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A B S T R A C T

The Normalized Difference Vegetation Index (NDVI) is one of the most commonly used vegetation indices for
monitoring ecosystem dynamics and modeling biosphere processes. However, global NDVI products are usually
provided with relatively coarse spatial resolutions that lack important spatial details. Producing NDVI time-
series data with high spatiotemporal resolution is indispensable for monitoring land surfaces and ecosystem
changes, especially in spatiotemporally heterogeneous areas. The Improved Flexible Spatiotemporal DAta Fusion
(IFSDAF) method was developed in this study to fill this need. In accord with the distinctive characteristics of
NDVIs with large data variance and high spatial autocorrelation compared with raw reflectance bands, the
IFSDAF method first produces a time-dependent increment with linear unmixing and a space-dependent in-
crement via thin plate spline interpolation. It then makes a final prediction by optimal integration of these two
increments with the constrained least squares method. Moreover, the IFSDAF was developed with the capacity to
use all available finer-scaled images, including those partly contaminated by clouds. NDVI images with coarse
spatial resolution (MODIS) and fine spatial resolution (Landsat and Sentinel) in areas with great spatial het-
erogeneity and significant land cover changes were used to test the performance of the IFSDAF method. The root
mean square error and relative root mean square error of predicted relative to observed results were 0.0884 and
22.12%, respectively, in heterogeneous areas, and 0.0546 and 25.77%, respectively, in areas of land-cover
change. These promising results demonstrated the strength and robustness of the IFSDAF method in providing
reliable NDVI datasets with high spatial and temporal resolution to support research on land surface processes.
The efficiency of the proposed IFSDAF method can be greatly improved by using only the space-dependent
increment. This simplification will make IFSDAF a feasible method for monitoring global vegetation.

1. Introduction

The Normalized Difference Vegetation Index (NDVI) enhances the
absorptive and reflective features of vegetation and provides a way of
estimating canopy greenness and vigor (Rouse et al., 1974; Huete et al.,
2002). Accordingly, NDVI time-series data derived from spaceborne
sensors have been widely used in monitoring ecosystem dynamics and
modeling biosphere processes to help understand the responses of

ecosystems to climate change (Pettorelli et al., 2005). The coarse spatial
resolutions of the available NDVI time-series products (e.g., GIMMS,
MODIS, and SPOT VGT), which range from 250m to 8 km, are the most
significant constraints on these applications and prevent them from
capturing the spatial details necessary for monitoring land surface and
ecosystem changes, especially in geographically heterogeneous areas
(Gao et al., 2006; Rao et al., 2015). The requirement for NDVI time-
series data with both high spatial and high temporal resolution in such
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applications has created a need for the development of spatiotemporal
fusion methods that blend high-frequency but low-spatial-resolution
images (e.g., MODIS images, hereinafter referred to as coarse images)
with high-spatial-resolution but low-frequency images (e.g., Landsat
images, hereinafter referred to as fine images) (Zhu et al., 2018). Be-
cause of the recent emergence of constellations of CubeSats and new
satellite systems (e.g., Sentinel-2 data with a five-day or better revisit
cycle and 10-m spatial resolution), the latest satellite images no longer
require a trade-off between spatial and temporal resolution. However,
spatiotemporal fusion is still necessary for long-term studies that in-
volve historical satellite images collected before 2015.

When using spatiotemporal fusion technology to produce NDVI data
with high spatiotemporal resolution, users need to make two decisions:
(Ι) selection of an appropriate blending strategy, either Blend-then-
Index (BI) or Index-then-Blend (IB), and (ΙΙ) selection of a suitable and
accurate spatiotemporal fusion method. Recent studies relevant to the
first decision (Chen et al., 2018; Jarihani et al., 2014; Tian et al., 2013)
have demonstrated that the IB strategy consistently yields comparable
or better results than the BI strategy, mainly because the IB method has
the following advantages over the BI method: (i) there is less error
propagation in the IB blending process; (ii) the IB process is less com-
putationally expensive; and (iii) with advanced filters, it is easier to
clean the noise (e.g., cloud effects) on the NDVI than on the raw re-
flectance bands (e.g., Chen et al., 2004). Consequently, the IB strategy
is generally recommended and has become the dominant blending
strategy for producing fused NDVI products.

A number of spatiotemporal fusion methods relevant to the second
decision have been proposed and validated in recent years (Zhu et al.,
2018). These methods require at least one pair of cloud-free fine and
coarse NDVI images at a base date and a series of coarse NDVI images at
the prediction dates as input. However, a consensus regarding the most
suitable method for producing high spatiotemporal resolution NDVI
data has not been reached. To enhance features, NDVI uses a band
combination that enlarges the contrast between vegetated and non-
vegetated pixels and therefore displays larger spatial and temporal
differences than the raw reflectance bands in most satellite images. To
maintain that greenness sensitivity, a suitable spatiotemporal method
for fusing NDVI images should: (i) accurately predict greenness, even in
areas with large spatial and temporal variance; (ii) require only one pair
of clear fine and coarse NDVI images at a base date to ensure applic-
ability in areas with frequent cloud contamination; and (iii) be able to
handle land cover change, such as urbanization, deforestation/refor-
estation, wildfires, floods and other land cover transitions. Among the
existing spatiotemporal fusion methods, only the Flexible Spatio-
temporal DAta Fusion method (FSDAF) (Zhu et al., 2016) meets these
criteria and can be considered a potential fusion method. Other existing
methods fail to satisfy at least one criterion, especially the third. For
example, none of the following methods can handle land cover changes
that occur between the base date and prediction date: the spatial and
temporal adaptive reflectance fusion model (STARFM, Gao et al.,
2006), the enhanced STARFM (ESTARFM, Zhu et al., 2010), the spatial
and temporal adaptive vegetation index fusion model (STAVFM, Meng
et al., 2013), the unmixing-based spatiotemporal reflectance fusion
model (U-STFM, Huang and Zhang, 2014), the NDVI linear mixing
growth model (NDVI-LMGM, Rao et al., 2015), and the spatial and
temporal reflectance unmixing model (STRUM, Gevaert and Garcia-
Haro, 2015). Learning-based methods, such as the Sparse-representa-
tion-based spatiotemporal reflectance fusion model (SPSTFM, Huang
and Song, 2012; Song and Huang, 2013), the error-bound-regularized
semi-coupled dictionary learning model (EBSCDM, Wu et al., 2015),
and the extreme learning machine-based fusion method of Liu et al.
(2016) are better at capturing land cover change. However, their
learning step is time consuming, and their accuracy decreases where
spatial heterogeneity is high and scale differences between coarse and
fine images are large (Zhu et al., 2016).

FSDAF is based on a spectral unmixing analysis and uses thin plate

spline (TPS) interpolation to capture land cover change, as long as the
change is detectable in coarse images (Zhu et al., 2016). FSDAF requires
the same input data as two widely used spatiotemporal fusion methods,
including STAFRM (Gao et al., 2006) and the unmixing-based data
fusion (UBDF) algorithm (Zurita-Milla et al., 2008), but its predictions
are more accurate, especially in the NIR band of heterogeneous land-
scapes (Tables 3 and 4 in Zhu et al., 2016). Like the NDVI, the NIR band
has larger spatial and temporal variances than the red band. NIR re-
flectance generally varies more among land cover types than the red
band, and it changes more with vegetation growth cycles. Moreover,
FSDAF can capture both gradual and abrupt land cover changes,
something that is difficult for current spatiotemporal fusion methods to
do. The many advantages of FSDAF suggest that it may be an appro-
priate method for producing high spatiotemporal resolution NDVI data.
However, the FSDAF method can be improved. The FSDAF method
relies entirely on the results of TPS interpolation to distribute residuals
(ε) between predicted and true values on the assumption that errors
depend mainly on the landscape homogeneity. Such an assumption is
very empirical and has no theoretical basis. It may not be an optimal
way to distribute residuals for different scenarios. Furthermore, in
practice, many available finer-scale images (hereafter, fine images) are
partly contaminated by clouds. Clear pixels in these partly con-
taminated fine images can provide useful information on temporal
changes, as demonstrated in the STAIR method for daily surface re-
flectance fusion (Luo et al., 2018). Using cloud-free fine images to-
gether with partly contaminated fine images will therefore facilitate
spatiotemporal NDVI fusion and expand its applicability to cloudy re-
gions. Unfortunately, the FSDAF method does not have a similar cap-
ability and is therefore not applicable in cloudy regions.

To address these limitations, we propose the Improved Flexible
Spatiotemporal DAta Fusion (IFSDAF) method for producing high spa-
tiotemporal resolution NDVI time series. The IFSDAF incorporates
constrained least squares (CLS) theory into the FSDAF method. It uses
CLS to combine a temporal prediction, derived from an unmixing pro-
cedure, and a spatial prediction, derived from TPS interpolation. This
combination ensures that the final prediction is obtained from an op-
timal integration of temporal and spatial predictions. Moreover, the
IFSDAF was developed with the capacity to employ all available fine
images, including partly contaminated ones (e.g., cloud coverage<
70%). To validate the effectiveness of the proposed method, we com-
pared the performances of the IFSDAF and three popular NDVI fusion
methods (i.e., NDVI-LMGM, STARFM, and FSDAF) using the IB strategy
in several experimental areas, including a site with a heterogeneous
landscape, a site with abrupt land cover changes, and a site where sa-
tellite images contained numerous clouds.

2. Methodology

Although the principles of existing spatiotemporal fusion methods
vary greatly, the main idea can be summarized by

= + +F F F .p 0 (1)

The fine increment of NDVI (ΔF) between the prediction date (tp)
and the base date (t0) is first estimated, and then the predicted fine
NDVI values (Fp) at time tp are equated to the sum of the base fine NDVI
value (F0), the increment (ΔF), and the residuals ε.

Given that F0 is known, IFSDAF also follows Eq. (9), but it estimates
the increment in two ways: (i) time-dependent increments using un-
mixing analysis and (ii) space-dependent increments using the Thin
Plate Spline (TPS) interpolation method. The IFSDAF then combines the
two increments to obtain a final ΔF by the constrained least squares
(CLS) method. The CLS method adopted here improved upon the ori-
ginal FSDAF by adaptively combining the two increments.

Fig. 1 shows the flowchart of the proposed IFSDAF. The input data
for IFSDAF include coarse NDVI time-series images and all available
fine NDVI images within the same time interval. In these images, coarse
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NDVI and fine NDVI images acquired on the same date were designated
as one pair. The pair with the least cloud contamination was selected as
the base pair of images (C0 and F0), and its acquisition date was the base
date t0. The dates of other pairs are denoted as ⋯, p−3, p−2, p−1,
p+1, p+2, p+3, ⋯. The coarse and fine NDVI images of these pairs
were denoted as (⋯, Cp−3, Cp−2, Cp−1, Cp+1, Cp+2, Cp+3, ⋯) and (⋯,
Fp−3, Fp−2, Fp−1, Fp+1, Fp+2, Fp+3, ⋯), respectively. The task of IFSDAF
was to predict fine NDVI images on any date for which a course NDVI
image was available, e.g., the date tp. In IFSDAF, the input fine NDVI
images were not required to be cloud-free, with the exception of F0. As
is the case with other spatiotemporal fusion methods, all the coarse and
fine NDVI images were georegistered and cropped because they had to
be the same size. In addition, coarse NDVI time-series were smoothed
by an algorithm based on the Savitzky-Golay filter (Cao et al., 2018;
Chen et al., 2004), which was designed to reconstruct high-quality
NDVI time-series data by retaining clear-sky values and interpolating
cloudy values. Cloud pixels in partly cloud-contaminated fine NDVI
images were masked by the Fmask algorithm (Zhu and Woodcock,
2012). A land cover classification map at a fine resolution, which could
be derived from either existing land cover products such as Globe-
land30 (Chen et al., 2015) or the classification result of the input clear
fine images, was needed to provide fractional cover for the unmixing
process. The output of IFSDAF was synthetic fine NDVI images (Fp) on
the prediction date tp (p=1, 2, 3, …). A more detailed description for
each implementation step of IFSDAF is given below, and a list of no-
tations and explanation is given in the Appendix.

2.1. Generation of time-dependent increments with the unmixing method

According to linear spectral mixing theory, the time-dependent
NDVI change (increment) of a coarse pixel can be considered to be a
linear combination of NDVI increments of all fine pixels within that
coarse pixel during a short period of time (Rao et al., 2015). A linear
mixture model was therefore used to unmix the increment of coarse
pixels from the base date t0 to the prediction date tp on the assumption
that fine pixels belonging to the same class of land cover had a similar
increment within the local region (Busetto et al., 2008; Rao et al.,
2015). Neighboring coarse pixels within a moving window centered on
a coarse pixel (x, y) were used to establish a linear equation system, as
shown by
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where n is the number of coarse pixels and l is the number of land cover
classes within the moving window. ΔC(x, y) is the NDVI increment of
the coarse pixel (x, y) that can be obtained directly from coarse NDVI
time series images. ΔFc is the fine NDVI increment of class c within the
window. fl (x, y) is the fraction of class l within the coarse pixel (x, y),
which can be obtained from the land cover map at a fine resolution.
ΔCwindow is the set of all coarse NDVI increments in the window. The
variables min(ΔCwindow), max(ΔCwindow), and std.(ΔCwindow) are the
minimum value, maximum value, and standard deviation of ΔCwindow,
respectively. A moving window sized at 7× 7 coarse pixels is re-
commended because the number of coarse pixels in the window, 49, is
commonly much larger than the number of land cover classes. This
choice of window size ensures that the abovementioned over-
determined linear equations are minimally influenced by collinearity
and land cover changes. By solving the linear equations, the time-de-
pendent NDVI increment of each class (ΔFc) in the moving window can
be acquired. The fine time-dependent increment ΔT(xj, yj), where (xj, yj)
devotes the jth fine pixel in the coarse pixel (x, y), is then defined as
follows:

=T x y F x y c( , ) if fine pixel ( , ) belongs to class .j j c j j (3)

The fine-resolution land cover map used to compute the class frac-
tions can be an available land cover product or classification of a cloud-
free fine image. In practice, to make the fusion process automatic, ex-
isting fusion methods often use unsupervised classifiers (e.g., K-means
and ISODATA) to obtain spectral classes rather than real land cover
classes (Rao et al., 2015; Zhu et al., 2016). Users need to set the number
of classes in unsupervised classification. Results of previous studies
have indicated that 3 to 6 classes can produce satisfactory results in
most situations (Rao et al., 2015; Zhu et al., 2016). Assessment of the
accuracy of the classification map is not included in the fusion process
because (1) aggregation of the fine-scale class and the coarse-scale
fraction will average out some errors in classification and may therefore

Fig. 1. Flowchart of the Improved Flexible Spatiotemporal DAta Fusion method (IFSDAF).
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not cause a large problem in solving Eq. (2), (2) temporal change as-
signed to a pixel with incorrect class labels using Eq. (3) will be com-
pensated by the space-dependent increment introduced in Section 2.2,
and (3) selection of reference samples for accuracy assessment will
introduce more human-computer interactions. Although the proposed
method is not sensitive to classification accuracy, inclusion of more
accurate and robust classification methods in the IFSDAF could further
improve its performance.

2.2. Generation of space-dependent increments by TPS interpolation

A coarse NDVI image at time tp contains signals of land cover
changes when changes are significant enough to appear in coarse pixels.
Spatial interpolation of coarse NDVI to fine resolution will therefore
retain useful information on land cover changes. Accordingly, coarse-
spatial-resolution NDVI images at times tp and t0 are interpolated to fine
spatial resolution with the Thin Plate Spline (TPS) interpolation method
(Chen et al., 2014; Zhu et al., 2016). TPS is a spatial interpolation
technique for point data based on spatial dependence (Dubrule, 1984)
and has been employed to obtain interpolation results because of its
high accuracy. Another increment from the difference between inter-
polation results at times tp and t0 can then be acquired. Because this
increment uses only the spatial dependence among coarse pixels, it can
be referred to as the space-dependent increment ΔS(xj, yj), as shown in
the following equation, where FpTPS(xj, yj) and F0TPS(xj, yj) are TPS-in-
terpolated values at times tp and t0, respectively, and (xj, yj) is the jth
fine pixel within the coarse pixel (x, y):

=S x y F x y F x y( , ) ( , ) ( , ).j j p j j j j
TPS

0
TPS

(4)

A space-dependent increment has two advantages over a time-de-
pendent increment. First, a coarse NDVI image on date tp contains
signals of land cover changes if the changes are significant enough to be
recorded. Such land cover change information can be directly captured
at a fine resolution by TPS interpolation. Second, because a space-de-
pendent increment is independent of the classification map and un-
mixing procedure, it has the potential to justify errors in the time-de-
pendent increment that resulted from classification or unmixing. In this
study, TPS was used to estimate the space-dependent increment rather
than to estimate the NDVI value at time tp. This strategy has been used
in FSDAF, because the space-dependent increment reveals the changes
of NDVI directly. Zhang et al. (2015) have also suggested that using an
increment yields higher accuracy than predicting the value directly at
time tp. The use of this space-dependent increment is further discussed
in Section 5.

2.3. Combination of the two increments by CLS

The time-dependent increment and space-dependent increment can
be regarded as two independent predictions by two different models.
The former uses information of the temporal changes of NDVI, and the
latter uses mainly the spatial dependence of the NDVI. Their prediction
accuracies should vary under different scenarios and spatial

dependencies. It is therefore likely that a reasonable combination of the
two increments can improve the performance and robustness of the
fusion method.

The simplest and most effective way of combining the time-depen-
dent increment (ΔT) and space-dependent increment (ΔS) would be
summing them with reasonable weights. Moreover, an ideal combina-
tion should be as close to the true fine NDVI increment (ΔF) as possible.
Thus, an objective function of weighted increments can be written as
follows:

= +w w w S w T F( , ) arg min ( ) ,
w w k

k k kS T
( , ) (0,1)

S T
2

S T (5)

where ΔSk, ΔTk, and ΔFk are the space-dependent increment, the time-
dependent increment, and the true increment of the kth fine pixel, re-
spectively. The wS and wT are the weights of the space-dependent in-
crement and the time-dependent increment, respectively. Eq. (5) can be
solved by the CLS method. The values of wS and wT must be non-
negative and sum to 1.0.

However, because the fine NDVI values at time tp are unknown, it is
impossible to obtain the true fine increment (ΔF). Fortunately, a real
NDVI increment of a coarse pixel (ΔC) from t0 to tp is available because
coarse observations are available on multiple dates. Therefore, both the
time-dependent increment and the space-dependent increment were
scaled up to the resolution of a coarse pixel (ΔCT and ΔCS), as shown in
Fig. 2. Then, wS and wT in Eq. (5) could be obtained by solving

= +w w w C w C C( , ) arg min ( ) ,
w w k

k k kS T
( , ) (0,1)

S
S

T
T 2

S T (6)

where ΔCkS, ΔCkT and ΔCk are the scaled-up space-dependent incre-
ment, scaled-up time-dependent increment, and true increment of the
kth coarse pixel, respectively. Here, the average value of all fine NDVI
pixels within a coarse pixel is used to produce a scaled-up space-de-
pendent increment (ΔCS) and a scaled-up time-dependent increment
(ΔCT), and ΔCk is the difference between the coarse NDVI values at
times tp and t0. Because the weights wS and wT are spatially dependent,
Eq. (6) is solved in a 7×7 pixel moving window at a coarse resolution
corresponding to the window size of the unmixing process. The final
fine increment can then be calculated with the estimated wS and wT as
follows:

= × + ×F x y w S x y w T x y( , ) ( , ) ( , ),j j j j j j
Com

S T (7)

where ΔFCom(xj, yj) is the combined increment of fine pixel (xj, yj). The
wS and wT are assumed to be scale-invariant. The rationale for this as-
sumption is discussed in Section 5.

2.4. Distribution of residuals

After CLS optimization, the combined increment could capture most
of the fine NDVI increment. Although the residuals were minimized,
they were not zero. The residuals are expressed mathematically by

=
=

R x y C x y
m

F x y( , ) ( , ) 1 ( , ),
j

m

j j
1

Com

(8)

where R(x, y) is the residual within a coarse pixel (x, y) and m is the
number of fine pixels within the coarse pixel. To further improve the
accuracy of the combined increment, it was necessary to allocate this
residual to each fine pixel (xj, yj) within the coarse pixel (x, y). Because
the residuals were minimized by the CLS method, they could be dis-
tributed equally to all pixels (Chen et al., 2014), as indicated by

= + +F x y F x y F x y R x y( , ) ( , ) ( , ) ( , ),p j j j j j j0, 0
Com (9)

where F0(xj, yj) is the fine NDVI of pixel (xj, yj) on date t0 and F x y( , )p j j0,
is the predicted fine NDVI on date tp. After the distribution of residuals,
a smoothing process based on the similarity of pixels (Zhu et al., 2016)
was applied to remove block effects in the fused image.

Fig. 2. Illustration of weighted calibration based on the CLS method.
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2.5. Combination of multi-time predictions

Eq. (9) makes it possible to predict a fine NDVI, F p0, , on date tp based
on the fine NDVI on date t0. In the same way, there will be several NDVI
predictions, such as Fp p3, , Fp p2, , Fp p1, , +Fp p1, , +Fp p2, , +Fp p3, , …, for date
tp based on clear observations at times p+ i (i=…, −3, −2, −1, 1, 2,
3, …) in other partly cloudy fine NDVI images. Recognition of a pixel as
either clear or cloudy can be performed based on the Fmask algorithm
(Zhu and Woodcock, 2012). Generally, predictions with a base date too
far from tp were excluded on the assumption that the base NDVI images
were weakly related to the NDVI image on date tp. Operationally, the
maximum interval between the base date and the prediction date was
set to two months. The NDVI difference of coarse pixels between the
base date and the prediction date was then used to calculate the con-
tribution of each prediction, as shown in the following equation:

=

=

w x y
C x y C x y

( , ) 1

( , ) ( , )
,q p

i
q
i

p
i

,

1

9

(10)

where Cqi(x,y) and Cpi(x,y) are the coarse NDVI values of the ith pixel
on base date q and the prediction date tp in the 3× 3 moving window
centered on coarse pixel (x, y). The wq,p(x, y) is the contribution coef-
ficient of the predicted fine NDVI value F x y( , )q p j j, within the center
coarse pixel (x, y). Based on this contribution coefficient, the combined
prediction of a fine pixel (xj, yj) on date tp is given by

= ×F x y w x y F x y w x y( , ) [ ( , ) ( , )]/ ( , ).p j j
q

q p q p j j
q

q p, , ,
(11)

If Cqi(x,y) equals Cpi(x,y), F x y( , )p j j will be equated to F x y( , )q p j j,
because wq,p(x, y) is infinite in this case. Finally, for each prediction
date in the time series, a final prediction via Eq. (11) can be obtained by
using the routine described in Sections 2.1–2.5.

To assess the performance of the new method, four accuracy indices,
the root mean square error (RMSE), relative RMSE (rRMSE, defined as
RMSE divided by averaged observation value and multiplied by 100%),
Pearson correlation coefficient (r) and average difference (AD) were
used. These indices have been widely used to assess the accuracy of
fused images in previous studies (e.g. Gao et al., 2006; Rao et al., 2015;
Zhu et al., 2016). Moreover, to test the performance improvement
compared with FSDAF, a t-test was employed to check whether the
prediction accuracy between IFSDAF and FSDAF is significantly dif-
ferent.

3. Data

3.1. Data for experiments using single cloud-free fine images

We used Landsat images without clouded pixels to evaluate the
performance of the proposed IFSDAF model at two sites with different
land-cover characteristics (Table 1). Because the existing spatio-
temporal fusion methods have been shown to generally perform well in
homogeneous areas (Zhu et al., 2018), this study tested the perfor-
mance of the new method only in relatively complex cases (i.e., a
heterogeneous site or a site with significant changes of land cover). The
Landsat images covering the two sites have also been used by
Emelyanova et al. (2013), and they were used to test the NDVI-LMGM
and FSDAF algorithms by Rao et al. (2015) and Zhu et al. (2016).

This first site was located in the Coleambally irrigated area,
Australia (34°54′S, 145°57′E), which is characterized by a very het-
erogenous landscape with many small patches of farmland and rapid
phenological changes (Fig. 3). Two Landsat ETM+ images (800×800
pixels) acquired on 25 November 2001 (t0) and 12 January 2002 (tp)
during the growing season were scaled up by a factor of 8 to synthesize
MODIS images. In this test, the synthesized MODIS images instead of
the real MODIS images were used, because synthesized MODIS images
can exclude co-registration errors (Gevaert and Garcia-Haro, 2015;
Wang and Atkinson, 2018; Zhu et al., 2016). This exclusion ensured a
fair comparison of different algorithms, because different algorithms
have different sensitivities to co-registration errors. The NDVI data
were then derived from the corresponding reflectance images. A land
cover classification map was then obtained by the Iterative Self-Orga-
nizing Data Analysis Technique (ISODATA) method based on the
Landsat image acquired on 25 November 2001 (t0).

The second site was located in the Gwydir area, Australia (29°07′S,
149°04′E), where there was flooding in December 2004. Two Landsat
TM images (800× 800 pixels) on 26 November 2004 (t0) and 12
December 2004 (tp) were used at this site (Fig. 4). Abrupt land cover
changes are apparent in these two images because of the flood
(Emelyanova et al., 2013). These two Landsat images were also scaled
up by a factor of 8 to synthesize MODIS images. All the NDVI data were
derived from the original images. The ISODATA method was used to
obtain a land cover classification map based on the Landsat image on 26
November 2004 (t0).

For these two sites, NDVI-LMGM (Rao et al., 2015), STARFM (Gao
et al., 2006), and FSDAF (Zhu et al., 2016) were also applied to the
same datasets for comparison.

3.2. Data for experiments using multiple cloudy fine images

Experiments using multiple fine images contaminated by clouds
were implemented to assess the performance of the proposed IFSDAF
method for predicting the NDVI time series when the input fine images
were partly contaminated by clouds. To test the applicability of IFSDAF
for fusing images from diverse sensors, we fused both Landsat and
Sentinel-2 images with MODIS at two cloudy sites (Table 1). The first
site is mainly covered by natural vegetation and the change could be
slow, while the second site is covered by many crops thus the change is
fast.

The first site was the Shennongjia Forestry District (109°59′–110°58′
E, 31°15′–31°57′ N), which is located in the western part of Hubei
Province, central China (Fig. 5). This area is characterized by a sub-
tropical monsoon climate and its elevation ranges from 398 to 3105m.
The distribution of vegetation in this area is very heterogeneous and
includes evergreen broadleaf forests, deciduous broadleaf forests, and
evergreen coniferous forests. There are also farmlands and artificial
surfaces in this area (Wang et al., 2018; Zhao et al., 2005). Considering
that the area is mainly covered by subtropical forest with relatively
slow ecosystem dynamics, the 16-day composite MODIS NDVI dataset
(250-m-resolution, MOD13Q1 in 2015), instead of daily data, was used
(https://ladsweb.nascom.nasa.gov/search/), because it can adequately
capture ecosystem dynamics and 16-day composite data contain high-
quality VI values selected from the daily observations. Landsat 8 level
2A surface reflectance products in 2015 and their cloud masks were

Table 1
Summary of test sites and data sources.

Experiments Location MODIS Landsat Sentinel-2A Prediction mode

Test 1 Coleambally irrigated area, Austrilia Yes Yes No Single date
Test 2 Gwydir area, Australia Yes Yes No Single date
Test 3 Shennongjia, central China Yes Yes No Time series
Test 4 Southeast Asia Yes No Yes Time series
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downloaded from the USGS (https://espa.cr.usgs.gov/ordering/new/).
All Landsat images were co-registered to MODIS images. A mosaic of
two adjacent Landsat-8 scenes covered the entire area of this site. When
mosaicking two Landsat 8 images with close acquisition dates, pixels in
the overlapped region had two NDVI values. The higher value was re-
tained because a high NDVI is less likely to have been affected by poor
atmospheric conditions (Van Leeuwen et al., 1999). Those Landsat
images with clouds, shadows, and snow that covered>70% of the
image were discarded. Finally, one clear Landsat image (t0, on 14

October 2015) and nine partly contaminated Landsat images (Fig. 1 in
Supplementary data) were selected as the fine-resolution NDVI images
for data fusion.

The second site was in Southeast Asia and was characterized by a
complex landscape that included croplands, water, forests, and urban
areas. The site was covered by one Sentinel-2A scene (size
10,980×10,980 10-m-resolution pixels) with a tile number of
T48QUD. We acquired Sentinel-2A satellite level 1C products from
EarthExplorer (https://earthexplorer.usgs.gov/). Considering the

Fig. 3. Test data from the heterogeneous site in the
Coleambally irrigation area: Landsat NDVI on (a) 25
November 2001 and (b) 12 January 2002, (c) false-
color-composite Landsat image on 25 November
2001, (d) MODIS-scale NDVI on 25 November 2001
and (e) 12 January 2002, and (f) land cover map on
25 November 2001 by ISODATA.

Fig. 4. Test data for a site that experienced land
cover change in the Gwydir area: Landsat NDVI on
(a) 26 November 2004 and (b) 12 December 2004,
(c) false-color-composite Landsat image on 26
November 2004, MODIS-scale NDVI on (d) 26
November 2004 and (e) 12 December 2004, and (f)
classification map on 26 November 2004 obtained
with ISODATA.
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tropical climate with relatively fast ecosystem dynamics, the 8-day
composite MODIS NDVI dataset (calculated from 8-day composite
MODIS surface reflectance products (MOD09Q1)), instead of daily data,
was used to capture the ecosystem dynamics and meanwhile alleviate
cloud impacts. Both images were acquired in 2017. Atmospheric cor-
rection of Sentinel-2A images was done with a tool provided by the
European Space Agency, Sen2Cor (http://step.esa.int/main/third-
party-plugins-2/sen2cor/). Cloud masks of the sentinel-2A images
were produced with Fmask software (https://github.com/gersl/fmask),
and images with>70% cloud cover were discarded. We obtained three
clear Sentinel-2A images on 13 February, 5 March, and 20 December
2017 (Fig. 6). Finally, we also obtained 21 partly cloud-contaminated
images (Fig. 2 in Supplementary data). Sentinel-2A NDVI was calcu-
lated based on band 4 and band 8, which have some overlap in wave-
length and bandwidth with the Landsat and MODIS red and NIR bands.
Although Sentinel-2A has another narrow NIR band (band 8a) which is
more consistent with MODIS NIR band, it was not used in this study
because of its coarser spatial resolution 20m. In addition, simple linear
regression was applied to normalize MODIS NDVI to Sentinel-2A NDVI
to compensate for inconsistencies caused by differences in atmospheric
correction between the two image sources. There is high consistency
between Landsat data and MODIS data (Zhu et al., 2016), so simple
linear regression is only used to normalize NDVI between Sentinel-2A
and MODIS.

4. Results

4.1. Fusion using a single cloud-free fine image

Fig. 7 provides a visual comparison of a Landsat NDVI image pre-
dicted by IFSDAF and the three existing methods with the observed
Landsat NDVI on 12 January 2002 (tp) for the farmland site with great
heterogeneity and rapid phenological changes. Compared with the
other three methods, the image fused by IFSDAF (Fig. 7d) more closely
resembled the actual NDVI image (Fig. 7e) (e.g., the zoomed-in sub-
region). In contrast, the NDVI-LMGM (Fig. 7a) and FSDAF (Fig. 7c)
methods produced large errors in some pixels that led to discontinuities
in the fused images, and STARFM (Fig. 7b) led to an unsatisfactory
blurring effect for small objects. Scatter plots (Fig. 8) and quantitative
assessment also confirmed that the proposed method achieved the
highest accuracy (Table 2). The IFSDAF had the lowest RMSE (0.0884),
lowest rRMSE (22.1%), and highest r (0.938) for the whole image.
Furthermore, the fact that the AD (−0.0001) of the newly proposed
method was closer to zero than the AD of the other methods indicated
that it was the least biased of the methods. In addition, the metrics of
accuracy of the NDVI-LMGM (RMSE=0.130 and rRMSE=32.5%) and
STARFM (RMSE=0.165 and rRMSE=41.2%) were much lower for
the whole image than the corresponding metrics of the FSDAF
(RMSE=0.100 and rRMSE=25.1%).

We also tested the hypothesis that the variance of the NDVI is
normally larger than that of the raw reflectance bands. Fig. 9a shows
frequency distributions of the Red and NIR bands and the corre-
sponding NDVI from the Landsat image on 12 January 2002 (tp). The

Fig. 5. Shennongjia Forestry District in Hubei Province, central China. The image is a true-color-composite Landsat 8 OLI image acquired on 14 October 2015.

Fig. 6. False-color-composites of clear Sentinel 2A images on 13 February, 5 March, and 20 November 2017 with tile number T48QUD.
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Fig. 7. Landsat NDVI on 12 January 2002: predictions by (a) NDVI-LMGM, (b) STARFM, (c) FSDAF, (d) IFSDAF, and (e) the actual NDVI. For better visulization, all
images were enlarged in the supplementary data.

Fig. 8. Scatter plots of estimated results compared with observed values of Landsat NDVI on 12 January 2002: (a) NDVI-LMGM, (b) STARFM, (c) FSDAF, and (d)
IFSDAF.
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NDVI displayed two peaks with significantly greater variance than
those of the Red and NIR bands because of the amplification of vege-
tation signals and the suppression of non-vegetation signals. To further
investigate the performance of the proposed method in sub-regions with
different NDVI signatures, we divided the frequency distribution of the
NDVI (Fig. 9a) into three parts: low NDVI (< 0.4), medium NDVI
(0.4–0.7), and high NDVI (> 0.7). It is apparent from Table 1 that the
IFSDAF and FSDAF were more accurate than the NDVI-LMGM and
STARFM. Moreover, the IFSDAF performed better than the FSDAF in
the medium NDVI and high NDVI sections. The t-test also suggests that
the IFSDAF is statistically significant in performance improvement
compared with FSDAF.

For the Gwydir site, where there was flooding, the IFSDAF fusion
result (RMSE=0.0546) captured the change (Fig. 10d) and produced
results that more closely resembled the actual NDVI pattern than the
other three methods. The NDVI-LMGM produced a fused image
(RMSE=0.0794) with significant block effects (Fig. 10a). The image
produced by STARFM (RMSE=0.0686) was generally similar to the
actual NDVI image (Fig. 10b). FSDAF also produced an accurate fused
image (RMSE=0.0617), but it made erroneous predictions for some
pixels (Fig. 10c). The blue arrow in Fig. 10c indicates the error edges
produced by the FSDAF. In fact, before the flood, there was a small river
in the enlarged area that resulted in the edge (marked by the blue
arrow) between water and barren land. However, the river overflowed
as a result of the flood and covered nearby farmland. The original edge
of the river therefore disappeared, as shown in the actual Landsat NDVI
image (Fig. 10e). IFSDAF was the only one of the four methods that
captured this phenomenon. The scatter plots in Fig. 11a–d show no
obvious bias among the four methods, but the fact that the FSDAF and
IFSDAF points are closer to the 1:1 line than the NDVI-LMGM and
STARFM points indicates that IFSDAF and FSDAF have comparable
capacity to capture land cover changes.

Fig. 9b shows frequency distributions of the Red and NIR bands and

the NDVI on 12 December 2004 (tp). The variance of the NDVI was
significantly higher than that of the Red or NIR bands. Moreover, be-
cause of the flood, there were many negative NDVI values that caused
three peaks around NDVI=−0.2, NDVI=0.2, and NDVI= 0.4 in the
frequency distribution of NDVI. We divided the whole image into three
parts—low NDVI (< 0), medium NDVI (0–0.3), and high NDVI
(> 0.3)—to quantitatively assess the accuracy. It is clear (Table 3) that
the IFSDAF was highly accurate. The RMSE of 0.0546 was lower, and
the r of 0.953 was higher, than the corresponding statistics for the other
three methods. The IFSDAF was also more accurate in each of the low,
medium, and high NDVI regions, where the RMSE statistics for the
IFSDAF were 0.0798, 0.0467, and 0.0584, respectively. The t-test also
indicates that the IFSDAF is statistically significant in performance
improvement compared with FSDAF in each of the low, medium, and
high NDVI regions.

4.2. Fusion using multiple fine images partly covered by clouds

Twenty-three Landsat-like NDVI images were produced by IFSDAF
using the 16-day MODIS NDVI time series and available Landsat images
in 2015 (see all 23 fused NDVI images and the fused NDVI profiles of
sample pixels in the Supplementary data). Here, four Landsat NDVI
images of the Shennongjia site captured on 14 April, 3 July, 5
September, and 10 December 2015 served as reference data for the
independent validation. In an example analysis, the 14 April image was
predicted by IFSDAF using all other eight partly contaminated fine
NDVI images as input, and then clear pixels of the true 14 April image
were used to assess the accuracy of the predicted 14 April image. For
comparison, FSDAF used only one clear Landsat NDVI image on 14
October 2015 to predict the above four Landsat NDVI images. Table 4
summarizes the accuracies of the fusion results of the four images, and
Fig. 12 shows the predictions. To simplify the comparison, the results of
the NDVI-LMGM and STARFM fusions are not shown because they
yielded less accurate results than FSDAF.

It is evident from Fig. 12 that IFSDAF can produce fused images that
more closely resemble the real Landsat NDVI than FSDAF. The RMSE
values on all dates were lower for IFSDAF than for FSDAF (Table 4).
These improvements of accuracy are attributable mainly to the extra
information provided by the partly contaminated Landsat images,
which can be put to good use in IFSDAF but not in FSDAF. In contrast,
FSDAF used only one fine image on 14 October 2015, which was se-
parated by as much as 3–6months from several of the prediction dates.
This long time interval led to low accuracy on these prediction dates.
More important, the fact that improvement of the IFSDAF on 3 July and
5 September during the peak stage of vegetation growth was more
statistically significant than the improvement on the other two dates
indicates that IFSDAF may be more effective for fusing images with
medium to high NDVI values. This result is similar to the result of the
Coleambally irrigation area experiment.

At the South Asia site, the clear Sentinel-2A NDVI image on 5 March
2017 was selected as the base image. The other two clear Sentinel NDVI
images (12 February and 20 December) were used as reference data to

Table 2
Comparison of RMSE, rRMSE, r, and AD between predicted NDVI and observed NDVI for NDVI-LMGM, STARFM, FSDAF, and the IFSDAF method in the Coleambally
irrigation area. The results of t-test between predictions accuracy of IFSDAF and FSDAF are marked in RMSE column under IFSDAF.

Method NDVI-LMGM STARFM FSDAF IFSDAF

RMSE rRMSE r AD RMSE rRMSE r AD RMSE rRMSE r AD RMSE rRMSE r AD

Low NDVI 0.0916 38.85% 0.4476 0.0148⁎,⁎⁎ 0.1068 45.29% 0.5214 0.0564 0.0669 28.36% 0.5576 0.0160 0.0664⁎ 28.16% 0.6334 0.0170
Medium NDVI 0.2415 45.11% 0.2917 −0.0476 0.1482 27.69% 0.2805 −0.0175 0.1962 36.64% 0.3740 −0.0205 0.1473⁎ 27.51% 0.4328 −0.0060
High NDVI 0.1589 19.03% 0.3171 −0.0477 0.2130 25.52% 0.2983 −0.1656 0.1221 14.62% 0.3926 −0.0426 0.1116⁎ 13.36% 0.4493 −0.0408
Whole image 0.1300 32.54% 0.8744 −0.0053 0.1646 41.19% 0.7778 −0.0295 0.1002 25.06% 0.9238 −0.0012 0.0884⁎ 22.12% 0.9376 −0.0001

⁎ For t-test, means p < 0.05.
⁎⁎ For t-test, means p < 0.01.

Fig. 9. Frequency distributions of the Red and NIR bands and the NDVI for (a)
the Coleambally irrigation area on 12 January 2002 and (b) the Gwydir area on
12 December 2004. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 10. Landsat NDVI for the Gwydir site on 12 December 2004: predictions by (a) NDVI-LMGM, (b) STARFM, (c) FSDAF, (d) IFSDAF, and (e) the actual NDVI. For
better visulization, all images were enlarged in the supplementary data(For interpretation of the references to color in this figure, the reader is referred to the web
version of this article.).

Fig. 11. Scatter plots of estimated results compared with observed value of Landsat NDVI on 12 December 2004: (a) NDVI-LMGM, (b) STARFM, (c) FSDAF, and (d)
IFSDAF.
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assess the accuracy of the IFSDAF and FSDAF. The base fine spatial
resolution NDVI image and the 21 partly cloud-contaminated fine NDVI
images were used as input for IFSDAF, whereas only the 5 March 2017
image was input to FSDAF. The results (Fig. 13 and Table 5) showed
that the IFSDAF produced more accurate predictions. The RMSE values
were lower on both dates for IFSDAF (0.0863 and 0.0740) compared
with FSDAF (0.0999 and 0.1469).

5. Discussion

The proposed spatiotemporal data fusion model IFSDAF, involves
several assumptions. The superiority over the original FSDAF model
implies the proposed method has some strengths. This section will
discuss the rationale behind key steps and the major improvements
compared with FSDAF.

5.1. Derivation of space-dependent increments

In this study, a space-dependent increment (ΔS) was derived based
on the difference between interpolation results of coarse NDVI on dates
tp and t0, as shown in Eq. (4). However, it is also possible to obtain the
ΔS by using the fine NDVI values on date t0 F0(xj, yj) as following:

=S x y F x y F x y( , ) ( , ) ( , ),j j p j j j j
TPS

0 (12)

We argue that the ΔS derived from Eq. (4) is a better indicator than
from Eq. (12), based on a theoretical comparison of these two ΔS values
explained below. The predicted fine NDVI on date tp (i.e., Eq. (9)) can
be simplified as following:

= + = + +F F F F w S w T.p0, 0
Com

0 S T (13)

where the residuals R had been discarded because they are negligible,
and the notation (xi, yi) was removed for simplified expression. Because
wS+wT= 1, F0 can be replaced by wSF0+wTF0. Then

= + + +F w F S w F T( ) ( )p0, S 0 T 0 (14)

If the right-hand side of Eq. (4) is substituted for ΔS, Eq. (14) can be
rewritten as follows:

= + + +F w F F F w F T( ) ( ).p p0, S 0
TPS

0
TPS

T 0 (15)

Alternatively, if the right-hand side of Eq. (12) is substituted for ΔS,
Eq. (14) can also be rewritten as follows:

= + + +
= + +

F w F F F w F T
w F w F T
( ) ( )

( ) ( )
.p p

p

0, S 0
TPS

0 T 0

S
TPS

T 0 (16)

The difference between Eqs. (15) and (16) is the term F0− F0TPS in
Eq. (15). The TPS prediction is a spatially smoothed prediction that
loses spatial details to some degree. As a result, F0− F0TPS functions
similarly to a high-pass filter that modulates spatial contrast at time t0.Ta
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Table 4
Comparison of RMSE, rRMSE, r, and AD between the predicted NDVI and ob-
served partly contaminated fine NDVI on 14 April, 3 July, 5 September, and 10
December 2015 in the Shennongjia Forestry District.

Date Methods RMSE rRMSE r AD

Apr. 14 FSDAF 0.0873 13.33% 0.6319 −0.0481
IFSDAF 0.0819⁎ 12.51% 0.6620⁎,⁎⁎ −0.0475

Jul. 3 FSDAF 0.0578 6.44% 0.6504 −0.0138
IFSDAF 0.0368⁎ 4.09% 0.8508 −0.0137

Sep. 5 FSDAF 0.0671 7.86% 0.7279 −0.0306
IFSDAF 0.0393⁎ 4.61% 0.8615 −0.0173

Dec. 10 FSDAF 0.1246 21.24% 0.6516 −0.0729
IFSDAF 0.0913⁎ 15.57% 0.7768 −0.0366

⁎ For t-test, means p < 0.05.
⁎⁎ For t-test, means p < 0.01.
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Several fusion models (Song and Huang, 2013; Luo et al., 2018) have
assumed that this spatial contrast is relatively stable from t0 to tp.
Therefore, the term F0− F0TPS in Eq. (15) should better capture spatial
details in the fused image (see an experiment comparing the two space-
dependent increments in supplementary data S5).

5.2. Rationale for assuming weights to be scale-invariant

The optimized weights used for combining the space-dependent
increments and time-dependent increments were assumed to be scale-
invariant in the proposed IFSDAF method (Section 2.3). This assump-
tion has also been verified by an experiment conducted in the Co-
leambally irrigation area. A moving window of 7×7 coarse-resolution
pixels was used to calculate the weights (wS and wT) for the space- and
time- dependent increments of the center coarse pixel. Meanwhile, the
fine resolution weights were derived based on the fine increment
(ΔF= Fp− F0) by using a fine NDVI image Fp through the CLS method.
The similarity of the scatter plots of the space-dependent increment
weights derived from the two approaches (Fig. 14a) suggested that the
weights derived from both the coarse and fine images were inter-
changeable. The combined increments calculated using the two types of
weights agreed well (Fig. 14b). The RMSE values of the fusion results
using these two types of weights (0.0941 vs. 0.0934 to weights based on
ΔC and ΔF, respectively) were not significantly different (t-test,
p=0.15). The scale effect on the derived weights was therefore neg-
ligible and would not cause significant differences in the combined
increment.

5.3. Necessity for combining time-dependent and space-dependent
increments

In IFSDAF, the time-dependent and space-dependent increments
were combined in moving windows with the CLS method. Such a
combination was based on the assumption that the accuracies of the
two increment estimations were different under different scenarios. The
weighted combination was therefore able to improve the accuracy of
the NDVI prediction by balancing the biases in the estimates of the two
increments. We verified this argument by comparing the time-depen-
dent increment, the space-dependent increment, and the combined in-
crement with the real increment (Fig. 15). The performance of the CLS-
based combination agreed with our expectation. The small RMSEs at
both study sites demonstrated the necessity of combining the two

increments. Moreover, the residual of the space-dependent increment
(ΔS−ΔF) was much closer to the residual of the combined increment
(ΔFCom−ΔF) than the residual of the time-dependent increment
(ΔT−ΔF). This suggested that the space-dependent increment con-
tributed more to the combined increment than the time-dependent in-
crement.

5.4. Improvements of IFSDAF compared with FSDAF

IFSDAF was an improvement over FSDAF in the following ways.
First, IFSDAF outperformed the FSDAF for fusing remote sensing images
with high spatial autocorrelation, i.e., the relationship between pixel
values their neighboring pixels. With FSDAF, the increment estimation
was produced mainly by the unmixing process, and the TPS interpola-
tion result was used only to guide the distribution of residuals rather
than to produce space-dependent increments. However, as shown in
Fig. 15, the space-dependent increment estimated by the TPS inter-
polation may have been more accurate than the time-dependent in-
crement made with the unmixing process. The FSDAF underestimated
the contribution of the TPS interpolation to some extent. The reason
why the space-dependent increment was superior to the time-depen-
dent increment is apparent in Table 6, where we calculated the global
Moran's I index (Paradis, 2011) of the coarse images for the Red and
NIR bands, as well as the NDVI, on the base date t0 and prediction date
tp. The global Moran's I index measures the spatial autocorrelation of an
image. The larger the Moran's I index, the higher the spatial auto-
correlation. Table 6 shows that the spatial autocorrelation of the NDVI
was greater than that of both Red and NIR reflectance. This is because
the NDVI is a feature-enhancing index, increases the data variance
compared with reflectance in either the Red or NIR bands (Fig. 9a–b). It
is well known that greater spatial autocorrelation can yield more ac-
curate results in spatial interpolation (Gozdowski et al., 2015). Ac-
cordingly, the space-dependent increment estimated by TPS interpola-
tion should be more accurate for the NDVI than for the Red and NIR
reflectance. The fact that the space-dependent increment was more
important for fusing the NDVI than for the raw bands individually
greatly benefitted the NDVI fusion in IFSDAF. This study implies that
use of the space-dependent increment alone may produce acceptable
fusion results, without the need to combine the time-dependent and
space-dependent increments. This simplification of the fusion process
would greatly reduce the computing cost. As a result, this simplified
fusion model would be useful for applications in relatively large areas

Fig. 12. Landsat 8 NDVI in the Shennongjia Forestry District on 14 April, 3 July, 5 September, and 10 December 2015 predicted by FSDAF and IFSDAF.
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and when the scale difference between the coarse and fine images is
relatively small. The latter condition ensures that the number of sample
points (the centers of the coarse pixels) is adequate to obtain an accu-
rate prediction of the fine image via TPS interpolation.

Second, IFSDAF is more flexible than FSDAF in dealing with the
estimation errors of time-dependent increments. The collinearity effect
impacts the accuracy of unmixing for time-dependent increment esti-
mation. Moreover, errors in the classification map and changes in land
cover also cause uncertainties in the time-dependent increment. To
correct the potential errors in the time-dependent increment, FSDAF
introduces a homogeneity index HI(xj, yj), which is derived from the
classification map at t0 and ranges in value from 0 to 1. This index helps
allocate the residuals R(x, y) within the coarse pixel. However, when

Fig. 13. Sentinel-2A NDVI images in the Shennongjia Forestry District on 13 February and 20 December (left) and the results predicted by FSDAF (middle) and
IFSDAF (right).

Table 5
Comparison of RMSE, rRMSE, r, and AD between the predicted NDVI and ob-
served fine NDVI on 12 February and 20 December 2017 with Sentinel-2A data.

Date Methods RMSE rRMSE r AD

Feb. 13 FSDAF 0.0999 24.04% 0.8885 −0.0463
IFSDAF 0.0863⁎ 20.76% 0.9305⁎,⁎⁎ −0.0427

Dec. 20 FSDAF 0.1469 33.69% 0.7401 −0.0082
IFSDAF 0.0740⁎ 17.69% 0.9584 −0.0141

⁎ For t-test results, means p < 0.05.
⁎⁎ For t-test results, means p < 0.01.

M. Liu, et al. Remote Sensing of Environment 227 (2019) 74–89

86



there are land cover changes and misclassifications, the value of HI(xj,
yj) calculated from the classification map at t0 will not be suitable for
allocating residuals on date tp. In this case, the effectiveness of residual
distribution in FSDAF is restricted. Unlike FSDAF, the IFSDAF employs
the CLS method to moving windows and avoids the use of HI(xj, yj);
moreover, it allows the final increment estimation with local and
adaptive capacity to better combine the time-dependent and space-
dependent increments.

The third advantage of IFSDAF is that it employs fine NDVI images
partly contaminated by clouds, in which clear pixels also provide va-
luable information. In IFSDAF, the clear pixels in those fine images are
also used as base data to estimate the fine NDVI values on the predic-
tion date, and all predictions on date tp are finally integrated using
weights based on the magnitude of the temporal change in the NDVI
between base and prediction dates. This weighted prediction can reduce

the critical dependency on the clear fine NDVI image and alleviate the
prediction uncertainties if the date of the clear fine NDVI image is much
earlier than the prediction date. Of course, better use of partly con-
taminated images requires an accurate cloud labeling method (e.g., the
Fmask method). If there are mistakes in cloud labels, the IFSDAF esti-
mates will be impacted. For instance, a land surface with high re-
flectance (e.g., sand or snow) may be misidentified as clouds (Chen
et al., 2016). Moreover, the fact that Fmask sometimes omits thin
clouds can result in cloudy pixels being used in the process of data
fusion. Fortunately, the effect of errors in the cloud mask is minimized
in IFSDAF because it uses a weighted combination of predictions from
multiple dates. Moreover, with the advance of cloud-screening methods
(Zhu and Helmer, 2018), this problem can be greatly alleviated. In
addition, like other existing spatiotemporal fusion methods, a com-
pletely clear image guarantees that all pixels are predicted by IFSDAF.
However, in areas such as tropical regions (e.g., Amazonia), completely
clear fine images are rarely available throughout the year. Under such
conditions, using all partly contaminated fine images instead of a
completely clear image is a practical possibility in IFSDAF, although
such use may omit predictions for some pixels in the fused images if
those pixels do not have even one cloud-free observation in the time

Fig. 14. Scatter plot of weights of space-dependent increments based on (a)
coarse resolution increment (ΔC) and fine resolution increment (ΔF); (b) com-
parison of combined increments using weights derived from coarse and fine
images.

Fig. 15. Errors of different increments: (a) time-dependent increment ΔT, (b) space-dependent increment ΔS, and (c) combined increment ΔFCom in the Coleambally
irrigation area; Errors of (d) time-dependent increment ΔT, (e) space-dependent increment ΔS, and (f) combined increment ΔFCom in the Gwydir area.

Table 6
Moran's I of Red and NIR bands as well as the NDVI on the base date t0 and
prediction date tp in both the Coleambally irrigation area and Gwydir area at
coarse resolution.

Band Base date t0 Prediction date tp

Red NIR NDVI Red NIR NDVI

Coleambally irrigation
area

0.5048 0.5225 0.6439 0.5677 0.4764 0.6840

Gwydir area 0.5867 0.7069 0.7881 0.6401 0.7568 0.8584
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series. A by-product of using all partly cloudy images with IFSDAF is
reconstruction of cloudy pixels in these input fine images, i.e., replacing
the clouded pixels in these fine images by the IFSDAF predictions, as
shown in Fig. 12.

5.5. Applications to other remote sensing products

Although IFSDAF is designed for the spatiotemporal fusion of NDVI
time series, it also has the potential to fuse other vegetation indices,
such as the Enhanced Vegetation Index (EVI; Huete et al., 2002), and
other products (e.g., surface reflectance). To test the applicability of
IFSDAF to other products, we assessed its performance in fusing EVI,
Red and NIR reflectance in the Coleambally Irrigation area, within
which there is great heterogeneity of vegetation. RMSEs of the fused
images on 12 January 2002 (Table 7) suggested that IFSDAF produced
more accurate results than FSDAF when fusing EVI. However, the ac-
curacies of surface reflectance predictions (Red and NIR bands) did not
differ remarkably between IFSDAF and FSDAF. Still, these results con-
firm that IFSDAF is more suitable than the original FSDAF model for
fusing remote sensing products with high spatial autocorrelation.

6. Conclusions

In this study, we proposed an improved FSDAF method specifically
for producing NDVI time series with a high spatiotemporal resolution.
Coarse NDVI (MODIS) and fine NDVI images (Landsat and Sentinel)
were used to test the performance of the new method for the two dif-
ferent sensors. Experiments showed that the NDVI images were more
accurate when they were fused by IFSDAF than by FSDAF as well as by

two other existing methods (NDVI-LMGM and STARFM) in areas with a
great degree of spatial heterogeneity and with significant land cover
changes. The better performance of IFSDAF can be attributed to its
production of space-dependent increments by TPS interpolation, use of
the CLS method in moving windows to adaptively combine the time-
dependent and space-dependent increments, and better use of partly
contaminated fine images. Such significant improvements were con-
sistent with the characteristics of NDVI. It is more variable and larger
spatial autocorrelation compared with the raw reflectance bands. By
taking into consideration the significant contribution of the space-de-
pendent increment via TPS interpolation when the scale difference
between coarse and fine images is not very large, the proposed IFSDAF
method can be further simplified by using only the space-dependent
increment to improve efficiency. This result is also consistent with the
IFSDAF as being a feasible method for applications in large areas and
with different sensors. Moreover, IFSDAF is also applicable to other
vegetation index data. We call for more testing of the new method by
using other satellite data (e.g., Sentinel and VIIRS data) and in other
places.
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Appendix A

Useful notations.

t0 Base date fl(x, y) Fraction of class l within coarse pixel (x, y)
tp Prediction date ΔFc Fine spatial resolution increment of class c within the moving window
(x, y) Location of coarse spatial resolution pixel (x, y) F0TPS Result of TPS interpolation based on coarse NDVI on t0
(xj, yj) Location of jth fine spatial resolution pixel within coarse

pixel (x, y)
FpTPS Result of TPS interpolation based on coarse NDVI on tp

F0 Fine spatial resolution NDVI on t0 ws Weight of spatial-dependent increment
Fp Fine spatial resolution NDVI on tp wT Weight of temporal increment
C0 Coarse spatial resolution NDVI on t0 Fp Fine spatial resolution prediction on date tp
Cp Coarse spatial resolution NDVI on tp F p0, Fine spatial resolution prediction on date tp based on fine NDVI on date t0
ΔF Fine spatial resolution NDVI increment +Fp p1, Fine spatial resolution prediction on date tp based on fine NDVI on date p+1

ΔC Coarse spatial resolution NDVI increment ΔFCom Combined fine spatial resolution increment based on ΔT and ΔS
ΔT Fine spatial resolution temporal increment R(x, y) Residual within the coarse pixel (x, y)
ΔS Fine spatial resolution spatial-dependent increment Cqi(x,y) ith coarse pixel in the moving window centered by coarse pixel (x, y) on date q
ΔCT Upscaled fine spatial resolution temporal increment Cpi(x,y) ith coarse pixel in the moving window centered by coarse pixel (x, y) on date tp
ΔCS Upscaled fine spatial resolution spatial-dependent incre-

ment
wq,p(x,
y)

Contribution coefficient of fine spatial resolution pixels on date q to the final prediction on tp within
coarse pixel (x, y)

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2019.03.012.
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