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ABSTRACT

Secondary forests account for more than half of tropical forests and represent a growing carbon sink, but rates of biomass accumulation
vary by a factor of two or more even among plots in the same landscape. To better understand the drivers of this variability, we used
airborne lidar to measure forest canopy height and estimate biomass over 4529 ha at Serra do Conduru Park in Southern Bahia, Brazil.
We measured trees in 30 georeferenced field plots (0.25-ha each) to estimate biomass using allometry. Then we estimated aboveground
biomass density (ABD) across the lidar study area using a statistical model developed from our field plots. This model related the 95th
percentile of the distribution of lidar return heights to ABD. We overlaid this map of ABD on a Landsat-derived forest age map to
determine rates of biomass accumulation. We found rapid initial biomass regeneration (~6 Mg/ha yr), which slowed as forests aged. We
also observed high variability in both height and biomass across the landscape within forests of similar age. Nevertheless, a regression
model that accounted for spatial autocorrelation and included forest age, slope, and distance to roads or open areas explained 62 and
77 percent of the landscape variation in ABD and canopy height, respectively. Thus, while there is high spatial heterogeneity in forest
recovery, and the drivers of this heterogeneity warrant further investigation, we suggest that a relatively simple set of predictor variables
is sufficient to explain the majority of variance in both height and ABD in this landscape.

Abstract in Portuguese is available with online material.
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SECONDARY TROPICAL FORESTS REPRESENT MORE THAN HALF OF THE

WORLD’S TROPICAL FORESTS (FAO 2015) and are likely to increase
in the future as deforestation and agricultural land abandonment
continue (Chazdon 2014). Existing secondary tropical forests are
an important carbon sink (Pan et al. 2011, Chazdon et al. 2016)
and provide key habitat for tropical forest species (Chazdon et al.
2009, Dent & Wright 2009). In the Neotropics, studies from a
network of plot-based chronosequences suggest that secondary
forests recover quickly, reaching 90 percent of mature forest bio-
mass in 66 yr (Poorter et al. 2016). However, forest regeneration
rates are highly variable, and the drivers of this variation are both
poorly understood and difficult to model based on the limited
data available (Norden et al. 2015). Improving our understanding
of this variability in biomass recovery rates will aid the modeling
of terrestrial carbon uptake and inform forest restoration work.

We focus here on the Brazilian Atlantic forest, which once
stretched over nearly the entire coast of Brazil but has been
reduced to 12 percent of its original extent remaining by hun-
dreds of years of logging and land use conversions (Ribeiro et al.
2009). Forest in this region has been harvested for wood prod-
ucts, cleared for swidden agriculture, converted to pasture or
industrial crops such as sugar cane, or partially cleared for cacao
cultivation. Selective logging has extensively affected remnant for-
est patches. Both hunting and fragmentation have contributed to
severe defaunation (Canale et al. 2012). The remaining forest
exists mostly as small, scattered fragments (Ribeiro et al. 2009),
but efforts are underway to restore larger tracts and some natural
regeneration has occurred in the past decades (Calmon et al.
2011).

The factors that affect variation in biomass regeneration in
secondary forests depend on the spatial scale of interest. At glo-
bal to continental scales, differences in total precipitation and its
seasonality are important drivers of biomass recovery (Becknell
et al. 2012, Poorter et al. 2016). At smaller scales, regrowth is also
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affected by topography, species composition, spatial structure (the
size, shape, and distribution of patches across the landscape), and
site history (Groeneveld et al. 2009). Topography has rarely been
examined in tropical secondary forests but plays an important
role in landscape-scale biomass distributions in mature forest sites
(Clark & Clark 2000, Taylor et al. 2015) and is often correlated
with tropical soil nutrient availability (Takyu et al. 2002, Vitousek
et al. 2003, Porder et al. 2005, Osborne et al. 2017). Variation in
soils affects productivity and biomass density at multiple sites
(Davidson et al. 2004 Becknell & Powers 2014, Waring et al.
2015a), but soil properties also affect species composition and
vice versa (John et al. 2007, Waring et al. 2015b). Species diversity
and composition can play a role in biomass distributions (Finegan
et al. 2015), as can the abundance of functional groups such as
lianas or palms (Ledo et al. 2016, Scaranello et al. 2016). What-
ever the scale, the extent and intensity of human land use are
also likely important factors in determining rates of biomass
recovery in secondary forests (Aide et al. 2000, Guariguata &
Ostertag 2001).

The main source of data on secondary forest biomass regen-
eration comes from small plot-scale studies that use chronose-
quences to understand forest recovery (Chazdon 2014, Poorter
et al. 2016). These chronosequences often rely on relatively small
numbers of plots that may not capture the landscape-scale varia-
tion in biomass, nor be sufficient to elucidate the drivers of this
variation across a landscape. While small plot-scale studies are
crucial for measuring many important variables including species
density and soil properties, airborne lidar offers an alternative for
quantification of forest recovery at larger spatial scales (Leitold
et al. 2015). Lidar data provide direct measurements of height,
which can be used to generate estimates of forest biomass (Lef-
sky et al. 2002, Asner & Mascaro 2014). These height measure-
ments and biomass estimates are used to study forest structure
and dynamics (Longo et al. 2016, Silva et al. 2017) and are
increasingly used to overcome the potential sampling error in
plot-based studies of heterogeneous landscapes (Getzin et al.
2017, Asner et al. 2018). Similar to small plot-based chronose-
quences, lidar can be used to study forest recovery by combining
the data with forest age maps derived from historical aerial pho-
tography or satellite imagery. Unlike small plot chronosequences,
however, lidar can sample such a large area that in addition to
age, the effects of landscape-scale factors such as slope, aspect,
proximity to roads, and elevation on forest recovery can be
assessed.

Here we present such an assessment, using lidar-derived for-
est heights and biomass from the Brazilian Atlantic Forest in
southern Bahia, Brazil. This is the first lidar-based study of bio-
mass distribution in this floristically distinct and highly diverse
region of Atlantic Forest (Thomas et al. 1998, Martini et al. 2007)
and one of the few studies to use lidar to estimate secondary for-
est regeneration rates (Helmer et al. 2009, Mascaro et al. 2012).
Specifically, we ask: (1) What is the distribution of forest height
and biomass across forest age? (2) What is the relative influence
on height or aboveground biomass density (ABD) of forest age,
topography, and distance to roads and clearings? (3) How quickly

does height and biomass recover in the Southern Bahia Atlantic
forest landscape?

METHODS

SITE DESCRIPTION.—This study was conducted in Serra do Con-
duru State Park in Southern Bahia, Brazil (14°30016″ S, 39°6036″
W). Serra do Conduru State Park houses a moist tropical forest
with mean annual precipitation around 2000 mm distributed rela-
tively evenly throughout the year and mean annual temperature
of 24°C (Piotto et al. 2009). Elevation in Serra do Conduru
ranges from under 100 m to just above 400 m asl. The park was
established in 1997 to protect an area of intact Atlantic forest
and restore the surrounding matrix of land previously used for
pasture, swidden agriculture, cacao plantations, or cleared to har-
vest wood. The park bounds one of the largest contiguous areas
of Atlantic forest in the northeast of Brazil (almost 10,000 ha)
and includes patches of secondary forest at different stages of
regeneration, active forest restoration sites, and areas of older for-
est that have been selectively logged in the past. Selective logging,
hunting, and fiber harvesting are common throughout the park.
Some small patches within the park remain occupied or used for
grazing. Several frequently used roads bisect the park, and there
are trails used by local inhabitants throughout the area.

FIELD MEASUREMENTS OF BIOMASS.—We measured tree diameters
to estimate biomass in 30 plots (50 9 50 m each). To capture
the variation in the landscape, the plots were established across
gradients of slope (0–45%) and biomass. We measured the diam-
eters at 1.3 m (dbh) of all trees above 10 cm (dbh) and trees
below 10 cm (dbh) in 5 randomly located subplots (5 9 10 m)
per plot.

We estimated tree biomass using a general tropical forest
allometric equation using dbh, wood density, and a climate index
that combines temperature seasonality, climate water deficit, and
precipitation seasonality (Chave et al. 2014). We assigned each
field plot a probable age as initiation of regeneration based on
their location and forest age map produced with the Landsat
analysis (see below; Table S1). Then we assigned trees within
each plot a community-weighted mean wood density based on
the time as abandonment (0.59–0.67 g/cm3) from plots of similar
ages in the same park (Piotto et al. 2009). The biomass of palms
was estimated using a general Arecaceae family-level allometric
equation, which estimates biomass from diameter (Goodman
et al. 2013). The estimated biomass for all trees was summed and
divided by plot area to estimate ABD.

Field plots were geo-located using a Trimble Geo7x by tak-
ing an average of 65 position readings per plot corner. GPS read-
ings were differentially corrected using a permanent base station
located ~30 km from the field site. The postcorrection horizontal
precision estimate for plot corners ranged from 0.1 to 1.8 m with
an average of 1.2 m.

MAPPING FOREST AGE AND ANTHROPOGENIC FEATURES.—We used a
time series of Landsat imagery to map forest age across the study
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area (Fig. 1). In each year when cloud-free Landsat images were
available, we conducted a supervised forest vs. non-forest classifi-
cation using training areas in or around our study area that were
consistently forested or not forested during entire range of the
Landsat time series (1984–2016). We were able to find images
with less than 20 percent clouds for 16 of the 32 yr: 1984, 1985,
1986, 1988, 1989, 1990, 1991, 1994, 1996, 2000, 2002, 2004,
2005, 2007, 2010, 2011, and 2016. Cloud-covered areas were
identified by eye and were categorized as ‘no data’ for that year.
For clouded areas, age determination was made based on the
previous and subsequent years data. We combined these classified
forest–non-forest layers for each year to produce estimates of
forest age for each 30 m pixel in the study area.

We mapped the distance to current anthropogenic features
(roads, and open areas) by combining lidar data with GPS data
and imagery. We digitized roads using GPS data collected during
fieldwork and 2011 Ikonos imagery. To find open areas, we first
made a 1-m-pixel-scale canopy height model (CHM) using the
lidar data. We took the maximum height measured in each
1 9 1 m pixel and then used a 5-pixel mean moving window
smoothing function to remove anomalies. Next, we found all
areas larger than 100 m2 with a canopy height below 3 m. We
combined these 100 m2 open areas with the roads and calculated
the distance from every point in the landscape to these anthro-
pogenic features.

LIDAR DATA COLLECTION.—Lidar data were collected over a 4529-
ha area encompassing the southern section of Conduru State
Park in December 2015. The Brazilian firm GEOID Laser

Mapping obtained the small-footprint, multiple-return (up to 4
returns per pulse) data with an Optech Orion M300 sensor
mounted on an airplane flying at an average altitude of 850 m
above ground level with a field of view of 12° and a flight line
overlap of 65 percent. The average lidar return density was 94
points/m2. The digital terrain model (DTM) was generated from
the lidar data by GEOID using a process previously described
and shown to be accurate (Leitold et al. 2015). After subtracting
ground height based on the DTM, mean canopy height at 30-
and 50-m-pixel scales was calculated by first creating a 1-m
canopy height map from the lidar data, then taking the average
of this canopy height map over each 30 or 50 m pixel.

CALCULATION OF BIOMASS FROM LIDAR DATA.—To map estimated
biomass across the landscape with lidar data, we used the area-
based method where ABD measured in field plots is correlated
with lidar metrics over the same area (Fig. 1A; White et al. 2013).
We calculated a set of lidar metrics for each of our 30 field plots.
These metrics included height percentiles and descriptive statistics
(e.g., mean, variance, skewness, and kurtosis). Next, we evaluated
which metrics best explained the variation in field-measured bio-
mass across the 30 field plots. We compared linear and sigmoidal
models using automated variable selection algorithms and used
the Akaike information criterion (AIC) for model selection. The
best linear models predicted negative biomass for low mean
canopy heights. To avoid this problem, we selected a sigmoidal
model with a single variable (equation 1); the height of the 95th
percentile (m) of lidar returns over the 0.25 ha plot (P95) based
on AIC (Fig. 2; RSME= 44.85). This model had the smallest

FIGURE 1. Maps of biomass (A), forest age (B), slope (C) and elevation, roads, and open areas (D). Maps have been rotated ~40° clockwise to better fit on the

page. The aboveground biomass density map is at a 50-m-pixel scale, the forest age map is at a 30-m-pixel scale, and both slope and elevation are at the 1-m-

pixel scale. The southeastern region of the study area with the highest elevations and steepest slopes also has the highest biomass density.
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RMSE and made realistic (nonzero) predictions of biomass den-
sity across the landscape.

Aboveground Biomass Density ðMg=haÞ ¼ 590:2
1þ e�0:202ðP95�23:24Þ

(1)

SPATIAL RESOLUTION OF DATA AND ANALYSES.—We used data with
different spatial resolutions for different analyses. The age maps
we developed from Landsat data are at the 30-m-pixel scale.
Thus, any analysis involving these age maps was conducted at
this scale or larger. Our maps of ABD are at the 50-m-pixel scale
because the plots used to develop the lidar–AGD relationship
were 50 9 50 m. We compared correlation coefficients and con-
ducted regression analyses for canopy height at both 30- and 50-
m-pixel scales to test for scale dependencies. We found very little
differences between the results at these scales (Table 1), suggest-
ing that the modeled relationships are not scale-dependent over
this range. Raster data on slope or distance to anthropogenic fea-
tures were developed at a 1-m scale and later scaled up to 30 or
50 m for statistical analyses.

RELATING HEIGHT AND BIOMASS TO LANDSCAPE VARIABLES.—We
used an ordinary least squares-simultaneous autoregressive mod-
eling (OLS-SAR) to explore the relationships between ABD or
mean canopy height (the average of the 1 m CHM in each pixel)
and forest age, topography, and distance to anthropogenic fea-
tures. OLS-SAR allowed us to quantify the influence of the
explanatory variables while simultaneously accounting for poten-
tial spatial autocorrelation and the spatial dependence of

unmeasured factors. All analyses were conducted using R (R Core
Team 2017); to implement OLS-SAR regression, we used the er-
rorsarlm function from the R package spdep (Bivand et al. 2013).
This function implements a spatial error model which accounts
for spatial autocorrelation that variables in the model cannot
explain (Kissling & Carl 2007).

To determine the OLS-SAR neighbor distance and weight-
ing, we compared correlograms for Moran’s I calculated using
residuals of the non-spatial linear model and the OLS-SAR
model. We tried neighbor distances between 100 and 2000 m
and found that a neighbor distance of 1000 m minimized spatial
autocorrelation of the OLS-SAR model residuals. We used a
weighting function where the weight of a neighbor declines with
distance at a rate that increases with distance. For each pixel, all
other pixels with centers within 1000 m are given a weight. The
closest pixels have the highest weight and the furthest have the
lowest. The weights decline from 20 to 1 as the distance to a
given pixel approaches 1000 m following an exponential decay
function. This function was based on the shape of Moran’s I cor-
relograms which showed spatial autocorrelation at a maximum at
the shortest distance and exponentially declining to zero at a dis-
tance of 1000 m. Before analysis, we scaled the variables to allow
for the simple comparison of model coefficients. We did not
include elevation, aspect, or other topographic variables in our
analysis because they provided little additional explanatory power.
Age was correlated with slope (Pearson correlation coefficient
[PCC] = 0.15) and distance to anthropogenic features
(PCC = 0.49). Slope and distance to anthropogenic features were
correlated with each other (PCC = 0.25). For both height and
ABD, we used random samples of 10,000 pixels for the OLS-
SAR analyses because using the entire dataset was computation-
ally prohibitive.

We used two approximations to examine rates of height and
biomass change for forests less than 33 yr old. In a first linear
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FIGURE 2. Aboveground biomass model. Points show the field-measured

aboveground biomass density and lidar measured 95th percentile canopy

height (P95) from thirty 0.25 ha field plots.

TABLE 1. Regression coefficients for mean canopy height at the 30- and 50-m-pixel

scale and for aboveground biomass density (ABD) at the 50-m-pixel scale.

Variable coefficients are scaled for comparison so that larger coefficients

indicate stronger effects. Lambda is the spatial autoregressive coefficient and

is larger with more spatial autocorrelation. P-values for all coefficients were

<2.2 9 10�16.

Explanatory variables

Height

(30 m scale)

Scaled

coefficients

Height

(50 m scale)

Scaled

coefficients

ABD

(50 m scale)

Scaled

coefficients

Age 0.64 0.621 0.505

Slope 0.242 0.235 0.234

Distance to roads and

open areas >100 m2

0.196 0.232 0.211

Model parameters

lambda 0.00024 0.000025 0.00025

Nagelkerke pseudo-R2 0.75 0.77 0.62
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constant growth approximation, we divided height and biomass
by age at each pixel. Alternatively, we estimated a variable rate
over time from the derivative of the biomass or height vs. ln(age)
function. While each method highlights change at a different
scale, together they give an approximation of the range of possi-
ble regeneration rates for forests at different ages.

RESULTS

AGE, HEIGHT, AND BIOMASS DISTRIBUTIONS.—In the thirty field
plots (0.25 ha each), mean canopy height measured by lidar ran-
ged from 4.9 to 26.4 m with an average of 17.3 m and a median
of 17.5 m. Estimated ABD in the field plots ranged from 26 to
578 Mg/ha with a mean of 235 Mg/ha (Fig. 2). One field plot
(ABD = 578 Mg/ha) had markedly higher biomass than other

plots because it included 10 trees above 50 cm dbh and one with
dbh = 140 cm.

We mapped forest age across 4529 ha in our study area
using a time series of Landsat images. We classified 395 ha (9%)
as not forested and 1055 ha (23%) as secondary forest younger
than 32 yr (in 2016). The remaining 3079 ha host secondary for-
ests older than 33 yr or intact forests that may have been selec-
tively logged in recent decades (Fig. 1B).

Lidar-derived mean forest canopy height at 30-m-pixel scale
ranged from 0.1 to 35.1 m with a median of 17.9 m. Younger
secondary forests (<33 yr old) had a mean canopy height of
11.0 m while forests 33 yr and older had a mean canopy height
of 21.2 m. The median of the height distribution within a 5-yr
age class increases as plots age (Fig. 3A) but there is considerable
overlap among the height distributions of different age classes.
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Aboveground biomass density was mapped at the 50-m-pixel
scale (the scale of our calibration plots) across 4529 ha based on
a model of biomass (equation 1) calibrated by 30 forest inventory
plots (Fig. 1A). ABD had a mean of 267 Mg/ha and ranged
from 7 to 574 Mg/ha. Biomass distributions for young forest
pixels (<30 yr) are mostly low, but have a long tail toward higher
ABD (Fig. 3B). Older plots show a more symmetrical distribu-
tion of height and biomass.

REGRESSION OF MEAN CANOPY HEIGHT AND ABOVEGROUND BIOMASS

DENSITY.—An OLS-SAR model of ABD including age, slope, and
distance to roads and open areas explains 75 and 77 percent of
mean canopy height variation at the 30- and 50-m-pixel scales,
respectively (Table 1; Fig. 4A–B). Similarly, it explains ~62 per-
cent of the variation in biomass at the 50-m-pixel scale (Table 1;
Fig. 4C–D). For both height and biomass, age had the strongest
effect followed by slope and distance to roads and open areas.
The scaled coefficients show that age had at least twice the effect
as slope for both height and biomass. Slope and distance to
roads and open areas had similar-sized effects. Repeating the
OLS-SAR analyses using a single explanatory variable shows that
age, slope, and distance to anthropogenic features explains 70,
55, and 51 percent of the variation in canopy height, and 59, 40,
and 47 percent of the variation in ABD.

RATES OF HEIGHT AND BIOMASS INCREASE.—The highest rates of
height increase or biomass accumulation are in the youngest age
groups (Fig. 5). These rates decline in the first 15 yr of succes-
sion and stabilize thereafter. Using a linear approximation, the
median height increase is 1.7 m/yr in forests under 10 yr old,

0.9 m/yr to 0.6 m/yr as forests age increases from 10 to 20 yr
old. 20- to 30-yr-old forests grow ~0.5 m/yr. A logarithmic
model produces a similar pattern but accentuates the differences
between age classes, resulting in estimates of 2.9, 0.29, 0.15, and
0.10 m/yr for 1-, 10-, 20-, and 30-yr-old forests, respectively.
Similarly, a linear approximation suggests that median biomass
increases 15 Mg/ha yr in secondary forest less than 10 yr old
and declines to 6 Mg/ha yr in secondary forest between 10 and
32 yr old. In the logarithmic model, the biomass accumulation
rate declines from ~41.7 Mg/ha yr at the start of regeneration to
a tenth of that, 4.2 Mg/ha yr at 10 yr, 2.1 Mg/ha yr at 20 yr,
and 1.4 Mg/ha yr at 30 yr.

DISCUSSION

Studies of secondary forests have shown wide variation in above-
ground biomass recovery at both regional and landscape scales
(Becknell & Powers 2014, Rozendaal & Chazdon 2015, Poorter
et al. 2016). This reported variation may reflect the true distribu-
tion of biomass in a secondary forest landscape, or it may result
from typical small plot chronosequences having too few plots to
capture the landscape mean trajectory. Distinguishing between
these two possibilities and elucidating the effects of the other
variables have only recently become possible with landscape-scale
assessments of height and biomass in forests of different ages
(Helmer et al. 2009, Mascaro et al. 2012). Like small plot
chronosequences, our lidar data reveal wide variation in forest
height and biomass recovery even in secondary forests of similar
age. This suggests that the ranges observed in ground-based
studies are not an artifact of limited sampling, at least in and

FIGURE 4. The relationship between mean canopy height and aboveground biomass density with slope (A, C) and distance to roads or open areas (B, D). Red

dots are sites with forest >33 yr of age and blue dots are sites 33 yr of age or younger. Height and biomass have positive relationships with both height and dis-

tance to roads and clearings. The positive slope relationships are much clearer in forests older than 33 yr compared to younger forest. The positive relationships

with distance to roads or open areas relationship appear to disappear as distance to roads gets beyond 400 m.
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around Serra do Conduru. Across the park landscape, we
observed forests ranging in mean height by ~20 m within an age
class (and similar scale variation in biomass; Fig. 3). This wide
variation poses a problem for plot-scale chronosequence studies.
If the level of variation found in our study is common across
secondary tropical forests, then larger ground-based chronose-
quence sample sizes may be needed to properly characterize the
regeneration of these forests. This also underscores the need for
studies that supplement plot work with remote sensing methods
that estimate biomass at a landscape scale.

Despite the complexity of the landscape, we were able to
explain a high percentage of the variation in both height and bio-
mass recovery with relatively few variables: age, slope, and dis-
tance to anthropogenic features. After age, slope had the
strongest effect on the distribution of biomass and mean canopy
height across Serra do Conduru. In fact, slope alone explains 55
percent of the variation in mean canopy height and 40 percent of
the variation in ABD. There was a clear positive relation between
slope and both canopy height and biomass; this was most evident
in forests 33 yr or older (Fig. 4).

In this landscape, lower biomass forests occur on low slopes,
e.g., in valleys, even in ‘old’ forests (>33 yr; Fig. 4A,C). Broad flat
uplands are not found in this study area. In the tropics, low
slopes and valleys are typically more fertile than uplands (Takyu
et al. 2002, Vitousek et al. 2003, Porder et al. 2005, Osborne et al.
2017) and are preferentially cleared where steep lands are not, or
alternatively steep lands are more readily abandoned. Thus, we
believe that past land use likely explains the lower biomass at low
slopes that we observe in this highly disturbed forest landscape.
There is evidence throughout the Atlantic forest that higher ele-
vations and steeper slopes have remained forested while lower,
flatter areas were more likely to be cleared (Silva et al. 2007,
Ribeiro et al. 2009). In our study area, there is extensive evidence
of past and some ongoing selective logging, including trails,
stumps, and wood scraps from field milling. The steepest slopes
are more challenging places from which to remove trees, leaving
more large trees standing and more aboveground biomass.

In addition to age and slope, the distributions of mean
canopy height and biomass density are also significantly related to
distance to anthropogenic features (roads and open areas larger

FIGURE 5. Height increase (A) and biomass accumulation (B) rates and in secondary forest <33 yr old. The black curve is the derivative of the statistical rela-

tionship between aboveground biomass and the natural logarithm of forest age. The gray dots and the boxplots represent the linear change in biomass until that

age, calculated by dividing biomass by stand age. The boxes represent first and third quartiles and the black center line in the box is the median for each age

group.
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than 100 m2). The strength of this effect was marginally smaller
than the slope effect, but these two variables are correlated
(PCC = 0.25). The distance effect likely results from a combina-
tion of past farming and selective tree harvest. Farms were
located in areas with access roads, potentially leading to associ-
ated soil degradation or erosion that could in turn have slowed
forest regeneration. Forest clearing and selective harvest also
likely took place where forests were accessible or adjacent to
farms. Sites far from any road or existing farm or pasture were
less likely to experience significant clearing or selective harvesting.
Together with the effect of age, the significance of slope and dis-
tance to human features demonstrates the strong dependency of
forest structure on human activities (both past and present) in
Serra do Conduru.

RATES OF HEIGHT CHANGE AND BIOMASS REGENERATION.—Our
analysis demonstrates that biomass accumulates rapidly in the
secondary Atlantic forest in Southern Bahia. Despite a long his-
tory of human use of forests in the region, regrowth is at least as
fast as the average secondary forest in a recently synthesized
Neotropical plot network (Poorter et al. 2016). We find the med-
ian biomass for forest between 15 and 25 yr was 120 Mg/ha
(the mean was 149 Mg/ha) and the mean rate of biomass accu-
mulation based on the linear approximation was 6 Mg/ha yr for
forests between 10 and 32 yr old. The mean accumulation rate
derived from the biomass-ln(age) function for forests age 1–20
was 7.5 Mg/ha yr. Other studies have reported lidar-based sec-
ondary forest biomass regeneration rates from repeat lidar mea-
surements at La Selva, Costa Rica and in Central Panama. At La
Selva, regeneration averages 3.6 Mg/ha yr (Dubayah et al. 2010)
while in Panama, the rate was only 1.8 Mg/ha yr (Meyer et al.
2013). However, the secondary forests in Panama included sub-
stantial areas older than 30 yr. A lidar chronosequence study in
Rondônia, Brazil reported an average biomass accumulation rate
of 8.4 Mg/ha yr for forest between 3 and 16 yr old (Helmer
et al. 2009). While methods and site history vary among these
studies, together they suggest that forest regeneration in Southern
Bahia is relatively rapid.

Based on a regional model, secondary Neotropical forests
with 2000 mm of year per year such as those in our study should
accumulate about 120 Mg/ha of biomass in the first 20 yr of
regeneration (Poorter et al. 2016). This suggests that Atlantic for-
ests in this area should reach 90 percent of mature levels of bio-
mass as fast as or faster than the average Neotropical forest
(66 yr; Poorter et al. 2016) and that regeneration has not been
significantly inhibited by the legacy of past land use or ongoing
disturbance compared to other sites.

Secondary forests in other areas of the Atlantic forest have been
studied for structural and floristic changes with age, but biomass
regeneration estimates are rare. Toward the northern limit of the
Atlantic forest range, in a moist tropical secondary forest (mean
annual precipitation 1687 mm/yr), regeneration rates appear rapid,
with 20-yr-old forest attaining 83 percent of mature forest levels of
basal area (do Nascimento et al. 2014). In southern tropical Atlantic
forest with mean annual precipitation over 2000 mm/yr, basal area

recovery is slower (biomass estimates are not available) and takes clo-
ser to 35 or 50 yr to attain mature levels of biomass (Marques et al.
2014, Martins et al. 2015). In southern seasonally dry tropical Atlan-
tic forest, regeneration is also slow and potentially arrested by shrub
species (Robinson et al. 2015). In subtropical Atlantic forest, at its
most southern extent, there appear to be moderate rates of regenera-
tion with 26- to 45-yr-old forest attaining roughly 65 percent of
mature forest basal area (Zanini et al. 2014). In contrast, our study
shows that north-central moist Atlantic forest reaches 70 percent of
older forest biomass and 80 percent of older forest height after
30 yr. The explanation for these regional differences is unknown but
is likely a combination of ecological and human factors.

REMAINING UNCERTAINTIES.—While our OLS model was able to
explain much of the variance in the height and biomass of forests
in this landscape, the correlation of driving variables (e.g., steep
slopes are further from roads and are more likely to host older
forests) makes truly disentangling causation difficult even with a
landscape-scale view. In addition, there are other potentially
important factors that we were unable to include in our analysis.
First among these is soil variation, as the coarse-scale soil maps
available for this region do not elucidate differences in our com-
parably small study area. Soil nutrient status and texture have
been found to explain both patterns in biomass regeneration
(Moran et al. 2000, Zarin et al. 2001, Becknell & Powers 2014)
and landscape-scale variation in aboveground biomass in mature
tropical forest (Laurance et al. 1999). Additionally, species rich-
ness and functional composition may play a role in biomass
regeneration and distribution in the Atlantic Forest, as they do in
other regions (Lebrija-Trejos et al. 2010, Becknell & Powers 2014,
Lasky et al. 2014). While we know that diversity is remarkably
high in the region of our study area (Thomas et al. 1998, Martini
et al. 2007), we do not have landscape-scale data on diversity or
species composition with which to test this here. Ideally, we
would also have better information on the intensity and type of
past land use that has been shown to affect biomass regeneration
(Uhl et al. 1988). Another possibility is that our study area does
not include a sufficient sample size of certain explanatory factors
(or combinations of factors). This could be remedied in future
studies with a larger study area or by replicating the study area at
multiple locations in the region.

It is also possible that some of the unexplained variation in
forest properties results from a misclassification of forest age,
which would lead us to over- or underestimate its importance in
determining height and biomass. Estimating forest age in sec-
ondary forest landscapes is a problem for both small plot and
remote sensing-based studies. Remnant trees or tiny patches of
forest in and around cleared land complicate age classification. In
addition, as the resolution of Landsat data is 30 m, there are
likely pixels within which multiple ages of forest co-occur. There
is also the potential for additional uncertainty because of the dif-
ferences between the 30-m-scale age map and the 50-m-scale bio-
mass map. However, when we analyzed canopy height at both 30
and 50 m scales, the results were unchanged, suggesting that the
mismatch between pixel sizes does not produce additional
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uncertainty. Regardless, mixed pixels and other factors may com-
bine to masking the true forest age and add error to our model.
Despite this potential additional error, age alone can explain 70
percent of the variation in height and 59 percent of the variation
in ABD.

CONCLUSIONS

Our analysis of ~45 km2 of Atlantic forest in Southern Bahia
suggests that secondary forest regenerates quickly after land clear-
ing and fragmentation. Furthermore, we find the extent of recov-
ery can be predicted from just a few explanatory variables (age,
slope, distance to human activity), an encouraging result given the
need to quantify carbon uptake if payments for carbon sequestra-
tion become widespread. While a small fraction of the variance in
forest canopy height and ABD remains unexplained, our results
highlight the promise of remote sensing to understand the dri-
vers, and extent of, variation in tropical secondary forest
regrowth across the Neotropics.
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