VIIRS at-sensor cloud-corrected ra-
diance (TOA) and VNP46A2 estimates over the pixel centered on the
reflective point source were within the VNP46A2 product's “Break-
through” requirement for Lmin (0.43 nW·cm−2·sr−1) – after removing
background noise measured the days prior and after activation of the
stable light point sources. We found that the final VNP46A2 product
resulted in a 16.95% sensitivity enhancement (due to improved re-
duction background noise), as confirmed in previous benchmark tests,
compared to the at-sensor cloud-corrected radiance product (TOA)
under observed moon-free conditions.

6. Temporal patterns of nighttime lights dynamics

This section provides a number of examples representing different
temporal patterns of NTL dynamics. The following sections provide a
description for each time series archetype and their corresponding areas
of interest.

6.1. Rapid urbanization

Fig. 15a shows the expansion of road networks and light industrial
units across the Jebel Ali Free Zone (Jafza) in Dubai, United Arab
Emirates (UAE). The free zone contributes 21% of Dubai's GDP on a
yearly basis and it sustains the employment of> 144,000 people. >
7000 global companies are based in Jafza; helping account for almost
32% of total foreign direct investment flow into the UAE.

Note that the VNP46A2 time series (blue curve) achieves the lowest

Fig. 12. The correlation between a 5-year time series of daily nighttime lights (NTL) and
lunar phase for the cloud-corrected at-sensor DNB radiance product (TOA: shown in red)
and NASA's Black Marble daily moonlight adjusted nighttime lights (NTL) product
(VNP46A2: shown in blue) shown as a function of (A) percent urban cover (benchmark
test #5) and (B) snow presence (benchmark test #6). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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noise levels for all NTL archetypes presented in Section 6. This can be
attributed to a number of factors tied to improved product perfor-
mance. For example, across low-lit NTL areas exhibiting rapid land-
cover and land use changes (LCLUC), or where the initial NTL condi-
tions are close to 0 nW·cm−2·sr−1 (e.g., Fig. 16c and d), we found that a
reduction in Lunar BRDF artifacts (shown in the TOA products as
consistent bumps and wiggles that trail the lunar cycle) leads to a re-
adjustment of the linear trend in NTL. Thus, by improving the temporal
representation of initial NTL conditions, the VNP46A2 product is par-
ticularly suited for the study of urbanization pathways (Seto and
Dhakal, 2014) at these high frequency daily time intervals.

We also note that the relative large temporal daily radiance varia-
tions observed across cases is often the result of the spatial observation
coverage mismatch among days due to the difference of the DNB view
geometry (i.e., a 740m footprint moving outside a 500m gridded area).
As a result, the radiance may vary significantly within a smaller spatial
coverage; particularly close to city center. Additional testing indicated
that the temporal variation can be significantly reduced by applying a 3
by 3-pixel averaging window to the VNP46 time series data. However,
this would result in a coarser spatial resolution. Ultimately, the choice
to account for these temporal variations depends on the specific ap-
plication (pixel-based or otherwise) to determine whether such a pro-
cess is needed.

6.2. Socioeconomic patterns and cultural factors

Fig. 15 illustrates three additional NTL archetypes. Fig. 15b shows a
parcel near Mount Arafat near Mecca. Saudi Arabia. This barren area
exhibits an oscillatory seasonal cycle in NTL. The latter is postulated to
be related to the activities surrounding the Hajj Pilgrimage, where NTL
have been observed to change dramatically as prayer and eating during

the Holiday shifts later into the night (Román and Stokes, 2015).
Fig. 15c shows the NTL time series profile for a village in Korhogo,
Ivory Coast. The area of interest exhibited gradual increases in NTL
during a 4-year period, beginning in 2013. Upon investigation, it was
found that in 2012, the city of Korhogo received financial support from
international banks and aid organizations to improve access to basic
infrastructure, including renewable electricity (World Bank, 2017).
Fig. 15d shows the NTL time series profile for a village in Shenmu, a
county-level city in the north of Shaanxi province, China. The highly
coal-dependent city, one of China's top economic producers, experi-
enced a sudden production decline in 2013 due to the coal market's
downturn. This resulted in a deep recession with thousands of busi-
nesses closing. Moreover, the excessive coal mining over the years has
led to serious damage to the local ecological environment. The sharp
peaks observed in 2016 and 2017 are the result of short-term periods of
snow cover.

6.3. Conflict-affected displaced populations

Fig. 16 illustrates the tracking of NTL-related patterns that describe
the conditions of conflicted affected populations across Syria and
neighboring Jordan. Fig. 16a shows the NTL time series profile for a
residential district in Damascus; a city which suffered significant da-
mage to its infrastructure during the early stages of the Syrian civil war.
Fig. 16b shows the NTL time series for a rural area in the town of
Jarabulus, Syria. In 2016, the population of Jarabulus swelled to
25,000 citizens from 3500, weeks after the Turkey-backed Free Syrian
Army liberated the northern Syrian town in Aleppo province. This
abrupt demographic upward shift was captured by the VNP46A2 pro-
duct, where the NTL time series profile reached a maximum of
2 nW·cm−2·sr−1 (below the JPSS Lmin threshold requirement) or 65% of

Fig. 13. Results for benchmark test #7. The effects of seasonal variations of NTL with NDVI between winter and summer periods (i.e., pixels within black-dotted circles in upper-left
quadrants) are shown for 30 sample Level 3 tiles for the cloud-corrected at-sensor DNB radiance product (TOA: shown in red), and NASA's Black Marble daily moonlight adjusted
nighttime lights (NTL) product (VNP46A2: shown in blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. The NTL radiances at the Pitahaya Farmland site in Cabo Rojo, PR on 1st, 2nd and 3rd March 2017. The top-right image shows the setup of the stable point source. TOA and
VNP46A2 values are in nW·cm−2·sr−1. VCM=0 represents cloud free overpasses. LZA is lunar zenith angle, and the values larger than 108° correspond to moonless nights.
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Fig. 15. Five-year time series plots illustrate the types of changes that can be inferred from NASA's Black Marble product suite. In addition to abrupt short-term changes caused by (A)
rapid urban growth and (C) electrification, the VNP46 product can detect cyclical changes driven by reoccurring human activities e.g., (B) the Ramadan holiday period, as well as (D)
gradual changes caused by regional economic changes and out-migration. The original at-sensor cloud-corrected DNB radiances (TOA) (in units of nW·cm−2·sr−1) are shown as red points.
Those resulting from NASA's Lunar BRDF Adjusted NTL product (VNP46A2) are shown as blue points. The trailing solid red and blue curves correspond to the daily-rolling average (using
a 90-day moving window). The numbers on the top panels illustrate the anticipated noise reduction (σ2) for each method. The numbers in parenthesis refer to the estimated linear trend in
NTL per year. The numbers on the bottom panels show the center point's coordinates (Latitude, Longitude). URB is the % Urban cover as reported by the Global Urban Footprint product.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 16. Five-year time series plots across four different locations illustrate the tracking of abrupt NTL-related changes that describe conditions of conflicted affected populations in Syria.
Setup is the same as Fig. 15.
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the pre-event NTL conditions. Fig. 16c shows how the Black Marble NTL
time series data can also trace the ensuing movement of Syrian citizens
across the Jordanian border into the Zaatari refugee camp. Since July
2012, Zaatari has been transformed from a barren desert village with a
population of 12,000, into a three-square-mile tent city where over
140,000 Syrian refugees are estimated to dwell. To date, Zaatari is
Jordan's fourth-largest population center and the world's second largest
refugee camp (Helios Global, 2017). We posit that the large variations
observed in the Zaatari camp (between 2014 and 2017) are largely due
to refugee movements, seasonal migrations, and weather changes. Rain
in particular makes conditions challenging as refugees prepare for the
cold winter. Workers in the camp often have to clear flooded areas near
shelters, to ease the movement of refugees and allow services to access
the beneficiaries (NRC, 2017). Due to the maximum capacity of 60,000
refugees in Zaatari, a second camp was built in March 2013. The
Mrajeeb Al Fhood (Emirati) refugee camp (shown in Fig. 15d) is located
across a stretch of arid plains some 20 km east of Zarqa, Jordan. It was
opened in April 2013 and is funded by the UAE. The camp was built to
cope with the influx of more Syrian refugees, as the capacity of the
Zaatari refugee camp was showing to be insufficient. As of 18 Sep-
tember 2017, the camp has a population of 7243 refugees (UNHCR,
2017).

6.4. Changes to the VIIRS DNB's relative spectral response (RSR)

Of importance to note, the VIIRS DNB on Suomi-NPP cannot reliably
capture the technological transition of street lighting from conventional
(e.g., incandescent or high-pressure sodium lamps) to light emitting
diodes (LED). As confirmed in previous studies, the VIIRS DNB's RSR
does not include the blue-light emission peak of the White LEDs (Cao
and Bai, 2014; Falchi et al., 2016).

Studies have pointed how a blue-shift of the VIIRS DNB RSR, to
capture the primary LED emission peak between 450 and 460 nm, and
secondary peak near 550 nm, would enable superior monitoring of
changes related to LEDs (Elvidge et al., 2010). On the other hand, a
blue-shift to the RSR will result in greater atmospheric contamination
from molecular scatter, which must be adjusted for in the NASA Black
Marble products. Such a shift may also enable other practical uses re-
lated to the detection of bioluminescence, whose relatively narrow
band of principal emission fall outside of the current DNB response
function. Miller et al. (2005, 2006) present one example of biolumi-
nescent detection from the previous-generation DMSP/OLS sensors,
whose RSR is blue-shifted by ~100 nm with respect to the DNB. It was
calculated that the bioluminescent signal would need to be nearly twice
as strong to be detected by DNB technology, due to the RSR shift, de-
spite the DNB being significantly improved in terms of spatial resolu-
tion, radiometric resolution, and signal-to-noise specifications.

While the improvement to LED characterization and potential for
enabling the detection of bioluminescence are appealing outcomes of
an RSR blue-shift, other applications related to nightglow sensitivity
(e.g., Miller et al., 2012a, 2012b) may suffer. These include new insights
to middle-atmospheric dynamics, made possible by the DNB's sensi-
tivity to hydroxyl emissions in the near-infrared (Miller et al., 2015).
These same nightglow emissions present a source of noise to NASA
Black Marble products (another benefit to the RSR blue-shift from the
perspective of NTL applications). This is all to say that, with any con-
sideration for future day/night band additions or modifications, trade
studies tied to individual product performance, overarching mission
goals and priorities, constraints on sensor design, bandwidth, and costs,
must all be counterbalanced. A positive step in this regard is the recent
2017–2027 Decadal Survey Report on Earth Science and Applications
from Space (NASM, 2018), whose Weather and Air Quality Panel
highlighted the importance of developing “A higher-resolution VIIRS-

like instrument (200 m horizontal resolution) with the day-night band
and an update frequency of 3 hours”. Note this specification currently
drives the ‘Goal’ requirement for the NASA's Black Marble product suite
(Table 1).

7. Conclusions

With a quickly expanding temporal record of well-calibrated global
nocturnal imagery, the Day/Night Band (DNB) sensor of the Visible
Infrared Imaging Radiometer Suite (VIIRS) is starting to emerge from its
early exploratory stage to become a new global baseline for nighttime
remote sensing data. When properly accounting for systematic sources
of retrieval uncertainty and measurement error, NASA's Black Marble
product suite (VNP46) enables the use of the VIIRS DNB for global
mapping of nighttime lights (NTL) as related to human-driven patterns
and processes. These processes include seasonal changes driven by re-
curring human activities, gradual changes due to electrification and
economic conditions, as well as abrupt short-term changes caused by
disturbances in power delivery, such as disasters and conflict. In addi-
tion to these temporal patterns, studies related to an assortment of other
processes (e.g., changes in lighting associated with different social and
economic sectors) can benefit from a daily long-term NTL record to
establish how urbanization processes differ both within and across ci-
ties.

We describe the unique features of the VNP46 algorithm, including
routine correction for Lunar BRDF, cloud, terrain, atmospheric, snow,
airglow, stray light, and seasonal effects. These refinements, along with
intelligent gap-filling protocols, enable the first-ever daily monitoring
of low-lit NTL structures, with a substantial sensitivity enhancement (of
a factor of 7) compared to the current specification established by the
Joint Polar Satellite System (JPSS). Owing to a rigorous quality control
process, results over a global sample of 30 Level 3 tiles indicate that the
standard NASA Black Marble product (VNP46A2) maintains a near
constant background radiance profile across the entire lunar illumina-
tion cycle, well within the “Breakthrough” and “Goal” performance
requirements for detection limit (Lmin) and robustness (L0). The re-
sulting performance enhancements were also confirmed through time
series analyses of archetypes from different temporal patterns of urba-
nization dynamics, including displaced settlements and low-NTL areas
of concentrated energy poverty.

As a validation exercise, we evaluated NASA's Black Marble daily
moonlight adjusted NTL product (VNP46A2) against a stable point
source at the Pitahaya Farmland site in Cabo Rojo, Puerto Rico. A daily
change of 0.43 nW·cm−2·sr−1 was successfully detected, helping es-
tablish the reasonableness of summary statistics for Lmin

(0.29 nW·cm−2·sr−1) and L0 (0.04 nW·cm−2·sr−1) extracted from ex-
tensive benchmark tests. At the pixel-level, the dependence of
VNP46A2 NTL time series data to Lunar BRDF effects was also reduced
by 60% (down to an R2 coefficient under 0.37) across low-density urban
areas, and by 30% (down to an R2 coefficient under 0.10) across high
density urban areas.

Accurate estimation of daily surface reflectance anisotropy (BRDF)
and albedo information, retrieved from daytime multi-angular DNB
surface reflectance observations, were shown to be essential processing
steps for the removal of extraneous sources of NTL emissions in the
VNP46A2 product. This was especially true for urban areas located
across desert and semi-arid regions, as well as other scenarios experi-
encing high surface albedos> 0.2 (e.g., snow-covered areas). Under
these situations, we found that the daily NTL patterns, based on cloud-
corrected at-sensor (TOA) data alone, were exposed to higher-order
aerosol coupling effects which, in the absence of proper Lunar BRDF
and atmospheric correction, severely impacted retrieval quality.

The overall performance of the VIIRS nighttime cloud mask was
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found to be comparable to the JPSS specification. The overall PCT was
89.03% under moonless conditions, 81.92% under moonlit conditions,
and 85.5% for all conditions tested. These results are consistent with
early assessments of the VCM product (e.g., Kopp et al. (2014) reported
a global PCT for land areas at night of 86.4%). The performance of the
VCM was also found to worsen under nighttime conditions with high
albedos. This suggests that explicit specification of surface conditions in
the VCM is key to reduce instances of cloud leakage. Considering that
the VIIRS DNB was originally designed to detect nighttime clouds, ef-
forts to adapt the DNB data in the VCM process should be explored as a
means to improve performance. Additional consideration of Lunar
BRDF effects in the downstream NTL retrieval process also helps reduce
cloud leakage effects, particularly under snow, desert, and semi-arid
surfaces.

Another major source of uncertainty in the NTL time series data –
snow cover impacts – was reduced through the activation of the VIIRS
daily snow status flags and snow albedo values. As a result, the fraction
of the variation in the pixel-based NTL time series that can be explained
by detected changes in snow cover, was reduced by 65% (down to an
R2 coefficient under 0.30). Based on these results, to capture other
rapid seasonal variations, particularly across spatially heterogeneous
conditions (e.g., flooded surfaces, agricultural-urban and forest-urban
mosaics), we recommend that both a daily snow-free and a daily snow
BRDF/albedo retrieval be implemented in place of a monthly or annual
climatology (Moody et al., 2008; Román et al., 2011, 2013; Strugnell
et al., 2001; Wang et al., 2012). Recent studies have found that these a-
priori BRDF archetypes can result in a poor-quality BRDF/albedo, and
thus a poor-quality NTL, retrieval; due to the climatology's failure to
resolve high frequency surface changes (Liu et al., 2017, 2017;
Moustafa et al., 2017; Schaaf et al., 2011; Wang et al., 2012, 2014,
2018).

We also found that temporal aggregation of at-sensor NTL ra-
diances, in lieu of proper daily atmospheric and BRDF correction, re-
sulted in comparatively smaller (and thus worse) noise reduction levels
relative to the daily VNP46A2 product. These findings help dispel
various assumptions surrounding the quality of VIIRS NTL time series
data, namely that: (1) VIIRS NTL time series products can only be
produced reliably from nearest-nadir observations under moonless
nights; and (2) that at-sensor TOA data under moonless nights are, by
default, less prone to sources of uncertainty and measurement error.
Results from our seven series of global benchmark tests, combined with
further examinations of a representative sample of NTL time series
typologies (Figs. 15–16), show the opposite effect to be true – i.e., that
at-sensor TOA VIIRS DNB data under moonless nights are in fact more
subjected to sources of uncertainty and measurement error, resulting in
higher noise levels. As reported in previous studies, there are several
higher order artifacts that persist in the VIIRS DNB time series under
moonless conditions, including: (1) a seasonal tendency of “false clear”
and “false cloud” detections in the current (V001) VIIRS Cloud Mask,
(2) residual striping and stray light artifacts that remain after on-orbit
calibration, (3) the influence of nightglow, and (4) the short-lived
presence of aurora or solar glare events at mid- to high-latitudes (Cao
et al., 2013; Cao and Bai, 2014; Lee et al., 2015; Miller et al., 2013;
Mills and Miller, 2016).

We introduced and assessed the performance of a vegetation dis-
persion parameter, generally known as the clumping index, to para-
meterize the confined distribution of foliage within distinct canopy
structures. The adoption of pixel-based canopy gap probability (Pgap)
measures in the VNP46 algorithm helps address an unresolved source of
measurement uncertainty in the VIIRS NTL time series (Levin, 2017;
Levin and Zhang, 2017). Note that accurate assessment and removal of
seasonal variations in NTL is not only critical for time series change

detection, but also essential for understanding how green space design
mediates ecological functioning and thus ecosystem services in the
urban environment (Andersson et al., 2014; Heynen et al., 2006; Jim,
2004; Wolch et al., 2014). For instance, cities like Barcelona
(O'Sullivan, 2017), Berlin (Kabisch and Haase, 2014), and Bangkok
(Thaiutsa et al., 2008), are embarking upon major plans to raise their
proportion of urban green zones to reduce urban heat island effects, air
pollution, and other environmental issues. A 30% increase in green
zones, e.g., is equivalent to adding ~3–10m2 of green area per city
resident.

The influence of atmospheric effects on NTL continues to be a
dominant source of retrieval uncertainty; particularly at daily time
scales, and over cities in developing countries – where levels of air
pollution (and thus atmospheric turbidity) have increased significantly
in the past decades (Tomasi et al., 2017). Multiple nighttime AOD re-
trieval strategies were examined as part of the NASA Black Marble al-
gorithm development effort; including daytime-to-daytime averaged
AOD values vs. direct estimation over temporally stable NTL pixels
(Johnson et al., 2013). The current (Collection V001) algorithm im-
plementation uses the “daytime-to-daytime averaged” approach and
preliminary results are shown to be promising. However, given the
relatively nascent nature of nighttime AOD retrievals using the DNB,
new approaches are still being considered.

We should also note that nighttime lights emitted from within urban
areas can exhibit a strong BRDF phenomenon, mainly due to the 3D-di-
mensional physiognomy and structure of buildings in cities. However, the
correction of this effect is challenging due to a lack of empirical data and
radiative transfer models. Continued research and experimental work will
be crucial to discover and better understand these processes.

Key to achieving the goals as set out by the Group on Earth
Observations (GEO) Human Planet Initiative's Nighttime Product
Validation (NPV) task is the enhanced assessment of nighttime aerosol and
Pgap estimates. To support these evaluations, our future validation plan
calls for the synergistic use of high-quality airborne (Cook et al., 2013) and
terrestrial LiDAR data (Paynter et al., 2016), combined with high resolu-
tion daytime and nighttime satellite imagery. These activities will help
provide more direct estimates of canopy gap fraction in urban environ-
ments; helping establish more realistic constraints in the Pgap retrieval
process. Likewise, we anticipate that available nighttime aerosol mea-
surements (e.g., from AERONET, Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP), and Cloud-Aerosol Transport System (CATS) re-
trievals) (Omar et al., 2013; Yorks et al., 2015, 2016) will be used to
support future NTL product validation efforts. Efforts are also underway to
deploy additional nightlight point sources, with improved small target
radiometry and standards-traceable understanding. The long-term goal is
to establish NTL reference sites at different locations covering a wide range
of land, atmospheric, and illumination conditions.

Potential science users advised of the provisional nature of the
current VNP46 product suite (Collection V001) bearing in mind factors
such as: (1) upcoming refinements to the VIIRS DNB calibration soft-
ware and ancillary data sources, (2) residual striping and stray light
artifacts that remain after on-orbit calibration, and (3) the performance
of the VIIRS nighttime cloud mask. We anticipate that these caveats will
be mitigated in the upcoming (Collection V002) reprocessing of the
VIIRS long-term archive; making the products increasingly more valu-
able for global Earth System science and near-real time applications.
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Appendix A. Data Format

NASA's Black Marble data are provided in the standard land HDF-EOS (Hierarchical Data Format - Earth Observing System) format. The file-
names follow a naming convention which gives useful information regarding the specific product. For example, the filename
VNP46A1.A2015001.h08v05.001.2017012234657.hdf indicates:

• VNP46A1 - Product Short Name

• .A2015001 - Julian Date of Acquisition (A-YYYYDDD)

• .h08v05 - Tile Identifier (horizontalXXverticalYY)

• 0.001 - Collection Version

• .2017012234657- Julian Date of Production (YYYYDDDHHMMSS)

• .hdf - Data Format (HDF-EOS)

• Format (HDF-EOS)

Table A1
Scientific data sets included in the VNP46A1 product.

Scientific data sets (HDF Layers) Units Bit type Fill value Valid range

DNB_At_Sensor_Radiance_500m nW·cm−2·sr−1 16-Bit unsigned integer 65,535 0–65,534
Sensor_Zenith Degrees 16-Bit signed integer −32,768 −90–90
Sensor_Azimuth Degrees 16-Bit signed integer −32,768 −180–180
Solar_Zenith Degrees 16-Bit signed integer −32,768 0–180
Solar_Azimuth Degrees 16-Bit signed integer −32,768 −180–180
Lunar_Zenith Degrees 16-Bit signed integer −32,768 0–180
Lunar_Azimuth Degrees 16-Bit signed integer −32,768 −180–180
Glint_Angle Degrees 16-Bit signed integer −32,768 −180–180
UTC_Time Decimal Hours 32-Bit floating point −999.9 0–24
QF_Cloud_Mask Class flag 16-Bit unsigned integer 65,535 0–65,534
QF_DNB Class flag 8-Bit unsigned integer 255 0–254
Radiance_M10 W·m−2·μm−1·sr−1 16-Bit unsigned integer 65,535 0–65,534
Radiance_M11 W·m−2·μm−1·sr−1 16-Bit unsigned integer 65,535 0–65,534
BrightnessTemperature_M12 Kelvins 16-Bit unsigned integer 65,535 0–65,534
BrightnessTemperature_M13 Kelvins 16-Bit unsigned integer 65,535 0–65,534
BrightnessTemperature_M15 Kelvins 16-Bit unsigned integer 65,535 0–65,534
BrightnessTemperature_M16 Kelvins 16-Bit unsigned integer 65,535 0–65,534
QF_VIIRS_M10 Class flag 8-Bit unsigned integer 255 0–254
QF_VIIRS_M11 Class flag 8-Bit unsigned integer 255 0–254
QF_VIIRS_M12 Class flag 8-Bit unsigned integer 255 0–254
QF_VIIRS_M13 Class flag 8-Bit unsigned integer 255 0–254
QF_VIIRS_M15 Class flag 8-Bit unsigned integer 255 0–254
QF_VIIRS_M16 Class flag 8-Bit unsigned integer 255 0–254
Moon_Phase_Angle Degrees 16-Bit signed integer −32,768 0–180
Moon_Illumination_Fraction Degrees 16-Bit signed integer −32,768 0–100
Granule None 8-Bit unsigned integer, 255 0–254

Table A2
Scientific data sets included in the VNP46A2 product.

Scientific data sets (HDF layers) Units Bit type Fill value Valid range

DNB_BRDF-Corrected_NTL_500m nWatts·cm−2·sr−1 16-Bit unsigned integer 65,535 0–65,534
Mandatory_Quality_Flag Class flag 8-Bit unsigned integer 255 0–3
Latest_High_Quality_Retrieval Number of Days 8-Bit unsigned integer 255 0–254
Snow_Flag Class flag 8-Bit unsigned integer 255 0–1
QF_Cloud_Mask Class flag 16-Bit unsigned integer 65,535 0–65,534
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Appendix B. QA metadata

Details of flag description key and quality flags of the product VNP46A1 and VNP46A2 are shown in following tables.

Table A3
Values of QF_Cloud_Mask in the VNP46A1 product.

Bit Flag description key Results

0 Day/night 0=Night
1=Day

1–3 Land/water background 000= Land & Desert
001= Land no Desert
010= Inland Water
011= Sea Water
101=Coastal

4–5 Cloud mask quality 00=Poor
01=Low
10=Medium
11=High

6–7 Cloud detection results & confidence indicator 00=Confident Clear
01=Probably Clear
10=Probably Cloudy
11=Confident Cloudy

8 Shadow detected 1=Yes 0=No
9 Cirrus detection (IR) (BTM15-BTM16) 1=Cloud

0=No Cloud
10 Snow/ice surface 1= snow/ice

0=no snow/ice

Table A4
Values of the Mandatory_Quality_Flag in the VNP46A2 product.

Value Retrieval quality Algorithm instance

00 High-quality Main algorithm (persistent nighttime lights)
01 Good-quality Back up algorithm (temporal gap-filling)
02 Poor-quality Back up algorithm (outlier removal)
255 No retrieval Fill Value

Appendix C. Data archives

The VNP46 suite of products will be archived and supported by these data centers:
LAADS DAAC https://ladsweb.modaps.eosdis.nasa.gov/.
LANCE: NASA Near Real-time Data and Imagery https://earthdata.nasa.gov/earth-observation-data/near-real-time

Appendix D. Linear Lat/Lon Projection

NASA's Black Marble product suite (VNP46) employs the standard VIIRS Land science algorithms and software that produce the DNB standard
(radiance-based) products, and their corresponding ancillary layers in gridded (Level 2G, Level 3) linear Lat/Lon format (Fig. 17). The gridding
algorithms were modified to work with the VIIRS Day/Night Band's (DNB) unique viewing geometry, which, unlike the VIIRS moderate and imagery
bands, has a ground pixel footprint at a nearly constant size (742m). The rationale behind the VIIRS DNB gridding approach is to select the nighttime
observations from available 6-min swath granules (2366 km along track, ~3100 km across-track), that are the least affected by cloud cover and off-
nadir viewing observations. The goal is to increase signal-to-noise, while maximizing coverage within a cell of the gridded projection (Tan et al.,
2006; Wolfe et al., 2002). By implementing this combined gridding strategy and geographic Linear Lat/Lon (LLL) projection formats, we seek to
improve the efficiency of processing and reprocessing of the VNP46 product suite, preserve the satellite location and observation footprints, while
also enabling the ingest of the products into accessible software for GIS-friendly analysis and mapping.
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