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Abstract. Coarse dead wood is an important component of
forest carbon stocks, but it is rarely measured in Amazon
forests and is typically excluded from regional forest car-
bon budgets. Our study is based on line intercept sampling
for fallen coarse dead wood conducted along 103 transects
with a total length of 48 km matched with forest inventory
plots where standing coarse dead wood was measured in the
footprints of larger areas of airborne lidar acquisitions. We
developed models to relate lidar metrics and Landsat time se-
ries variables to coarse dead wood stocks for intact, logged,
burned, or logged and burned forests. Canopy characteris-
tics such as gap area produced significant individual rela-
tions for logged forests. For total fallen plus standing coarse
dead wood (hereafter defined as total coarse dead wood), the
relative root mean square error for models with only lidar
metrics ranged from 33 % in logged forest to up to 36 %
in burned forests. The addition of historical information im-
proved model performance slightly for intact forests (31 %
against 35 % relative root mean square error), not justify-
ing the use of a number of disturbance events from histori-
cal satellite images (Landsat) with airborne lidar data. Lidar-
derived estimates of total coarse dead wood compared favor-
ably with independent ground-based sampling for areas up to

several hundred hectares. The relations found between total
coarse dead wood and variables quantifying forest structure
derived from airborne lidar highlight the opportunity to quan-
tify this important but rarely measured component of forest
carbon over large areas in tropical forests.

1 Introduction

Intact and disturbed tropical forests play a critical role in the
global carbon cycle (Pan et al., 2011). From 1990 through
2007, tropical forests contributed about 46 % of the global
carbon sink (Schimel et al., 2015). The largest remaining area
of tropical forest in the Amazon region contains about 50 %
of the carbon stored in all tropical forests or about 60 Pg C
in the living aboveground biomass pool (Saatchi et al., 2011;
Baccini et al., 2012). The Brazilian Amazon retains about
80 % of its original forest cover (PRODES-INPE, 2016) and
while deforestation rates in Brazil have decreased by about
70 % since 2004 (PRODES-INPE, 2016), forest degradation
processes including logging, fire, and fragmentation continue
to deplete carbon stocks.

Published by Copernicus Publications on behalf of the European Geosciences Union.



3458 M. A. S. Scaranello et al.: Estimation of coarse dead wood stocks

Forest degradation is accelerating the rate of tree mortal-
ity across the tropics (McDowell et al., 2018), leading to se-
vere loss of live aboveground biomass (AGB) (Berenguer et
al., 2014; Cochrane, 2003; Longo et al., 2016; Rappaport
et al., 2018). In several areas of the tropics, the AGB de-
creased dramatically after multiple events of forest degrada-
tion (logging, burning, burning and logging). In the central
and eastern Brazilian Amazon the AGB decreased between
18 %–24 % and 35 %–55 % in the Santarém and Paragomi-
nas regions, respectively. On the other hand, forest degrada-
tion promotes the increase in coarse dead wood (CDW) at the
forest floor. The stocks of CDW increase substantially after
forest disturbance by logging and fire.

In the short term, the stocks of CDW increase substan-
tially after forest disturbance by logging and fire. For ex-
ample, fallen CDW stocks increased from 55 Mg ha−1 in in-
tact forest to 75 Mg ha−1 with reduced-impact logging, and
to almost 110 Mg ha−1 in a conventionally logged forest
in Paragominas Municipality (Keller et al., 2004). The im-
portance of CDW is magnified in degraded tropical forests
(Alamgir et al., 2016). In degraded forests, CDW stocks can
exceed the live aboveground biomass pool (Gerwing, 2002;
Palace et al., 2012). Quantifying the spatial and temporal
variability of CDW production and decay is therefore crit-
ical to constrain the magnitude and timing of carbon emis-
sions from forest degradation or climate anomalies such as
droughts (Leitold et al., 2018).

CDW stocks and the rates of decay of CDW constitute
large uncertainties in the carbon cycle budget of the Ama-
zon (Aguiar et al., 2012). We have a limited understanding
of how CDW of intact and degraded tropical forests varies
across space and time. Traditional forest inventories provide
important sources of information for understanding carbon
cycling, but measurements of CDW in tropical forests are
rare, labor intensive, and prohibitively costly for large areas
(Chao et al., 2009). As an alternative, lidar (light detection
and ranging) remote sensing offers the possibility to quantify
AGB and CDW over large areas. In contrast to AGB where
a large number of studies have been developed (e.g., Nelson
et al., 1988; Næsset et al., 2006; Nelson, 2010; Asner et al.,
2012; Longo et al., 2016), few studies have focused on lidar
remote sensing of CDW and, based on a recent comprehen-
sive review (Marchi et al., 2018), none has been conducted
in intact or degraded tropical forest.

Here, we combine a large dataset of airborne lidar
(14 870 ha), Landsat images, and forest inventories of CDW
at 14 sites spread across the Brazilian Amazon. Using air-
borne remote-sensing data, we developed the first lidar-
derived estimates of CDW for intact and degraded tropical
forests including areas that have been logged, burned, and
fragmented by deforestation for agricultural expansion. We
constructed two groups of models containing (1) only lidar-
derived metrics or (2) historical information from Landsat
imagery, ecological variables extracted from lidar data, and
lidar metrics. For the historical models (2), we hypothesized

that the CDW stock increases with the number of degradation
events (Cochrane et al., 1999) and decreases with age since
the last degradation event (Chambers et al., 2000). Addition-
ally, we expected that the CDW stock increases with the in-
creasing gap area (Espírito-Santo et al., 2014a) and with for-
est canopy height, a correlate of live aboveground biomass
(Longo et al., 2016) because aboveground live biomass was
significantly correlated with CDW across the Amazon (Chao
et al., 2008).

2 Material and methods

2.1 Study sites

As part of the Sustainable Landscapes Brazil project, we col-
lected airborne lidar, forest inventories and measurements of
CDW across five states of the Brazilian Legal Amazon (Pará,
Amazonas, Mato Grosso, Rondônia, and Acre) (Fig. 1). The
airborne lidar data used in this study were collected be-
tween 2012 and 2015, covered a total area of 14 870 ha,
and overlapped with 103 CDW transects (48 km of total
length sampled within 6 months of the lidar airborne cam-
paigns). All ground sampling locations were wholly con-
tained in the airborne lidar areas of interest. Our sites in-
cluded two forest types (dense and open evergreen forests)
with a moderate climatic variation (precipitation between
1750 and 2450 mm yr−1), and a large number of disturbance
events and processes (Table 1). The dry season length (de-
fined as months with precipitation ≤ 100 mm per month)
varies from 5 months in the Tanguro (TAN), Feliz Natal
(FNA), and Tapajós (TAP) regions to 3 months in Reserva
Adolpho Ducke (DUC). We sampled intact forests as well
as forest disturbed by reduced-impact logging, conventional
logging, understory fire, and combinations of logging and
fire. We quantified the number of disturbance events and land
use types using historical Landsat images from between 1984
and 2013 (Longo et al., 2016). We inspected all images us-
ing the normalized difference vegetation index (NDVI) and
the normalized burn ratio (NBR). We classified the sites
into five categories with increasing levels of disturbance: in-
tact, reduced-impact logging, conventional logging, burned,
and logged and burned. We summarized disturbance history
by counting the number of degradation events and the time
(years) since the last degradation event.

2.2 Line intercept sampling of fallen CDW

For this study, we define CDW as material greater than 10 cm
in diameter as opposed to fine dead wood (≤ 10 cm) (Harmon
et al., 1995). We used the line intercept method for estimating
fallen CDW volume (Brown, 1974; Keller et al., 2004; Palace
et al., 2007). The line intercept method is a strip sample of
infinitesimal width, and the data collected in the field are the
diameters of wood pieces at their points of intersection with
the plane perpendicular to the ground above the line (Brown,
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Figure 1. Location of the study sites in the states of Brazilian Legal Amazon. Site codes are shown at approximate locations (see Table 1).
The lower inset shows the canopy height model (m) from the AND site as an example of the lidar data covering the field transects for sampling
standing and fallen CDW. The upper inset shows the sample design used with line intercept samples to quantify fallen CDW and associated
square forest inventory plots for aboveground live and standing CDW. CAU, FST, JAM, TAL, TAN, DUC, and TAP sites were classified
as intact; CAU, FST, and JAM sites were classified as reduced-impact logging; BON, PAR, and BET sites were classified as conventional
logging; AND, HUM, BET, SFX, TAL, and TAN sites were classified as burned; AND, BON, FNA, and PAR sites were classified as logged
and burned; PAR, BET, and SFX sites were classified as secondary; BON, CAU, HUM, SFX, and TAN sites had unclassified transects.

1974). CDW volume was calculated as

V =

(
π2

8L

)∑
D2,

where V is the volume of CDW on an area basis (m3 ha−1),
D (cm) is the diameter of the wood piece at the line inter-
cept, and L (m) is the length of the transect used in sampling
(Brown, 1974; Keller et al., 2004). Transect lengths varied
from 250 up to 1200 m (16 were 250 m, 86 were 500 m, and
1 was 1200 m). Transects were matched with the inventory
plots of living and dead trees and within the coverage area of
lidar flights (Fig. 1). We used both square plots and belt tran-
sects for forest inventory. When the inventory plot shape was
square, four inventory plots were established along the CDW
line intercept transect (Fig. 1). When the inventory plot was a
20 m wide belt transect, the line intercept transects for fallen
CDW sampling bisected the inventory transect. The distance
between the transects was at least 50 m in order to maintain
independence of the samples based on an estimate of maxi-
mum tree height (Keller et al., 2004; Palace et al., 2007). A
total of 5 to 22 CDW transects were measured at each site.

We classified the wood pieces into five decomposition
classes in the field, following published literature (Harmon

et al., 1986; Keller et al., 2004), and converted the volume
of CDW into mass by multiplying it by the estimated den-
sity of the dead wood. At all sites, the wood density values
used were: 0.60, 0.70, 0.58,0.45, and 0.28 Mg m−3 for de-
composition classes 1, 2, 3, 4, and 5, respectively (1= intact;
5= fragmented woody debris) (Keller et al., 2004).

2.3 Forest inventory of standing CDW

Several Sustainable Landscapes partners participated in for-
est inventory so we had three sampling designs. The stand-
ing CDW was assessed by using square inventory plots of
40× 40 m (São Félix do Xingu site only) and 50× 50 m
and also long, narrow belt transects of 20× 500 m (Longo
et al., 2016). All trees above either 5 cm or 10 cm diame-
ter at 1.30 m (DBH) were tagged and mapped to the nearest
1 m, and diameters were measured using a metric tape with
1 mm resolution (Longo et al., 2016). We used a handheld
clinometer and metric tape for field measurements of tree
height (Hunter et al., 2013). Snag volume was estimated as a
truncated cone using a taper function (Chambers et al., 2000;
Palace et al., 2007) for estimating diameter. Volume was con-
verted to mass using the same classes and densities used for
fallen CDW.

Biogeosciences, 16, 3457–3474, 2019 www.biogeosciences.net/16/3457/2019/
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2.4 Lidar data acquisition and processing

Geoid Laser Mapping Ltda. (Belo Horizonte, Brazil) ac-
quired small-footprint discrete return lidar (maximum of
four returns per pulse) during flights in 2012–2014 (Table 1).
In 2012 Geoid used an ALTM 3100 (Optech Inc.), while for
data acquired in 2013 and 2014 the company used a simi-
lar ALTM Orion M-200 (Optech Inc.). The height of flights
averaged 850–900 m above ground. The field of view was
approximately 11◦ and the line spacing allowed 65 % over-
lap between adjacent swaths. Coverage area per site varied
from 500 to 1996 ha, with a mean return density of at least
13 returns m−2 (Longo et al., 2016) (Table 1). All transects
of fallen CDW and inventory plots were included under the
coverage area of lidar flights.

In order to compare lidar metrics to ground-based CDW
estimates, we established reference polygons using a buffer
of 25 m on both sides of the fallen CDW transects. The 50 m
total width for our polygons corresponds roughly to the max-
imum height of a single large tree and was a suitable size
to capture canopy gaps. Experiments with narrower tran-
sects introduced considerable noise into gap statistics. Wider
transects would introduce spatial overlap among samples,
thereby compromising the spatial independence of the sam-
ple units. Lidar-CDW models were generated and applied at
the same resolution (160× 160 m, or ∼ 25000 m2).

The lidar point cloud data were processed to produce lidar
metrics using the FUSION software (McGaughey, 2014) for
all returns (all-return metrics) and R environment (R Core
Team, 2017) for calculating the metrics when considering
only last laser returns of the forest canopy (last-return met-
rics) (Table 1). The last-return metrics maximize the pen-
etration through the canopy profile and better reflect under-
story structure (Réjou-Méchain et al., 2015). A digital terrain
model (DTM) for each site was supplied by our lidar ven-
dor based on Terrascan software. We previously compared
the vendor-provided DTMs with the NASA G-LiHT algo-
rithms (Cook et al., 2013) and field geodesic GNSS mea-
surements and found that they generally agreed to within less
than 1 m vertical height (RMSE) at a 1 m horizontal resolu-
tion (Leitold et al., 2015). We normalized all vegetation re-
turns to height above ground by subtracting the height of the
DTM at 1 m resolution. We subsampled lidar point cloud data
by clipping the field plot polygons with the DTM-normalized
vegetation returns.

Along with traditional lidar metrics, we also mapped
canopy gaps and derived four gap metrics. Forest canopies
less than or equal to 10 m in height with a minimum area of
10 m2 in the 1 m resolution canopy height model were con-
sidered gaps (Hunter et al., 2015). Gap areas in each plot
were summarized based on gap area (m2 ha−1), mean gap
size (m2), standard deviation of gap size assuming a lognor-
mal distribution (m2), and gap count (gaps ha−1) (Table 1).

2.5 Forest disturbance history

Based on visual interpretation of Landsat images, we found
30 transects in intact forests, 30 in logged forests, 17 in
burned forests, 14 in logged and burned forests, and 4 in sec-
ondary forests (regeneration following complete clearing for
agriculture or pasture). For modeling, transects classified as
logged and burned were merged into the burned class. Eight
transects were not classified because we lacked cloud-free
images (Fig. 1 and Table 1). Where degradation was identi-
fied, the number of events ranged from one (accounting for
70 % of the transects), up to a maximum of five in a case
where a logging event was followed by four events of burn-
ing. The median age since the last disturbance was 4 years,
ranging from 0.5 (recently logged) up to 23 years following
burning.

2.6 Statistical models

We developed multivariate linear and nonlinear models re-
lating lidar metrics from a single date acquisition period to
CDW. For all models, we summed the fallen CDW from each
transect and the mean value of standing CDW from the as-
sociated forest inventory belt transect or four square plots
(Fig. 1), normalized for the area sampled. Through our ex-
ploration of the data, we found no significant general model
that applied across all forests and disturbance types. There-
fore, we stratified the sites into three classes: intact, logged,
and burned. Logged sites included both conventional and
reduced-impact logging, and burned sites included forests
that had been logged and burned. We designated models that
used only lidar point cloud metrics as independent variables
for a given forest class as lidar-only models. We also devel-
oped historical models that included site identifier or addi-
tional land use history information beyond forest class. The
land use history information derived from Landsat time se-
ries included the number of disturbance events and the years
since the last disturbance. Detailed information about all
Landsat and lidar-derived metrics are found in Table 2. The
approaches for model selection for lidar-only and historical
models are described separately below.

For lidar-only models, we used the subset selection ap-
proach to identify the simplest and most informative com-
bination of variables (Andersen et al., 2014; Miller, 1984).
We excluded highly correlated variables (r ≥ 0.80) and cal-
culated the variation inflation factor (VIF) in the final models
to test for multicollinearity.

For the historical models, we used the framework pro-
posed by Bolker et al. (2009) for input variable selection.
We first selected potential covariates (both Landsat and lidar-
derived) with expected theoretical relations with CDW. For
intact forests, we selected the canopy relief ratio as a mea-
sure of canopy structure and site factor for aggregating site-
specific differences. Previous studies in intact forests sug-
gested differences in CDW stocks, as well as the underly-

www.biogeosciences.net/16/3457/2019/ Biogeosciences, 16, 3457–3474, 2019
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Table 2. Landsat-derived variables and lidar metrics used as potential covariates for modeling CDW in intact and degraded Amazonian
forests.

Landsat Description

Degradation class Status of degradation such as intact, logged, burned, and burned after logging.

Age since the last
degradation event

The age (years) since the last degradation event.

Number of degradation events Number of events of logging or burning.

Lidar

Percentiles Percentiles 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 99 of
the return distribution.

Return fraction among height
intervals

Fractions of returns among predetermined height intervals (e.g., from 0 to 1 m)
or above a predetermined height (e.g., above 20 m).

Gap metrics Mean gap size (m2 ), standard deviation of gap size, standard deviation of gap
size assuming a log-normal distribution, gap area (m2 ha−1), and gap count
(gaps ha−1).

Canopy relief ratio
(Parker and Russ, 2004)

A quantitative descriptor of the relative shape of the canopy
defined as
((mean height–min height) / (max height–m.in height))

Moments of return distribution Mean, median, variance, skewness, and kurtosis

L-moments of return
distribution

L-moments (first, second, third, and fourth) are linear combinations of ordered
data values (elevation returns) described by Hosking (1990), analogous
to traditional moments.

ing mechanisms in the CDW input (Rice et al., 2004; Pyle et
al., 2008). For logged forests, we selected age since the last
disturbance because CDW diminishes with time because of
decomposition (Chambers et al., 2000). We also selected gap
area because tree mortality and CDW stocks were closely
related to gap area in intact forests at Tapajós National For-
est, Pará (Espírito-Santo et al., 2013). For burned forests, we
selected the number of fire events, in addition to age and
gap area. A previous study conducted in Paragominas mu-
nicipality, Pará, and Alta Floresta, Mato Grosso, showed the
gradual increase in CDW stocks from one to three fire events
(Cochrane et al., 1999). In both logged and burned forests we
included a measure of forest canopy height correlated to live
aboveground biomass (Longo et al., 2016) because above-
ground live biomass is significantly correlated with CDW
across the Amazon (Chao et al., 2008). After choosing the
covariates for logged and burned forests, we fit a full model
using ordinary least squares and then performed a backward
selection of the best predictors and their combinations using
the Bayesian information criterion (BIC). For intact forests,
we used a mixed-effect model including site identifier as both
a fixed and random variable (Pinheiro and Bates, 2000).

We log transformed (natural log) the response variables
when necessary for improved model prediction and error dis-
tribution assumptions. We then back-transformed using the
Baskerville bias corrector (exp(σ 2

ε /2)) for model assessment

(Baskerville, 1972). We used adjustedR2 , relative bias (bias,
in %; mean error divided by observed mean), and relative
root mean square error (RMSE, in %; square root of the mean
squared error divided by the observed mean) as goodness-of-
fit measures for comparison with other studies on lidar-CDW
models (Pesonen et al., 2008). We did not calculate adjusted
R2 for the linear mixed-effect model because of the differ-
ence in accounting for the number of parameters in both fixed
and random terms, compared to the ordinary least squares
method (Bolker et al., 2009).

3 Results

3.1 Field sample CDW variability

The overall mean (± standard deviation) total CDW (includ-
ing fallen and standing dead wood) stock grouped by site
was 50.6 (±17.7) Mg ha−1. Individual site averages ranged
from 21.8 to 93.0 Mg ha−1 (Table 3). When grouped by
degradation level and site, average total CDW was lower
for burned forests (40.4± 29.7 Mg ha−1) than logged forests
(70.9±19.9 Mg ha−1). In comparison, intact forests grouped
by site had an average total CDW of 42.4 (±19.7) Mg ha−1.
Logged forests had the largest CDW stocks with an aver-
age of 70.9± 19.9 Mg ha−1 and recorded the largest CDW
stock (150 Mg ha−1) in a single transect in FST, where log-
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Table 3. CDW (mean and standard deviation) by degradation level and site. AGB, standing CDW, fallen CDW, and total CDW are in Mg ha−1.

Site Degradation level n AGB Standing CDW Fallen CDW Total CDW CDW/AGB

mean SD mean SD mean SD

AND BRN 4 184.0 21.9 17.7 5.0 40.6 10.4 58.2 0.3
CVL+BRN 1 106.4 – 21.7 – 54.1 – 75.8 0.7

BON CVL 2 211.9 49.9 5.2 6.1 14.7 4.8 19.9 0.1
CVL+BRN 3 166.2 10.6 5.7 3.8 38.8 9.3 44.5 0.3
UKN 1 342.7 – 0.7 – 7.2 – 7.9 0.0

CAU INT 4 410.6 13.7 7.1 5.3 26.1 10.4 33.2 0.1
RIL 16 351.7 58.8 12.6 6.5 47.8 24.2 60.3 0.2
UKN 2 489.7 63.0 15.6 5.6 22.1 6.3 37.7 0.1

DUC INT 10 325.3 129.6 9.2 6.0 48.5 15.7 57.6 0.2

FNA CVL+BRN 5 3.8 4.7 18.3 4.7 29.3 6.4 47.6 12.6

FST INT 1 416.9 – 25.7 – 37.1 – 62.9 0.2
RIL 4 345.6 66.8 16.7 8.7 83.8 41.6 100.5 0.3

HUM BRN 3 194.6 44.7 2.5 0.8 10.5 5.9 13.1 0.1
UKN 3 192.7 97.6 5.1 3.7 49.4 12.5 54.5 0.3

JAM INT 3 264.2 45.0 16.8 1.2 19.7 10.6 36.5 0.1
RIL 3 228.1 78.1 20.3 4.0 40.2 8.2 60.4 0.3

PAR CVL 4 151.6 48.6 9.5 2.5 37.9 25.1 47.4 0.3
CVL+BRN 5 81.2 22.7 17.8 8.0 55.3 18.9 73.1 0.9
SEC 1 109.6 – 8.2 – 35.7 – 43.8 0.4

EBT CVL 1 155.1 – 13.5 – 53.8 – 67.3 0.4
BRN 1 129.3 – 30.2 – 62.5 – 92.7 0.7
SEC 2 107.4 17.4 5.8 0.9 32.6 12.5 38.4 0.4

SFX BRN 4 199.4 71.6 7.6 3.2 11.4 4.1 19.0 0.1
UKN 1 155.5 – 30.1 – 13.0 – 43.1 0.3
SEC 1 145.0 – 34.1 – 17.9 – 52.0 0.4

TAL INT 1 150.7 – 6.2 – 12.7 – 18.9 0.1
BRN 2 138.5 5.5 12.0 1.5 42.1 19.8 54.1 0.4

TAN INT 2 167.1 38.9 10.4 1.8 11.3 0.8 21.6 0.1
BRN 3 160.1 26.0 19.9 9.0 12.7 6.0 32.5 0.2
UKN 1 114.1 – 21.3 – 11.3 – 32.5 0.3

TAP INT 9 247.7 101.4 6.6 5.2 59.6 21.9 66.2 0.3

ging had occurred less than 6 months prior to the data collec-
tion. The mean total CDW stock was 21.0 (±2.0) Mg ha−1

in TAN intact transects – less than DUC and TAP intact
transects. The mean total CDW stock was 57.6 (±15.0) and
66.2 (±20.0) Mg ha−1 in DUC and TAP, respectively.

3.2 Modeling scenarios

The best lidar-based predictor of total CDW for transects
classified as intact was the 75th percentile of last returns (m)
(Fig. 2a). The gap area (m2 ha−1) was the best predictor of
total coarse wood debris for transects classified as logged

(Fig. 2b). For burned forests, total CDW was inversely re-
lated to the return fraction above 30 m (Fig. 2c).

Models for total CDW in the lidar-only scenarios gener-
ally performed well (Table 4; Fig. 3). Relative RMSE ranged
from 33 % for total CDW in logged forest to up to 36 % in
burned forest (Table 4). The predictions depended, in part, on
last-return metrics for intact forest classes and notably, gap
area for the logged class. The 1st and 10th percentile of all
returns, as well as the mode of all return heights, were also
important for predictions in the logged and burned classes.
Models that separately considered fallen and standing CDW
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Figure 2. Relationship between total CDW (TCDW) and the best single lidar-based predictor variable of TCDW: (a) the 75th percentile of last
returns (m) (n= 30) for transects classified as intact; (b) gap area (m2 ha−1)(n= 23) for reduced-impact logging transects; (c) return fraction
above 30 m (last returns) for transects classified as burned (n= 30). (a) ln(TCDW)= 1.96+ 0.08 75th percentile of last returns. P<0.01;
adjusted R2: 0.36. (b) TCDW= 1.04 gap area0.66. P<0.01; adjusted R2: 0.57. (c) ln(TCDW)=−3.97–11.95 return fraction above 30 m.
P<0.01; adjusted R2: 0.25.

components produced poorer fits than models of total CDW
(Table B2).

The inclusion of disturbance history and site identifier in
the historical models led to modest improvements in the
quality of prediction for total CDW in intact forest, a very
small gain (1 % decrease in RMSE) for logged forests, and
a poorer fit (9 % increase in RMSE) for burned forest (Ta-
ble 5). The historical model for intact forest included two
site-related variables in the mixed model, a site factor, and
a random slope for the canopy relief ratio at each site. His-
torical models that separately fit fallen and standing CDW
components produced poorer results than for total CDW (Ta-
ble B3).

Although the lidar-only models had relatively good perfor-
mance measured by adjusted R2 and RMSE, we also exam-
ined whether the models were biased. In general, we found
no evidence of biases (Figs. 4 and 5) or heteroskedasticity
in the model residuals (Fig. 5). Measured by mean relative
bias, the model for burned forests had the poorest perfor-
mance among the lidar-only models with a value of −3 %.
The mean relative bias for the historical scenario was 0.0 %,
0.0 %, and −3.9 % for the intact, logged, and burned forests,
respectively (Table 5).

In the lidar-only group models, some of the lidar metrics
chosen by subset selection reflected site history. For example,
in the intact forests the total gap area decreased exponentially
with an increasing return fraction between 0 and 1 m height.
In the burned forests, the return fraction above 30 m height
decreased significantly with increasing number of fires. In
the logged forests the first percentile tended to increase with
the age since the last logging event, indicating the recovery
of the forest from the logging event, a control over the de-
composition of CDW.

3.3 Landscape level prediction of CDW

For comparison to published field surveys, we applied the
lidar-only models over the entire lidar scenes (∼ 1000 ha
each) for three intact sites, one logged site, and one burned
site at a 166 m resolution (Fig. 5). For TAP, the land-
scape level predicted mean was 51.3± 18.8 (standard devi-
ation) Mg ha−1 and the range was 15–91 Mg ha−1 after ex-
cluding one outlier pixel located on the edge of the lidar
scene with 146.0 Mg ha−1 of CDW (Fig. 5a). For DUC,
the landscape mean CDW was 41.6± 5.0 Mg ha−1 and the
range was 22–61 Mg ha−1 (Fig. 5b). For the Fazenda Tan-
guro intact site (TAN), the landscape mean CDW was 21.0±
2.0 Mg ha−1 (Fig. 5c).

For the Fazenda Cauaxi logged site (CAU), the land-
scape mean CDW was 84.6± 27.5 Mg ha−1 and the land-
scape mean for intact forests at the same site was 54.2±
8.8 (Fig. 5d) Mg ha−1. At this site, in the logged forests
there were extremely high predicted values ranging from
161.0 Mg ha−1 to up to 200.0 Mg ha−1 (Fig. 5d). The occur-
rence of gap areas out of the range used for calibration con-
tributed to the prediction of those outliers. Finally, for the
burned site in Fazenda Tanguro the predicted landscape level
mean of 46.5 Mg ha−1 was about twice the mean for undis-
turbed forest at this site (Fig. 5c).

4 Discussion

4.1 Lidar models and controls on CDW

Necromass stocks in intact forests are controlled by the bal-
ance between inputs from tree and branch fall and loss from
CDW decay (Chao et al., 2009; Palace et al., 2008). The
slight increase in the performance of the model for intact
forests in the historical scenario (Tables 4 and 5), compared
to the lidar-only model, highlights that differences in site-
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Figure 3. Measured values of total CDW (TCDW) versus values predicted by the models for lidar-only scenarios for forests classified as
(a) intact (adjusted R2: 0.44; RMSE (%): 35.1), (b) logged (adjusted R2: 0.50; RMSE (%): 33.0), and (c) burned (adjusted R2: 0.51; RMSE
(%): 36.0).

Table 4. Equations, adjusted R2, mean relative bias (%), and relative root mean square error (RMSE in %) of the lidar-only scenario for
predicting CDW in intact and degraded forests using lidar variables. rf0 1 m is return fractions between 0 and 1 m height of the last returns;
P75last is the 75th percentile of last returns in meters; gap area is gap area in m2 ha−1; Modeall is mode of all returns in meters. P05all is the
fifth percentile of all returns in meters; rfabove 30 m is return fraction above 30 m of all returns. EN is residual following a normal distribution
with µ and σ .

Land use Equation Adjusted R2 Bias (%) RMSE (%)

Intact lnTCWD= 1.00(0.33)rf 01m−0.07(0.03)P75last
0.34(0.11)

+

EN(µ= 0, σ = 0.36)
0.44 −0.41 35.1

Logged TCWD=−48.63(22.27)+ 0.07(0.01)gap area+
2.40(0.63)Modeall+190.98(83.26)P01all+EN(µ= 0, σ =

22.02)

0.50 0.00 33.0

Burned lnTCWD= 3.88(0.14)+ 1.05(0.27)P05all−
0.03(0.01)Modeall− 11.91(2.05)rfabove30 m+EN(µ=
0, σ = 0.45)

0.51 −3.00 36.0

specific characteristics controlling the input and decay of
CDW might be important for predicting CDW in Amazonian
forests. For the lidar-only scenario we found an increase in
total CDW in the intact forests with increasing values of the
75th percentile of last returns, a metric related to the overall
increase in both canopy and understory height and a corre-
late of total biomass. Our results are consistent with Chao et
al. (2009), who also found a weak correlation between total
CDW and live biomass, whereas Martins et al. (2015) related
CDW stocks to mean biomass per tree.

Logging and fire differentially affected CDW in Amazo-
nian degraded forests. Fire events tended to produce more
standing CDW than fallen, whereas most of the total CDW
in logged forest was fallen. The ratio between standing and
fallen CDW is suggestive of the predominant mode of tree
death. The most pronounced difference between logging and
fire was the effect of gap area on the amount of CDW (Fig. 2).
A significant amount of CDW is associated with gap creation
in intact Amazonian forests (Espírito-Santo et al., 2014a, b),
and our models for logging confirm a strong relation between
gap area and CDW. Considering both age since the last dis-

turbance and number of degradation events in the historical
models, gap area was still positively related to CDW stocks
in logged forests, whereas the opposite trend was found in
burned forests. For example, for a single degradation event of
an age of 1 year in the historical models, the increase in gap
area from 300 m2 ha−1 to up to 1000 m2 ha−1 led to an in-
crease of 0.06 Mg of CDW per square meter of gap in logged
forests and a decrease of 0.012 Mg of CDW per square meter
of gap in burned forests. For additional fire events, there are
compensatory effects controlling CDW stocks. Fires lead to
mortality, thereby increasing stocks but also consume exist-
ing CDW at the time of the fire. The opposite signs of the pa-
rameters for gap area and the number of events reflect these
opposing controls.

4.2 Comparisons to other lidar-related models

Two classes of models have been used for CDW estimation
using lidar: (1) area-based models estimate CDW indirectly
based on lidar metrics calibrated with data from forest in-
ventory plots (Martinuzzi et al., 2009; Pesonen et al., 2008),
and (2) individual-based models identify standing dead trees
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Figure 4. Residuals versus predicted values of total CDW (TCDW) by the models for lidar-only scenario for forests classified as (a) intact
(mean bias (%): −0.41), (b) logged (mean bias (%): 0.00) and (c) burned (mean bias (%): −3.00).

Figure 5. Wall-to-wall maps and histograms of total CDW predicted by lidar-only models at landscape level (166 m resolution). For intact
forest at the Tapajós National Forest (a) the predicted mean was 51.3± 11.8 Mg ha−1 (red dotted line) and the field-based mean from
our database was 66.2± 20.0 Mg ha−1 (black dotted line). For intact forest at Reserva Adolpho Ducke (b) the predicted mean was 41.6±
5.0 Mg ha−1 and the field-based mean from our database was 57.6± 20.0 Mg ha−1. For intact forests at Fazenda Tanguro (c) the predicted
mean was 21.0± 2.0 Mg ha−1 and the field-based mean was 20.6± 1.8 Mg ha−1. For burned forests (highlighted as a second panel in the
CDW map) the predicted mean was 46.5± 9.8 Mg ha−1 and the field-based mean was 32.5± 6.0 Mg ha−1. For intact forests at Fazenda
Cauaxi (d) the predicted mean was 54.2± 8.8 Mg ha−1 and the field-based mean was 33.2± 10.0 Mg ha−1. For logged forests the predicted
mean was 84.6± 27.5 Mg ha−1 and the field-based mean was 60.3± 24.0 Mg ha−1; high CDW areas in the northern portion of the image
are associated with the main road through the logging site. Red dotted lines indicate the predicted mean by the lidar-only model, and black
dotted lines indicate the field-based mean from the sample transects and inventory plots.
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Table 5. Equations, adjusted R2, mean relative bias (%), and relative root mean square error (RMSE in %) of the historical scenario for
predicting CDW in intact and degraded forests using Landsat and lidar variables. The parameters of the mixed-effect model for intact forests
are shown in Table B1 in the Appendix. Age is the number of years since the last disturbance event. Gap area is total gap area in square
meters per hectare. P05last is the fifth percentile of the last returns. NumberEvent is the count of degradation events. CRR is canopy relief
ratio. EN is the residual following a normal distribution with µ and σ . Estimated parameters by each site (fixed effect) are found in Table B1.

Land use Equation Adjusted R2 Bias RMSE
(%) (%)

Intact Fixed effect variables, random slope by site

TCWD= 3.40+SiteFactor+ 119.72(126.18)CRR+
CRRbysite+EN(µ= 0, σ = 14.14)

– 0.00 31.3

Logged TCWD= 26.29(13.71)− 5.45(1.62)Age+
0.06(0.01)GapArea+ 65.50(20.71)P05last+EN(µ=
0, σ = 20.43)

0.52 0.00 32.0

Burned lnTCWD= 3.43(0.24)− 0.05(0.01)Age−
0.0003(0.00)GapArea+ 0.53(0.10)NumberEvent+
EN(µ= 0, σ = 0.46)

0.46 −3.9 45.0

(Casas et al., 2016) and downed trees on the ground (Blan-
chard et al., 2011; Polewski et al., 2015). The individual-
based approach is generally more appropriate for identifying
and estimating volume or basal area of standing and fallen
dead trees in more open canopies and a lack of dense vege-
tation, compared to the dense tropical forests that we studied
(Blanchard et al., 2011). We employed only area-based mod-
els, and so we will compare our results only to other results
of this category.

In the area-based approach, CDW metrics may reflect un-
derlying mechanisms generating CDW. For example, lidar
metrics related to gaps such as intensity of returns accumu-
lated closer to the ground and standard deviation of returns
were both included as predictors of fallen CDW volume in a
boreal forest in North Karelia, Finland (Pesonen et al., 2008).
In the boreal forest, the model for fallen coarse woody vol-
ume had a relative RMSE of 51.6 % and is similar to the per-
formance of the model for burned sites in our historical sce-
nario. As we found, in the area-based approach, models for
predicting standing necromass are poorer than the models for
fallen dead wood, which is similar to findings in boreal forest
(Pesonen et al., 2008). The boreal forest model for standing
dead tree volume had a relative RMSE of 78.8 % (Pesonen et
al., 2008).

Our landscape level means and ranges at the four intact
sites, as well as at the logged and burned site, were sim-
ilar to published field surveys. Hayek et al. (2018) found
61.0± 14.8 Mg ha−1of CDW stock in the Tapajós National
Forest (51.3± 18.8 Mg ha−1 from this study). Martins et
al. (2015) reported a range of 6.7–72.9 Mg ha−1 of CDW
stock in the Reserva Adolpho Ducke (mean of 41.6 and range
of 22–60 Mg ha−1 from this study). Keller et al. (2004) found
an average of 55.2± 4.7 and 74.7± 0.6 Mg ha−1 of fallen

CDW in an intact and logged site, respectively, at Fazenda
Cauaxi (54.2±8.8 and 84.6±27.5 Mg ha−1 from this study).

Preliminary analysis of wall-to-wall maps created with our
lidar-only models alongside the histograms (Fig. 5) revealed
a unique potential for explaining spatial patterns of CDW
in intact forests and assessing the effect of degradation on
CDW stocks. The total CDW stock was higher in eastern and
central Amazonian intact forests than in the southern intact
forests (Chao et al., 2009). In addition, the spatial pattern and
the dispersion of CDW distribution at the TAP and DUC sites
illuminate the mechanisms controlling CDW at landscape
level. First, the CDW stocks at DUC are strongly related to
topography (Fig. A1 in Appendix). At the DUC site, there is
a pattern of higher stocks of CDW in the plateau, where the
soil is more structured, deeper, and less physically restricted
and where AGB stocks are greater (Martins et al., 2014). On
the other hand, at the TAP site, the peaks of CDW stocks
appears to be more spatially disaggregated which might indi-
cate that CDW is associated with natural, small-scale distur-
bance (Rice et al., 2004). For degraded forest, in the Fazenda
Tanguro site we found no published data on CDW, but the in-
crease in CDW after the repeated fire events agrees with pre-
vious studies (Gerwing, 2002). Finally, the effect of logging
(1.5-fold increase) on CDW stocks at the landscape level at
the CAU site is similar in magnitude to our earlier field stud-
ies (Keller et al., 2004).

4.3 Implications for studies of the Amazon carbon
budget

Our results demonstrate that small-footprint airborne lidar re-
mote sensing can be used to reduce the uncertainty of the spa-
tial distribution of CDW stocks across intact and degraded
Amazonian forests. Our approach required systematic clas-
sification of the Amazonian forests into intact, logged, and
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burned conditions. More complex models using regression
trees may eventually combine classification and CDW es-
timation using lidar data. We avoided more complex mod-
els in this study because our simple regression models are
more transparent and less likely to suffer from overfitting be-
cause they rely on few predictors. Models for the estimation
of CDW using lidar data only are likely to be less accurate
than models for total AGB when relative uncertainty is com-
pared (e.g., Longo et al., 2016). However, because the ab-
solute values of CDW are usually in the range of 10 % to
20 % of AGB except at heavily degraded sites, the absolute
uncertainties for CDW are still likely to be smaller than the
absolute uncertainties for AGB.

For any extrapolation approach, it is critical to avoid bias.
Overall, we found little bias in our models for the estimation
of CDW across forest sites and disturbances types. Nonethe-
less, we raise two potential concerns. First, in intact forests
of the southern Amazon, the stocks of CDW are consider-
ably lower than in the central and eastern Amazon. This re-
flects the smaller biomass stocks and lower wood densities
found in that region (Nogueira et al., 2007). Second, in heav-
ily burned forests (more than three events of fire) the in situ
estimates of CDW stocks were well below the airborne-lidar-
predicted values, probably because CDW was consumed in
the fires. We note that forest degradation from repeated fires
is concentrated along the eastern edge of the Brazilian arc of
deforestation (Morton et al., 2013).

Improved knowledge of the spatial distribution of CDW
stocks complementing our growing knowledge of above-
ground live biomass distributions will reduce the uncertain-
ties of emissions from deforestation and forest degradation
(Aguiar et al., 2012). We highlight that CDW is relatively
more abundant in degraded than in intact forests. Airborne
lidar is a valuable tool for estimates of the impact of for-
est degradation on the carbon cycle, and our work has the
potential to expand understanding beyond the current lidar
approaches that focus exclusively on aboveground biomass.
Further development of the approach presented here may
be applied to more extensive and systematic airborne lidar
acquisitions or perhaps even spaceborne lidar from GEDI
and/or ICESat-2 missions to estimate CDW across wide ar-
eas of tropical forests (Stavros et al., 2017).

Data availability. Field coarse dead wood and forest inventory data
as well as lidar data are available from EMBRAPA at the following
URL: https://www.paisagenslidar.cnptia.embrapa.br/webgis/ (dos-
Santos and Keller, 2016).
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Appendix A

Figure A1. Wall-to-wall map of total CDW and digital terrain
model at the DUC site.
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Appendix B

Table B1. Fixed and random effects parameters of the historical
scenario model for intact forests.

Parameter (fixed effect) Estimate SD

Intercept 3.4 64.3
DUC site 49.7 68.4
FST site 10.4 100.3
JAM site 1.3 91.4
TAL site −30.9 96.6
TAN site −35.6 104.6
TAP site −63.5 74.9
Canopy relief ratio 119.7 126.2

Random term (canopy relief Estimate
ratio by site; see Table 5)

CAU site 75.2
DUC site 9.9
FST site 119.7
JAM site 79.6
TAL site 119.7
TAN site 109.7
TAP site 324.0
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