Data collected and managed by Forest Service programs is available in a map service and two downloadable file formats – in a shape file and an ESRI file geodatabase.
Metadata is available that describes the content, source, and currency of the data.
You can filter the list by the topic categories in the menu at the left to help you find information you are interested in.
You can view the feature classes in a single dataset by clicking on the name of the parent dataset at the bottom of the abstract.
More Forest Service map services are available in ArcGIS Online
EDW Information, Updates, and Alerts:
Check the EDW Information, Updates, and Alerts page for the latest Enterprise Data Warehouse notifications.
Shapefile Limitation Warning:
The Enterprise Data Warehouse Team has identified certain technical limitations of shapefiles which
make them not suitable for all datasets within this clearinghouse. Due to file size limits as well as attribute name
length and field length restrictions leading to inevitable data loss, the EDW Team is unable to support
shapefile exports for larger datasets. There are other methods to accessing this data in addition to the Esri File
Geodatabase (FGDB) including the map service or the Geospatial Data Discovery Tool.
Requests for KML/KMZ output
The Enterprise Data Warehouse Team tested exporting out to KML/KMZ files as a deliverable and due to the complexity and size of the datasets this has been unsuccessful.
To obtain a KML file for any EDW dataset, go to the Geospatial Data Discovery Tool and search for the dataset. An option to download to KML is available from that website.
If you have questions, contact: SM.FS.data@usda.gov.
Multiple research and management partners collaboratively developed a multiscale approach for assessing the geomorphic sensitivity of streams and ecological resilience of riparian and meadow ecosystems in upland watersheds of the Great Basin to disturbances and management actions. The approach builds on long-term work by the partners on the responses of these systems to disturbances and management actions. At the core of the assessments is information on past and present watershed and stream channel characteristics, geomorphic and hydrologic processes, and riparian and meadow vegetation. In this report, we describe the approach used to delineate Great Basin mountain ranges and the watersheds within them, and the data that are available for the individual watersheds. We also describe the resulting database and the data sources. Furthermore, we summarize information on the characteristics of the regions and watersheds within the regions and the implications of the assessments for geomorphic sensitivity and ecological resilience. The target audience for this multiscale approach is managers and stakeholders interested in assessing and adaptively managing Great Basin stream systems and riparian and meadow ecosystems. Anyone interested in delineating the mountain ranges and watersheds within the Great Basin or quantifying the characteristics of the watersheds will be interested in this report. For more information, visit: https://www.fs.usda.gov/research/treesearch/61573
Purpose:
The Great Basin Montane Watersheds dataset is the result of research assessing the geomorphic sensitivity of streams and ecological resilience of riparian and meadow ecosystems in upland watersheds of the Great Basin to disturbances and management actions. The study area, the Great Basin of North America, includes portions of Nevada, Utah, California, Oregon, and Idaho. Nine feature classes are included, which provide the seven regions (1) and the mountain ranges (2) identified in the study area, streams within each watershed (3) along with the stream heads (4), longest stream (5), lowest drainage points (6), and the stream head that has the farthest stream distance from the pour point (7), and the valley bottom which is considered the area surrounding the stream that is less than 15 meters above the stream's elevation (8) for each watershed. Also included are the watershed boundaries (9) and additional watershed information related to climate, topography, and wildlife. For more information, visit: https://www.fs.usda.gov/rds/archive/Catalog/RDS-2020-0059
Multiple research and management partners collaboratively developed a multiscale approach for assessing the geomorphic sensitivity of streams and ecological resilience of riparian and meadow ecosystems in upland watersheds of the Great Basin to disturbances and management actions. The approach builds on long-term work by the partners on the responses of these systems to disturbances and management actions. At the core of the assessments is information on past and present watershed and stream channel characteristics, geomorphic and hydrologic processes, and riparian and meadow vegetation. In this report, we describe the approach used to delineate Great Basin mountain ranges and the watersheds within them, and the data that are available for the individual watersheds. We also describe the resulting database and the data sources. Furthermore, we summarize information on the characteristics of the regions and watersheds within the regions and the implications of the assessments for geomorphic sensitivity and ecological resilience. The target audience for this multiscale approach is managers and stakeholders interested in assessing and adaptively managing Great Basin stream systems and riparian and meadow ecosystems. Anyone interested in delineating the mountain ranges and watersheds within the Great Basin or quantifying the characteristics of the watersheds will be interested in this report. For more information, visit: https://www.fs.usda.gov/research/treesearch/61573
Purpose:
The Great Basin Montane Watersheds dataset is the result of research assessing the geomorphic sensitivity of streams and ecological resilience of riparian and meadow ecosystems in upland watersheds of the Great Basin to disturbances and management actions. The study area, the Great Basin of North America, includes portions of Nevada, Utah, California, Oregon, and Idaho. Nine feature classes are included, which provide the seven regions (1) and the mountain ranges (2) identified in the study area, streams within each watershed (3) along with the stream heads (4), longest stream (5), lowest drainage points (6), and the stream head that has the farthest stream distance from the pour point (7), and the valley bottom which is considered the area surrounding the stream that is less than 15 meters above the stream's elevation (8) for each watershed. Also included are the watershed boundaries (9) and additional watershed information related to climate, topography, and wildlife. For more information, visit: https://www.fs.usda.gov/rds/archive/Catalog/RDS-2020-0059
Multiple research and management partners collaboratively developed a multiscale approach for assessing the geomorphic sensitivity of streams and ecological resilience of riparian and meadow ecosystems in upland watersheds of the Great Basin to disturbances and management actions. The approach builds on long-term work by the partners on the responses of these systems to disturbances and management actions. At the core of the assessments is information on past and present watershed and stream channel characteristics, geomorphic and hydrologic processes, and riparian and meadow vegetation. In this report, we describe the approach used to delineate Great Basin mountain ranges and the watersheds within them, and the data that are available for the individual watersheds. We also describe the resulting database and the data sources. Furthermore, we summarize information on the characteristics of the regions and watersheds within the regions and the implications of the assessments for geomorphic sensitivity and ecological resilience. The target audience for this multiscale approach is managers and stakeholders interested in assessing and adaptively managing Great Basin stream systems and riparian and meadow ecosystems. Anyone interested in delineating the mountain ranges and watersheds within the Great Basin or quantifying the characteristics of the watersheds will be interested in this report. For more information, visit: https://www.fs.usda.gov/research/treesearch/61573
Purpose:
The Great Basin Montane Watersheds dataset is the result of research assessing the geomorphic sensitivity of streams and ecological resilience of riparian and meadow ecosystems in upland watersheds of the Great Basin to disturbances and management actions. The study area, the Great Basin of North America, includes portions of Nevada, Utah, California, Oregon, and Idaho. Nine feature classes are included, which provide the seven regions (1) and the mountain ranges (2) identified in the study area, streams within each watershed (3) along with the stream heads (4), longest stream (5), lowest drainage points (6), and the stream head that has the farthest stream distance from the pour point (7), and the valley bottom which is considered the area surrounding the stream that is less than 15 meters above the stream's elevation (8) for each watershed. Also included are the watershed boundaries (9) and additional watershed information related to climate, topography, and wildlife. For more information, visit: https://www.fs.usda.gov/rds/archive/Catalog/RDS-2020-0059
Multiple research and management partners collaboratively developed a multiscale approach for assessing the geomorphic sensitivity of streams and ecological resilience of riparian and meadow ecosystems in upland watersheds of the Great Basin to disturbances and management actions. The approach builds on long-term work by the partners on the responses of these systems to disturbances and management actions. At the core of the assessments is information on past and present watershed and stream channel characteristics, geomorphic and hydrologic processes, and riparian and meadow vegetation. In this report, we describe the approach used to delineate Great Basin mountain ranges and the watersheds within them, and the data that are available for the individual watersheds. We also describe the resulting database and the data sources. Furthermore, we summarize information on the characteristics of the regions and watersheds within the regions and the implications of the assessments for geomorphic sensitivity and ecological resilience. The target audience for this multiscale approach is managers and stakeholders interested in assessing and adaptively managing Great Basin stream systems and riparian and meadow ecosystems. Anyone interested in delineating the mountain ranges and watersheds within the Great Basin or quantifying the characteristics of the watersheds will be interested in this report. For more information, visit: https://www.fs.usda.gov/research/treesearch/61573
Purpose:
The Great Basin Montane Watersheds dataset is the result of research assessing the geomorphic sensitivity of streams and ecological resilience of riparian and meadow ecosystems in upland watersheds of the Great Basin to disturbances and management actions. The study area, the Great Basin of North America, includes portions of Nevada, Utah, California, Oregon, and Idaho. Nine feature classes are included, which provide the seven regions (1) and the mountain ranges (2) identified in the study area, streams within each watershed (3) along with the stream heads (4), longest stream (5), lowest drainage points (6), and the stream head that has the farthest stream distance from the pour point (7), and the valley bottom which is considered the area surrounding the stream that is less than 15 meters above the stream's elevation (8) for each watershed. Also included are the watershed boundaries (9) and additional watershed information related to climate, topography, and wildlife. For more information, visit: https://www.fs.usda.gov/rds/archive/Catalog/RDS-2020-0059
Multiple research and management partners collaboratively developed a multiscale approach for assessing the geomorphic sensitivity of streams and ecological resilience of riparian and meadow ecosystems in upland watersheds of the Great Basin to disturbances and management actions. The approach builds on long-term work by the partners on the responses of these systems to disturbances and management actions. At the core of the assessments is information on past and present watershed and stream channel characteristics, geomorphic and hydrologic processes, and riparian and meadow vegetation. In this report, we describe the approach used to delineate Great Basin mountain ranges and the watersheds within them, and the data that are available for the individual watersheds. We also describe the resulting database and the data sources. Furthermore, we summarize information on the characteristics of the regions and watersheds within the regions and the implications of the assessments for geomorphic sensitivity and ecological resilience. The target audience for this multiscale approach is managers and stakeholders interested in assessing and adaptively managing Great Basin stream systems and riparian and meadow ecosystems. Anyone interested in delineating the mountain ranges and watersheds within the Great Basin or quantifying the characteristics of the watersheds will be interested in this report. For more information, visit: https://www.fs.usda.gov/research/treesearch/61573
Purpose:
The Great Basin Montane Watersheds dataset is the result of research assessing the geomorphic sensitivity of streams and ecological resilience of riparian and meadow ecosystems in upland watersheds of the Great Basin to disturbances and management actions. The study area, the Great Basin of North America, includes portions of Nevada, Utah, California, Oregon, and Idaho. Nine feature classes are included, which provide the seven regions (1) and the mountain ranges (2) identified in the study area, streams within each watershed (3) along with the stream heads (4), longest stream (5), lowest drainage points (6), and the stream head that has the farthest stream distance from the pour point (7), and the valley bottom which is considered the area surrounding the stream that is less than 15 meters above the stream's elevation (8) for each watershed. Also included are the watershed boundaries (9) and additional watershed information related to climate, topography, and wildlife. For more information, visit: https://www.fs.usda.gov/rds/archive/Catalog/RDS-2020-0059
Multiple research and management partners collaboratively developed a multiscale approach for assessing the geomorphic sensitivity of streams and ecological resilience of riparian and meadow ecosystems in upland watersheds of the Great Basin to disturbances and management actions. The approach builds on long-term work by the partners on the responses of these systems to disturbances and management actions. At the core of the assessments is information on past and present watershed and stream channel characteristics, geomorphic and hydrologic processes, and riparian and meadow vegetation. In this report, we describe the approach used to delineate Great Basin mountain ranges and the watersheds within them, and the data that are available for the individual watersheds. We also describe the resulting database and the data sources. Furthermore, we summarize information on the characteristics of the regions and watersheds within the regions and the implications of the assessments for geomorphic sensitivity and ecological resilience. The target audience for this multiscale approach is managers and stakeholders interested in assessing and adaptively managing Great Basin stream systems and riparian and meadow ecosystems. Anyone interested in delineating the mountain ranges and watersheds within the Great Basin or quantifying the characteristics of the watersheds will be interested in this report. For more information, visit: https://www.fs.usda.gov/research/treesearch/61573
Purpose:
The Great Basin Montane Watersheds dataset is the result of research assessing the geomorphic sensitivity of streams and ecological resilience of riparian and meadow ecosystems in upland watersheds of the Great Basin to disturbances and management actions. The study area, the Great Basin of North America, includes portions of Nevada, Utah, California, Oregon, and Idaho. Nine feature classes are included, which provide the seven regions (1) and the mountain ranges (2) identified in the study area, streams within each watershed (3) along with the stream heads (4), longest stream (5), lowest drainage points (6), and the stream head that has the farthest stream distance from the pour point (7), and the valley bottom which is considered the area surrounding the stream that is less than 15 meters above the stream's elevation (8) for each watershed. Also included are the watershed boundaries (9) and additional watershed information related to climate, topography, and wildlife. For more information, visit: https://www.fs.usda.gov/rds/archive/Catalog/RDS-2020-0059
Multiple research and management partners collaboratively developed a multiscale approach for assessing the geomorphic sensitivity of streams and ecological resilience of riparian and meadow ecosystems in upland watersheds of the Great Basin to disturbances and management actions. The approach builds on long-term work by the partners on the responses of these systems to disturbances and management actions. At the core of the assessments is information on past and present watershed and stream channel characteristics, geomorphic and hydrologic processes, and riparian and meadow vegetation. In this report, we describe the approach used to delineate Great Basin mountain ranges and the watersheds within them, and the data that are available for the individual watersheds. We also describe the resulting database and the data sources. Furthermore, we summarize information on the characteristics of the regions and watersheds within the regions and the implications of the assessments for geomorphic sensitivity and ecological resilience. The target audience for this multiscale approach is managers and stakeholders interested in assessing and adaptively managing Great Basin stream systems and riparian and meadow ecosystems. Anyone interested in delineating the mountain ranges and watersheds within the Great Basin or quantifying the characteristics of the watersheds will be interested in this report. For more information, visit: https://www.fs.usda.gov/research/treesearch/61573
Purpose:
The Great Basin Montane Watersheds dataset is the result of research assessing the geomorphic sensitivity of streams and ecological resilience of riparian and meadow ecosystems in upland watersheds of the Great Basin to disturbances and management actions. The study area, the Great Basin of North America, includes portions of Nevada, Utah, California, Oregon, and Idaho. Nine feature classes are included, which provide the seven regions (1) and the mountain ranges (2) identified in the study area, streams within each watershed (3) along with the stream heads (4), longest stream (5), lowest drainage points (6), and the stream head that has the farthest stream distance from the pour point (7), and the valley bottom which is considered the area surrounding the stream that is less than 15 meters above the stream's elevation (8) for each watershed. Also included are the watershed boundaries (9) and additional watershed information related to climate, topography, and wildlife. For more information, visit: https://www.fs.usda.gov/rds/archive/Catalog/RDS-2020-0059
Multiple research and management partners collaboratively developed a multiscale approach for assessing the geomorphic sensitivity of streams and ecological resilience of riparian and meadow ecosystems in upland watersheds of the Great Basin to disturbances and management actions. The approach builds on long-term work by the partners on the responses of these systems to disturbances and management actions. At the core of the assessments is information on past and present watershed and stream channel characteristics, geomorphic and hydrologic processes, and riparian and meadow vegetation. In this report, we describe the approach used to delineate Great Basin mountain ranges and the watersheds within them, and the data that are available for the individual watersheds. We also describe the resulting database and the data sources. Furthermore, we summarize information on the characteristics of the regions and watersheds within the regions and the implications of the assessments for geomorphic sensitivity and ecological resilience. The target audience for this multiscale approach is managers and stakeholders interested in assessing and adaptively managing Great Basin stream systems and riparian and meadow ecosystems. Anyone interested in delineating the mountain ranges and watersheds within the Great Basin or quantifying the characteristics of the watersheds will be interested in this report. For more information, visit: https://www.fs.usda.gov/research/treesearch/61573
Purpose:
The Great Basin Montane Watersheds dataset is the result of research assessing the geomorphic sensitivity of streams and ecological resilience of riparian and meadow ecosystems in upland watersheds of the Great Basin to disturbances and management actions. The study area, the Great Basin of North America, includes portions of Nevada, Utah, California, Oregon, and Idaho. Nine feature classes are included, which provide the seven regions (1) and the mountain ranges (2) identified in the study area, streams within each watershed (3) along with the stream heads (4), longest stream (5), lowest drainage points (6), and the stream head that has the farthest stream distance from the pour point (7), and the valley bottom which is considered the area surrounding the stream that is less than 15 meters above the stream's elevation (8) for each watershed. Also included are the watershed boundaries (9) and additional watershed information related to climate, topography, and wildlife. For more information, visit: https://www.fs.usda.gov/rds/archive/Catalog/RDS-2020-0059
Multiple research and management partners collaboratively developed a multiscale approach for assessing the geomorphic sensitivity of streams and ecological resilience of riparian and meadow ecosystems in upland watersheds of the Great Basin to disturbances and management actions. The approach builds on long-term work by the partners on the responses of these systems to disturbances and management actions. At the core of the assessments is information on past and present watershed and stream channel characteristics, geomorphic and hydrologic processes, and riparian and meadow vegetation. In this report, we describe the approach used to delineate Great Basin mountain ranges and the watersheds within them, and the data that are available for the individual watersheds. We also describe the resulting database and the data sources. Furthermore, we summarize information on the characteristics of the regions and watersheds within the regions and the implications of the assessments for geomorphic sensitivity and ecological resilience. The target audience for this multiscale approach is managers and stakeholders interested in assessing and adaptively managing Great Basin stream systems and riparian and meadow ecosystems. Anyone interested in delineating the mountain ranges and watersheds within the Great Basin or quantifying the characteristics of the watersheds will be interested in this report. For more information, visit: https://www.fs.usda.gov/research/treesearch/61573
Purpose:
The Great Basin Montane Watersheds dataset is the result of research assessing the geomorphic sensitivity of streams and ecological resilience of riparian and meadow ecosystems in upland watersheds of the Great Basin to disturbances and management actions. The study area, the Great Basin of North America, includes portions of Nevada, Utah, California, Oregon, and Idaho. Nine feature classes are included, which provide the seven regions (1) and the mountain ranges (2) identified in the study area, streams within each watershed (3) along with the stream heads (4), longest stream (5), lowest drainage points (6), and the stream head that has the farthest stream distance from the pour point (7), and the valley bottom which is considered the area surrounding the stream that is less than 15 meters above the stream's elevation (8) for each watershed. Also included are the watershed boundaries (9) and additional watershed information related to climate, topography, and wildlife. For more information, visit: https://www.fs.usda.gov/rds/archive/Catalog/RDS-2020-0059