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Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial
wood decay rates are known to respond to changing temperature and precipitation. Termites are
also important decomposers in the tropics but are less well studied. An understanding of their climate
sensitivities is needed to estimate climate change effects on wood carbon pools. Using data from
133 sites spanning six continents, we found that termite wood discovery and consumption were highly
sensitive to temperature (with decay increasing >6.8 times per 10°C increase in temperature)—even
more so than microbes. Termite decay effects were greatest in tropical seasonal forests, tropical
savannas, and subtropical deserts. With tropicalization (i.e., warming shifts to tropical climates), termite
wood decay will likely increase as termites access more of Earth’s surface.

F
orested systems contain ~676 billion
metric tons (Gt) of biomass (1), with a
large fraction of their carbon immobi-
lized for centuries in living wood and
deadwood (2, 3). Carbon storage depends

partly on decay rates of deadwood pools by
organisms,which vary across climatic gradients
(4, 5). Regional studies have suggested that
wooddecay bymicrobes approximately doubles
with a 10°C temperature increase (decay effec-
tiveQ10 = ~2, whereQ10 is the increase in rate
of a chemical reaction or biological process for
each 10°C increase in temperature) (2,6) driven,
in part, by enzyme kinetics. Further, microbial
decay occurs through extracellular enzymes,
whose delivery is dependent on moisture (7, 8),
which means that microbial wood decay should
increase with humidity. Less is known about
the climate sensitivities of important animal
decayers, which also influence how climate
change affects deadwood carbon stores.

Increasing evidence shows that termites are
important decayers at local to regional scales
(7, 9, 10). The abundance of wood-feeding
termites across biomes is poorly understood
(11), but decay by termites should be tempera-
ture sensitive. Termites increasingly contribute
to wood decay in warm locations (12–14), with
distributions set in part by ectothermic tem-
perature tolerances (15). Termite wood decay
depends on both discovery and consumption of
wood by searching animals, followed by chem-
ical decay through a cultivated set of microbial
symbionts. Therefore, this symbiont chemi-
cal decay will also be shaped by temperature-
dependent enzyme kinetics. In contrast to
microbes, termites are likely less sensitive to
moisture. Termites have a diversity of adapta-
tions to conserve moisture, which presumably
buffers their sensitivities to low precipitation
(16–18). In other words, termite discovery and
decay should continue with increasing aridity.

To test climate sensitivities of termite and
microbial wood decay, we conducted a rep-
licated experiment at 133 sites across exten-
sive temperature and precipitation gradients
representing most of the global bioregions
(Fig. 1). At each site, researchers monitored
decay of wood blocks for a common substrate,
Pinus radiata [or, in a few cases, closely related
Pinus species; (19)], for up to 48 months. All
sites had harvests at ~12 months and most
at ~24 months, with some sites including
~6-month, ~36-month, and/or ~48-month
harvests. We allowed microbial access to
all samples and manipulated termite access
(“microbes” versus “microbes + termites” treat-
ments); wood blocks were wrapped in fine
meshwith or without larger holes to allow or
exclude termites. At each site, researchers
placed pairs of treatment blocks with the num-
ber of pairs equal to the number of harvests
planned at each of 20 stations (a few sites
placed fewer stations), whichmeant that each
harvest froma site had40woodblocks [mean=
33.6 ± 14.2 (1 SD)] harvested at a given time
point across both treatments. Stations were
spaced at least 5 m apart (19) (table S11). A
total of 8922 blocks were collected across all
sites. Our focal species, P. radiata, was non-
native at all locations, whichmeant that no site
decay agents evolved with it as a substrate.
Termite discovery (i.e., the estimated per-

centage of wood blocks with evidence of ter-
mites per year at a site) was greatest, but also
highly variable, at low latitudes and elevations
and where temperature and precipitation were
high (Fig. 1, A and B; fig. S1; and table S1); low
latitudes and elevations represent thesewarmer
climates. High wood block discovery (>50%)
occurred at temperatures above 21.33°C. In
multivariate models, wood block discovery
by termites rapidly increased with increasing
temperatures (Fig. 2A and table S3), and tem-
perature and precipitation significantly inter-
acted (Fig. 1B, Fig. 2A, and table S3). Termite
discovery was higher in warm tropical biomes
in arid and semiarid sites (despite small sam-
ple sizes) compared with mesic and humid
sites (at 25°C, discovery estimates at 250mm
were 1.4 times as high as those at 2000mmand
1.9 times as high as those at 2700mm), where-
as in cool temperate biomes, the reverse pat-
ternswere observed (at 7°C, discovery estimates
at 2700 mmwere 4 times as high as those at
2000 mm and 150 times as high as those at
250 mm).
Microbial wood decay was fastest at low lat-

itudes and elevations and where temperature
and precipitation were high, although latitude
and precipitationwere weaker predictors than
elevation and temperature (Fig. 1C, fig. S2, and
table S2). Microbial temperature sensitivity
was similar to that observed in regional studies
[decay effective Q10 of 1.73; 95% confidence
interval (CI), 1.44 to 2.09] (2, 6). Inmultivariate
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Fig. 1. Geographic, biome, and climatic distribution
of experimental sites. (A) Dots denote the 133 study site
locations. (B) Study site distribution across mean
annual temperatures (MATs), mean annual precipitations
(MAPs), and Whittaker biomes (24). In (A) and (B),
the color of the dots represents termite discovery rate
(i.e., estimated percentage of wood blocks with evidence
of termites per year at a site). (C) Decay rate (k)
estimates across Whittaker biomes [shown by arrows
and colors matching the legend for (B)], with boxplots for
each biome representing blocks discovered by termites
(dashed boxplots on the right side of each pair) and
blocks undiscovered by termites (solid boxplots on
the left side of each pair) (examples of discovered blocks
are given in fig. S3). The y axis is ln-transformed, but
tick labels represent untransformed values for decay.
For the boxplots, center line indicates the median, box
limits indicate upper and lower quartiles, whiskers
indicate the 1.5× interquartile range, and points indicate
outliers. Numbers on top of the solid boxplots indicate
the total number of sites per biome, and numbers
on top of the dashed boxplots indicate the number of
sites where termite discovery occurred.
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models, precipitation was not a significant pre-
dictor ofmicrobial decay (Fig. 2B and table S4).
When termites discovered wood, decay rates
were higher at low elevations and where tem-
peraturewas high (Fig. 1C, fig. S2, and table S2).
Further, decay rates in termite-discoveredwood
weremore sensitive to changes in temperature
(decay effectiveQ10 of 6.85; 95%CI, 4.73 to 9.92)
compared with decay rates in undiscovered
wood, where microbes dominated decay. In
multivariate models, precipitation was not

a significant predictor of decay for termite-
discovered wood (Fig. 2C and table S5).
The termite-discoveredwood decay effective

Q10 is much steeper than any previously re-
corded for microbes (2, 6), which suggests
that a different mechanism determines termite
versus microbial wood decay. The observed
high consumption rate by termites at warm
sites may be related to termite assemblage
composition, large population numbers, high
activity, or some combination of these mech-

anisms. Consequently, subtropical, tropical, or
global models using a single microbial-derived
decay effectiveQ10 are likely to (i) underpredict
wood decay, (ii) overpredict terrestrial carbon
storage (all else being equal—e.g., inputs into
deadwood pools), and (iii) underpredict tem-
perature sensitivity of decay. Use of termite-
corrected decay effectiveQ10 values, whichmay
vary on the basis of termite assemblage compo-
sition, location, and/or wood substrate, should
improve the accuracy of modeled wood decay
under current and future climate predictions.
Such model modifications can capitalize on
empirical measures in the literature, such as
ours for termites and (20) for insects more
broadly. Our results suggest that precipitation
variation influences the discovery, but not the
decay, phase of termite wood decay. However,
strong temperature and precipitation interac-
tion influences on discoverymean that termites
increased overall decay most in subtropical
deserts and tropical seasonal forests and sa-
vannas (Fig. 1C). Further, even though micro-
bial abundance is sensitive to precipitation
(4, 5), temperature was a stronger driver than
precipitation for microbial-driven decay, per-
haps mediated through effects on enzyme
kinetics (21). Differences in decay sensitivity to
precipitation were small, with only microbial-
mediatedwooddecayweakly sensitive toprecip-
itation;microbial decay largely occurs through
the release of moisture-sensitive extracellular
enzymes (7, 8), whereas termites can conserve
moisture, buffering aridity effects (16–18). Al-
though low termite discovery in warm humid
locations remains surprising, competitive in-
teractions among decayers (11, 13), biome-
specific adaptations tomoisture, variation in
resource availability affecting foraging behav-
ior, etc., may reduce discovery.
Given the high sensitivities of both termite

wood discovery and decay to temperature,
termites will likely expand their range in a
warming world, with important consequences
for carbon cycling. Using data-driven estimates
of temperature and precipitation effects on
termite discovery (table S3), we estimated
discovery rates across the globe, restricting
predictions to the range in mean annual pre-
cipitation covered by our sites ±10%. Termites
today have the potential to discover large
amounts of deadwood (>50%) at sites across
30.2% of the land surface (assuming our esti-
mated discovery rates apply across wood and
termite species; Fig. 3). To bracket potential
climate change effects on discovery, we used
our estimated climate relationships with all
available midcentury Coupled Model Inter-
comparison Project Phase 6 (CMIP6) climate
models for shared socioeconomic pathway
(SSP) scenarios 1-2.6 and 5-8.5 (22). All sce-
narios predicted an expansion of termite dis-
covery in tropical and subtropical regions, with
the degree of expansion depending strongly
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Fig. 2. Discovery and
decay of wood based on
significant climatic
predictors. See tables S3
to S5 for full models.
(A) Termite discovery rate;
the estimated percentage
of wood blocks in the
microbes + termites
treatment across all sites
with evidence of termites
per year, across MAT
and MAP. (B) Decay rates
of termite-undiscovered
wood across MAT.
(C) Decay rates of termite-
discovered wood across
MAT (note, MAP was not a
significant predictor
of termite-undiscovered
or -discovered wood
decay). Dot size represents
number of wood blocks.
Symbols in the upper left
corner of each plot denote
the role of wood-feeding
termites and/or wood-
dwelling microbes. Solid
lines represent logistic (A)
or linear [(B) and (C)]
regression predictions
and [for (A)] those
at 250-mm MAP (orange;
representative of mean
desert and savanna
biomes), 2000-mm MAP
(cream; representative
of mean temperate
biomes), and 2700-mm
MAP (blue; representative
of mean tropical and
temperate humid biomes).
Dashed lines represent
95% CIs around
predictions. The y axes
for (B) and (C) are
ln-transformed, but
tick labels represent
untransformed values
for decay.
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on the extent of global terrestrial warming
(Fig. 3). Warming shifts to more tropical cli-
mates are occurring in many ecosystems (23),
and temperature sensitivities demonstrated
in this study suggest that termite contribu-
tions to wood decay will expand both within
and beyond the tropics with such tropicaliza-
tion. Our estimates may even underpredict
termite effects in areas where fungus-growing
termites occur (i.e., Africa and Asia) (12, 16),
which merits future research. The impact of
termites on wood decay is both large and
expected to increase (Fig. 3), and it also has a
different functional form thanmicrobial decay,
with a clear two-step process—discovery and
decay.
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Fig. 3. Predicted termite discovery by midcentury under different climate
projections. Global maps showing minimum and maximum termite expansion
scenarios based on the model in table S3 and CMIP6 forecasts for 2041 to 2060.
(A and B) Stronger climate change scenarios (SSP 5-8.5 UKESM1-0-LL) had the
largest expansion in discovery rates (A), and weaker climate change scenarios
(SSP 1-2.6 MPI-ESM1-2-HR) had the smallest (B). Termite discovery categories
were rare (<5%, blue), continuing low (>5% and <50%, light blue), current
high (>50%, orange), midcentury expansion to high (>50%, red), and unable to

predict (gray), restricting predictions to the range in MAP covered by our sites
(±10%). We did not model the transitions from rare (<5%, blue) to continuing low
(>5% and <50%, light blue) discovery. (C) Forecast increases in terrestrial
area (in square kilometers) with discovery >50% by midcentury versus forecast
mean terrestrial warming relative to a historical baseline. Each point denotes a
forecast based on one individual CMIP6 SSP 5-8.5 (blue) or SSP 1-2.6 (red) climate
model. The x axis of (C) is the mean forecast of 2041 to 2060 warming above
the 1970 to 2000 baseline for terrestrial areas only.
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Heat-dependent wood decay
Decomposition rates vary with temperature and precipitation, in part because of the effects of climate on decomposer
organisms. Although microbes are widely recognized as decomposers, animals such as insects also play a key role
in tropical systems. Zanne et al. replicated an experiment at 133 global sites to quantify climate-related variation in
wood decomposition by both microbes and termites. Climate influenced both microbial and termite decomposition, but
termite presence and activity were more sensitive to temperature. Termites may thus play a larger role in global wood
decomposition as the climate warms. —BEL
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