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Abstract: Fine-resolution satellite imagery is needed for characterizing dry-season phenology in
tropical forests since many tropical forests are very spatially heterogeneous due to their diverse
species and environmental background. However, fine-resolution satellite imagery, such as Landsat,
has a 16-day revisit cycle that makes it hard to obtain a high-quality vegetation index time series due
to persistent clouds in tropical regions. To solve this challenge, this study explored the feasibility of
employing a series of advanced technologies for reconstructing a high-quality Landsat time series
from 2005 to 2009 for detecting dry-season phenology in tropical forests; Puerto Rico was selected as
a testbed. We combined bidirectional reflectance distribution function (BRDF) correction, cloud and
shadow screening, and contaminated pixel interpolation to process the raw Landsat time series and
developed a thresholding method to extract 15 phenology metrics. The cloud-masked and gap-filled
reconstructed images were tested with simulated clouds. In addition, the derived phenology metrics
for grassland and forest in the tropical dry forest zone of Puerto Rico were evaluated with ground
observations from PhenoCam data and field plots. Results show that clouds and cloud shadows are
more accurately detected than the Landsat cloud quality assessment (QA) band, and that data gaps
resulting from those clouds and shadows can be accurately reconstructed (R2 = 0.89). In the tropical
dry forest zone, the detected phenology dates (such as greenup, browndown, and dry-season length)
generally agree with the PhenoCam observations (R2 = 0.69), and Landsat-based phenology is better
than MODIS-based phenology for modeling aboveground biomass and leaf area index collected in
field plots (plot size is roughly equivalent to a 3 × 3 Landsat pixels). This study suggests that the
Landsat time series can be used to characterize the dry-season phenology of tropical forests after
careful processing, which will help to improve our understanding of vegetation–climate interactions
at fine scales in tropical forests.

Keywords: Landsat; time series; tropical forests; phenology; dry season; PhenoCam; phenology metrics;
tropical dry forest; tropical humid forests; cloud mask; shadow mask

1. Introduction

Climate change is lengthening dry seasons in many tropical regions [1,2] and chang-
ing the vegetation phenology [3], and it is intensifying drought, heat, fires, storms, and
flooding [1]. Forest fragmentation strengthens the impacts of these disturbances [4–7]. Tree
mortality from drought, heat, and storms is increasing worldwide [8–10], particularly in
more seasonal tropical forests and savannas [5,9,11]. These changes could cause tropical
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forests to change from a net sink to a net source of CO2 emissions [12], and together with
other human pressures, pose major risks to Earth’s biodiversity [13,14]. Drought-related
changes in the seasonal phenology of greenness patterns in satellite imagery, i.e., dry-
season phenology, can yield insights into how tropical forests may respond to climate
change [15–18].

In heterogeneous tropical landscapes, the high spatial resolution of Landsat images is
needed for characterizing dry-season phenology with metrics such as dry-season start and
end dates (browndown and greenup dates, respectively). The higher spatial resolution of
Landsat has several advantages. First, tropical forest species composition and functional
traits can change drastically over distances shorter than the 0.25- to 1-km pixels of high-
frequency imagery such as MODIS. Geology, stand age, and topography, for example, affect
stand deciduousness, leaf thickness, and basal area of nitrogen-fixing species [19]. Soil
nitrogen and phosphorus also affect tropical forest functional traits [20,21]. Second, tree
competition for light in models of forest dynamics, and related carbon cycling, is typically
modeled at 15 to 20-m spatial scales [22–24]. Third, satellite imagery with fine spatial
resolution should mitigate uncertainties in phenology detection. Recent studies have found
that uncertainty in phenological start and end dates increases with pixel size [25,26]. In
addition, the long record of Landsat images (over 40 years) can help reveal long-term
change in the phenology of tropical regions. Landsat imagery has been demonstrated
to be effective in detecting phenology over large temperate areas [27–29], for mapping
tree species [30,31], for mapping forest habitats [32], and for mapping detailed types of
agriculture in tropical zones [33–35]. However, Landsat imagery has rarely been used for
characterizing tropical forest phenology and simultaneously filling cloud gaps over large
areas encompassing multiple scenes. Possible reasons are the high frequency of cloudy
days in tropical regions, which reduce the availability of cloud-free Landsat images, and
the long revisit cycle of Landsat satellites (16 days), which worsens the cloud contamination
issue. Fortunately, advanced technologies have been developed in the past decade for
solving the impact of clouds on the applications of Landsat images, including automatic
detection of clouds [36–38] and cloud removal [39,40]. Therefore, it is urgent to explore
the potential of Landsat imagery for monitoring vegetation phenology in cloudy tropical
regions with the aid of advanced image-processing technologies.

To solve these research challenges, this study develops an operational method to
employ Landsat images to characterize the dry-season phenology of tropical dry forest in
Puerto Rico. The developed method employs cutting-edge algorithms for automated cloud
screening [36], missing data interpolation [39], and bidirectional reflectance distribution
function (BRDF) correction [41], to reconstruct a high-quality Landsat time series. It then
extracts 15 dry-season phenology metrics from the reconstructed enhanced vegetation
index (EVI) time series through a robust phenology-detection method. Field plots and
PhenoCam data were used to validate the results for the developed method. The inno-
vation of this study is three-fold: (1) it tests the feasibility of phenology detection from
Landsat time series in tropical regions, and the findings will facilitate studies of long-term
changes in tropical phenology using Landsat historical data; (2) it introduces an opera-
tional framework to process Landsat images for phenology detection, which can be easily
adopted by future studies since the codes have been made available to the public; and (3) it
defines a comprehensive set of dry-season phenology metrics, which can better support
the study of phenology–climate interactions. The rest of this paper is organized as follows:
Section 2 describes the study area and data sets used, Section 3 introduces the details of
steps employed for reconstructing Landsat time series data and the method for detecting
and validating phenology metrics, Section 4 presents the results, Section 5 discusses the
implications and limitations of our approach, and Section 6 concludes this study.
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2. Study Area and Data Used
2.1. Study Area

The study area includes the main island and Mona Island of the Commonwealth of
Puerto Rico (Figure 1), which is a biologically diverse tropical region in the Caribbean
Sea. Its spatial heterogeneity in vegetation biophysical attributes is largely due to a wide
range of soil types, previous land use types, temperature, rainfall, and ground-level clouds.
Soils have formed on alluvial, sedimentary, extrusive volcanic, limestone, and serpentine
substrates, supporting forests with high tree species diversity. The most extensive climatic
zone has broadleaf evergreen forest, but other forest types, including dry semi-deciduous
forest and cloud forest, are present at significant extents. Cloud forests dominate the highest
elevations, above the cloud condensation level. Cloud forests, forests on serpentine sub-
strate, and some areas of forest on karst substrate have high proportions of sclerophyllous
or microphyllous leaves [19].
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Figure 1. Map of the study area showing the main island and Mona island of Puerto Rico, and the location of two PhenoCam
sites and a sub-image that were used to validate the results of this study.

2.2. Data Used

This study used Landsat 7 ETM+ and Landsat 8 OLI Collection 1 Level-2 surface
reflectance products, which were generated by U.S. Geological Survey (USGS). For these
products, the USGS applies radiometric calibration and atmospheric correction algorithms
to Level-1 Landsat data products. The visible and infrared bands of these sensors were
used here, including the blue, green, red, near-infrared, and shortwave infrared bands. In
addition, when choosing Landsat imagery, only images with less than 50% cloud cover over
the land surface were selected to ensure that imagery had substantial clear observations.

This analysis included data from two time periods. First, it included Landsat 7 data
from the years 2005 to 2009 to ensure enough cloud-free observations to compose a “one-
year-like” seasonal time series for reliable phenology detection. Table 1 lists the day of
year (DOY) of the Landsat 7 scenes used in this study to capture mainland Puerto Rico
(54 images) and Mona Island (38 images). This period was chosen because it has no
significant climate changes regarding temperature and precipitation, no extreme weather
events occurred (e.g., cyclones, drought), and it corresponds to years surrounding the Mona
Island forest inventory in the year 2008. We can derive a phenology product that represents
an average situation in this 5-year window, assuming vegetation did not undergo much
disturbance during this time. This strategy has been used in previous studies in cloudy
regions, such as mapping bamboo phenology [31] and needle-leaf forest phenology [29].
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Images were collected and ordered by DOY to compose a one-year time series. Second,
it included 17 Landsat 8 OLI images from the years 2016–2017. This period was also
chosen because it corresponded to a period with no significant climate events and when
different kinds of ground-based validation data were available. This period was after a
severe drought in 2015 and before Hurricane Maria in 2017. Our focus for this second time
period is on phenocam data from mainland Puerto Rico dry zones, where sufficient cloud-
free observations to estimate phenology metrics can be obtained with 2016–2017 Landsat
images. Although Sentinel-2 imagery were available during that time, incorporating it into
the framework we present here is a subject of ongoing research.

Table 1. Day of year (DOY) of Landsat images used in this study over Mona Island and main island of Puerto Rico.

Year Mona
(Path 6 Row 47)

Main Island
(Path 5 Row 47)

2005 18; 82; 98; 114; 146; 242 43; 59; 75; 91; 123; 251; 267; 299; 315; 331; 347; 363

2006 5; 21; 53; 117; 229; 245; 341 46; 78; 94; 110; 126; 142; 158; 286; 302; 318; 350

2007 40; 104; 136; 296; 312; 360 17; 49; 145; 209; 225; 273; 321; 337

2008 11; 27; 43; 75; 91; 139; 171; 203 36; 68; 100; 116; 132; 276; 292; 308; 340; 356

2009 29; 45; 61; 77; 253; 269; 285; 301; 317; 333; 349 86; 102; 150; 166; 182; 198; 214; 230; 294; 310; 326; 334; 342

2016 258; 274; 290; 322; 338; 354

2017 4; 20; 36; 68; 100; 132; 148; 164; 180; 212; 244

To validate the phenology metrics derived by the proposed method, we used forest
inventory data and PhenoCam data from the tropical dry forest zone of Puerto Rico,
including in Southwestern Puerto Rico and on Mona Island. Forest inventory data
were from the U.S. Department of Agriculture Forest Service, Forest Inventory, and
Analysis program (FIA), which is jointly implemented in Puerto Rico by the Southern
Research Station and the International Institute of Tropical Forestry. The PhenoCam
data were collected from 2 sites in Puerto Rico (Figure 1) from the PhenoCam network
(https://PhenoCam.us/, accessed on 1 September 2021).

3. Methods

The proposed method includes two main steps: generating a cloud-free seasonal
Landsat time series and extracting the dry-season phenology metrics (Figure 2). The first
step has three processes, including correcting the effect of solar and observational angles
on ground reflectance, screening clouds and cloud shadows in the Landsat time series, and
interpolating the values of data gaps. Data gaps included pixels covered by clouds and
shadows and missing pixels due to failure of the Scan Line Corrector on Landsat-7 (SLC-off
gaps). The second step first defined a comprehensive set of metrics that reflects critical
vegetation behaviors and then adopted a threshold-based method to extract these metrics.
The details are described in the following subsections.

3.1. Generating a Cloud-Free Seasonal Landsat Time Series
3.1.1. BRDF Effect Correction

It is well known that the vegetation reflectance varies with the solar and observational
angles, which can be characterized by a BRDF. Previous studies have found that BRDF
correction can improve the accuracy of vegetation phenology detection from satellite time
series [42–44]. The solar angle of Landsat imagery over Puerto Rico varies with day of year,
specifically, the sun zenith angle changes from 50◦ in spring to 25◦ in summer, while the sun
azimuth angle changes from 140◦ in spring to 75◦ in summer. In addition, Landsat sensors
acquire images at view angles ±7.5◦ from nadir that cause small directional effects in
surface reflectance [41]. Therefore, the observations in Landsat time series have significant
BRDF effect that should be adjusted. The BRDF correction adjusts images in Landsat time

https://PhenoCam.us/
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series to consistent solar and view angles. In this study, we adopted the Landsat BRDF
adjustment method that uses MODIS BRDF parameters [41].
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Figure 2. The flowchart of this study.

In general, the BRDF correction is achieved using the Ross-Li BRDF model, as in
Equation (1). The viewing angle is set to nadir, while the solar zenith angle is corrected to a
uniform angle (30◦ in Puerto Rico).

BRDF(θi, θv,∅) = fiso + fvol × kvol(θi, θv,∅) + fgeo × kgeo(θi, θv,∅) (1)

where θi, θv, and ∅ are the solar zenith angle, viewing zenith angle, and relative azimuth
angle, respectively. kvol and kgeo are the volume scattering kernel and the geometric optical
kernel, respectively. fiso is isotropic reflectance constant, and fvol and fgeo refer to the weight
coefficients of volume scattering kernel and geometric optical kernel. The parameters fiso,
fvol , and fgeo are related to the spectral bands and land cover types, which can be obtained
from the MODIS BRDF parameter product (e.g., MCD43A2) and are summarized in a
previous work (see Table 5 of the paper [41]).

The volume scattering kernel (kvol) is derived from the radiative transfer model
proposed by Ross in 1981 [45].

kvol(θi, θv,∅) =
(0.5π − g) cos g + sin g

cos θi + cos θv
− π

4
(2)

cos g = cos θi cos θv + sin θi sin θv cos∅ (3)

The geometric optical kernel (kgeo) can be obtained from the geometric optical model
proposed by Li and Strahler in 1992 [46], as in Equations (4)–(9):

kgeo(θi, θv,∅) = O(θi, θv,∅)− sec θi
′ − sec θ′v +

1
2
(
1 + cos g′

)
sec θi

′ sec θ′v (4)

O =
1
π

(
arc cos X− X

√
1− X2

)
(sec θi

′ + sec θ′v) (5)

X =
h
b

√
D2 +

(
tan θi

′ tan θv
′ sin∅

)2

sec θ′i + sec θ′v
(6)

X is limited to the range (−1, 1)

D =
√

tan2 θi
′ tan2 θv

′ − 2 tan θi
′ tan θv

′ cos∅ (7)
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cos g′ = cos θi
′ cos θv

′ + sin θi
′ sin θv

′ cos∅ (8)

θ′ = tan−1
(

b
r

tan θ

)
(9)

The BRDF(θi, θv,∅) of original solar and viewing angles and the BRDF(θi0, θv0,∅0)
of adjusted angles in each pixel can be calculated by the Ross-Li BRDF model. Afterwards,
the ratio of BRDF(θi0, θv0,∅0) and BRDF(θi, θv,∅) is further used to correct original re-
flectance (ρ) to BRDF-corrected reflectance (ρBRDF), as in Equation (10).

ρBRDF = ρ
BRDF(θi0, θv0,∅0)

BRDF(θi, θv,∅)
(10)

3.1.2. Screening Clouds and Cloud Shadows

Optical satellite images over tropical regions are often contaminated by clouds and
cloud shadows [47]. This cloud contamination reduces vegetation index (VI) values, which
adds significant noise to VI time series being used for phenology detection. Therefore, it is
necessary to mark these contaminated pixels in the Landsat images. The Landsat level-2
products have a cloud quality assessment (QA) band that is generated by a single-image
based cloud detection method [37]. It has considerable commission and omission errors
in tropical areas, especially omission errors for thin clouds [38]. To solve this problem,
this study employed a time-series based cloud detection method—automatic time series
analysis (ATSA) [36]—to screen clouds and shadows in the Landsat images.

The principle and process of ATSA are shown in Figure 3. ATSA uses the following
characteristics of clouds and shadows: (1) clouds can be distinguished from other land
covers in the blue-red spectral space, (2) shadows are darker than surrounding pixels
outside of shadows, (3) shadows are paired with clouds, and (4) clouds and shadows
are significantly different from clear observations in the time series. According to above
characteristics, ATSA has five steps to develop cloud and shadow masks for all images in a
time series (Figure 3). First, cloud and shadow indices were calculated to highlight cloud
and cloud shadow information. The cloud index for land is an automatically derived haze
optimized transform (HOT) that indexes deviations from the linear relationship between
the red and blue bands for clear-sky pixels (Equation (1) in [36]). The shadow index (SI) for
land is the sum of the near infrared (band 4) and first shortwave infrared bands (band 5)
(Equation (4) in [36]). Second, an initial cloud mask was produced by an unsupervised
classifier k-means that automatically partitions HOT values of all pixels into cloud and
non-cloud clusters. Third, the initial cloud mask was refined by analyzing the HOT time
series, i.e., the observation with a HOT value higher than the adaptive threshold U(i) was
designated as clouds according to Equation (11).

U(i) = mean{HOT(i, t)|(i, t) /∈ C}+ A× sd{HOT(i, t)|(i, t) /∈ C} (11)

where sd{ } is the standard deviation of the HOT index through the time series, HOT(i, t)
is the HOT index value of the ith pixel at time t, and C is the set of cloudy points from
the initial masks for the ith pixel. A is a standard deviation multiplier that defines the
upper boundary. A can be assigned a recommended value from 1 to 2. Fourth, the potential
shadow mask was estimated using geometric relationships with the locations of clouds.
Last, the potential shadow mask was refined by analyzing the time series of the shadow
index, i.e., observations with a shadow index lower than the adaptive threshold L(i) were
designated as shadows according to Equation (12).

L(i) = mean
{

SI(N)(i, t)
∣∣∣(i, t) ∈ “clear”

}
− B× sd

{
SI(N)(i, t)

∣∣∣(i, t) ∈ “clear”
}

(12)

where B is a standard deviation multiplier that serves as a parameter to tune the threshold,
mean is the mean SI of pixel i for the time series, and sd is the standard deviation of the
SI for the clear observations of pixel i. The recommended value of B is from 1 to 3, and a
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larger value will select darker shadows. A and B are the two most important parameters
that balance the commission and omission errors of cloud and shadow detection. In this
study, to reduce the omission errors, A and B are set as 0.5 and 1, respectively.
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3.1.3. Interpolating Contaminated Pixels in the Time Series

The time series composed of raw Landsat 7 or 8 images includes many pixels covered
by unscanned gaps (with Landsat 7), clouds, and shadows since images with up to 50%
cloud cover were selected for the time series. With daily satellite images, such as MODIS
and AVHRR, contaminated pixels are often removed with maximum value compositing
(MVC) and time series smoothing filters [48]. Both MVC and smoothing filters rely on the
clear observations for each pixel in the time series. However, the observations from fine
resolution multispectral imagery like Landsat are much sparser than MODIS and AVHRR,
and they are particularly sparse in many tropical regions before the launch of Landsat 8
in the year 2013 and Sentinel-2 in 2015. Consequently, the MVC and smoothing filters
cannot be applied to older Landsat time series in many regions. As an alternative, this
study employed the nearest similar pixel interpolator (NSPI) method [39] to interpolate
contaminated pixels, including the pixels covered by clouds and cloud shadows and pixels
within the un-scanned gaps in Landsat-7 ETM+ images. Unlike the MVC and smoothing
filters, NSPI takes advantage of both the temporal and spatial information in clear pixels. It
can produce good results even where clear observations are temporally sparse. Although
more complicated interpolation methods have been developed, such as deep learning
ones [40,49], NSPI was used in this study because: (1) vegetation phenology is a gradual
land surface change, and NSPI has been proven effective for interpolating pixels with such
gradual change [50]; and (2) its high efficiency makes it feasible to process a large amount
of Landsat images.

NSPI was first proposed to interpolate the missing pixels in SLC-off ETM+ images [51].
It uses the following principles: (1) nearby pixels from the same land cover share high
spectral similarity, and those pixels are referred to as similar pixels; (2) similar pixels
have a consistent temporal change pattern in the time series; and (3) similar pixels have
spatially autocorrelated spectral reflectance, and the autocorrelation is stable in the time
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series. Therefore, NSPI uses both spatial autocorrelation information and temporal change
information to estimate the pixel value, respectively, as Equations (13) and (14).

L1(x, y, t2, b) =
N

∑
j=1

Wj × L
(
xj, yj, t2, b

)
(13)

L2(x, y, t2, b) = L(x, y, t1, b) +
N

∑
j=1

Wj × (L
(
xj, yj, t2, b

)
− L

(
xj, yj, t1, b

)
) (14)

where L1(x, y, t2, b) and L2(x, y, t2, b) are the spatial prediction and temporal prediction of
pixel (x, y) (i.e., the target pixel) at time t2 for band b, L

(
xj, yj, t1, b

)
and L

(
xj, yj, t2, b

)
are

the band b value of the similar pixel (xj, yj) in the ancillary image acquired at t1 and the
target image t2, respectively, and Wj is the weight of the similar pixel that is determined
by the spatial and spectral distances between the target pixel and similar pixels. Then, a
weighted average of these two predictions yields the final prediction of the target pixel:

L(x, y, t2, b) = T1 × L1(x, y, t2, b) + T2 × L2(x, y, t2, b) (15)

where the weights (T1 and T2) are determined by the extent of spatial continuity and the
extent of temporal continuity between the ancillary image and the target image estimated
from similar pixels. The NSPI method was further modified (i.e., MNSPI) for restoring
the spectral values of cloudy pixels by considering the difference between narrow wedge-
shaped SLC-off gaps and clouds [52]. It should be noted that both NSPI and MNSPI were
implemented to remove contaminated or missing pixels in individual Landsat images.
For reconstructing time series, NSPI and MNSPI have been integrated into an iterative
framework that automatically interpolates contaminated or missing pixels in all images
in a time series [39]. Here, we use the NSPI program coded in interactive data language
(code is available at https://xiaolinzhu.weebly.com/, accessed on 1 August 2021) to obtain
a high-quality time series from the raw Landsat time series.

3.2. Extracting the Phenological Metrics

Existing studies have widely used satellite VI time series to extract several critical
phenology metrics during the growing season, such as green-up. Inflexion-based and
threshold-based methods are two types of widely used approaches to extract vegetation
phenology from VI time series [53]. They were adopted by NASA and the United States Ge-
ological Survey (USGS) to produce phenology products, respectively. The inflexion-based
method identifies the inflection point of VI time series to define phenology metrics, whereas
the threshold-based method determines phenology dates with a predefined percentage of
change in VI [54]. For example, in some studies the green-up date is the day that VI values
reach 20 percent of their maximum amplitude [55,56]. Since the threshold-based method
is simple and generally consistent with the inflexion-based method [54], we extracted
dry-season phenology metrics with threshold-based methods.

We extract phenology metrics with two steps. The first step is to interpolate and
smooth the reconstructed cloud-free VI time series to create a daily VI time series. After
applying the technologies in Section 3.1 to obtain a cloud-free Landsat time series, we
calculate VI values from the Landsat images. Existing studies use the normalized difference
vegetation index (NDVI) and enhanced vegetation index (EVI) to detect phenology. Here,
we focused on EVI because background noise affects it less, and it is more sensitive in areas
with dense vegetation. Our initial exploration found that in our study area, EVI phenology
agrees better with ground observations than does NDVI (R2: 0.69 vs. 0.48). However,
the EVI time series derived from the reconstructed cloud-free images have unequal time
intervals and still contain minor noise (see an example in Figure 4). Therefore, the raw EVI
time series were smoothed with a Savitzky–Golay-filter-based method [57] and interpolated
to daily time intervals using the Spline method [58] (Figure 4). Additionally, considering
that the reconstructed Landsat time series is not reliable if clear observations in the original

https://xiaolinzhu.weebly.com/
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time series are too limited, the pixels with fewer than 10 clear observations were excluded
from our study area for phenology extraction. These excluded pixels occur mainly in the
east part of main island of Puerto Rico (Figure 5).
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Then, the one-year time series is duplicated to a three-year time series, considering that
the dry-season cloud be across two adjacent years. This strategy has been used by TIMESAT,
a widely used software for detecting growing-season phenology metrics [55]. The lowest
EVI value is searched from the smoothed time series, and the major dry season is identified
by searching the maximum EVI values before and after the lowest EVI value. Subsequently,
15 metrics can be extracted, given the major dry season, using the definitions in Table 2
and Figure 6. These 15 metrics compose a comprehensive set of phenology variables that
include popular ones (e.g., the greenup date, browndown date, and peak date) in existing
studies, and ones that describe vegetation processes such as the greenup rate and integral
over the dry season, which may have links with climate variables, leaf habit, or vegetation
biophysical factors. It should be noted that all phenology detection methods may output
extreme values for some pixels and other unexpected noise. Therefore, existing studies
often constrain the vegetation growing period to obtain reasonable phenology metrics. For
example, a study in north China assumes that the greenup date should occur between
March and July [59]. To reduce noise in phenology metrics in our study, all vegetation
pixels in the study area were clustered according to the similarity of their EVI profiles with
the k-means method. Then, the average date of lowest EVI in each cluster (cluster-average
lowest date) was used as a reference to constrain the search for the lowest EVI at the pixel
level. The time window searched for the lowest EVI of a pixel is within the 60 days of the
cluster-average lowest date.
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Table 2. 15 dry-season phenological metrics extracted from the EVI time series.

No. Name Description Unit Definition in EVI Time Series in Figure 6

1 Maximum EVI Largest EVI value EVI unit a in Figure 6a

2 Minimum EVI smallest EVI value EVI unit b in Figure 6a

3 Amplitude Difference between the
maximum and minimum EVI EVI unit c in Figure 6a

4 Peak Date Date of the largest EVI Day from 1 January a in Figure 6a

5 Lowest Date Date of the smallest EVI Day from 1 January b in Figure 6a

6 Greenup Rate Linear slope of EVI increase
during the greenup process EVI unit/day Slope from b to e in Figure 6a

7 Browndown Rate Linear slope of EVI decrease
during the browndown process EVI unit/day Slope from d to b in Figure 6a

8 Greenup Date Date when the EVI increases to
50% during the greenup process Day from 1 January e in Figure 6a

9 Browndown Date Date when the EVI decreases to
50% during the browndown process Day from 1 January d in Figure 6a

10 Dry season length Time interval between
browndown and greenup dates Days f in Figure 6a

11 Small Integral over
growing season

Integral over growing season of
each pixel giving area between

the curve and minimum EVI value
EVI unit × day Light Gray shaded area in

Figure 6b

12 Large Integral over
growing season

Integral over growing season of
each pixel giving area between

the curve and 0
EVI unit × day Light gray and light green

shaded area in Figure 6b

13 Integral over dry season Integral of EVI values over the
main dry season of each pixel EVI unit × day Orange shaded area in Figure 6b

14 Small Integral over
the whole year

Integral of EVI values above the
minimum EVI over whole year EVI unit × day Gray shaded area in Figure 6c

15 Large Integral over
the whole year

Integral of EVI values over
whole year EVI unit × day Gray and green shaded area

in Figure 6c
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3.3. Validation

For the validation of the phenology metrics, we adopted both direct and indirect ways
to assess the accuracy. Where at least 50% of the observations in the time series were clear,
which was in tropical dry forest zones, we assessed the accuracy directly. We compared the
phenology dates (e.g., dates of greenup, lowest, and browndown) derived from Landsat
time series with that derived from two PhenoCam sites (locations are shown in Figure 1).
Following a previous study [60], we used the 90th percentile of values of the region of
interest (ROI) within a 3-day moving window, which can depict the data trajectory well
and has fewer effects from outliers, to compose the raw green chromatic coordinate (GCC)
time series in each PhenoCam site (Figure 7). The missing data in the GCC time series
within 7 days were interpolated by spline interpolation, while the missing data beyond
7 days were filled with average data from adjacent years (Figure 7). We further smoothed
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the GCC time series by applying an iterative Savitzky–Golay (SG) filter [57], represented
by the black lines shown in Figure 7b,d. Then, the phenology metrics were extracted from
the smoothed GCC curve using the definitions in Table 2. Last, the phenology metrics of
Landsat pixels within the orientation of the PhenoCam and with same vegetation type
with the ROI of the PhenoCam were selected for the comparison.

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 22 
 

 

15 Large Integral over 
the whole year 

Integral of EVI values over 
whole year 

EVI unit×day Gray and green shaded area 
in Figure 6c 

 
Figure 6. Definition of dry-season phenology metrics in the enhanced vegetation index (EVI) time series: (a) a–f are maxi-
mum EVI, minimum EVI, amplitude, browndown date, greenup date, and dry season length; (b) the light gray shaded 
area is the small integral over growing season, the orange shaded area is integral over dry season, and the total of light 
gray and light green shaded area is large integral over growing season; and (c) the gray and green shaded areas are small 
and large integral of the whole year, respectively. 

3.3. Validation 
For the validation of the phenology metrics, we adopted both direct and indirect 

ways to assess the accuracy. Where at least 50% of the observations in the time series were 
clear, which was in tropical dry forest zones, we assessed the accuracy directly. We com-
pared the phenology dates (e.g., dates of greenup, lowest, and browndown) derived from 
Landsat time series with that derived from two PhenoCam sites (locations are shown in 
Figure 1). Following a previous study [60], we used the 90th percentile of values of the 
region of interest (ROI) within a 3-day moving window, which can depict the data trajec-
tory well and has fewer effects from outliers, to compose the raw green chromatic coordi-
nate (GCC) time series in each PhenoCam site (Figure 7). The missing data in the GCC 
time series within 7 days were interpolated by spline interpolation, while the missing data 
beyond 7 days were filled with average data from adjacent years (Figure 7). We further 
smoothed the GCC time series by applying an iterative Savitzky–Golay (SG) filter [57], 
represented by the black lines shown in Figure 7b,d. Then, the phenology metrics were 
extracted from the smoothed GCC curve using the definitions in Table 2. Last, the phenol-
ogy metrics of Landsat pixels within the orientation of the PhenoCam and with same veg-
etation type with the ROI of the PhenoCam were selected for the comparison. 
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However, the number of PhenoCam sites in our study area was too limited to obtain a
reliable assessment. Therefore, we also employed an indirect way to validate the phenology
results through linking the phenology metrics with the vegetation biophysical variables
since studies have found that phenology of tropical vegetation was correlated to vegetation
structure [61,62]. Specifically, the indirect validation was implemented on Mona Island
using ground observations of and leaf area index (LAI) [63] and aboveground live biomass
(AGLB), which were derived from the 26 FIA plots collected in 2008 [64]. These 26 plots
are spaced every 2 km2 across the island. Plots have four circular 0.016 ha subplots, where
trees with a diameter at breast height (dbh) of ≥12.7 cm are surveyed. Trees 2.5–12.6 cm
dbh (small trees) are surveyed on 2.07-m radius circular microplots within each subplot.
The four subplots include a center subplot and three surrounding subplots with centers
located 36.6 m from the plot center at azimuths of 360, 120, and 240 degrees respectively.
Consequently, the plot size is roughly equivalent to a 3 × 3-window of Landsat pixel
(size of 30 m × 30 m), so the phenology metrics of each plot were collected by averaging
the phenology metrics values of a 3 × 3 window of pixels centered on the plot. Data
for leaf area index (LAI) were collected on two subplots within each of 22 of the plots.
Stepwise regression was used to build statistical models between phenology metrics
(i.e., independent variables) and AGLB and LAI (i.e., dependent variables), respectively.
Since sample numbers are limited for both AGLB and LAI, we assessed regression model
performance with the leave-one-out method.

4. Results
4.1. Accuracy of Landsat Time Series Reconstruction

Comparing cloud and shadow masks from ATSA with those from the Landsat cloud
QA band (Figure 8), two representative raw Landsat images over mainland Puerto Rico
show that ATSA successfully identified nearly all clouds and shadows, but the Landsat QA
band omits a considerable number of thin clouds. To quantitatively compare accuracies
of the Landsat QA band with ATSA, the clouds and shadows in these two images were
manually digitized as reference data. The accuracy indices derived from an error matrix
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show that ATSA is more accurate than the Landsat QA band for cloud and shadow detection
(Table 3). Specifically, the producer’s accuracy of ATSA is higher than 0.9 for both clouds
and cloud shadows, indicating very small omission errors, but the QA band has large
omission errors in both clouds and cloud shadows. In this study, it is important to control
omission errors since they will affect the subsequent cloud removal step. Therefore, we
used relatively small values of both parameters A and B in ATSA to detect suspected clouds
and cloud shadows as much as possible, accepting some commission errors since they do
not affect the following cloud removal step. To further reduce the effect of omission errors
on the cloud removal step, cloud and shadow masks from ATSA were buffered by the
width of one pixel before applying the NSPI step.

Table 3. Accuracy assessment of cloud and cloud shadow masks of two images in Figure 8: overall
accuracy (oa), user’s accuracy (ua), and producer’s accuracy (pa).

Images Cloud Masks
Cloud Cloud Shadow

oa ua pa ua pa

14 November 2006
QA band 0.747 0.931 0.593 0.334 0.223

ATSA 0.958 0.997 0.917 0.920 0.935

25 May 2007 QA band 0.827 0.831 0.811 0.520 0.441
ATSA 0.973 0.988 0.963 0.895 0.951
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To quantitatively assess the accuracy of contaminated pixel interpolation, we selected
a cloud-free subset from our collected Landsat time series as a reference image (Figure 9a,
its location is marked by a box in Figure 1). Then, to simulate a cloudy image, we added to
this reference image gaps, clouds, and shadows extracted from a cloudy image (Figure 9b).
For this simulated cloudy image, its real pixel values were used to assess the accuracy of
cloud removal and gap filling by NSPI (Figure 9c). We can see that nearly all gaps, clouds,
and shadows were successfully removed by the NSPI method. The repaired image has
high-quality visuals. The repaired pixels have high consistency with surrounding clear
pixels, and the places with clouds and shadows are nearly invisible in the reconstructed
image, suggesting that the reconstructed image has high accuracy. The scatter plot between
actual and predicted values for the NIR band (Figure 9d) also demonstrates the high
accuracy of the NSPI interpolation results. The NIR band changes more with vegetation
growth and so is more challenging to interpolate than other bands. The RMSE value is
0.015 and R2 value is 0.887 for the NIR band in this simulation experiment, suggesting that
the reconstructed images can reliably capture the vegetation dynamics.

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 22 
 

 

 
Figure 9. A true-color clear sub-image on October 18, 2008 (a); the corresponding simulated cloudy 
image (b); gap, cloud, and shadow removed by NSPI (c); and the scatter plot between the actual 
values and predicated values of NIR band (d). 

4.2. Maps and Reasonability of Detected Phenology Metrics 
The spatial pattern of several representative phenology metrics derived from recon-

structed Landsat images, for both the main island and Mona, has high spatial heterogene-
ity (Figure 10). The integral over the dry season shows that the southern zone of the main 
island is more affected by the dry season. The forests in the south are drier and have larger 
relative basal areas of deciduous tree species. Their dry season is longer in Figure 10a. The 
phenology metrics also show that the majority of the main island enters the dry season 
(i.e., browndown date) at the end of a year and that the end of the dry season (i.e., greenup 
date) is around May. The large integral over the whole year shows the locations where the 
vegetation is green throughout the year, with orange to red tones, and a dry season length 
of less than 90 days (blue tones). Evergreen tree species dominate the majority of these 
areas, and the aboveground biomass density is larger [19]. These patterns are consistent 
with the climate in Puerto Rico. The wettest month on the island is August, with 18 cm of 
rain. Puerto Rico’s rainy season lasts from April to November, and the driest season is 
December to March. 

Across the middle of the island, several areas with blue to green colors for the large 
integral correspond to areas with lower biomass density. Although these areas are at 
higher elevation and have more rainfall, the combination of climate and geology (geocli-
mate) makes growing conditions more challenging, as reflected by the larger relative basal 
area of tree species with stiff evergreen leaves since these areas include cloud forests and 
forests growing on fast-draining serpentine or karst substrates [19]. 
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4.2. Maps and Reasonability of Detected Phenology Metrics

The spatial pattern of several representative phenology metrics derived from recon-
structed Landsat images, for both the main island and Mona, has high spatial heterogeneity
(Figure 10). The integral over the dry season shows that the southern zone of the main
island is more affected by the dry season. The forests in the south are drier and have larger
relative basal areas of deciduous tree species. Their dry season is longer in Figure 10a. The
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phenology metrics also show that the majority of the main island enters the dry season
(i.e., browndown date) at the end of a year and that the end of the dry season (i.e., greenup
date) is around May. The large integral over the whole year shows the locations where the
vegetation is green throughout the year, with orange to red tones, and a dry season length
of less than 90 days (blue tones). Evergreen tree species dominate the majority of these
areas, and the aboveground biomass density is larger [19]. These patterns are consistent
with the climate in Puerto Rico. The wettest month on the island is August, with 18 cm
of rain. Puerto Rico’s rainy season lasts from April to November, and the driest season is
December to March.

Across the middle of the island, several areas with blue to green colors for the large
integral correspond to areas with lower biomass density. Although these areas are at higher
elevation and have more rainfall, the combination of climate and geology (geoclimate)
makes growing conditions more challenging, as reflected by the larger relative basal area
of tree species with stiff evergreen leaves since these areas include cloud forests and forests
growing on fast-draining serpentine or karst substrates [19].
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4.3. Validation Results of Detected Phenology Metrics

Table 4 shows the comparison between phenology metrics extracted from the recon-
structed Landsat EVI time series and the PhenoCam GCC time series for two PhenoCam
sites and five phenology metrics: peak date, lowest date, greenup date, browndown date,
and dry season length, and these values were plotted in Figure 11. It shows that the
phenological results from reconstructed Landsat EVI time series generally agree well with
those from the ground-based observations (R2 = 0.69). We inspected the EVI time series of
PhenoCam B and found that the time series was over-smoothed, so it does not have the
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small wave in GCC from DOY 89 to DOY 179 (Figure 7d). This caused the browndown
date detected from Landsat EVI to be much earlier than that from PhenoCam GCC.

Table 4. Summary statistics of phenology metrics extracted by Landsat EVI time series and PhenoCam
GCC time series in two PhenoCam sites.

PhenoCam A PhenoCam B

Phenology Metric GCC EVI GCC EVI

Peak Date 126 143 304 306
Lowest Date 213 201 212 229

Greenup Date 234 247 238 264
Browndown Date 171 168 159 82
Dry season length 64 80 80 183
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In the indirect validation, using phenology metrics from reconstructed Landsat time
series improves models of LAI and aboveground live biomass, compared with phenology
derived from MODIS time series (Figure 12). For LAI modeling, the RMSE value of using
Landsat phenology metrics is much lower than using MODIS (0.30 vs. 0.57), and R2 value
is much higher than MODIS (0.487 vs. 0.003). For aboveground live biomass modeling,
the RMSE value is similar between Landsat and MODIS, but the R2 of Landsat is higher
than MODIS (0.383 vs. 0.293). It is well known that MODIS has high frequency but coarse
spatial resolution, but it cannot accurately model the biophysical variables of FIA plots in
the tropical dry forest of Mona Island because its pixel size is much larger than the FIA plot.
In contrast, Landsat pixels have a size comparable with the FIA plot, so that the phenology
metrics can better represent the biophysical variables estimated on the plots. This result
suggests that for tropical dry forest, the Landsat based phenology metrics are reliable.
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5. Discussion
5.1. Implications for Tropical Forest Monitoring

In this study, we evaluate an approach for characterizing vegetation seasonality in
tropical dry forest landscapes, including metrics focused on both the dry season and
growing season, using seasonal patterns of vegetation greenness indices (land surface
phenology) with Landsat multispectral satellite imagery. The results and proposed ap-
proach have three implications for future tropical forest studies: (1) the finer spatial scale of
phenology metrics extracted from Landsat can link more strongly to tropical dry forest LAI
and biomass, two important biophysical attributes, as estimated in ground inventory stud-
ies; (2) by explaining more variability in these attributes, the method may better support
studies of climate and vegetation interactions at fine scales in tropical dry forest landscapes;
and (3) in wetter tropical forest landscapes, aggregating Landsat images from multiple
years may map forest phenology reliably.

Regarding spatial scale, most forest ground plots are 0.1 to 1 ha in size, the size of one
or more Landsat pixels, which is much smaller than the 6 to 25-ha size of high frequency
optical satellite image bands like those in MODIS imagery (though some plots are up
to 50 ha in size). Regarding remotely sensed phenology at Landsat scale, multi-season
imagery and land surface phenology with high spatial resolution permit detailed land
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cover and agriculture mapping in drier tropical areas [35,65,66]. Imagery with 3- to 30-m
pixels is now widely available and has advantages for evaluating tropical forest response to
climate change in past studies as well. Land surface phenology from Landsat or Sentinel 2
(10–60 m), as compared with single-date imagery, improves mapping and modeling of
productivity and carbon stocks of tropical dry forest and savanna landscapes [67–69]. Dry
season intensity is a defining feature of tropical dry forests and savannas, influencing
forest structure, productivity, carbon storage, functional traits, fire ecology, ecohydrology,
and tree species composition and diversity [20,70–72]. Drought and dry seasons typically
reduce canopy greenness in drier, more seasonal forests, where water availability tends to
limit productivity [73,74].

5.2. Limitations and Future Studies

Although we applied state-of-the-art technologies to reconstruct cloud-free Landsat
images, challenges remain. First, the thin clouds and haze in older Landsat images without
the Cirrus band are difficult to detect. These include Landsat 4 and 5 TM, Landsat 7 ETM+,
and the earlier Landsat MSS images [39]. Omitting these thin clouds and hazy areas in
cloud masks will cause significant errors because these pixels are considered to be clear
observations that are then used to interpolate other cloud pixels. Cirrus clouds will cause
the interpolated pixels to be brighter than the surrounding cloud-free pixels. In the EVI
time series, these errors will cause EVI values to be lower than the actual values. If we use
a smaller value for parameter A in the ATSA method to better detect thin clouds and haze,
significant commission errors will result, i.e., many clear observations will be detected as
clouds. That result would reduce the number of clear observations in subsequent steps.
Therefore, future studies need to improve the cloud detection method for satellite images
without the Cirrus band.

Second, the accuracy of cloud removal by NSPI is affected by cloud size and time
interval between clear and cloudy observations [39,52]. Unfortunately, many tropical
regions are very cloudy throughout the year. If we only use Landsat images, many years
of data may be needed to obtain enough clear observations, due to the long revisit cycle
of Landsat of 16 days. Our study treats images from five adjacent years as one year to
overcome this problem, but this approach has some problems: (1) the climate is not the
exactly same in these adjacent years, so the resulting phenology is more or less a five-year
average phenology; (2) vegetation may experience disturbance in these years, such as
deforestation, fire, or thinning; and (3) it is still hard to get enough clear observations in
five years if the area is extremely cloudy (dark blue areas in Figure 5). Future studies
can consider integrating images from multiple satellites, such as daily observations from
MODIS, 5-day observations from Sentinel-2 and Landsat, by data fusion technology [75].

Last, due to the limitation of ground observations of the dry-season phenology in
Puerto Rico, we only evaluated the phenology results with two PhenoCam sites and
tested the effectiveness of the derived phenology metrics for modeling the forest biomass
and LAI using ground forest plots. More studies in the future are needed to test the
proposed method in different tropical areas and validate the results with more ground-
based observations.

6. Conclusions

This study proposed a framework of reconstructing high-quality Landsat time se-
ries for monitoring dry-season phenology of tropical forests. The framework employs
cutting-edge algorithms, including the BRDF correction algorithm, the automated cloud
screening algorithm, and the missing data interpolation algorithm. Fifteen dry-season
phenology metrics were defined. These metrics were then extracted from VI time se-
ries derived from reconstructed Landsat imagery through a robust phenology-detection
method. Validation using field plots and PhenoCam data demonstrated the effectiveness
of the proposed framework. Phenology metrics at Landsat scale have some advantages
compared to MODIS scale, including: (1) they can better bridge ground forest inventory
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and satellite observations, and (2) they can better support studies of climate and vegetation
interactions at fine scales. This is the first study to test the feasibility of Landsat imagery for
monitoring tropical forest phenology. The operational framework introduced in this study
for reconstructing high-quality Landsat time series can be adopted by future studies (codes
are downloadable at https://xiaolinzhu.weebly.com/, accessed on 1 August 2021). Future
studies are needed to investigate the uncertainty of reconstructed Landsat time series in
cloudy regions, and the sensitivity of phenology detection accuracy to the number of clear
observations in the time series and its effectiveness in other fine-scale satellite imagery and
other tropical regions.
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