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A B S T R A C T

Clouds and cloud shadows block land surface information in optical satellite images. Accurate detection of
clouds and cloud shadows can help exclude these contaminated pixels in further applications. Existing cloud
screening methods are challenged by cloudy regions where most of satellite images are contaminated by clouds.
To solve this problem for landscapes where the typical frequency of cloud-free observations of a pixel is too small
to use existing methods to mask clouds and shadows, this study presents a new Automatic Time-Series Analysis
(ATSA) method to screen clouds and cloud shadows in multi-temporal optical images. ATSA has five main steps:
(1) calculate cloud and shadow indices to highlight cloud and cloud shadow information; (2) obtain initial cloud
mask by unsupervised classifiers; (3) refine initial cloud mask by analyzing time series of a cloud index; (4)
predict the potential shadow mask using geometric relationships; and (5) refine the potential shadow mask by
analyzing time series of a shadow index. Compared with existing methods, ATSA needs fewer predefined
parameters, does not require a thermal infrared band, and is more suitable for areas with persistent clouds. The
performance of ATSA was tested with Landsat-8 OLI images, Landsat-4 MSS images, and Sentinel-2 images in
three sites. The results were compared with a popular method, Function of Mask (Fmask), which has been
adopted by USGS to produce Landsat cloud masks. These tests show that ATSA and Fmask can get comparable
cloud and shadow masks in some of the tested images. However, ATSA can consistently obtain high accuracy in
all images, while Fmask has large omission or commission errors in some images. The quantitative accuracy was
assessed using manual cloud masks of 15 images. The average cloud producer's accuracy of these 15 images is as
high as 0.959 and the average shadow producer's accuracy reaches 0.901. Given that it can be applied to old
satellite sensors and it is capable for cloudy regions, ATSA is a valuable supplement to the existing cloud
screening methods.

1. Introduction

Optical satellite images with bands ranging from visible to short-
wave infrared are widely used for mapping land cover and land use,
monitoring ecosystems, and estimating land surface parameters
(Hansen and Loveland, 2012; Zhu and Liu, 2015, 2014). Unfortunately,
optical satellite images are easily contaminated by clouds and cloud
shadows. This contamination obscures land surface features and alters
the reflectance of ground objects, reducing the availability of optical
images for applications (Fisher, 2013; Zhu and Woodcock, 2014).
Masking clouds and cloud shadows is often the first and a necessary
step of image preprocessing in most optical remote sensing applica-
tions. Although manual digitization can obtain accurate cloud and
shadow masks, it requires a lot of time and effort. Therefore, an auto-
matic method for screening clouds and shadows is needed, especially

when processing large numbers of images.
Automatic detection of clouds and cloud shadows is challenging

(Zhu and Woodcock, 2014). First, different types of clouds have dif-
ferent spectral signatures and are easily confused with some cloud-free
bright objects on the land surface, especially in images with limited
spectral bands, such as Landsat Multispectral Scanner (MSS) images.
The spectral signals of clouds are usually determined by cloud height,
optical thickness, particle size, etc. (Platnick et al., 2003). As a result,
cloud brightness ranges widely in visible and near infrared bands, and
some clouds are easily confused with bright land surfaces, such as
concrete surfaces, sand or snow. Second, blurry cloud edges and thin
clouds partially obscure land surfaces, making their signal a mixture of
cloud and land surface elements and making them difficult to separate
from clear observations (Cahalan et al., 2001). Another challenge
comes from cloud shadows. They are easily confused with dark land
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surfaces, such as moist soil, water bodies and topographic shadow
(Fisher, 2013).

Despite the above challenges, several methods have been developed
to automatically screen clouds and cloud shadows in optical images.
These methods use one or more of the following rules based on cloud
and cloud shadow properties: 1) clouds are generally brighter than
ground objects, so they have high reflectance in visible, near and
shortwave infrared bands; 2) clouds are generally colder than most
ground objects, so they have lower brightness in thermal infrared
bands; 3) shadows are generally darker than surrounding land surfaces,
so they have lower reflectance in visible, near and shortwave infrared
bands; 4) shadows are paired with clouds, so cloud location and solar
angles can help locate cloud shadows; and 5) in a sequence of images,
pixels affected by clouds and shadows have larger temporal variations
than clear observations in the time series. In general, existing methods
for masking clouds and cloud shadows can be divided into two cate-
gories: single-image methods (Choi and Bindschadler, 2004; Fisher,
2013; Helmer et al., 2012; Huang et al., 2010; Hughes and Hayes, 2014;
Irish et al., 2006; Li et al., 2015, 2017; Luo et al., 2008; Martinuzzi
et al., 2007; Roy et al., 2010; Scaramuzza et al., 2012; Wilson and
Oreopoulos, 2013; Zhu and Woodcock, 2012) and multi-temporal or bi-
temporal methods (Goodwin et al., 2013; Hagolle et al., 2010; Jin et al.,
2013; Wang et al., 1999; Zhu and Woodcock, 2014).

Most existing single-image methods use either predefined thresholds
or adaptive thresholds to screen clouds in individual images. For ex-
ample, Luo et al. (2008) identify clouds in MODIS images if pixel re-
flectance satisfies these predefined thresholds: (B1 > 0.18 or
B3 > 0.20) and B6 > 0.16 and Maximum (B1, B3) > B6×0.67,
where B1, B3, and B6 are reflectance of MODIS bands 1 (blue), 3 (red),
and 6 (shortwave infrared), respectively. This MODIS cloud screening
method was further adopted for Landsat-8 images (Wilson and
Oreopoulos, 2013). Huang et al. (2010) use adaptive thresholds defined
in the reflectance-temperature space to mask clouds in Landsat TM and
ETM+ images. These adaptive thresholds are defined by the mean and
standard deviation of pixel values of individual bands in the whole
image. The Automatic cloud cover assessment (ACCA) algorithm con-
sists of twenty-six filters and rules applied to Landsat bands to detect
clouds (Irish et al., 2006). ACCA was used to produce web-enable
Landsat data (WELD), a consistent, long-term, and large-area data re-
cord (Roy et al., 2010). The multi-feature combined (MFC) method uses
thresholds in spectral, geometric and texture features to detect clouds in
GaoFen-1 imagery (Li et al., 2017). Zhu and Woodcock (2012) proposed
a method called function of mask (Fmask) for detecting clouds in
Landsat TM and ETM+ images. Fmask uses all Landsat image bands
and several band indices, such as the normalized difference vegetation
index (NDVI) and the normalized difference snow index (NDSI). It
employs> 20 predefined and adaptive thresholds to mask clouds. Be-
sides the above methods using predefined or adaptive thresholds, ma-
chine-learning algorithms have been employed to model the complex
relationships between image features and clouds using a training da-
taset. Then, the trained model is used to screen clouds in other images.
These machine learning algorithms include decision trees (Scaramuzza
et al., 2012), neural networks (Hughes and Hayes, 2014) and support
vector machines (Li et al., 2015). Of several tested cloud and shadow
masking algorithms that use only a single image, Fmask is globally the
most accurate one that requires a thermal band (Foga et al., 2017). Of
methods not requiring a thermal band, a version of ACCA (Irish et al.,
2006) that uses a simulated thermal band is better overall, but it is not
as accurate as Fmask with the thermal band (Foga et al., 2017). Re-
cently, Fmask was further improved for mountainous areas through
integrating Digital Elevation Models (DEMs) into the detecting process
(Qiu et al., 2017).

In these single-image methods, shadow detection is often sub-
sequent to cloud detection. In general, the possible shadow locations
can be calculated from the geometric relationship between sun, sensor,
and clouds. The calculation requires cloud heights, which can be

estimated with brightness temperature derived from thermal infrared
bands, because temperature declines with elevation (Qiu et al., 2017;
Zhu and Woodcock, 2012). Some methods also use the fact that cloud
shadows are dark to confirm whether the possible shadow location
estimated from geometry is real cloud shadow, including Fmask (Zhu
and Woodcock, 2012) and MFC (Li et al., 2017). In Fmask, predefined
thresholds in the near infrared (NIR) band are used to produce a po-
tential shadow mask, which is further compared to the possible shadow
locations. If there is a high similarity between potential shadow masks
and possible shadow locations, the shadow pixels are finally confirmed
(Zhu and Woodcock, 2012).

For multi-temporal methods, temporal information in the images
acquired at different times is used to detect clouds and shadows. Wang
et al. (1999) used the brightness difference between a target image and
a reference cloud-free image to detect clouds. Lyapustin et al. (2008)
developed an algorithm, abbreviated as MAIAC CM, to detect clouds in
time series of MODIS images. The general idea of MAIAC CM is to use
the low covariance between reference cloud-free image blocks and
cloudy image blocks as a criterion to identify clouds in the time series.
Hagolle et al. (2010) computes differences in the blue band between a
target image and a cloud-free reference image. It then flags cloud pixels
if variations are larger than a threshold. Goodwin et al. (2013) uses
filters to smooth the time series and then identify clouds and shadows
based on reflectance differences between each point in the time series
and the smoothed time series. Zhu and Woodcock (2014) propose a new
algorithm called multiTemporal mask (Tmask) to improve Fmask.
Tmask fits a time series model of each pixel using remaining clear pixels
based on an initial cloud mask from Fmask. Then, it compares model
estimates with observations in the time series to detect cloud and
shadow pixels which are omitted in the initial screening by Fmask. In
general, these multi-temporal methods are better at detecting clouds
and cloud shadows than single-image methods. The temporal in-
formation is a valuable complement to the spectral information for
differentiating cloud, cloud shadow and clear observations over land
surfaces (Goodwin et al., 2013; Zhu and Woodcock, 2014).

However, these multi-temporal methods still face challenges in
areas with persistent cloud cover, such as tropical and subtropical re-
gions (Ju and Roy, 2008). First, in these areas cloud-free observations
may be the exception rather than the rule, making it difficult to know
whether the fit of a time series represents clear or cloudy conditions,
which limits the application of existing time-series methods (Foga et al.,
2017). Example limitations include the requirement by the MAIAC CM
method of a cloud free image as a reference image (Lyapustin et al.,
2008), and the recommendation for Tmask of 15 cloud-free observa-
tions for estimating the time series model (Zhu and Woodcock, 2014).
Second, most existing methods were designed for images of a specific
sensor, so they lack flexibility. For example, Fmask and Tmask were
designed for Landsat TM, ETM+, and OLI images, so they cannot be
directly applied to the old Landsat MSS data with limited bands. Third,
most of the current methods use predefined fixed thresholds to detect
clouds and shadows in an entire scene. For instance, in Tmask, a pixel
with observed green band reflectance of 0.04 higher than the time
series model estimation will be identified as cloud. Considering the
complex situation of clouds and shadows and the diversity of objects on
land surfaces and in coastal areas, these fixed thresholds may not al-
ways obtain satisfactory results.

To overcome the above limitations of existing methods in cloudy
regions, the objective of this study is to develop a new automatic
method for accurately screening clouds and cloud shadows in multi-
temporal optical images in places with persistent clouds. Our scope of
inference is landscapes where are so cloudy that the typical frequency
of cloud-free observations of a pixel is too small to use existing methods
to mask clouds and shadows with image time series. The new method
should have the following strengths: 1) it needs fewer predefined
parameters; 2) it is suitable for areas with persistent clouds; and 3) it
needs a minimal number of bands. Automatic Time-Series Analyses
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(ATSA) method was developed in this study and tested in three pilot
sites using Landsat OLI and MSS images, and Sentinel-2 images. Its
performance was compared with Fmask, a widely recognized method.

2. Test sites and data

2.1. A cloudy urban site

Urban landscapes bring more challenges to automatic screening of
clouds and shadows than other landscapes. The bright built-up area
often leads to large commission errors in cloud detection. To test the
effectiveness of the proposed method in such challenging cases, we
selected Hong Kong, a cloudy subtropical dense city with complex and
mixed land-cover types (Fig. 1). This site has an area of 1,620 km2

(1200×1500 Landsat pixels), and the central coordinates are 22.367°
N and 114.123° E. It is covered by the Landsat scene of Worldwide
Reference System 2 (WRS-2) Path 122 Row 44. All 23 available
Landsat-8 OLI level-1 images in 2015 were downloaded from USGS
Earth Explorer. These images were then converted to Top of Atmo-
sphere (TOA) reflectance with the scaling coefficients in the metadata
file. The corresponding Fmask cloud masks of these images were also
downloaded from USGS Earth Explorer. Based on Fmask cloud masks,
only two images are clear, while the other images have total cloud and
shadow coverage ranging from 5.5% to 97%. Sixteen of them have total
cloud and shadow coverage larger than 60%, indicating Landsat ima-
gery in this site is seriously contaminated by clouds (Table 1).

2.2. A cloudy forest site

Dense time series data are needed for monitoring vegetation dy-
namics, and monitoring tropical and subtropical forests is very im-
portant to quantifying their important role in the global carbon cycle.
However, persistent cloud cover poses challenges when monitoring
tropical forest vegetation. To investigate the accuracy of the proposed
method to screen clouds and shadows in cloudy tropical forest regions,
the second site is northeastern Puerto Rico (Fig. 2). This site has an area
of 1,836 km2 (1200×1700 Landsat pixels), and the central coordinates
are 18.321° N and 65.838° W. The major land cover type is forest, in-
cluding the EI Yunque National Forest, where extensive tropical mon-
tane cloud forests occur that by definition are persistently cloudy. This
site also includes bright, wet and dark features that are easily confused
with clouds or cloud shadows. It includes much of the capital city of
Puerto Rico, San Juan, coastal areas with features like sand, rock and

coral reefs, topographic shadow associated with steep topography and
many fields with bright, wet or bare soils. The Landsat WRS-2 scene
Path 4 and Row 47 covers the area. A total of 18 Landsat 8 OLI images
from May 26, 2013 to May 29, 2014 (i.e., one-year length) and their
corresponding Fmask cloud layers were downloaded from USGS Earth
Explorer. The total cloud and shadow coverage of the images as esti-
mated by Fmask ranges from 5% to 81%, and the mean coverage is
45%, indicating this site is also seriously affected by clouds (Table 2). In
this site, another 11 Landsat-4 MSS images from the year 1983 were
collected to test the performance of the proposed method for screening
clouds and shadows in images with limited bands and low radiometric
resolution. For these MSS images, corresponding Fmask cloud masks
are not available from USGS Earth Explorer because Fmask uses
thermal bands, which are not included in MSS images. Through visual
inspection, these 11 MSS images have diverse cloud and shadow cov-
erage, from almost cloud-free to fully covered by clouds.

Fig. 1. True color composite of a Landsat-8 image of 2015, DOY003 in Hong
Kong.

Table 1
Summary of cloud and shadow coverage of Landsat-8 images from the year
2015 over the Hong Kong site using Fmask product. Only two images have no
clouds.

DOY Cloud coverage % Shadow coverage % Total cloud and shadow
coverage%

3 0.0 0.0 0.0
19 0.0 0.0 0.0
35 97 0.0 97
51 65 3.8 69
67 90 0.65 90
83 87 3.1 90
99 89 0.0 89
115 82 0.06 82
131 32 5.4 38
147 94 0.25 94
163 64 3.7 68
179 62 10 72
195 48 6.8 55
211 83 2.7 85
227 95 0.00 95
243 95 0.36 95
259 93 0.52 93
275 78 4.2 82
291 6.6 2.2 8.7
307 93 0.71 93
323 42 12 55
339 3.7 1.8 5.5
355 79 14 93

Fig. 2. True color composite of a Landsat-8 image from 2013 (DOY210) of
northeastern Puerto Rico.
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2.3. A seasonal-change site

Strong seasonality is another challenge for most multi-temporal
cloud screening methods. The large variation of spectral values due to
seasonality may be confused with the variation due to occurrence of
clouds and cloud shadows. To investigate the accuracy of the proposed
method to screen clouds and shadows in regions with strong season-
ality, the third site is Beijing metropolis and its surrounding rural areas
(Fig. 3). This site is covered by an entire Sentinel-2 tile (about
12,000 km2), and the central coordinates are 40.154° N and 116.495° E.
This site has a lot of bright land surface and its vegetation is deciduous
with strong seasonality. Images from different seasons in Fig. 3 show
that vegetation grows to a peak greenness in summer and loses leaves in
winter. In addition, the high mountains in this site bring difficulties for
both cloud and cloud shadow detection. Twenty Sentinel-2 images in
2016 with varying cloud cover were downloaded from USGS Earth
Explorer (Table 3). The Fmask cloud masks of these Sentinel-2 images
were obtained using the Matlab code (Version 3.3; https://github.com/
prs021/fmask) specific for Sentinel-2 images (Zhu et al., 2015). The
total cloud and shadow coverage of the images as estimated by Fmask
ranges from 0.1% to 100%, and 7 images have< 20%, indicating this
site has more clear images than the other two sites.

3. Methodology

There are five main steps in ATSA (Fig. 4). Either TOA reflectance or
surface reflectance data can be used as inputs. The five main steps are:
(1) compute a cloud index and a shadow index from the image bands to
highlight cloud and shadow pixels; (2) detect clouds initially with un-
supervised clustering of these indices for individual images in the time
series; (3) refine the cloud pixels through analyzing the time series of
the cloud index; (4) predict the potential shadow locations through the
geometric relationships among the sun, clouds, and the Earth surface;
(5) confirm the real shadow pixels through analyzing the time series of
the shadow index. We detail these steps below.

3.1. Calculate cloud index and shadow index

Given the wide ranges of reflectance values exhibited by diverse
cloud- and Earth surface types, individual spectral bands from one
image cannot accurately differentiate clouds, cloud shadows and clear
observations. With image time series, significant seasonality of some
land cover types (e.g., natural vegetation and agriculture) and land-

cover change (e.g., deforestation and urbanization) lead to large tem-
poral variability of reflectance in image time series, which is easily
confused with temporal variability caused by clouds and cloud sha-
dows. Therefore, there is a need to combine or transform individual
bands to get indices that highlight the clouds and cloud shadows while
compressing variability in other land cover types, so that clear ob-
servations have values that are as stable as possible in the time series.

As land and water surfaces have very different spectral character-
istics (Zhu and Woodcock, 2012), the cloud and shadow indices are
designed separately for land and water surfaces. A water mask is
needed in our method. Fortunately, a water mask can be easily obtained
through classifying a cloud-free image in the time series or from an
existing water mask. There are now several water masks available at
different resolutions, such as a 30-m water mask from a Landsat-based
global land cover product (Chen et al., 2015) and a 250-m global water
mask from MODIS data (available in http://landcover.org/data/
watermask/). In our test experiments, we classified a cloud-free
image to obtain the water mask.

For land surfaces, we used the haze optimal transformation (HOT)
as a cloud index. The HOT transformation is derived from an analysis of
Red-Blue spectral space. These two bands have a perfect linear re-
lationship for diverse land cover types under clear-sky conditions
(Zhang et al., 2002), and Zhang et al. (2002) name this perfect line the
clear-sky line (see the red line in Fig. 5 a). For pixels contaminated by
haze and clouds, their spectral response in Red-Blue space is very dif-
ferent from the clear-sky line, so the HOT index was designed to
quantify the perpendicular distance of a pixel from the clear-sky line:

=
× − +

+
HOT a B B b

a
| |

1
Blue Red

2 (1)

where BBlue and BRed are pixel values of blue and red bands respectively,
and a and b are the slope and intercept of the clear-sky line.

In the original HOT transformation (Zhang et al., 2002), the clear-
sky line comes from regressing spectral values of pixels selected from
areas of a scene that visually are deemed to be the clearest. To make our
method automatic, we employed a bin-based approach to search for the
clearest pixels in each scene. This approach has three steps: (1) divide
the 0–0.15 range of blue reflectance values into 50 bins with equal
intervals, because cloud-free pixel values of most land-cover types are
within this range; (2) for each bin, select the 20 pixels with the largest
reflectance values in the Red band and compute the average value of
these selected pixels for red and blue bands, respectively, yielding a pair
of red and blue reflectance values for each bin (BRedi, BBluei); (3) for all
50 pairs of (BRedi, BBluei), regress BRedi against BBluei to get the clear-sky
line using the least absolute deviation (LAD) regression method to avoid
the effect of outliers (Bassett and Koenker, 1978). If some images in the
time series are completely covered by clouds, no clear pixels can be
found for estimating the clear-sky line. For these completely cloud-
covered images, the average slope and intercept of clear-sky lines de-
rived from other images in the time series are used to compute the HOT
index. To demonstrate the effectiveness of a bin-based automatic ap-
proach, the retrieved clear-sky line in a sub-image was compared with
the result using manually selected clear pixels (Fig. 6). The slope and
intercept of the clear-sky line from the bin-based approach is very si-
milar to the results from the manual approach.

For water surfaces, the cloud-free pixel values of the red and blue
bands are not on the clear-sky line, leading to large HOT values that are
confused with thin clouds. Consequently, a new HOT index, designed
specifically for water surfaces, is needed. In the Blue-NIR space, the
spectral response of cloud-free water pixels, including turbid or shallow
water and coral reefs, is very different from cloudy pixels (Fig. 5b). A
new HOT index for water surface, HOTw is given as:

=
× − +

+
HOT a B B b

a
| |

1
w

w NIR Blue w

w
2 (2)

Table 2
Summary of cloud and shadow coverage of Landsat 8 OLI images from May
2013 to May 2014 for the Puerto Rico site using Fmask product.

DOY Cloud coverage % Shadow coverage % Total cloud and shadow
coverage%

146 41 4.1 45
178 43 8.0 51
210 4.3 1.6 5.9
226 39 5.6 45
242 40 8.2 48
258 28 6.5 35
274 67 14 81
290 27 8.1 35
306 8.5 1.1 9.6
322 30 6.7 37
354 58 13 71
5 24 11 35
21 43 13 56
53 41 12 54
69 31 9.5 41
117 37 6.5 44
133 38 3.0 41
149 59 14 72
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where aw and bw are the slope and intercept of the clear-sky line for
water bodies and are obtained through the same method as for the land
surface. Then, the HOT indices for land and water surfaces are

combined to yield a cloud index map (Fig. 7b). In this cloud index map,
we can see that the HOT transformation yields an index with a larger
difference between cloud and bright non-cloud objects than the in-
dividual visible bands. All clouds and haze are highlighted by larger
values (i.e. white color) while all cloud-free pixels have a very low
value (i.e. dark color).

To further compare the ability of the original bands and HOT for
discriminating clouds and clear land surface, the relative difference
(RD) between cloud and cloud-free pixels in each image was computed:

=
−RD B B

B
cloud clear

cloud (3)

where Bcloud and Bclear are average values of cloudy pixels and clear
pixels respectively. RD ranges from 0 to 1 and larger values indicate a
higher separability between cloudy and clear pixels. Fig. 8 shows the
RD values of the Blue band and the HOT index of Landsat-8 images
which contain both clear and cloudy pixels in the Hong Kong site. Hong
Kong includes both forests and considerable bright urban surfaces. It is
a challenging site for cloud detection. We can see that in these images
HOT index is better than the original Blue band at separating clouds
from clear land surfaces. The comparisons of RD values between the
Red band and the HOT index, and between the NIR band and the HOT
index, have a similar pattern (results not shown).

For cloud shadows, direct solar radiation is blocked by clouds, so
the shadow pixels are illuminated by scattered light. Because the at-
mospheric scattering is weaker at longer wavelengths, the NIR and
SWIR bands of shadow pixels are much darker than surrounding clear

Fig. 3. False-color Sentinel-2 images in Beijing from different seasons in 2016 (the yellow box in upper left image is a forest region of interest (ROI) used to
demonstrate the seasonality in Fig. 9). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Summary of cloud and shadow coverage of 20 Sentinel-2 images in 2016 for the
Beijing site using cloud masks by Fmask.

Date Cloud coverage % Shadow coverage
%

Total cloud and shadow
coverage%

Jan.26 42.4 17.7 60.1
Mar.14 0.7 0.5 1.2
Mar.24 0.1 0.0 0.1
Apr.3 0.2 0.2 0.4
Jun.2 13.2 1.8 15.0
Jun.12 56.4 6.2 62.6
Jul.22 90.3 9.7 100.0
Aug.1 78.6 4.6 83.2
Aug.11 41.2 9.4 50.6
Aug.21 22.6 6.1 28.7
Aug.31 7.6 4.6 12.2
Sep.20 36.4 3.5 39.9
Sep.30 34.4 8.1 42.5
Oct.10 19.3 7.3 26.6
Oct.20 100.0 0.0 100.0
Oct.30 75.7 9.3 85.0
Nov.19 2.6 1.8 4.4
Nov.29 100.0 0.0 100.0
Dec.9 16.0 8.8 24.8
Dec.29 7.1 4.1 11.2
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pixels (Zhu et al., 2015). Therefore, the shadow index (SI) is defined as:

= +SI B BNIR SWIR (4)

However, water also absorbs most radiation at longer wavelengths,
so water pixels not obstructed by clouds are as dark as shadow pixels in
NIR and SWIR bands (Li et al., 2017). Consequently, for water surfaces,
the shadow index is calculated with the blue and green bands:

= +SI B Bw Blue Green (5)

For old satellite images with fewer bands, such as Landsat MSS
images with only green, red, and 2 NIR bands, the green band replaces
the blue band in Eqs. (1), (2), and (5), because it is highly correlated
with blue band. Also, the second NIR band replaces the SWIR band in
Eq. (4), because both the NIR and SWIR bands are good indicators of
cloud shadows. Similarly, for other sensors without SWIR bands, such
as IKONOS, we anticipate that only one NIR band would be used as the
shadow index for land surfaces.

3.2. Detect cloud initially

All cloud index images of the time series are classified by an un-
supervised classifier, k-means, to get the initial cloud mask. First, a
certain number (e.g. 10,000) of sample pixels are selected by systematic
sampling of all cloud index images. Selecting samples from all images in
the time series ensures that samples of clear surfaces, thin clouds, and
thick clouds are included. Using the selected samples rather than all
pixels speeds up the k-means optimization in the next step. Second,
these samples are classified with the k-means method into three classes.
The three classes are labeled based on the relative value of the class
means, i.e., the lowest class mean is clear pixels, the middle one is thin
clouds, and the highest one is the thick clouds. The k-means method
uses an iterative procedure. At each iteration, each sample is assigned

to one class based on the closeness to the class means obtained from the
last iteration, and new class means are updated using new class labels of
samples. The iterative process will be ended when the class labels no
longer change (Lloyd, 1982). Third, individual pixels in each cloud
index image of the time series are identified as thin clouds, thick clouds,
or cloud-free observations based on which class has the smallest the
cloud-index distance from the class means of the sample pixels. Finally,
an initial cloud mask is produced for each image by combining thin
clouds with thick clouds (Fig. 7c). The ranges of cloud index values for
the three classes (thin clouds, thick clouds and clear), being derived
from all pixels in the time series, form a set of thresholds that are
adapted to a time series rather than a single image.

3.3. Detect remaining extremely thin clouds and remove bright pixels that
are not cloud or haze

Although the initial cloud mask already identifies most cloudy
pixels, it may omit some cloudy pixels, especially extremely thin clouds
and cloud edges with lower values of the cloud index. Therefore, the
initial cloud masks need to be further improved with temporal in-
formation. For each pixel, its time series may include both cloudy
points and cloud-free observations. In general, cloudy points have
larger variations in spectral values than clear observations. This tem-
poral property can help to identify cloudy points (Zhu and Woodcock,
2014). However, due to changes in vegetation phenology or land cover,
clear observations of some pixels also undergo temporal variations.
However, compared with the original spectral bands, the cloud index
derived from the HOT transformation depresses the temporal variations
from different vegetation growth stages, soil inundation, or land-cover
change. For instance, in a forest ROI from the Beijing site (marked by a
yellow box in Fig. 3), the time series of the Red band shows a stronger
seasonality than the HOT index (Fig. 9). The Red band is used to

Fig. 4. Flowchart for the Automatic Time-Series Analysis (ATSA) to screen clouds and cloud shadows.
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compute the HOT index. It has lower values in summer due to more
absorption by vegetation. In contrast, the HOT index is more stable
across different seasons and with smaller variability than the original
Red bands.

Therefore, an analysis of the cloud index time series is conducted to
refine the initial cloud mask. Fig. 10 gives an example of a cloud index
time series of a pixel from the Puerto Rico site (column1173, row
1092). There are two points identified as clouds in the initial mask (the
red points). Most of the other points (the black ones) should be clear
observations. They are used to find an upper boundary in the HOT
index for clear pixels, U(i). Points above this threshold are then also
designated as cloudy. For ith pixel:

= ∉ + × ∉U i HOT i t i t A HOT i t i tC C( ) mean{ ( , ) | ( , ) } sd{ ( , ) | ( , ) }
(6)

where sd{·} is the standard deviation of the HOT index through the time
series, HOT(i, t) is the HOT index value of the ith pixel at time t, and C is
the set of cloudy points from the initial masks for ith pixel. A is a
standard deviation multiplier that defines the upper boundary. A can be
assigned a recommended value from 1 to 2. Smaller values would be
able to identify thinner clouds, but meanwhile increase the risk of
commission errors, i.e., identifying “clear” observations as cloudy
points. In existing methods, this parameter is a constant for all pixels in
the image (Goodwin et al., 2013; Hagolle et al., 2010). However, cloud
frequency is different in different parts of the image, so some pixels may
include more cloud points in the HOT time series that are omitted in the
initial detection than others. Therefore, we need to consider this dif-
ference among pixels when we set the value of parameter A. In general,
clouds cause large variations in the HOT time series. We introduced a
new variable, the normalized difference range index (NDRI), to tune the

parameter A:

= − +NDRI i T Range T Range( ) ( )/( )kmeans i kmeans i (7)

= ∉ − ∉Range HOT i t i t HOT i t i tC Cmax{ ( , ) | ( , ) } min{ ( , ) | ( , ) }i (8)

where Tkmeans is the minimum HOT value of all cloud pixels identified
by K-means in Section 3.2. NDRI is further used to adjust the parameter
A in Eq. (6) as a pixel-wise parameter A(i):

= +A i A NDRI i( ) ( ) (9)

The value for A(i) is used in Eq. (6) to calculate the pixel-level upper
boundary U for each pixel in the time series. A(i) further tunes the pixel-
level upper boundary U by adapting the standard deviation multiplier
to the temporal variability of each pixel. Because NDRI is added to A,
we recommend an A value from 0.5 to 1.5 (instead of 1 to 2). Pixels
with larger variation in the HOT time series will have a lower upper
boundary, i.e. a stricter threshold. Any points above the upper
boundary, e.g. the dashed line in Fig. 10, will be identified as clouds.

The cloudy points detected from the time series analysis are the final
cloud mask (Fig. 7d). This step adds more thin clouds to the initial mask
and also contributes to filtering bright non-cloud objects. For instance,
very bright land surfaces (e.g., airport runways and beach sand) may
show consistently high values in the cloud-index time series, leading to
a high threshold in Eq. (6). As a result, pixels of these bright land
surfaces are not likely to be identified as clouds because their cloud
index values are unlikely to exceed the high threshold. In addition,
assuming that clouds are generally wider than a few pixels at Landsat
spatial resolution, isolated pixels identified as being cloudy are re-
moved from the cloud mask using a repeated minority analysis. We
removed cloud pixels if 4 or fewer pixels in the 3-by-3 neighborhood of

Fig. 5. A land-surface subset of a Landsat-8 image and its Red-Blue scatter plot (a) and a water-surface subset Landsat-8 image and its NIR-Blue scatter plot (b). (For
interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)
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Fig. 6. Comparison between the clear-sky line of a sub-image estimated by the proposed automatic bin-based approach (a) and that using manually selected clear
pixels marked by red ROIs (b). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. False color Landsat-8 image of DOY149 in the
Puerto Rico site (a), its corresponding HOT cloud
index (b), initial cloud mask (c), and final cloud
mask (d). In (c) and (d): gray is clear pixels and white
is clouds. The time series analysis adds thin clouds to
the initial cloud mask, and the minority analysis re-
moves scattered bright pixels in urban and coastal
areas in the upper left of panel (c), which would
otherwise be confused with clouds.
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a pixel are cloud pixels. This step removes any remaining isolated,
bright pixels in urban and coastal areas that are not clouds. Finally,
similar to Fmask, all cloud patches are buffered with a width of 1 pixel
to further reduce omission errors around cloud edges.

3.4. Estimate potential shadow zones

Shadow pixels are easily confused with dark objects and topo-
graphic shadow even in shadow index maps. However, clouds always
accompany cloud shadows except at scene edges. This characteristic
can help reduce commission (e.g., wet soil, topographic shadow) errors
of cloud shadow detection. Actually, the location of cloud shadows can
be calculated by the precise geometric relationship among clouds, cloud
shadows and the position of the sun (Zhu and Woodcock, 2012). For a
cloudy pixel with coordinates (x, y), the location of its corresponding
shadow pixel (x’, y’) can be calculated using following equations (Luo
et al., 2008):

′ = − ×x x H θ ϕtan sin (10)

′ = − ×y y H θ ϕtan cos (11)

where H is the height of clouds above the land surface, and θ and ∅ are
solar zenith and azimuth angles. Values of θ and ∅ can be extracted
from the image metadata files, but H is unknown for each cloud patch.
In most existing methods, the brightness temperature (BT), derived
from thermal infrared bands, is used to estimate cloud height with lapse
rates for air temperature, such as −9.8 K/Km for dry air and −6.5 K/
Km for moist air (Goodwin et al., 2013; Huang et al., 2010; Zhu and
Woodcock, 2012). However, there are two problems with estimating
cloud height when locating cloud shadows: (1) the lapse rate varies in
different atmospheric conditions, and the BT of thin clouds is also in-
fluenced by the land surface; (2) some sensors, especially old ones, do
not have thermal infrared bands, such as the Landsat MSS sensor, the
CBERS IRMSS sensor and the Sentinel MSI sensors. For Landsat 8 also, a
method for masking clouds and shadows that does not require a thermal
band is needed. The Thermal Infrared Sensor (TIRS) has some error and
intermittent availability and has a shorter design life than the multi-
spectral Operational Land Imager (OLI). That thermal data may not
always be available is one obstacle to improving Landsat 8 cloud and
shadow masks with image time series (Foga et al., 2017; Scaramuzza
et al., 2012).

To make the proposed method able to process historical images
without thermal infrared bands, a range of possible cloud heights are
used to estimate all possible shadow locations of a cloud. We can use a
default value of 200m for minimum cloud heights because it is suitable
for most areas (Zhu and Woodcock, 2012). The maximum cloud heights
can be determined empirically by visually checking the maximum
horizontal distance (Dmax) between clouds and their shadows, or using
12 km based on previous studies (Fisher, 2013; Luo et al., 2008):

=
+

H D
θ ϕ θ ϕ(tan sin ) (tan cos )

max
max

2 2 (12)

Fig. 11b shows an example of potential shadow zones of a subset of
image DOY146 in the Puerto Rico site. We can see that the real shadows
are located within the potential shadow zones.

3.5. Detect shadow within potential shadow zones

The potential shadow zones mark the possible locations of cloud
shadows. They overestimate the real shadow areas. Therefore, all the
pixels within the shadow zones need to be further confirmed as to
whether they are real shadow pixels. In the shadow index images,
shadows are located at places with regional minima (i.e. “holes”) due to
their being relatively dark in optical bands. Some existing methods use
flood-fill transformation to predict the image without shadows and
compare it with real images to identify shadow pixels (Li et al., 2017;
Zhu and Woodcock, 2012). However, this approach may often mislabel
dark objects, such as water, as cloud shadow (Li et al., 2017). Here, a
similar idea is employed, but the new strategy reduces errors as com-
pared with the flood-fill method. First, in the shadow index images,
pixels in potential shadow zones are predicted from surrounding clear

Fig. 8. Relative difference (RD) between the average value of cloudy and clear
pixels of the Blue band and the HOT index in Hong Kong Landsat-8 images. A
larger RD indicates higher separability between cloud and clear pixels. (For
interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)

Fig. 9. Red reflectance and HOT index of cloud-free pixels in a forest ROI in
Beijing (marked by a yellow box in Fig. 3) across different seasons. The circles
are mean values and error bars are± 1 standard deviation. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 10. An example of cloud index time series: the two black points above the
dashed line are identified as clouds based on the time series analysis.
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pixels with an inverse distance weighted (IDW) interpolator. Second,
for those pixels in potential shadow zones, we estimate their “darkness”
as their original shadow index minus the predicted values (Fig. 11c, a
darker color means higher darkness). This darkness only shows how
cloud shadows lower the pixel brightness compared with surrounding
clear pixels. Third, similar to initial cloud detection, K-means clustering
is applied to these darkened pixels (i.e. pixels with negative darkness
values) to classify these pixels into two classes, clear observation and
cloud shadow, to yield an initial shadow mask (Fig. 11d).

After the initial shadow detection, we apply a time series analysis,
similar to the cloudy point refinement, to refine the initial shadow
mask. This process aims to reduce both omission and commission errors
in the initial shadow mask. Because cloud shadows have darkening
effects, which lead to lower shadow index values in the time series of a
pixel, a lower boundary L is used as a threshold to identify real shadow
points. Considering differences in earth-sun-sensor geometry, atmo-
spheric conditions and vegetation phenology, the shadow index of land
surfaces needs to be normalized to minimize these differences prior to
the time series analysis. Here, the histogram matching method is used
given its simplicity (Helmer and Ruefenacht, 2005). Although histo-
gram matching is a linear correction, and changes in vegetation phe-
nology across an image can be nonlinear (Helmer and Ruefenacht,
2007), we found that histogram matching worked well for mitigating
the temporal variability in shadow-index time series. First, the image
with the fewest clouds in the time series is selected as a base image.
Then, the shadow index of other images is normalized to this base
image using the gain and bias:

=

= − ×

gain σ
σ

bias gainμ μ

B

t

B t (13)

where μB and μt are the mean value of clear pixels in the base image and
the image at time t respectively, σB and σt are the standard deviations of
clear pixels in the base image and the image at time t respectively. The
normalized shadow index value of image at time t, SIN (i, t), can be
computed as:

= × +SI i t SI i t gain bias( , ) ( , )N (14)

This lower boundary L is defined using “good” points, which are
those points not identified as shadow in the initial shadow mask
(Fig. 12):

= ∈ − × ∈L i SI i t i t B SI i t i t( ) mean{ ( , ) | ( , ) "good"} sd{ ( , ) | ( , ) "good"}N N

(15)

where B is a standard deviation multiplier that serves as a parameter to
tune the threshold, L(i) is the lower threshold for pixel i, mean is the
mean shadow index (SI) of pixel i for the time series, and sd is the
standard deviation of the SI for the time series of pixel i. Pixels with SI
brighter than L(i) are deemed too bright to be cloud shadow. The re-
commended value of B is from 1 to 3, and a larger value will select
darker shadows, i.e., it will darken the threshold for designating whe-
ther pixels are shadow. Therefore, the parameter B should be set to
balance the omission and commission errors for shadow detection. For
the initial shadow points, they are confirmed as real shadow if their
shadow index values are lower than the mean value of “good” points.

Fig. 11. A subset of the Landsat-8 image DOY146 in the Puerto Rico site (a), its potential shadow zones (b), shadow darkness as estimated by Inverse Distance
Weighting (IDW) (c), and the initial shadow detected by K-means (d).
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This step reduces the commission errors in initial shadow detection. For
other points in the time series which are marked as potential shadow
using sun-cloud geometry, they will be identified as final shadow points
if their shadow index values are lower than L (Fig. 12). This step re-
duces the omission errors in the initial shadow detection. It should be
noted that although the potential shadow zones and time series analysis
can greatly prevent classifying topographic shadow as cloud shadow,
topographic shadow within the potential shadow zones may be iden-
tified as cloud shadows if it is as dark as cloud shadow.

Similar to the cloud mask, isolated shadow pixels are also filtered
out by a repeated minority analysis in a 3-by-3 neighborhood, and then
all shadows are buffered, with a width of 1 pixel, to obtain the final
shadow mask. The final shadow mask is combined with the final cloud
mask to get the final product of cloud and shadow mask.

3.6. Evaluation and comparison

To demonstrate the accuracy and effectiveness of the proposed
method, it was compared with Fmask (Zhu and Woodcock, 2012), one
of the most advanced single-image methods and used by USGS to pro-
duce the standard cloud mask for Landsat images. The results of Fmask
can be considered as a benchmark to assess the performance of ATSA.
Both ATSA and Fmask were applied to Landsat-8 OLI and Sentinel-2
images, while only ATSA was applied to Landsat-4 MSS images in the
second site, because MSS images lack not only thermal bands but also
other bands that are needed by Fmask. We found that Fmask detected
many clouds as snow in some images in the Hong Kong and Puerto Rico
sites (Fig. 13). Because these two test sites are subtropical and never
have snow, we merged snow into clouds before the comparison, but this
adjustment was not made for cloud masks in Beijing site because it can

snow in winter.
In the comparison, the agreement between these two methods was

evaluated. First, the percentage of clouds and cloud shadows of both
methods were plotted together to check their difference. Second, ma-
trices were built comparing the proposed ATSA and Fmask methods,
and the overall agreement derived from these matrices was used to
assess the pixel-wise agreement between ATSA and Fmask. Third, re-
presentative images selected from the time series were digitized to
produce reference cloud and shadow masks. The digitizing work was
done by experienced experts who were not involved in the development
of ATSA. Then, these digitized maps were used to quantitatively eval-
uate the accuracy of both methods. It should be noted that the manual
mask of cloud and cloud shadow is not 100% accurate. It may include
some commission or omission errors.

4. Results

4.1. Hong Kong site

Among 23 images to which we applied the two clouds and shadow
masking methods, the two methods detect similar cloud cover for 19 of
them (Fig. 14), while for the other 4 images (DOY 131, 179, 195, and
339) there are large differences. For the 19 images with similar cloud
coverage, visual inspection confirms that both methods successfully
detect clouds (see image of DOY 51 as an example in Fig. 16). For
images of DOY 131 and 339, ATSA detected many more clouds than
Fmask. On the other hand, for images of DOY 179 and 195, ATSA de-
tected far fewer clouds than Fmask. Unlike cloud coverage, shadow
coverage detected by the two methods slightly differs in most of the 23
images except the image DOY 355 (Fig. 14). Visual inspection of this
image confirms that Fmask detected all water surface as cloud shadow.
There are 5 images in the time series with large disagreement between
ATSA and Fmask (Fig. 15). Agreement between ATSA and Fmask for the
images of DOY 131, 179 and 339 is even lower than 50%.

In the cloud masks of the three images with the least agreement
between ATSA and Fmask, it is clear from Fig. 16 that ATSA more ac-
curately identified clouds. Fmask underestimated clouds in two images
of DOY 131 and 339, and it overestimated clouds in the image of DOY
179. Specifically, Fmask failed to screen many of the thin clouds in the
center of the image of DOY 131, and it failed to identify many of the
thick clouds in the image of DOY339, even though these clouds appear
very bright in all visible and NIR bands. In the image of DOY179, Fmask
misidentified most of the clear water and some clear land surface (see
the island in the lower right) as clouds, which led to serious over-
estimation of cloud cover. For the cloud shadows, it appears that ATSA
successfully identified most shadows adjacent to clouds. Fmask identi-
fied some clear pixels as shadow that were near the misidentified cloud
patches (see image of DOY 179 in Fig. 16).

Quantitative accuracy assessment for the four images in Fig. 16
using manual masks shows that ATSA and Fmask obtain comparable

Fig. 12. An example of shadow index time series analysis: the points below the
dashed line are identified as cloud shadow. The dashed line represents L, the
lower threshold.

Fig. 13. Landsat-8 image DOY178 in the Puerto Rico site (a) and its original Fmask cloud mask (b) showing where clouds are classified as snow (light blue color).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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overall accuracy for the image of DOY51, but ATSA's overall accuracy is
much higher than Fmask for the other three images (Table 4). For cloud
detection, ATSA obtained user's accuracies ranging from 0.85 to 0.99
and producer's accuracies ranging from 0.89 to 1.00. The accuracy of
ATSA cloud mask for the image of DOY179 is lower than that of the
other images due to the errors in haze detection on the water surface
(see haze in the lower right part of this image). In contrast, the cloud
producer's accuracy of Fmask is low for images of DOY131 (0.41) and
DOY339 (0.04) because of large omission errors. The cloud user's ac-
curacy of Fmask is low for images of DOY179 (0.08) because it mis-
identified many clear pixels as clouds. For shadow detection, ATSA can
obtain producer's accuracy higher than 0.82. The shadow user's accu-
racy is also high except the image of DOY179, in which ATSA over-
estimated the shadow area. In the context of applications with cloudy
images, the producer's accuracy is more important than user's accuracy,
because end users hope to exclude all contaminated pixels in their
analysis, and meanwhile they can allow commission errors to some
extent (Zhu and Woodcock, 2012). Both user's and producer's ac-
curacies of shadow detection by Fmask are much lower than ATSA.
Specifically, Fmask detected fewer shadows in the image of DOY51 and
identified clear pixels near the wrong cloud patches as shadow in other
three images in Fig. 16.

4.2. Puerto Rico site

4.2.1. Landsat-8 OLI images
Among the 18 images, ATSA and Fmask obtained similar cloud

coverage in 15 images, while ATSA detected many more clouds in three
images (DOY178(2013), 306(2013), and 053(2014)) than Fmask
(Fig. 17). For shadow coverage, ATSA detected slightly more shadows

than Fmask in most images. Through visual inspection of these images,
we found that Fmask underestimated shadows surrounding small cloud
patches, which leads to smaller shadow percentage than ATSA. On the
other hand, in the images DOY 274(2013), 354(2013), 53(2014), and
149(2014), ATSA detected fewer shadows than Fmask. Visual inspec-
tion shows that these four images only have large cloud patches. Fmask
overestimated shadow cover of these large cloud patches. The quanti-
tative assessment of pixel-wise agreement between the two methods is
good (higher than 80%) for masks of most images, but the masks of two
images, DOY 178(2013) and 306(2013) have agreement between ATSA
and Fmask that is lower than 60% (Fig. 18). For the images with good
agreement between ATSA and Fmask, both methods successfully detect
clouds (e.g. image DOY146(2013) in Fig. 19). In the two images with
the least agreement between ATSA and Fmask, Fmask omitted a lot of
thin clouds in west region in the image of DOY178(2013), and it missed
a lot of cloudy pixels, even of thick clouds, in the image of
DOY306(2013) (Fig. 19).

The quantitative accuracy assessment of the cloud masks of these
three images in Fig. 19, using manual masks, shows that the overall
accuracy of ATSA cloud and shadow masks ranges from 0.97 to 0.98,
which is much higher than Fmask (Table 5). Cloud producer's and user's
accuracy of ATSA reaches 0.97 in all three images, while cloud pro-
ducer's accuracies of Fmask are only 0.12 to 0.52 for the image of
DOY178 and 306. Shadow producer's and user's accuracies of ATSA are
lower than the cloud mask accuracy, but it is still much higher than
Fmask. ATSA omitted some thin shadows on land surfaces in the lower
part of image of DOY306 (Fig. 19) leading to a relatively lower pro-
ducer's accuracy of 0.86. Similar to the Hong Kong site, Fmask detected
fewer shadows than the real situation, leading to low producer's accu-
racy in shadow detection.

4.2.2. Landsat-4 MSS images
Only ATSA was applied to the 11 Landsat-4 MSS images in the

Puerto Rico site, because Fmask needs more bands than MSS images
have. Four images with representative cloud coverages (6.8% to 99%
clouds; 0% to 12.6% cloud shadows) were selected for further assess-
ment (Fig. 20). The cloud coverages of these four selected images are
6.8% (DOY40), 31.1% (DOY280), 41.4% (DOY24), and 66.1%
(DOY200). Visual inspection shows that ATSA successfully identified
most clouds and shadows in these MSS images (Fig. 21), including the
thin clouds in the image of DOY200. We can see that the cloud user's
and producer's accuracy of all four MSS images are higher than 0.95
(Table 6), indicating that ATSA successfully screened clouds in these
images with very small omission and commission errors. For shadow
accuracy, in terms of producer's accuracy (more important for appli-
cations in our opinion), it is high enough in image DOY 40, and 280,

Fig. 14. Cloud and shadow coverage of 23 Landsat-8 OLI images in the Hong
Kong site detected by ATSA and Fmask.

Fig. 15. Overall agreement of cloud and shadow masks of 23 Landsat-8 OLI images in the Hong Kong site between ATSA and Fmask.

X. Zhu, E.H. Helmer Remote Sensing of Environment 214 (2018) 135–153

146



reaching 0.97. The image DOY200 has shadow producer's accuracy of
0.83 which is caused by the identification of shadows as clouds in the
lower right part of this image (Fig. 21).

4.3. Beijing site

In general, the cloud coverage detected by ATSA is smaller than that

of Fmask in the 20 Sentinel-2 images. The cloud coverage difference
between ATSA and Fmask is larger than or equal to 20% in three
images, Aug. 21, Sep.30, and Oct.10 (Fig. 22). Through visual inspec-
tion of these cloud masks, we found that both ATSA and Fmask mis-
classify some pixels in very bright urban surfaces as clouds, but this
commission error of Fmask is more serious than ATSA. Fmask detected
nearly all urban pixels as cloud or snow in the three images of Aug.21,
Sep.30, and Oct.10. Similar to cloud coverage, shadow coverage de-
tected by ATSA is generally lower than Fmask, except for images dated
Oct. 30 and Nov. 29. The larger shadow coverage detected by Fmask
results from the commission errors of cloud detection. In other words,
Fmask detected many clear pixels as shadow surrounding areas wrongly
detected as clouds. Regarding the pixel-wise agreement between ATSA
and Fmask (Fig. 23), there are 7 images with overall agreement lower
than 80% and 3 images lower than 70%. These three images are Jan.26,
Aug.11, and Sep.30.

For the images with high agreement between ATSA and Fmask, both
methods successfully detect clouds and shadows (see Sep.20 image as
an example in Fig. 24). In the three images with the least agreement
between ATSA and Fmask, ATSA is generally more successful than
Fmask for identifying clouds and shadows. Specifically, in the Jan. 26
image, both ATSA and Fmask detected most of clouds. ATSA does not

Fig. 16. False color composite of selected Landsat images (upper row) and their cloud masks by Fmask (middle row) and ATSA (lower row) for the Hong Kong site
(gray: clear pixels; black: shadows; white: clouds).

Table 4
Accuracy assessment of cloud masks of the 4 images in Fig. 16 in the Hong Kong
site: overall accuracy (oa), user's accuracy (ua) and producer's accuracy (pa).

Cloud Shadow

DOY oa ua pa ua pa
51 Fmask 0.93 0.97 0.98 0.60 0.49

ATSA 0.99 0.99 0.99 0.95 0.87
131 Fmask 0.45 0.99 0.41 0.04 0.10

ATSA 0.98 0.99 0.99 0.93 0.82
179 Fmask 0.29 0.08 0.98 0.08 0.26

ATSA 0.97 0.85 0.89 0.67 0.90
339 Fmask 0.06 0.95 0.04 0.00 0.00

ATSA 0.99 0.99 1.00 0.89 1.00

Fig. 17. Cloud and shadow coverage of 18 Landsat-8 OLI images in the Puerto
Rico site detected by ATSA and Fmask.

Fig. 18. Overall agreement of cloud and shadow mask between ATSA and
Fmask for the Puerto Rico site.
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have snow detection step, so the snow in the northwest was mis-
classified as cloud in ATSA, while Fmask successfully detected these
snows but it also identified many clear pixels as snow. Fmask also de-
tected many clear and thin-cloudy pixels as snow in summer image
where no snow events should happen. In addition, Fmask detected
many clear urban pixels as cloud in the Sep. 30 image (Fig. 24). For
cloud shadow detection, ATSA is more successful although it detected
topographic shadows as cloud shadows in the Jan. 26 image. Images of
mountainous areas have more topographic shadows in spring and
winter due to the lower sun elevation. It may lead to larger commission
errors in cloud shadow detection if these topographic shadows are
within the potential shadow zones. In contrast, Fmask failed to detect
shadows which are distant from the cloud patches. The possible reason
is that Fmask for Sentinel-2 assumes the cloud height between 200m
and 1200m for all images (Zhu et al., 2015).

The quantitative accuracy assessment also demonstrates that ATSA
can obtain more accurate cloud and shadow masks than Fmask
(Table 7). For the Sep. 20 image, both ATSA and Fmask can obtain
acceptable accuracy in cloud detection. For other three images, cloud
producer's accuracy of ATSA ranges from 0.81 to 0.96 and cloud user's
accuracy ranges from 0.92 to 0.99. In contrast, cloud user's accuracy of
Fmask for the Sep.30 image is very low because of large commission
errors, and the low cloud producer's accuracy of Fmask for the Aug.11
image is caused by large omission errors. For the Jan. 26 image, the
producer's accuracy of cloud detection for both Fmask and ATSA is only
0.81 because both methods omitted extremely thin clouds. For shadow
detection, ATSA obtains good producer's accuracy ranging from 0.81 to
0.96, which is much higher than Fmask ranging from 0.20 to 0.50,
indicating that Fmask omitted considerable cloud shadow in these
images. For the Jan. 26 image, the user's accuracy of shadow detection
by ATSA is only 0.5, because it detects many black rocks and topo-
graphic shadows as cloud shadows. In this mountainous area, some
snow and ice pixels were misclassified as clouds, which makes the black

Fig. 19. False color composite of the three Landsat images in the Puerto Rico site (upper row) and their cloud and shadow masks by Fmask (middle row) and ATSA
(lower row) (gray: clear pixels; black: shadows; white: clouds).

Table 5
Accuracy assessment of cloud masks of three images in Fig. 19 in the Puerto
Rico site: overall accuracy (oa), user's accuracy (ua) and producer's accuracy
(pa).

Cloud Shadow

DOY(Year) oa ua pa ua pa
146(2013) Fmask 0.90 0.85 0.98 0.58 0.34

ATSA 0.98 0.97 1.00 0.92 0.94
178(2013) Fmask 0.53 0.98 0.52 0.07 0.08

ATSA 0.98 0.98 0.99 0.97 0.96
306(2013) Fmask 0.28 0.98 0.12 0.03 0.00

ATSA 0.97 1.00 0.98 0.97 0.86

Fig. 20. Cloud and shadow coverage of 11 Landsat MSS images in the Puerto
Rico site detected by ATSA.
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rocks and topographic shadows within the potential shadow zone. This
issue can be solved if the commission error in cloud detection is re-
duced, especially for distinguishing snow and ice from clouds.

5. Discussion and conclusions

Masking clouds and cloud shadows is necessary for many applica-
tions of optical satellite images, because it is difficult to acquire totally
cloud-free images in most places, particularly when time series are
needed to monitor change. Many methods have been developed to
screen clouds and cloud shadows automatically in optical images.
However, they may not perform well in very cloudy regions. Aiming to
produce more accurate cloud and shadow masks of optical imagery in
cloudy regions, an automatic time series analysis based method, ATSA,
was developed in this study. ATSA was tested in three sites with dif-
ferent dominant land covers. Landsat-8 OLI images, Landsat-4 MSS
images, and Sentinel-2 images were used to evaluate the performance
of ATSA for screening clouds and cloud shadows in images with dif-
ferent band configurations and quality. Results show that ATSA can
obtain accurate cloud and shadow masks in all sites and all data sets
except the images with snow and ice cover. The comparison with an
advanced algorithm, Fmask, also confirms that ATSA can yield robust
and accurate cloud and shadow masks in cloudy regions. The good
performance of ATSA can be attributed to the following strengths.

First, ATSA only needs a minimum number of input bands. Only 5
bands, blue, green, red, NIR, and SWIR bands, are required, and this
requirement can be reduced to 3 bands if the images do not have blue
and SWIR bands. The low requirement of input bands brings two ad-
vantages. The first advantage is that in the regions tested, the results
can be more robust than existing methods when processing images with
various conditions. Although the spectral similarities among different
land surfaces and clouds and cloud shadows are complex, being dif-
ferent among locations and times, a common characteristic is that they
affect the pixel values from visual to near infrared bands, i.e., clouds
brighten these bands and shadows darken them. In general, adding
more bands into the screening process, such as thermal bands or a cirrus
band, can improve the accuracy of cloud and shadow masks, especially
for the single-image cloud detection methods (Foga et al., 2017; Zhu
et al., 2015). However, it may also lead to more uncertainties and errors
in some extreme cases. For example, Fmask uses visible, near infrared,
and thermal bands to identify clouds; it also uses the cirrus band in
Landsat-8 images to detect clouds (Zhu et al., 2015), while ATSA uses
neither the thermal nor cirrus bands. In the Hong Kong site, for the
image DOY339, Fmask misses most clouds. A further investigation of all
bands of this image reveals that the thermal band is cooler in a small
sub-area of this mostly cloudy image (Fig. 25). As a result, Fmask only
detects clouds in this cold area and omits other warmer clouds.

Fig. 21. False color composite of the four representative Landsat MSS images in the Puerto Rico site and their cloud and shadow masks by ATSA (gray: clear pixels;
black: shadows; white: clouds).

Table 6
Accuracy assessment of cloud masks of four MSS images in Fig. 21 in the Puerto
Rico site: overall accuracy (oa), user's accuracy (ua) and producer's accuracy
(pa).

Cloud Shadow

DOY oa ua pa ua pa
24 0.96 0.98 0.99 0.88 0.87
40 0.99 1.00 0.99 0.89 1.00
200 0.97 0.99 0.97 0.90 0.83
280 0.98 1.00 0.98 0.92 0.97

Fig. 22. Cloud and cloud shadow coverage of 20 Sentinel-2 images in the
Beijing site detected by ATSA and Fmask.

Fig. 23. Overall agreement of cloud and shadow mask between ATSA and
Fmask for the 20 Sentinel-2 images from the Bejing site.
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According to the USGS product guide, Fmask has a known issue that
either too large or too small temperature differentials will lead to errors
in cloud detection. The second advantage of using fewer bands is that
the algorithm is more flexible and applicable than existing methods
when processing images from different optical sensors. For cloudy
places, we expect ATSA to: (1) extend the history for automated Landsat
time series analyses with cloud and cloud shadow masks that are highly
accurate, but automatically derived, back to the MSS era of the 1970s
(instead of only the TM era of the 1980s); and (2) in the era of Sentinal-
2, allow for denser time series in intra-annual analyses such as those
examining vegetation phenology. The past and ongoing optical sensors
have different configurations of spectral bands. However, most of these
optical sensors have visible and near infrared bands. ATSA can be ap-
plied to all images with these basic bands, which is very important and
necessary when we process historical satellite images with limited

Fig. 24. False color composite of the four Sentinel-2 images in the Beijing site (upper row) and their cloud mask by Fmask (middle row) and ATSA (lower row) (gray:
clear pixels; black: shadows; white: clouds; snow: light blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 7
Accuracy assessment of cloud masks of images in Fig. 24: overall accuracy (oa),
user's accuracy (ua) and producer's accuracy (pa).

Cloud Shadow

Date oa ua pa ua pa
Sep.20 Fmask 0.89 0.80 1.00 0.20 0.41

ATSA 0.98 0.99 1.00 0.62 0.81
Jan.26 Fmask 0.67 0.74 0.81 0.33 0.50

ATSA 0.79 0.92 0.81 0.50 0.87
Aug.11 Fmask 0.68 0.77 0.65 0.21 0.46

ATSA 0.97 0.99 0.96 0.94 0.86
Sep.30 Fmask 0.58 0.00 0.92 0.00 0.20

ATSA 1.00 0.99 0.85 0.96 0.96

Fig. 25. False color composite of the Landsat-8 images DOY339 in the Hong Kong site (left), its cloud mask by Fmask (center), and the thermal band of this image
(right).
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bands.
Second, ATSA has fewer predefined parameters than most existing

methods. In ATSA, there are only two important predefined parameters,
i.e., A in Eq. (9) and B in Eq. (15) tune the threshold for identifying
clouds and shadows in the time series respectively. As standard devia-
tion multipliers of variation through the time series, these two para-
meters regulate the degree of strictness for masking clouds and sha-
dows. In other words, they balance the omission errors and commission
errors of cloud and shadow detection. In our tests, A and B are 0.5 and
1.5 for the Hong Kong site, 1.0 and 1.5 for the Puerto Rico site, and 1.2
and 2.0 for the Beijing site. Fig. 26 shows the cloud user's and produ-
cer's accuracy for the Landsat-4 MSS image DOY200 in Fig. 21 when
using different values of parameter A within the recommended range
0.5–1.5. Larger values of parameter A improve the user's accuracy but
meanwhile decrease the producer's accuracy. The parameter B shows a
similar effect on the accuracy of cloud shadow detection. Fig. 26 also
suggests that the detection accuracy is not very sensitive to the para-
meter. There is a wide range of parameter A able to obtain both pro-
ducer's accuracy and user's accuracy higher than 0.95. Users can tune
these two parameters according to their specific applications. For ex-
ample, studies using time series to model land surface parameters, such
as forest biomass and crop yield, are very sensitive to clouds, even the
extremely thin clouds. These studies may hope to mask out all possible
clouds and accept some commission errors, so smaller values of para-
meter A and B should be used. In addition, ATSA also use the statistics

of each image in the time series to determine some parameters to in-
crease the adaptability of ATSA. For example, the HOT transformation
has been used in many cloud screening methods, such as MFC (Li et al.,
2017) and Fmask (Zhu and Woodcock, 2012). However, these methods
apply one HOT formula to all images. For instance, both MFC and
Fmask use HOT= Bblue-0.5Bred for all images. However, the coefficients
in the HOT transformation vary from scene-to-scene, so it is necessary
to estimate the HOT parameter for individual images (Chen et al., 2016;
Zhang et al., 2002). ATSA regresses the coefficients in HOT transfor-
mation model in each image by an automated strategy which can get
optimal cloud index images.

Third, ATSA uses the minimal clear observations in image time
series over cloudy regions to ensure accurate cloud and shadow
masking without fitting a time series model of these observations. For
both cloud and shadow detection, there are two hierarchies in ATSA. In
the first hierarchy, ATSA selects samples from all images in the time
series for optimizing the class centers in the K-means classifier. As we
know, it is quite common that image scenes are totally covered by
clouds. If the K-means classifier (K=2 or 3) is applied to each in-
dividual image, it cannot detect all clouds in a totally cloud-covered
image. In the second hierarchy, ATSA only uses “clear” observations in
the time series to estimate the adaptive threshold, and further detects
clouds and shadows omitted in the first hierarchy. Another multi-tem-
poral method, Tmask, also uses clear observations in the time series to
refine the initial cloud mask from Fmask. It can detect more thin clouds

Fig. 26. User's and producer's accuracy of cloud detection for the Landsat-4 MSS image DOY200 in the Puerto Rico site using different values of parameter A.

Fig. 27. Number of clear observations of individual pixel in the Landsat-8 time series at both Hong Kong and Puerto Rico sites.
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than Fmask (Zhu and Woodcock, 2014). However, Tmask is not ap-
propriate in our test sites in cloudy regions. Fig. 27 shows the number of
clear observations of individual pixels in the time-series data of Hong
Kong and Puerto Rico site. We can see that both sites have considerable
pixels with fewer than 6 clear observations. The clear observations are
not enough for Tmask (15 clear observations are recommended) to
accurately estimate the parameters in the time series model, leading to
misclassifying cloudy pixels as clear pixels (Foga et al., 2017). Unlike
Tmask, ATSA does not fit a time series model using many clear ob-
servations. It can be an alternative to Tmask for screening clouds in
time-series data of cloudy regions or short time series (e.g., one year)
which is unlikely to have enough clear observations.

There are also some limitations in ATSA. First, ATSA currently does
not have a snow detection module. In tropical and subtropical regions,
which are among the cloudiest regions (Ju and Roy, 2008), images in
these regions do not have snow in all seasons except at the highest
elevations. If the images include snow, ATSA is likely to detect snow as
clouds (see Jan. 26 image in Fig. 24). This outcome may be acceptable
in many applications, such as vegetation studies, in which, like clouds,
snow would often be excluded. Actually, most current algorithms often
confuse snow and clouds even if they have a snow detection module,
like the Fmask results shown in Fig. 13 and Fig. 24. If more powerful
snow detection methods are developed in the future, they can be in-
tegrated with ATSA. Second, although the HOT transformation can
suppress the pixel values of various land covers (also see an experiment
in a desert landscape shown in the Supplementary Data), the very
bright pixels may be identified as clouds. A recent study proposed an
iterative HOT (IHOT) algorithm which can better suppress surface re-
flectance (Chen et al., 2016), but it needs more computing time. IHOT
can be used as an alternative to HOT if the computing time is not a
restriction factor. Third, land cover changes may happen in the time
series. It may bring temporal variability in the HOT time series which
could further affect the cloud detection by ATSA. An experiment re-
ported in the Supplementary Data shows that ATSA may be not affected
by many types of land cover changes, but other methods (e.g. Tmask)
which can model land cover change may obtain better results than
ATSA when substantial land cover changes exist. Fourth, ATSA may
omit some cloud shadows on water surfaces or cloud shadows on the
land surface that are extremely thin. Omission of cloud shadows on
water surfaces may not affect mapping the water bodies, but it may
affect water quality modeling. Thin cloud shadow on land surfaces may
also affect quantitative information retrieval. Omission errors from
missed cloudy pixels are the most common errors in cloud shadow
masking methods (Foga et al., 2017); however, more accurate cloud
detection with ATSA in the types of landscapes tested should reduce
this error. These errors can be corrected by a further manual checking.
Fifth, ATSA requires a time series, albeit with fewer dates than existing
methods. Last, due to the limitation of resources and support, ATSA was
tested in several typical sites and on data sets from three satellite sen-
sors. More comparison and validation are needed, and they are our
future studies. Due to its simple principles, ATSA has an acceptable
efficiency for processing time-series data. ATSA only used 11min and
13min for the Landsat-8 time series in Hong Kong and Puerto Rico sites
respectively (program coded in interactive data language and run on a
windows laptop with a 2.50GHz CPU and 8 GB RAM). We welcome
other researchers to test ATSA in more areas and different data sets. The
code of ATSA is available upon request.

In conclusion, a new cloud and cloud shadow screening method,
ATSA, was developed in this study. Its target is time series optical
images in cloudy regions. ATSA is a valuable supplement to the family
of cloud and cloud shadow masking algorithms. It will support studies
of land surface dynamics using dense optical time series, such as studies
of forest phenology in tropical regions using Landsat or Sentinel-2
images.
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