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Abstract
Modeling climate change effects on species and communities is critical especially in isolated
islands. We analyzed the potential effects of climate change on 200 plant species in Puerto
Rico under two emission scenarios and in four periods over the twenty-first century. Our
approach was based on ensemble bioclimatic modeling using eight modeling algorithms and
community richness analysis. Our findings showed that the probabilities of environmental
suitability decline for wet climate species and increase for drier and warm climate species in
the future periods under both emission scenarios, with stronger effects under the higher
emission scenario. Expansion of dry climate species to higher elevations appears to be a
prominent response of species to climatic change in the island based on changes in environ-
mental suitability but the actual species redistribution will be influenced by their life histories,
potential adaptation, dispersal abilities, species introductions, and species interactions. This
potential movement leads to a spatial pattern of species richness at site level that shows a
positive relationship with elevation, which becomes stronger in the later periods of the century.
The spatial pattern of species richness, if combined with single species projections, can provide
critical information for conservation management in the island. Conservation management can
support island-wide biological diversity by protecting the wet climate species on the uplands.

1 Introduction

Human effects on biodiversity through global climate change raise the need to project the
threats to species and communities using modeling approaches (Nogués-Bravo and Rahbek
2011; Pecl et al. 2017). Climate-driven species redistributions have widespread consequences
for economic development, food security, human health, livelihoods and culture, and
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additional positive feedbacks on the climate itself (Pecl et al. 2017 and references within).
Studying the underlying driving forces of species occurrence and community formation are at
the core of modeling efforts to project the effects of global climate change. Species commu-
nities are formed by abiotic environmental conditions, biotic interactions, movement and
dispersal abilities, natural and anthropogenic disturbances, and other random processes related
to extinction, ecological drift, and environmental stochasticity (Soberón 2007; Peterson 2011;
Chase and Myers 2011). Climate was classically assumed to have a stronger effect at the
regional to continental scales and species interactions assumed to drive local community
patterns. However, increasing evidence from recent studies show the importance of microcli-
matic variability on local distribution of species and community assembly, whereas other
studies have demonstrated the importance of species interactions on species and communities
at larger extents and coarser grains (D’Amen et al. 2017 and references within).

Species respond to changes in environmental conditions, notably climate change, in
multiple ways. These include acclimating or adapting to new conditions, going locally extinct,
or migrating/dispersing to newly favorable areas which is demonstrated by redistribution to
higher latitudes, higher altitudes, and deeper in water in case of aquatic species (Moritz et al.
2008; Berg et al. 2010; Gilman et al. 2010; Harsch et al. 2017). Species redistribution is a
mechanism of searching for resource availability in the new conditions imposed by climate
change. For example, moisture availability was recently reported as an important driving force
for westward shifts of tree species in the United States (Fei et al. 2017). In small tropical
islands, species are restricted in redistributing across latitudes and longitudes and their
dispersal in response to climate change is limited to higher elevations. Species responses are
of great importance in tropical forests which harbor the majority of Earth’s species and are
exposed to rapid rates of climate change relative to current variability (Feeley and Silman
2010a; Feeley et al. 2012).

Community richness is the number of co-occurring species in a community. It is the
simplest measure of biodiversity most commonly estimated in species assemblage modeling
(Guisan and Rahbek 2011). It has often been considered an indicator of conservation value
(D’Amen et al. 2017) and used as a biodiversity measure for identifying priority areas for
natural protection and reserve design (e.g., Young et al. 2009; D’Amen et al. 2011; Mateo et al.
2013). It has been estimated mainly by two distinct methods. Macroecological approaches
focus directly on the realized characteristics of species assemblages based on theoretical
expectations instead of estimating it them from the individual constituent species (Gotelli
et al. 2009). Another more recent approach is the so-called stacked species distribution models
(S-SDM) which aggregate the community-level properties from the properties of all individual
species within the community and it is thus a ‘predict first, assemblage later’ approach
resulting in a measure of community composition (Dubuis et al. 2011; Pottier et al. 2013;
D'Amen et al. 2015). We used a S-SDM approach in this study based on the available species-
level occurrence records across ranges of environmental conditions.

In this study, we modeled the potential effects of climate change as in Henareh Khalyani
et al. (2016) on plant species of Puerto Rico. In the first step, we estimated the relative
importance of potential driving forces of species occurrence by partitioning the variance in
species occurrence and predictor variables. Then, we applied bioclimatic models to map the
environmental suitability for each species in the contemporary and future periods, and finally,
we calculated a measure of community richness and projected its future spatiotemporal
changes under climate change. Species and community-level projections help in understanding
potential changes in habitat suitability due to the projected climate change.
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2 Methods

2.1 Study area

The island of Puerto Rico occupies 8,937 km2 and is located at (178450–188300) N, (658450–
678150) W in the Caribbean region (Fig. 1a). It includes the islands of Vieques and Culebra and
several non-inhabited islands. It is a mountainous island with elevation ranges from the sea level to
1338 m above the sea level in the central mountains, which drives diversity in climatic conditions
across the island. Around 55% of the island is covered with forests now (USDA 2017). The
downscaled projections of the global climate models in the island showed higher warming levels
and precipitation declines than the global averages (Fig. 1b; Henareh Khalyani et al. 2016).

2.2 Species occurrence records

The plant species occurrence records were compiled from a range of georeferenced sources
including herbaria collections and plot-based studies. Specifically, we combined occurrences of
Puerto Rican plants from the online database GBIF (www.gbif.org), four herbaria (UPRRP,MAPR,
NY, and US), and georeferenced observations from other plot-based studies (e.g., Muscarella et al.
2016). The full dataset contains 11871 unique records, with 30–340 (mean = 57) observations for

Fig. 1 a Location of Puerto Rico in the Caribbean region and b precipitation decline between the 1960–1990 and
the 2071–2099 periods under the high emission scenario (Henareh Khalyani et al. 2016)
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each focal species. We processed the occurrence data by first manually standardizing names based
on Acevedo-Rodrıguez and Strong (2011) and then excluding observations with obvious
georeferencing errors (i.e., occurrence points for trees that fell in the ocean or outside of Puerto
Rico). To avoid redundant records that emerge when e.g., herbaria have duplicate specimens, we
excluded duplicate records of the same species with identical geographic coordinates. We included
all species forming the novel plant assemblages in the island listed in Brandeis et al. (2009) and other
plant species based on occurrence record availability, a total of 200 species (Appendix I in the ESM).

2.3 Predictor variables

We used 15 predictor variables in the bioclimatic models of the plant species (Table 1). The climatic
variables were 30-year average datasets at ~ 450-m resolution including mean annual precipitation
(map), mean annual temperature (mat), mean maximum annual temperature (tmax), mean mini-
mum annual temperature (tmin), and potential evapotranspiration ratio (pet). The model calibration
time interval was 1960–1990 for 57 species and 1991–2010 for the remaining 143 species forwhich
no occurrence records were available in the 1960–1990 period. We used the gridded PRISM
climatic data for the 1960–1990 period (Daly et al. 2003), and the average projections of 12 models
from phase 3 of the Coupled Model Intercomparison Project (CMIP3) for the four future periods
under high (A2) and low (B1) emission scenarios (Henareh Khalyani et al. 2016). The terrain
variables including slope, Terrain Ruggedness Index (TRI), Topographic Position Index (TPI),
roughness, and aspect were calculated according to Wilson et al. (2007) using the elevation dataset
from the Shuttle Radar Topographic Mission (Farr et al. 2007) and ‘terrain’ function in the raster
package (Hijmans and van Etten 2014) in R (R Development Core Team 2017). Area Solar
Radiation (arsol) was calculated using elevation data in ArcGIS ArcMap 10.3 software package
(ESRI 2014). We obtained soil property variables from the Gridded Soil Survey Geographic
(gSSURGO) database at 10 m resolution (USDA 2014) and used available water storage (aws)
and soil organic carbon (soc) at 0–150-cm depth, which had the highest importance among the
edaphic variables shown by the percent deviance in the models. Geological units were from the U.
S. Geological Survey mineral resource assessment for the Commonwealth of Puerto Rico (Bawiec
1998).We resampled the edaphic, topographic, and geologic variables to climatic variables to do the
modeling procedure at the resolution of the climatic variables (~ 450 m).

Table 1 Predictor variables used in
all bioclimatic models Variable Abbr.

Mean annual precipitation map
Maximum annual temperature tmax
Minimum annual temperature tmin
Mean annual temperature mat
Potential evapotranspiration ratio pet
Elevation dem
Slope slope
Transposed aspect trasp
Topographic position index tpi
Terrain ruggedness index tri
Roughness roughness
Area solar radiation arsol
Soil organic carbon (0–150 cm) soc
Soil available water storage (0–150 cm) aws
Geological units geo
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2.4 Pre-modeling analysis

To get an estimate of the main driving forces shaping the distributions of species and
communities, we partitioned the variance in the species occurrence data and the environmental
predictor variables and estimated the proportion of variance from the environmental variables,
species interactions, and random effects, i.e., the unexplained variation not predicted by
environmental variables or species interactions. We used the species occurrence records with
the predictor variables in a probit model applied in the Hierarchical Modelling of Species
Communities (hmsc) R package (Ovaskainen et al. 2017) to partition the total variance in the
environmental variables and occurrence records of 57 of the species with occurrence data
availability in the training time period (1960–1990). The biotic interactions were estimated by
pairwise species correlations as the measure of statistical co-occurrence among species
(Ovaskainen et al. 2017). We also applied a Principal Component Analysis (PCA) on the
environmental covariates to further partition the environmental variance between climatic,
topographic, edaphic, and geologic variables. A common issue when modeling the climate
change effects on the suitable areas for species is knowing the extent to which the future
climatic conditions are beyond the ranges of the contemporary climatic variables used for
model calibrations. Away to quantify this is creating the multivariate environmental similarity
surfaces (MESS, Elith et al. 2010). We applied the MESS procedure in ecospat R package (Di
Cola et al. 2017) and plotted the results for the two scenarios and the four periods.

2.5 Bioclimatic modeling

To help account for the fact that model projections generally vary with modeling methods, we
used an ensemble approach of eight algorithms using BIOMOD and the biomod2 R packages
(Thuiller 2003; Thuiller et al. 2016). The applied models were Generalized Linear Model
(GLM), Surface Range Envelop (SRE), Flexible Discriminant Analysis (FDA), Classification
Tree Algorithms (CTA), Artificial Neural Networks (ANN), Multivariate Adaptive Regression
Splines (MARS), Generalized Boosted Regression Models (GBM), and Random Forest (RF).
The predictive performances of models were evaluated by randomly splitting the data into
calibration (or training, 70%) and evaluation (or testing, 30%) subsets. We repeated the data
splitting procedure four times for each modeling algorithm. We used randomly generated
10,000 pseudo-absences with the entire island as the study extent and repeated the procedure
three times for each model. This procedure resulted in 96 models runs for each species (8
methods × 4 data splitting repetitions × 3 pseudo-absence construction repetitions). Then a
weighted ensemble forecasting approach was used in BIOMOD to consolidate all 96 predic-
tions for each species to a single prediction weighted by their predictive performances based
on the True Skill Statistic (TSS). We repeated these steps for each species for four future time
intervals and two high (A2) and low (B1) climate change scenarios substituting the climatic
predictor variables with the climatic model projections under each emission scenario.

2.6 Model evaluation

The lack of true absences in presence-background models hinders the use of common
presence-absence evaluation indices, which evaluate models’ ability to discriminate between
occupied and unoccupied cells. Model evaluation must access only presences in this case. We
assessed the final model performances based on the Boyce index as in Hirzel et al. (2006)
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calculated in ecospat package. Boyce index is a threshold-independent evaluator which is
considered the most appropriate metric for model performance evaluation in case of presence-
only occurrence data. It calculates ratios of the numbers of predicted evaluation points to what
is expected from a random distribution for a range of continuous habitat suitability values and
measures the correlation between the ratio and the habitat suitability. The index values are
Spearman Rank Correlation Coefficient between the continuous ranges of suitability and the
predicted/expected ratio, with values closer to 1 indicating a good model (Hirzel et al. 2006). It
measures how much model predictions differ from the distribution of the observed presences
(Boyce et al. 2002; Hirzel et al. 2006).

2.7 Species richness

We calculated community richness by applying the Spatially Explicit Species Assem-
blage Modeling (SESAM) framework (Guisan and Rahbek 2011) in ecospat package.
The procedure summed the probabilities of habitat suitability for individual species as
obtained from the bioclimatic models. Then, it ranked the species at each site in
decreasing order of probabilities and retained the most probable species down the list
until the sum of the probabilities of the retained species at each site reached the total
probability summed at each site in the previous step (D'Amen et al. 2015). We did
not use a constraint on the number of species because related macroecological studies
were not available and recent studies show that species richness in many communities
can be unsaturated (e.g., Mateo et al. 2017). There is no theoretical support for the
belief that species interactions set an upper limit to the number of species that can
coexist in a community at any scale (e.g., Loreau 2000). The SESAM procedure
retained all species with a predicted probability at each site. We then summed the
retained species at each site as a measure of site-level richness.

3 Results

3.1 Underlying factors and model extrapolations

Variance partitioning showed that 68% of the total variance in the predictor variables was from
the environmental covariates (Fig. 2a). The further analysis of variability within the environ-
mental predictor variables using PCA showed that the first two axes with highest loadings
from climatic variables and elevation formed 55.82% of variance in the environmental
covariates. Geological units had high loading on the third axis, which formed 14.70% of the
variance. The remaining 29.48% of the variance in environmental variables was related to
topographic and edaphic variables (Fig. 2b). The 19% random was the total variance that was
accounted for as ‘hidden factors’ in the model and could be from any other unknown or
unmeasured covariates and also from purely stochastic processes which were not included as
predictors in our models. Biotic interactions as measured from the species by species corre-
lations formed 13% of the total variance (Fig. 2a). The MESS plots showed that the areas with
future climatic variables unpresented in the calibration period increase under both high and
low emission scenarios with stronger increases under the high emission scenario. The number
of climatic variables which changed beyond the contemporary ranges also increases through
time (Fig. 3).
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Fig. 2 a Partitioning the total variance in the environmental predictor variables and the occurrence records of 57
species in the 1960–1990 period and b further partitioning the variance only in the predictor variables using PCA

Climatic Change



3.2 Species changes

Calculating mean changes in environmental suitability at the island scale from the 1991–2010
period to the end-of-century period (2071–2099) showed that all 200 species show either
increasing or decreasing pattern of change in this century with stronger effect under the higher
emission scenario (Fig. 4). Environmental suitability generally decreased for humid and wet
zone species and increased for dry zone species in the future periods. We included the
projected probabilities of environmental suitability for sweet acacia (Acacia farnesiana) which
was identified as the indicator species of one of the tree assemblages by Brandeis et al. (2009),
as an example of dry area species (Appendix II in the ESM). We also include the projections
for Casearia sylvestris which was the indicator species of a wet area community (Brandeis
et al. 2009; Appendix II in the ESM). Model performance evaluation results showed that the
final model of most species obtained a high model performance shown by a positive Boyce
index value above 0.9 (Appendix I in the ESM).

3.3 Community changes

Species within each tree assemblage in Brandeis et al. (2009) showed the same direction of
change depending on their current climates. Specifically, potential future distributions areas
were decreased for wet zone species and increased for dry zone species. However, some
species within the same assemblage showed changes in opposite directions. For example,
while C. sylvestris, as the indicator species of a wet forest community (importance value =
20.5, Brandeis et al. 2009), showed gradual decrease of potential distribution from the first to
the end-of-century period (Appendix II in the ESM), H. courbaril (a less important species in

Fig. 3 Multivariate environmental similarity surfaces (MESS) of the predictor variables in the four future periods
under a–d high and e–h low emission scenarios. Colors at each pixel indicate the number of variables with values
outside of their calibration range
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the same community, importance value = 3.6, Brandeis et al. 2009), showed a gradual increase
in the future periods. The occurrence records of H. courbaril were on lower ranges of mean
annual precipitation and higher ranges of mean annual temperature compared with
C. sylvestris (Appendix II in the ESM). The site (cell)-level species richness was projected
to increase and its spatial distribution was projected to change strongly as upland areas appear
to harbor a larger number of species. Changes in the environmental suitability and conse-
quently the number of species from the first time period to the last period under both climate
change scenarios illustrates the projected increases in the number of species on the upland

Fig. 4 Changes in the probability of environmental suitability for all 200 species from the 1991–2010 period to
the 2071–2099 period under a high and b low emission scenarios. Species are ordered from increases to
decreases in the projected environmental suitability

Climatic Change



areas with highest effects on the two main upland areas, namely Luquillo mountains in the
northeast and the interior mountain region (Central mountains or la Cordillera Central) which
slices the island down the middle expanding west to east (Fig. 5). Plotting the number of
species against elevation for future periods showed that the relationship became stronger in
future periods under both emission scenarios. The relationship of the number of species and
elevation were compared between different time intervals by fitting standard generalized linear
models (GLM). Relationships became stronger both statistically (R2) and visually under both
climate change scenarios showing a higher number of species on higher elevations in the later
periods of the century (Fig. 6).

4 Discussion

Puerto Rican forest communities have undergone a long history of disturbances and recovery.
The island was mostly forested in the sixteenth century but it was largely cleared for
agriculture from 1930 to 1950 (e.g., del Mar López et al. 2001). Since then, rapid losses of
agricultural lands and increase in forest recovery due to the shift of the economy to industry
and services were reported (e.g., del Mar López et al. 2001; Brandeis et al. 2009). Environ-
mental factors specifically the climatic variables had an overarching effect on variation in
species composition of plant communities in the secondary tropical forests emerged through
reforestation (Brandeis et al. 2009). Given this important role of climatic variables, it is critical
for management to project the potential emergent future effects of climate change on the
current forest communities. Our future projections showed that the probabilities of environ-
mental suitability generally increased for hot and dry climate communities and decreased for
cold and wet climate communities. Wet climate species mainly occur in the central mountains
and Luquillo Mountains. They are the main plant species in the subtropical rain forest life zone
in El Yunque National Forest, which is the only rain forest in the island (Henareh Khalyani

Fig. 5 Changes in the number of species as calculated from SESAM framework for future periods under a–d
high and e–h low emission scenarios
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et al. 2016). Some communities may also experience within community changes in species
composition, i.e., ecological reorganization due to difference in the potential responses of
specific species to climate change. For example, the future climatic conditions will support
ecological reorganization within the community dominated by C. sylvestris (Brandeis et al.
2009). This implies potential emergence of novel community compositions in later periods of
the century.

Species move to new regions due to altered climates and some species appear to benefit from the
changes with more available favorite climates. Potential upward movement of the dry and hot
climate species can increase competition for resources on the uplands. This will place additional
pressure on the wet and cold climate species, which will be stressed under the projected decrease in
environmental suitability (Harsch et al. 2017). However, the extent to which species can redistribute
in response to climate change induced warming depends directly on their dispersal abilities,
disturbances, and human activities (Feeley and Silman 2010b; Feeley et al. 2012). There is a great
deal of uncertainty about the migration capabilities of tropical forest plant species at the rates
required to keep pace with climate change (Feeley et al. 2012). Species and communities may also
adapt to the new climatic conditions instead of redistributing to other areas. Adaptive responses
include non-genetic phenotypic acclimation, genetically based evolution, and ecological reorgani-
zation (Webster et al. 2016). Conservation management should promote natural adaptation of
species and communities. Recent studies suggest that conservative approaches that protect biological
diversity can increase the probabilities of adaptation to climate change (e.g., Schindler et al. 2015;
Webster et al. 2016). The projected richness is related to the scale of observations and analyses. We
calculated the changes in species richness at the site level. While the site-level species richness
increases on the uplands, the island-wide richness does not change ormay decrease due to increasing
pressures on the species adapted to cooler and wetter conditions.

The patterns of changes in species richness will provide information for conservation
management. If species can migrate to newly favorable areas, the increase in species richness
at upland sites, and changes in spatial evenness of species will cause different spatial patterns
of biodiversity in the later periods of the century. Increases in relative abundance of adult and
juvenile trees on higher elevations were reported at rates consistent with concurrent climate
change (e.g., Duque et al. 2015). These increases were at the expense of “biotic attrition” or
decrease in species diversity in areas which become less favorable for species (Feeley and
Silman 2010b). However, in this study, the increase in species richness on the uplands did not
decrease the richness on lower dry areas because the new conditions further increased the
suitability for hot and dry climate species on the lowlands. Since the calculated richness is
merely the counted number of species, it alone does not include any detail on the individual
species and their properties. If combined with detailed projections at the species level, it can
provide the basis for adaptive approaches to mitigate the threats from the species redistribu-
tions. For example, Australia’s Queensland government considered maximizing habitats for
range-shifting species in prioritizing areas for new protected areas (Pecl et al. 2017). The
proactive management approaches based on model projections should not be limited to the
species that are projected to do better under the future conditions. They must also consider
promoting species that will be potentially stressed such as the wet and cold climate species
currently on the Puerto Rican uplands to protect the biological diversity.

The strength of changes in environmental suitability in the future periods is also partly
caused by model extrapolations since all future model projections required extrapolations into
changed climates in the future time intervals with the largest extents of extrapolations in the
later periods (Fig. 3). Given the limitations of the correlative approaches especially in the small
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islands with limited possibility for including areas with different climatic conditions in model
training, integrating results from mechanistic modeling approaches will complement these
projections especially for interpreting the effects of climatic conditions in the future. The
projections of potential species distributions presented here reflect abiotic environmental
changes, which outline the fundamental niches of species. They are based on the assumption
that the environmental filtering is properly captured by the environmental variables used in the
models. They are thus not in absolute but rather relative values because not all potential
environmental variables were included in our models and the overall prevalence of each
species is not known. Although in relative values, they do represent changes in environmental
suitability for species under the future climatic conditions. Species are likely to respond in
more complex ways than these projections in future environmental conditions based on their
colonization history, evolutionary processes, biotic interactions, dispersal abilities, strength of
human effects, and policy changes. Study of functional traits in Puerto Rico has shown that
species occurrence in the island is linked to their local community weighted mean functional
traits (Muscarella and Uriarte 2016). The pool of available approaches and analytical abilities
will be improved by future progress in methods, data availability and quality, and richer
knowledge on the underlying processes obtained from experimentation. Future works should
include the effects of management and land use policies and other socioeconomic factors. The
correlative approach applied here and the future projections based on abiotic filtering do not
test the hypotheses but rather define the hypotheses that should be further evaluated, complet-
ed, and tested by mechanistic approaches and by including other driving forces of species and
communities not incorporated here.

5 Conclusions

We projected the twenty-first century climate change effects on 200 Puerto Rican plant species
using bioclimatic models and estimated the future changes in community richness under two
emission scenarios. The probabilities of environmental suitability were projected to increase
for low-altitude dry and warm climate species while it was decreased for the high-altitude
colder and wet climate species. This implies potential movement of species to higher altitudes
if species do not adapt to the new conditions and if their migration capabilities permit
movement. This will increase species richness at the site level on the uplands putting
competition pressure on the wet and cold climate species in addition to the altered climatic
conditions. Conservation management can protect island-wide biological diversity by promot-
ing the wet climate species currently occurring on the uplands. Our correlative approach based
on abiotic environmental filtering should be evaluated by other approaches adding more
species and potential driving forces and experimentations for more complete insights on
climate change effects on plant species and communities in Puerto Rico.
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model (GLM) across the cloud of points. R2, m, and b represent coefficient of determination, slope, and intercept
of the fitted regression model respectively
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