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Abstract. Fine-scale information about urban vegetation and social-ecological relationships
is crucial to inform both urban planning and ecological research, and high spatial resolution
imagery is a valuable tool for assessing urban areas. However, urban ecology and remote sensing
have largely focused on cities in temperate zones. Our goal was to characterize urban vegetation
cover with sub-meter (<1 m) resolution aerial imagery, and identify social-ecological relation-
ships of urban vegetation patterns in a tropical city, the San Juan Metropolitan Area, Puerto
Rico. Our specific objectives were to (1) map vegetation cover using sub-meter spatial resolution
(0.3-m) imagery, (2) quantify the amount of residential and non-residential vegetation, and (3)
investigate the relationship between patterns of urban vegetation vs. socioeconomic and envi-
ronmental factors. We found that 61% of the San Juan Metropolitan Area was green and that
our combination of high spatial resolution imagery and object-based classification was highly
successful for extracting vegetation cover in a moist tropical city (97% accuracy). In addition,
simple spatial pattern analysis allowed us to separate residential from non-residential vegetation
with 76% accuracy, and patterns of residential and non-residential vegetation varied greatly
across the city. Both socioeconomic (e.g., population density, building age, detached homes)
and environmental variables (e.g., topography) were important in explaining variations in vege-
tation cover in our spatial regression models. However, important socioeconomic drivers found
in cities in temperate zones, such as income and home value, were not important in San Juan.
Climatic and cultural differences between tropical and temperate cities may result in different
social-ecological relationships. Our study provides novel information for local land use
planners, highlights the value of high spatial resolution remote sensing data to advance ecologi-
cal research and urban planning in tropical cities, and emphasizes the need for more studies in
tropical cities.
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INTRODUCTION

Urban vegetation provides important ecosystem ser-
vices such as reduction of water runoff and regulation of
local temperature (Nowak and Dwyer 2007, Weber
2013). Urban vegetation is also very important for peo-
ple and local economies, affecting individual well-being,
public health, and property values (Escobedo et al.
2014, Holtan et al. 2015). However, most urban areas
are heterogeneous and complex social-ecological sys-
tems, making both urban planning and urban ecological
research challenging. This is why both monitoring of
urban vegetation and understanding the relationship
between urban vegetation and socioeconomic factors is

a major need for urban ecological research, city plan-
ning, and sustainable urban development (Pickett et al.
2001).
High spatial resolution remotely sensed data (i.e.,

<4 m resolution) has opened new opportunities for map-
ping urban vegetation and understanding social-ecologi-
cal relationships in cities (Jensen and Cowen 1999,
Grove et al. 2006, Landry and Pu 2010, Weng 2012).
This is because high spatial resolution imagery is ideal
for mapping small urban features, which is typical for
urban vegetation. However, previous assessments of
urban vegetation with remote sensing have been typically
conducted in cities in temperate zones, and mostly in the
United States (e.g., Lo and Faber 1997, Troy et al. 2007,
MacFaden et al. 2012, Grove et al. 2014, Locke et al.
2016). Tropical regions are expected to see high rates of
urban growth (UN 2014), yet little is known about
urban vegetation and social-ecological relationships in
these regions (Tapiador et al. 2011, Hetrick et al. 2013).
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Hence, there is an urgent need to advance urban ecology
and urban remote sensing in tropical cities.
High spatial resolution maps of vegetated vs. non-

vegetated surfaces provide important information for city
planning and assessments of urban ecosystem services.
Previous studies showed that separating vegetated vs.
non-vegetated surfaces with high spatial resolution ima-
gery is most successful when employing object-based
classification approaches rather than per-pixel classifica-
tions (Yu et al. 2006, Blaschke 2010, Wentz et al. 2014).
Object-based approaches, which first aggregate image
pixels into spectrally homogenous image objects and then
classify the individual objects, are better suited to handle
the high, intra-class, spectral variability inherent in high
spatial resolution data, resulting in higher classification
accuracies (Myint et al. 2011). Little is known, however,
about the ability of high spatial resolution data and
object-based classifications to map urban vegetation in
tropical cities. Vegetation in moist tropical cities can be
highly diverse in terms of spectral signatures and three-
dimensional structure (Lugo 2014, Mel�endez-Ackerman
et al. 2014), which combined with the already high spec-
tral variability of urban areas challenges remote sensing
applications. Moreover, tropical countries often lack the
basic geospatial information to support city planning that
is available in many cities in temperate regions. Hence,
high spatial resolution maps of urban vegetation cover
can be of great value to advancing the understanding and
management of tropical cities.
In addition to mapping vegetation cover, distinguishing

residential vegetation from non-residential vegetation is
important for urban planning and ecological research.
These two types of urban vegetation have different social
and ecological functions, and are managed for different
purposes (Grove et al. 2006). Residential vegetation
includes gardens, yards, and street vegetation, while non-
residential vegetation includes parks, riparian vegetation,
and other large greenspaces. High spatial resolution ima-
gery has been used to separate vegetation types such as
grass, shrubs, or tree cover (Walker and Briggs 2007,
Moskal et al. 2011, Myint et al. 2011, Li and Shao 2013)
as well as forest types (Zhang et al. 2010, Pu and Landry
2012, Tigges et al. 2013) in urban settings. However, the
suitability of high spatial resolution data to separate resi-
dential vs. non-residential vegetation is less well under-
stood. A major challenge to do so is that the distinction
between these two types of urban vegetation does not
necessarily depend on the type of vegetation itself, and
hence its spectral characteristics, but rather on its relative
location (e.g., inside or outside a residential property).
Previous studies in temperate zones have separated resi-
dential vs. non-residential vegetation using auxiliary spa-
tial information such as property parcel boundaries and
rights of way (e.g., Grove et al. 2014), which are the ideal
data for such a purpose but rarely available in tropical
countries. Distinguishing residential and non-residential
vegetation is important, though, to elucidate relationships
of vegetation cover with socioeconomic conditions. For

example, in Baltimore (USA), socioeconomic factors were
important predictors of residential vegetation but poor
predictors of riparian (i.e., non-residential) vegetation
(Grove et al. 2006). Simple approaches based on spatial
pattern analysis, which describes the geometry and con-
nectivity of image pixels, have been explored as a poten-
tial way to separate residential and non-residential
vegetation when auxiliary spatial information is missing
(Ramos-Gonz�alez 2014), but the accuracy of this appro-
ach has not been quantified.
In addition to monitoring different types of vegetation

cover, it is necessary to investigate the relationship
between patterns of urban vegetation and socioeco-
nomic factors (e.g., income, housing density, etc.), to
understand the interaction between people and green
infrastructure, and to inform sustainable development
plans. High-resolution urban vegetation maps can pro-
vide key information to assess those relationships. In
cities in temperate zones, where most studies have taken
place, there is typically a positive relationship between
urban vegetation cover and indicators of socioeconomic
status such as income or home value (Lo and Faber
1997, Jensen et al. 2004, Troy et al. 2007, Landry and
Chakraborty 2009, Grove et al. 2014). However, recent
studies in tropical countries did not find those associa-
tions (Hetrick et al. 2013, Mel�endez-Ackerman et al.
2014). Moreover, previous studies in tropical countries
that used high spatial resolution data focused mostly on
the extraction of socioeconomic information, such as
social classes or wealth (e.g., Tapiador et al. 2011, Stow
et al. 2013, Jean et al. 2016), but analyses of the rela-
tionship of residential and non-residential vegetation
with socioeconomic factors are particularly lacking
(Hetrick et al. 2013). At the same time, prior studies
evaluating the relationship between urban vegetation
cover and socioeconomic characteristic were based on
global models that did not capture local spatial varia-
tions in social-ecological relationships (e.g., Troy et al.
2007, Landry and Chakraborty 2009, Grove et al. 2014).
Last but not least, while both socioeconomic and envi-
ronmental conditions (e.g., topography) can affect urban
vegetation patterns (Davies et al. 2008, Lowry et al. 2012),
there are relatively few assessments of social-ecological
relationships that integrated both socioeconomic and envi-
ronmental variables. More studies are therefore needed to
understand patterns and feedbacks in social-ecological
relationships in different latitudinal regions (Cook et al.
2012), and especially in tropical cities.
Our goal was to evaluate the use of high spatial resolu-

tion imagery to characterize urban vegetation and
social-ecological relationships in a moist tropical city
using the San Juan Metropolitan Area in Puerto Rico as
a case study. Our specific objectives were to (1) map veg-
etation cover using sub-meter spatial resolution (0.3-m)
imagery, (2) quantify the amount of residential and non-
residential vegetation, and (3) investigate the relation-
ship between patterns of urban vegetation and local
socioeconomic and environmental characteristics.
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METHODS

Study area

We conducted our study in the San Juan Metropolitan
Area along the northern coast of Puerto Rico. The
metropolitan area includes six municipalities (San Juan,
Carolina, Trujillo Alto, Guaynabo, Bayam�on, and
Cata~no), covers 51,000 ha, and is inhabited by about
one million people, or one-fourth of Puerto Rico’s popu-
lation. Our study area is part of the San Juan-Carolina-
Caguas Metropolitan Statistical Area as defined by the
U.S. Census, and commonly known as the San Juan
Metropolitan Area. The climate is moist tropical with a
mean temperature of 23°–27°C and an annual precipita-
tion of 1,500–2,300 mm. The northern half of the study
area is coastal lowlands, relatively flat, and dominated
by impervious surfaces and high-density urban develop-
ment. The southern half is mountainous (up to 400 m
elevation), densely forested, and characterized by low-
density development (Martinuzzi et al. 2007). The study
area is well drained by a dense network of streams.
Residential vegetation in the San Juan Metropolitan

Area includes mostly yards, mowed lawns, and street
trees and grasses. Non-residential vegetation, on the
other hand, represents a mix of city parks, including
areas managed for natural vegetation, planted trees,
mowed lawns, and sports fields, as well as areas of
natural vegetation, including secondary forests (mostly
in the mountains), mangroves and wetlands along the
coast, and corridors of riparian vegetation throughout
the city.

Data

Imagery.—We analyzed 0.3-m resolution, digital, air-
borne, orthographic imagery acquired by the U.S. Army
Corps of Engineers (USACE) in 2010 with a Leica
ADS40 (Leica Geosystems Inc., Norcross, GA) digital
sensor with four channels including blue, green, red, and
near-infrared. The image was orthorectified by USACE
and provided in 8-bit format.

Socioeconomic and environmental variables.—To investi-
gate the relationship between patterns of urban vegeta-
tion and local socioeconomic and environmental
characteristics, we analyzed socioeconomic and environ-
mental data at the census block group level, which is a
summarization unit of the U.S. Census Bureau. There
are 789 census block groups in the San Juan Metropoli-
tan Area. We extracted socioeconomic variables from
the U.S. Census Bureau American Community Survey.
American Community Survey data are not available for
single years, but in 5-yr rolling averages. The 2008–2012
data and corresponded most closely to the 2010, the year
of the remotely sensed data. We extracted socioeconomic
variables that are related to urban vegetation in other
cities, such as housing density, income, and housing
characteristics, among others, based on previous studies
(e.g., Troy et al. 2007, Grove et al. 2014; Table 1). In
addition, we summarized environmental characteristics
including mean elevation, riparian area, and area of
wetlands and water, using auxiliary GIS layers (Table 1).
The final list included 17 independent variables, 14 of
them socioeconomic variables and three environmental.

TABLE 1. Socioeconomic and environmental variables used in this study.

Variable Description Mean SD

Population density† people per square kilometer 5,048.3 3,992.5
Housing density† no. housing units per square kilometer 2,368.5 2,190.4
Median household income† median household income of the block group in 2012 27,960.9 18,435.6
Home value† median value of owner-occupied housing units 167,927.5 110,451.0
Percent vacant housing† percent vacant properties 16.2 12.2
Building age† average age of buildings as of 2012 42.4 10.8
Building age squared† average age of buildings as of 2012, squared 1,916.7 904.9
Percent African American†,‡ percent of population that is Black or African American 24.4 15.3
Percent detached homes† percent of detached housing units 47.2 27.3
Percent family homes† percent family households 55.9 18.4
Percent 3 person households† percentage of households with three or more people 40.7 14.9
Percent owner occupied† percentage of owner-occupied housing units 52.2 22.8
Percent open space§ percent of land within protected areas 1.5 9.4
Percent married† percent of households that are married-couple families 34.5 17.1
Elevation¶ mean elevation 33.7 44.6
Riparian zone# area within 15 m of streams relative to census block area (%) 5.9 7.2
Water# percent cover of water 1.6 7.1

Note: The list includes 14 socioeconomic variables (top) and three environmental variables (bottom).
†From 2008 to 2012 American Community Survey, U.S. Census Bureau.
‡Includes Black or African American alone or in combination with one or more other races.
§From Protected Natural Areas of Puerto Rico (Gould et al. 2011)
¶From National Elevation Dataset (NED) U.S. Geological Survey, spatial resolution 30-m pixel.
#From Puerto Rico Municipal Revenue Collection Center (CRIM).
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Mapping urban vegetation

We mapped vegetated vs. non-vegetated surfaces via an
object-based classification algorithm implemented in eCog-
nition Developer 8.9 and Server 8.9 (Trimble Inc., West-
minster, CO). We classified the imagery by developing a
simple rule-based object-based classification framework
composed of three steps: image segmentation, NDVI
thresholding, and refining (the full rule set is included in
Appendix S1). First, we segmented the imagery into
objects using the multiresolution and spectral-difference
segmentations, which are standard segmentation appro-
aches. Then, we calculated the average Normalized Differ-
ence Vegetation Index (NDVI) for each object and applied
a threshold to separate vegetated from non-vegetated
objects. Vegetation results in positive NDVI values, making
NDVI data useful for separating vegetation vs. non-vegeta-
tion with high spatial resolution data and object-based
classifications (Zhang et al. 2010, Belgiu et al. 2014, Vol-
tersen et al. 2014). Finally, during the last step (refining),
we used information about the object’s brightness and size
to incorporate image objects that appeared falsely classified
as non-vegetation after the other rules and procedures. To
summarize our results, we report the amount of vegetation
cover in the San Juan Metropolitan Area both in terms of
total area (ha) and percent cover by census block groups.
In our initial analyses, we found that different NDVI

thresholds performed better in different regions, which is
why we developed three variants of our rule sets, one for
each region. In image tiles for the lowlands and domi-
nated by built-up surfaces, we used a high NDVI thresh-
old (>0.2) to separate vegetation, but in tiles in the
mountains that were heavily forested, we used a lower
NDVI threshold (>0.01). For intermediate landscapes,
we used a mid-value of NDVI (>0.1). We assigned the
image tiles to the different regions visually (see rule set
in the Appendix S1).
Last, we conducted an accuracy assessment based on

1,000 random pixels and visual interpretation of those
pixels in the original 0.3-m resolution imagery. We calcu-
lated overall accuracy, user and producer accuracies, and
the kappa statistic, which are standard accuracy statistics
for land-cover type classifications. The validations points
used in the accuracy assessment were independent obser-
vations and not used for building the rule set.

Separating residential from non-residential vegetation

We classified the vegetation layer into residential and
non-residential based on spatial pattern analysis, using
Morphological Spatial Pattern Analysis (MSPA) in
GuidosToolbox (Vogt 2016). MSPA has been successfully
used to characterize green infrastructure and connectivity
(Wickham et al. 2010, Saura et al. 2011). MSPAuses image
morphology to divide a particular class of interest, in our
case “vegetation,” into seven classes based on the geometry
and connectivity of each pixel, and a user-specified edge
width. The seven classes are Core, Islet, Perforation, Edge,

Loop, Bridge, and Branch (see Appendix S2). Increasing
the edge width will increase the non-core area at the
expense of the core area. In a previous study, Ramos-
Gonz�alez (2014) used MSPA to characterize green infras-
tructure from 4-m resolution Ikonos data in a portion of
our study area and found that the class “Islet” (defined as
disjoint objects that are too small or narrow to contain
Core) from an edge width of 4 Ikonos pixels (16 m) is a
good proxy for residential vegetation. However, the
approach has not been tested for its accuracy. We applied
the same rule using an edge width of 50 0.3-m pixels
(15 m), which was the closest option in MSPA to the 16 m
edge width used by Ramos-Gonz�alez (2014). Our class “res-
idential vegetation” therefore included theMSPA class Islet,
and “non-residential vegetation” included all other MSPA
classes combined.
For the separation of residential vs. non-residential veg-

etation, we conducted a pixel-based accuracy assessment
based on 500 random points (250 in each vegetation
class) and visual interpretation of the high spatial resolu-
tion imagery, and calculated overall accuracy, user and
producer accuracies, and kappa. The most common type
of building is houses and these are easy to identify by
visual interpretation, and we used our local knowledge to
assist in the separation of apartment buildings vs. com-
mercial buildings. Commercial buildings tend to be asso-
ciated with shopping malls and are concentrated in
certain neighborhoods (e.g., the banking district), while
apartment buildings tend to be concentrated in a few
neighborhoods near the coast. When in doubt, we
discarded the point and used a new random point. To
summarize our results, we compared the residential and
non-residential vegetation in the San Juan Metropolitan
Area both in terms of total area (ha) and percent cover by
census block group. We decided to useMSPA here, instead
of eCognition, because it provides land use planners and
urban ecologists with a simple, freely available software
that can be applied to any other available land cover map,
in contrast to eCognition, which requires considerable
expertise and is not free. In summary, we calculated three
urban vegetation variables for each census block group:
(1) percent vegetation cover, (2) percent residential vegeta-
tion cover, and (3) percent non-residential vegetation
cover. These percentages were calculated relative to the
census block group’s land area, i.e., excluding water.

Relationship between urban vegetation and
socioeconomic characteristics

Because we wanted to know if results from previous
urban vegetation studies can be extrapolated to other
locations, especially to urban areas in the moist tropics
in developing countries, we emulated the approaches
developed previously to relate urban vegetation and
socioeconomic characteristics in temperate regions (e.g.,
Troy et al. 2007, Grove et al. 2014). To maintain compa-
rability with prior theoretically supported and empiri-
cally tested work, we chose independent variables and
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methods that matched as closely as possible. Specifically,
we estimated nine ordinary least squares (OLS) regres-
sion models. Our three dependent variables were (1) per-
cent vegetation cover, (2) percent residential vegetation
cover, and (3) percent non-residential vegetation cover.
In the first set of OLS models, the independent variables
were the socioeconomic variables, in the second set the
environmental variables, and in the third set both socioe-
conomic and environmental variables. Next, we used a
bidirectional stepwise process for the nine OLS models
to drop redundant variables and identify the most parsi-
monious models, as in Grove et al. (2014). The variance
inflation factors were low (<7; O’Brien 2007), except in
models that retained both building age and the square of
building age through the stepwise process. The squared
value was included because trees can show peak canopy
level decades after planted, and then senesce. Despite
their multicollinearity, we retained these two variables as
in previous studies (Grove et al. 2014).
Because all of the variables exhibited significant spatial

autocorrelation (P < 0.00001; Appendix S3: Table S1),
we expected that the OLS models’ residuals may not be
independent. Indeed, the global Moran’s I test using a
queen contiguity matrix to define neighboring block
groups revealed moderate to medium and highly signifi-
cantly spatial autocorrelation (Moran’s I 0.20–0.40,
P < 0.00001). We therefore used the Lagrange Multiplier
test and the decision tree by Anselin (2005:198–200) to
determine the more appropriate spatial model specifica-
tion: either the spatial lag or spatial error. The suggested
form was then fit for each dependent variable and each
independent variable set, resulting in nine spatial regres-
sion models. We compared the nine final models based
on pseudo-R2 values and Akaike information criterion
(AIC) scores.
As a robustness check for spatial non-stationarity, we

fit geographically weighted regression (GWR) models for
each spatial model (as in Locke et al. 2016). GWR cre-
ates a family of local regression models, one for each Cen-
sus block group, using neighboring observations to
identify local variation. It is possible, for example, that
the relationship between vacant housing and residential
vegetation is positive in one part of the study area, and
negative elsewhere. The global spatial models cannot
identify those geographically-varying relationships with a
single lag (q) or error (k) parameter, and GWR provides
estimates at each location. For each independent variable
in each GWR model we calculated the percentage of
observations with statistically significant positive and sta-
tistically significant (a = 0.05) negative relationships
using pseudo t values (Charlton et al. 2006). The choice
of which block groups are considered neighbors was
informed using a cross-validation score that finds a search
distance for neighbors so that the root mean square pre-
diction error is minimized. By comparing the global (spa-
tial regression) coefficient estimates to the percentage of
locally significant (GWR-derived) estimates, we assessed
the presence and degree of spatial non-stationarity, and

examined how realistically our spatial models reflected
the relationships between independent variable sets and
dependent variables across the study region. The purpose
of this analysis was not to identify causal relationships,
but rather to explore social-ecological relationships and
contrast them to previous studies. Statistical analysis was
conducted within R software (R Core Team 2017) using
the packages hmisc (Harrell 2017), car (Fox and Weisberg
2011), maptools (Bivand and Lewin-Koh 2017), spdep
(Bivand et al. 2013, Bivand and Piras 2015), and spgwr
(Bivand and Yu 2017).

RESULTS

Vegetation cover

The accuracy assessment of the object-based classifica-
tion of vegetated vs. non-vegetated surfaces for the San
Juan Metropolitan Area revealed a high overall accuracy
(97%) and Kappa value (94%; Appendix S3: Table S2).
Vegetated surfaces covered 31,000 ha, or 61% of the
metropolitan area. The median vegetation cover in the
Census block groups was 32% (Table 2), and practically
all census block groups (99%) had at least 10% vegetation
cover. As expected, there was a strong north-south gradi-
ent in the amount of vegetation (Fig. 1) with less vegeta-
tion in the northern half of the study area, which is in the
lowlands and dominated by impervious surfaces, and
more vegetation cover in the southern half, which is more
mountainous and less densely developed (Fig. 1).

Residential vs. non-residential vegetation

The accuracy assessment of the MSPA-based classifi-
cation of residential vs. non-residential vegetation
resulted in an overall accuracy of 76% and Kappa value
of 52% (Appendix S3: Table S3), which is considered a
moderate agreement for Kappa (Cohen 1960). In terms
of total area, we found that 89% of the vegetation in the
San Juan Metropolitan Area was non-residential and
only 11% was residential (Table 2). However, at the
Census block group level those differences were much
smaller, and Census block groups had a median of 14%
cover of residential vegetation and 15% cover of non-
residential (Table 2). This discrepancy was due to the
large census block groups in the mountains dominated
by non-residential vegetation.

TABLE 2. Vegetation area and cover in the San Juan
metropolitan area.

Area (ha)
Part of total
vegetation (%)

Median cover
by census

block group (%)

All vegetation 30,701 100.0 31.9
Residential
vegetation

3,377 11.0 14.1

Non-residential
vegetation

27,325 89.0 15.1
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We found that residential and non-residential vegeta-
tion were unevenly distributed among regions (Fig. 2).
Residential vegetation was concentrated in the more

developed coastal lowlands, reaching there a maxi-
mum of 32% cover per census block group (Fig. 2a),
while non-residential vegetation occurred practically

FIG. 1. Distribution of urban vegetation in the San Juan Metropolitan Area based on sub-meter resolution imagery. Panel a dis-
plays the 0.3-m resolution vegetation/non-vegetation layer. Panel b summarizes the vegetation cover by census block group (percent
vegetation cover). The census block group limits are shown in black (b). Major hydrological features are shown as a reference (small
streams are not shown).
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everywhere, but with the highest values in the mountains
(up to 97% cover; Fig. 2b). As a result, the lowlands
typically had both residential and non-residential

vegetation, while the interior mountains in the south
were strongly dominated by non-residential vegetation
(Fig. 2).

FIG. 2. Distribution of residential and non-residential vegetation. Panel a displays the percent residential vegetation cover by
census block group; panel b displays the percent non-residential vegetation cover by census block group; and panel c shows the
layer of residential vegetation (yellow) and non-residential vegetation (green) at two different spatial scales.
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Relationship between urban vegetation and
socioeconomic characteristics

We found that models containing both socioeconomic
and environmental variables had a better fit than models
including either only socioeconomic or only environmen-
tal variables, even when accounting for model complexity
(Table 3). This was true for all of our three dependent
variables, including percent vegetation cover, percent resi-
dential vegetation cover, and percent non-residential veg-
etation cover (Table 3). At the same time, our spatial
regression models explained a substantial amount of vari-
ation in vegetation, although the amount of variation in
residential vegetation explained by the models (46–59%)
was typically lower than that for total vegetation or non-
residential vegetation (66–76%; Table 3).
When comparing socioeconomic and environmental

variables, we found that socioeconomic variables alone
explained about as much variance in non-residential
vegetation as environmental variables alone (67% vs. 66%
variance explained; Table 3). However, for residential

vegetation, models based on socioeconomic variables alone
explained substantially more variance than models based
on environmental variables alone (54% vs. 46% variance
explained; Table 3). Ultimately though, models containing
both sets of independent variables were always best.
In addition, we found that both residential and non-

residential vegetation were associated with many of
the same individual variables, but in different ways
(Table 4). In the majority of the observations (i.e., 67–
99% of the GWR models), residential vegetation was
positively and statistically significantly associated with
population density, building age, and detached housing,
and negatively associated with elevation, riparian areas,
and public open spaces. On the other hand, non-residen-
tial vegetation was positively and statistically signifi-
cantly associated with elevation, riparian areas, amount
of water, and open public space, but negatively
associated with population density and building age
(Table 4). However, variables such as income and home
value, which are important in temperate zones, were
statistically significantly associated with residential and

TABLE 3. Nagelkerke pseudo-R2 with Akaike information criterion values in parentheses for spatial regressions with different
combinations of independent variables.

Independent variables

Dependent variables

Total vegetation Residential vegetation Non-residential vegetation

Socioeconomic 0.655 (6,172.6) 0.537 (4,615.7) 0.671 (6,491.0)
Environmental 0.660 (6,151.5) 0.460 (4,718.9) 0.661 (6,501.1)
All variables 0.749 (5,925.3) 0.586 (4,537.4) 0.760 (6,248.0)

TABLE 4. Spatial regression model coefficients’, their direction, and significance.

Variable

Residential vegetation Non-residential vegetation

Coef. P % neg % pos Coef. P % neg % pos

Rho 4.20 9 10�1 **
Intercept 7.51 ** 0.0 93.8 2.21 9 101 ** 0.0 99.4
Population density 8.84 9 10�4 ** 0.0 87.6 �2.28 9 10�3 ** 82.4 3.0
Housing density �7.81 9 10�4 ** 49.6 3.5 7.79 9 10�4 ns 10.9 15.8
Median household income 4.80 9 10�5 ** 0.0 17.5
Home value 1.12 9 10�6 ns 0.0 19.8 �7.13 9 10�6 ns 10.9 0.0
Percent vacant housing �3.92 9 10�2 ns 2.8 0.0
Building age 1.77 9 10�1 ** 0.5 67.4 �1.90 9 10�1 ** 86.8 0.0
Building age squared �1.97 9 10�3 ** 49.0 2.0
Percent African American �3.85 9 10�2 ** 58.2 1.4
Percent detached homes 4.67 9 10�2 ** 0.0 84.4 �1.16 9 10�1 ** 49.8 0.0
Percent family homes �7.63 9 10�2 ** 39.2 0.0 2.39 9 10�1 ** 0.0 62.0
Percent three-person households �2.19 9 10�2 ns 13.1 0.0 4.49 9 10�2 ns 0.0 2.9
Percent owner occupied �3.30 9 10�2 * 34.9 0.0
Percent open space �7.12 9 10�2 ** 83.7 0.0 4.66 9 10�1 ** 0.0 98.0
Percent married 2.99 9 10�2 ns 0.0 15.5 �1.19 9 10�1 ** 44.2 0.0
Elevation �2.34 9 10�2 ** 78.5 0.0 2.39 9 10�1 ** 0.0 97.2
Riparian zone �1.73 9 10�1 ** 99.4 0.0 8.55 9 10�1 ** 0.0 99.0
Water �3.63 9 10�2 ns 44.6 0.0 3.56 9 10�1 ** 0.3 71.5
Lambda 5.66 9 10�1 **

Notes: The percentage of locally significant at the 95% confidence interval (GWR-derived) estimates for positive and negative
relationships (“% pos” and “% neg”) is also shown. Coef., coefficient; ns, not statistically significant; *P < 0.05; **P < 0.01.
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non-residential vegetation in only a small proportion of
local GWR models (18%, Table 4).
Finally, the use of GWR showed that the global study

area-wide relationships generally maintained spatial station-
arity, or in other words, that the local models mostly cor-
roborate the global findings. The highly significant spatial
lag and spatial error terms (q and k, respectively; Table 4)
had relatively high absolute values compared to other vari-
ables, which highlights the advantages of spatial models
over OLS, and may suggest some omitted variable bias.

DISCUSSION

Knowledge of urban ecology and urban remote sensing
comes largely from cities in temperate zones. Our study in
San Juan expand previous knowledge and (1) shows that
temperate zone relationships between patterns of urban
vegetation and socioeconomic factors do not necessarily
hold in tropical moist cities, (2) demonstrates the value of
simple spatial tools to separate key types of urban vegeta-
tion (residential non-residential), and (3) validates the
effectiveness of high-resolution satellite data and object-
based approaches to quantify urban green areas in loca-
tions with complex tropical vegetation. Overall, our study
provides novel data products for local planners, and high-
lights the value of high spatial resolution remote sensing
data to advance ecological research and urban planning
in less studied tropical cities.
We found that the combination of high spatial resolu-

tion imagery and object-based classification was highly
successful for mapping vegetation cover in a tropical
urban area. Simple classification rules strongly based on
NDVI, applied to our 0.3-m multispectral airborne data,
allowed us to separate vegetated and non-vegetated sur-
faces with a very high accuracy, 97%. Although it is not
surprising to see that the NDVI was a great index for sep-
arating vegetation from non-vegetation, it was encourag-
ing to see it work well in a place with an immense variety
of plant species and plant three-dimensional structure
such as San Juan, which supports more than 350 types of
trees, shrubs, palms, and ferns in people’s yards alone
(Vila-Ruiz et al. 2014). Our map revealed that a large
proportion of the San Juan Metropolitan Area was green
(61%), and that even the most urbanized neighborhoods
(census block groups) had at least 10% vegetation cover.
Overall, the high accuracy (97%) obtained here reinforces
the value of high spatial resolution data and object-based
classification for quantifying urban vegetation, expanding
previous findings from temperate zones to tropical areas
(Yu et al. 2006, Myint et al. 2011, O’Neil-Dunne et al.
2014, Weng 2014).
Residential and non-residential vegetation have differ-

ent social and ecological functions, and we were able to
separate these two vegetation types using spatial patterns
analysis with an accuracy of 76%. Such accuracy is not as
high as in our vegetation cover layer (97%), but it is com-
parable to other commonly used land cover maps (e.g.,
Wickham et al. 2013). This finding is promising because

information on property parcel boundaries and rights-of-
way, used in previous mapping efforts in developed
countries to separate residential vs. non-residential vege-
tation, is typically absent in developing tropical countries
(e.g., Troy et al. 2007, Grove et al. 2014). Simple tools
such as MSPA, which are freely available, provide valu-
able means to enhance the understanding of types and
patterns of urban vegetation. Object-based classifications
may also be helpful (Stow et al. 2013), but MSPA has the
advantage that is much simpler and easier to use, once a
vegetation cover layer is available. In the San Juan
Metropolitan Area, we found that residential and non-
residential vegetation have very different spatial patterns,
which are overlooked when assessing only total vegeta-
tion cover (Ramos-Gonz�alez 2014). Especially the sub-
stantial presence of non-residential vegetation, with a
median cover of 15% at the census block group level, is
interesting. We suggest that this is due to many riparian
areas that provide non-residential vegetation cover within
the city, and also the abundance of transportation corri-
dors, non-compact land development, and sprawl in
Puerto Rico (Martinuzzi et al. 2007).
In terms of social-ecological relationships, we found

that residential vegetation in the San Juan Metropolitan
Area was positively associated with population density,
building age, and detached housing. These findings are
not surprising, and can be explained by the fact that resi-
dential vegetation co-occurs where there are people, and
detached houses in Puerto Rico commonly have vege-
tated yards (Mel�endez-Ackerman et al. 2014, Vila-Ruiz
et al. 2014). In addition, a positive relationship between
building age and residential vegetation cover may be
expected by the fact that it takes time for vegetation
planted in a new development to grow and peak, which
has also been observed in New York (Grove et al. 2006).
However, such vegetation regrowth might be limited to
high-income neighborhoods, because low-income neigh-
borhoods in San Juan have been shown to substantially
lose green cover as they age (Ramos-Santiago et al.
2014). On the other hand, non-residential vegetation
was negatively associated with population density and
building age, but positively associated with elevation and
riparian areas. The reason for this is that the largest frag-
ments of natural vegetation occur in the more mountain-
ous, less populated parts of our study area, and along
riparian zones. Overall, the combination of both envi-
ronmental and socioeconomic variables explains urban
vegetation patterns well, which makes sense in moun-
tainous settings such as Puerto Rico.
We also found stark differences in terms of which vari-

ables explained vegetation cover best, when comparing
our results with findings from previous studies in temper-
ate zones. Income, an important variable explaining urban
vegetation in the temperate north (Lo and Faber 1997,
Mennis 2006, Troy et al. 2007, Landry and Chakraborty
2009), was not important in our non-residential vegetation
model, and only statistically significant in 18% of the
local models for residential vegetation. A previous study
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comparing six locations in San Juan also found no rela-
tionship between yard area and household’s income
(Mel�endez-Ackerman et al. 2014), and our study using
spatially explicit data corroborates that finding for a much
larger area. A similar relationship was observed in a tropi-
cal moist city of Brazil (Hetrick et al. 2013). Similarly,
home value, another important variable in previous
studies in temperate zones (Troy et al. 2007, Grove et al.
2014), was not significantly related to residential
vegetation either. Further, in places like Baltimore (USA),
socioeconomic variables are important predictors of resi-
dential vegetation and poor predictors of non-residential,
riparian vegetation (Grove et al. 2006). However, in our
study area, socioeconomic variables explained more varia-
tion of non-residential vegetation than residential vegeta-
tion cover. The differences found here may be explained
by a combination of climatic and cultural factors, includ-
ing warm temperatures and abundant precipitation that,
contrary to temperate zones, allows vegetation to thrive
all year round (i.e., without a cold or dry season), the com-
mon practice of growing vegetables in backyards in San
Juan (up to 60% of the people in some neighborhoods;
Garcia-Montiel et al. 2014), and a strong legacy of Span-
ish city planning (Mu~noz-Erickson et al. 2014). In gen-
eral, our findings highlight the need to be cautious when
extrapolating results across climates and cultural settings.
In addition, our study provides new insights into social-

ecological relationships in urban areas. In particular, our
results showed that the strength of the relationships
between socioeconomic factors and urban vegetation
cover varied somewhat across the study area, as high-
lighted by the GWR results. This is important because
previous studies used only global models (e.g., Troy et al.
2007, Landry and Chakraborty 2009, Grove et al. 2014)
and did not test for local spatial variation of the global
relationships between socioeconomic variables and vegeta-
tion cover. For example, the fact that income was posi-
tively associated with residential vegetation in a small
subset of the local models (18%), might suggest that there
are similarities in the causes of temperate and tropical veg-
etation cover in these areas that may warrant further
study. Such deviations from study-area-wide patterns may
be important for developing social-ecological theory that
global-only analyses preclude. Overall, we show here that
vegetation cover is related to both social and environmen-
tal factors that need to be jointly considered across space.
While generally successful, our study was also subject

to some limitations. During the mapping of vegetation
cover, some flat rooftops were spectrally similar to
grasses and wetlands, creating confusion with true vege-
tated surfaces. We suggest this was caused by the pres-
ence of algae and moss growing as a result of the
accumulation of sediments, combined with a humid and
warm climate, and potentially a lack of building mainte-
nance. This is important because flat roofs are a com-
mon feature in hurricane-prone countries, and work in
other tropical cities may encounter the same problem. In
our case, having different rule sets for different regions

circumvented this problem to some extent, but some
spots with grasses that were shaded remained misclassi-
fied as non-vegetation. For the residential vs. non-
residential vegetation classification, overall classification
accuracy was lower (76%). In particular, small patches
of planted vegetation in and around shopping malls,
near other commercial and industrial land uses, and
along avenues, were sometimes misclassified as residen-
tial because their spatial patterns were similar to vegeta-
tion in front yards. Similarly, vegetation in backyards
directly connected with large areas of natural vegetation
was sometimes classified all as non-residential due to the
continuous vegetation cover. Additional uncertainties
may exist due to the inability to visually separate apart-
ment buildings from commercial buildings in some cases,
or houses from small stores. However, small stores in the
city do not commonly have vegetated yards, since avail-
able space is used for storage or parking.
Further evaluation of the errors in the residential/non-

residential vegetation map revealed considerable underes-
timation of the residential vegetation in the southern parts
of the study area. Error-adjusted area estimates following
Olofsson et al. (2013; Appendix S4) suggests that there
may be as much as 9,125 � 1,490 ha of residential vegeta-
tion, vs. the 3,377 ha that were directly mapped. These
underestimations were concentrated in the southern,
mountainous and less populated part of the study area,
where census blocks are large in size (see map in
Appendix S4). Indeed, the largest 5% of census block
groups alone contained 50% of all the underestimation
errors. Because of this, the underestimation of residential
vegetation should have only minor effects for our analysis
of social-ecological relationships, which used census
blocks as the unit of analysis, nor should it affect the gen-
eral distribution of residential and non-residential vegeta-
tion in the SJMA. However, evaluating the error-adjusted
area estimates revealed that our separation of residential
from non-residential vegetation using MSPA worked bet-
ter in the more populated lowlands, and that future efforts
should try to improve the separation of residential vegeta-
tion in densely forested areas with lower housing densities.
Our approach for characterizing urban vegetation

should be useful in other moist tropical cities, especially
in Latin America and the Caribbean. We recognize, how-
ever, that the high costs of airborne imagery like the one
used here can be a major limitation for other regions.
High spatial resolution satellite imagery from WorldView-
2 or QuickBird may provide alternative data with <2 m
resolution, and similar or even more spectral bands than
our airborne imagery. In future assessments of urban veg-
etation cover, users might find useful to test our rule sets
to their study area, and then adapt them depending on
the image type, objectives, local ecological conditions,
and availability of auxiliary layers, and this is why we
developed relatively simple rule sets (e.g., based on NDVI,
object size, brightness) and provide them in Appendix S1.
For land use planning in San Juan, our data products can
serve to (1) identify patches of vegetation that can be
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converted to vegetable gardens, which is important for
low income neighborhoods (Santiago et al. 2014), (2)
improve precipitation runoff and flood models that
require high-resolution vegetation cover data, and (3)
evaluate the status of riparian vegetation, which is impor-
tant for maintaining water quality in the city.
In summary, urban vegetation provides important

ecosystem services and represents a vital component of
cities, and we showed here that high spatial resolution
imagery can be used to derive valuable information to
advance urban planning and urban ecological research
in tropical cities. We urge for ecological applications of
high spatial resolution remote sensing to expand our
understanding of urban vegetation, ecosystem services,
and social-ecological relationships in tropical cities,
because the lack of such information can lead to poor
planning of these rapidly changing places.
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